JPH08184689A - Power reactor provided with hydrogen producing mechanism - Google Patents

Power reactor provided with hydrogen producing mechanism

Info

Publication number
JPH08184689A
JPH08184689A JP6326819A JP32681994A JPH08184689A JP H08184689 A JPH08184689 A JP H08184689A JP 6326819 A JP6326819 A JP 6326819A JP 32681994 A JP32681994 A JP 32681994A JP H08184689 A JPH08184689 A JP H08184689A
Authority
JP
Japan
Prior art keywords
hydrogen
reactor
water
gas
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6326819A
Other languages
Japanese (ja)
Other versions
JP2907741B2 (en
Inventor
Yukio Wada
幸男 和田
Munetaka Myochin
宗孝 明珍
Koichi Kawaguchi
浩一 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doryokuro Kakunenryo Kaihatsu Jigyodan
Power Reactor and Nuclear Fuel Development Corp
Original Assignee
Doryokuro Kakunenryo Kaihatsu Jigyodan
Power Reactor and Nuclear Fuel Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doryokuro Kakunenryo Kaihatsu Jigyodan, Power Reactor and Nuclear Fuel Development Corp filed Critical Doryokuro Kakunenryo Kaihatsu Jigyodan
Priority to JP6326819A priority Critical patent/JP2907741B2/en
Publication of JPH08184689A publication Critical patent/JPH08184689A/en
Application granted granted Critical
Publication of JP2907741B2 publication Critical patent/JP2907741B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Catalysts (AREA)

Abstract

PURPOSE: To provide a power reactor capable of producing hydrogen by effectively using radiation energy generated in the reactor. CONSTITUTION: An annular tank 32 holding water suspending catalyst wherein palladium is carried on titanium oxide particles, is arranged around a reactor core 31. When the annular tank 32 is irradiated with γ-ray generated in the reactor core 31, water is decomposed by the action of the catalyst and hydrogen and oxygen generate. As the repulse result of the reaction, the γ-ray generated in the reactor core 31 is reduced and thus, the hydrogen production leads to γ-ray shielding.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は発電原子炉、特に原子炉
から発生するγ線を利用して水素を製造することができ
る発電原子炉に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power generating nuclear reactor, and more particularly to a power generating nuclear reactor capable of producing hydrogen using gamma rays generated from the nuclear reactor.

【0002】[0002]

【従来の技術】原子力発電は現在我が国のエネルギー源
としてなくてはならないものとなっているが、発電を行
う際に原子炉から中性子やγ線等の放射線が発生するた
め、それらが外部に漏れないように遮蔽をする必要があ
る。原子炉の遮蔽は、γ線については鉛などの重い元
素、中性子については水素を含ませたコンクリートブロ
ックや水などの減速材を使用して行われている。
2. Description of the Related Art Nuclear power generation is now an indispensable source of energy in Japan. However, when power generation is performed, radiation such as neutrons and γ-rays is emitted from the reactor, so these leak to the outside. It is necessary to shield it so that it does not exist. Shielding of nuclear reactors is performed by using heavy elements such as lead for γ-rays and hydrogen for neutrons using concrete blocks and moderators such as water.

【0003】しかしながら、いずれの遮蔽手段も放射線
のエネルギーを減衰させることを基本原理としており、
それゆえに、原子炉から発生する中性子やγ線等のエネ
ルギーはいわば浪費されているだけであった。このよう
な要求に答えるべくなされたのが、特開平2−9544
0号(特願昭63−248755号)公報に記載された
発明であり、この発明によれば、原子炉から生ずる放射
性白金族元素のγ線のエネルギーで水を分解することに
よって、水素を得ている。
However, the basic principle of any of the shielding means is to attenuate the energy of radiation,
Therefore, the energy such as neutrons and gamma rays generated from the nuclear reactor was wasted, so to speak. Japanese Patent Laid-Open No. 9544/1990 has made such a request.
According to the present invention, hydrogen is obtained by decomposing water with the energy of γ-rays of radioactive platinum group elements generated from a nuclear reactor, which is the invention described in Japanese Patent Application No. 0-63-248755. ing.

【0004】この発明において、原子炉から生ずる放射
性白金族元素は、水分解反応のエネルギー源と触媒とを
兼ねている。この発明は、放射線のエネルギーを太陽光
のそれに代替したというばかりでなく、従来問題視され
てきていた高放射性物質に有用な用途を与えたという点
で意義が大きい。
In the present invention, the radioactive platinum group element generated from the nuclear reactor serves both as an energy source and a catalyst for the water splitting reaction. The present invention is significant in that it not only replaces the energy of radiation with that of sunlight but also provides useful applications to the highly radioactive substances that have been regarded as problems in the past.

【0005】[0005]

【発明が解決しようとする課題】ところが、この発明に
おいては放射性白金族元素が水分解反応のエネルギー源
と触媒とを兼ねているため、利用できるのは白金族元素
だけであり、原子炉自体から発生する放射線の有効利用
は計られていなかった。
However, in the present invention, since the radioactive platinum group element serves as both the energy source and the catalyst for the water-splitting reaction, only the platinum group element can be utilized, and it can be utilized from the nuclear reactor itself. The effective use of the generated radiation was not planned.

【0006】本発明は以上のような課題に鑑みなされた
ものであり、その目的は、原子炉から発生する放射線の
エネルギーを有効に利用することができる発電原子炉を
提供することにある。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a power-generating reactor capable of effectively utilizing the energy of radiation generated from the reactor.

【0007】[0007]

【課題を解決するための手段】以上のような課題を解決
するために、本発明に係る発電原子炉においては、原子
炉の炉心の周囲を囲み白金族元素を半導体に担持した触
媒体及び/又は白金族元素を水中に懸濁させた懸濁液を
貯留する囲み槽と、前記囲み槽内における触媒体もしく
は白金族元素の懸濁状態を保持するための撹拌手段と、
前記囲み槽から発生した気体を捕獲する捕獲手段と、こ
の捕獲手段で捕獲された気体から水素を分離する分離手
段と、を含み、原子炉から発生するγ線のエネルギーに
より水を分解して水素を製造し、同時に当該γ線の漏出
を防止することを特徴とする。
In order to solve the above problems, in a power generation reactor according to the present invention, a catalyst body surrounding a core of a nuclear reactor and a platinum group element supported on a semiconductor and / or Alternatively, an enclosure for storing a suspension of a platinum group element suspended in water, and a stirring means for maintaining a suspended state of the catalyst body or the platinum group element in the enclosure,
It includes a capturing means for capturing the gas generated from the enclosure and a separating means for separating hydrogen from the gas captured by the capturing means, and hydrogen is generated by decomposing water by the energy of γ rays generated from the nuclear reactor. Is manufactured, and at the same time, the leakage of the γ-ray is prevented.

【0008】[0008]

【作用】本発明において中心的な概念である放射線−半
導体触媒法による水分解、水素製造原理は、次の二つの
反応メカニズムによる。
The principle of water splitting and hydrogen production by the radiation-semiconductor catalyst method, which is the central concept of the present invention, is based on the following two reaction mechanisms.

【0009】半導体微粒子懸濁法: TiO2 又はS
rTiO3 のような半導体微粒子(直径数μ〜数+μ)
の表面にRuのような白金族元素を担持し、これを多量
に水中に懸濁させる。これにγ線を照射することによ
り、半導体内にエレクトロン−ホール(e- −h+ )ペ
アが発生し、これらが水を分解して、水素と酸素を発生
させる(即ち、(e- −h+ )ペアの内、e- はプロト
ンを還元して水素を発生させ、h+ は水を酸化して酸素
を発生させる)。
Semiconductor fine particle suspension method: TiO 2 or S
Semiconductor particles such as rTiO 3 (diameter several μ to several + μ)
A platinum group element such as Ru is supported on the surface of the, and a large amount of this is suspended in water. When this is irradiated with γ rays, electron-hole (e −h + ) pairs are generated in the semiconductor, and these decompose water to generate hydrogen and oxygen (that is, (e −h). +) of the pair, e - is to generate hydrogen by reducing protons, h + generates oxygen by oxidizing water).

【0010】白金族微粒子懸濁法: Ru金属の微粒
子(直径数μ〜数+μ)を水中に懸濁させ、それにγ線
を照射させると、γ線とH2 Oとの反応で生成した水素
ラジカル(H・)および水酸ラジカル(・OH)が、金
属微粒子の表面でその触媒的効果により容易に結合し、
2 、H2 2 が生成する。この効果は、金属微粒子が
存在しない場合の約30倍にもなる。
Platinum group fine particle suspension method: Ru metal fine particles (diameter several μ to several + μ) are suspended in water, and when they are irradiated with γ rays, hydrogen generated by the reaction between γ rays and H 2 O is generated. Radicals (H.) and hydroxyl radicals (.OH) easily bond on the surface of the fine metal particles due to their catalytic effect,
H 2 and H 2 O 2 are produced. This effect is about 30 times as large as that in the case where no metal fine particles are present.

【0011】本発明に係る発電原子炉において、囲み槽
は、原子炉の炉心の周囲を囲み白金族元素を半導体に担
持した触媒体及び/又は白金族元素を水中に懸濁させた
懸濁液を貯留するようにされており、当該囲み槽内にお
ける触媒体もしくは白金族元素の懸濁状態を保持するた
めに撹拌手段が設けられている。本発明に係る発電原子
炉においては、原子炉から発生するγ線は囲み槽におい
て、上記原理により水を分解して水素を発生させる。囲
み槽から発生した気体は、捕獲手段により捕獲され、分
離手段によってこの捕獲手段で捕獲された気体から水素
が分離され、貯蔵される。
In the power generation reactor according to the present invention, the enclosure contains a catalyst body in which the semiconductor of the platinum group element is supported on the periphery of the core of the reactor and / or a suspension of the platinum group element suspended in water. Is stored, and a stirring means is provided for holding the suspended state of the catalyst body or the platinum group element in the enclosure. In the power generation nuclear reactor according to the present invention, γ-rays generated from the nuclear reactor decompose water to generate hydrogen in the enclosed tank according to the above principle. The gas generated from the enclosure is captured by the capturing means, and hydrogen is separated from the gas captured by the capturing means by the separating means and stored.

【0012】水素が製造される過程において、γ線のエ
ネルギーは減衰する。即ち、水素を製造する代わりに、
γ線が消費されることとなるのである。従って、本発明
に係る発電原子炉においては、水素が製造されると同時
に、その反動的な作用としてγ線の遮蔽が行われること
となる。
In the process of producing hydrogen, the energy of γ rays is attenuated. That is, instead of producing hydrogen,
Gamma rays will be consumed. Therefore, in the power generation reactor according to the present invention, hydrogen is produced, and at the same time, γ-rays are shielded as its reaction.

【0013】[0013]

【実施例】以下、本発明の好適な実施例を図に基づいて
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings.

【0014】まず、本発明に係る発電原子炉の水素発生
量の計算等をするためのモデルを作成した(図1)。図
1に示される装置は、触媒を懸濁させた溶液を貯留する
フラスコ11にガス捕集容器13を組み合わせたもので
あり、これらの接続はガラス擦り合わせコック15によ
り行われる。まず、フラスコ11に水を加え、ここに触
媒を懸濁させた後、接続された排気管17から一旦ガス
を抜き、それをアルゴンガスと置換する。その後、γ線
を照射し、ガス捕集容器に貯留されたガスの量及び割合
を測定し、アルゴンガス以外のガスの量(体積、割合)
を調べた。実験は、60Coの43000Ci線源を利用
し、線源から20cm離れた場所に図1の装置を置いて
行った。この結果を表1に示す。
First, a model for calculating the hydrogen generation amount of the power generation reactor according to the present invention was prepared (FIG. 1). The apparatus shown in FIG. 1 is a combination of a flask 11 for storing a solution in which a catalyst is suspended and a gas collection container 13, and these connections are made by a glass rubbing cock 15. First, water is added to the flask 11 to suspend the catalyst therein, and then the gas is once discharged from the connected exhaust pipe 17 and replaced with argon gas. After that, γ-ray irradiation is performed to measure the amount and ratio of the gas stored in the gas collection container, and the amount (volume, ratio) of the gas other than argon gas.
I checked. The experiment was carried out by using a 60 Co 43000 Ci radiation source and placing the apparatus of FIG. 1 at a location 20 cm away from the radiation source. Table 1 shows the results.

【0015】[0015]

【表1】 この表1に示されるように、ルテニウムを担持した酸化
チタン触媒を使用した場合には水素が発生し、その量お
よび発生速度は、ルテニウム金属単独の場合の約2倍程
度になるということがわかる。また、系内にメタノール
を加えた場合には、より多くの水素が発生するというこ
ともわかる。具体的には、表1の結果が示すように、H
2 Oのみの照射に比べ、Ru担持TiO2 微粒子系では
約60倍のH2 発生があった。Ru担持TiO2 系にメ
タノール(MeOH)を50ml添加した系では更に大
きく、約500倍にも達する。また、Ru金属微粒子の
みの懸濁系でも約30倍の発生効率が得られた。このよ
うなことから、半導体微粒子懸濁系と白金族微粒子懸濁
系とを共存させた系では、少なくともこれらの相加的効
果は得られるものと考えられる。
[Table 1] As shown in Table 1, it can be seen that hydrogen is generated when the ruthenium-supported titanium oxide catalyst is used, and the amount and generation rate of hydrogen are about twice as high as those of the ruthenium metal alone. . It is also found that more hydrogen is generated when methanol is added to the system. Specifically, as shown in the results of Table 1, H
The Ru-supported TiO 2 fine particle system generated about 60 times more H 2 than the irradiation with 2 O alone. In a system in which 50 ml of methanol (MeOH) is added to the Ru-supporting TiO 2 system, the system is even larger, reaching about 500 times. Further, even in a suspension system containing only Ru metal fine particles, a generation efficiency of about 30 times was obtained. From these facts, it is considered that at least additive effects of these can be obtained in a system in which a semiconductor fine particle suspension system and a platinum group fine particle suspension system coexist.

【0016】図2は、本実施例に係る発電原子炉の構成
を示すブロック図である。本実施例に係る発電原子炉
は、原子炉心31を取り囲む水分解反応槽32と、この
水分解反応槽32に水を供給するH2 O供給ライン34
と、水分解反応槽32で生じた気体を流通する集気管3
5と、集気管35内を流通するガスから水を除去する脱
水塔37と、脱水されたガスを分離するガス成分分離塔
38と、を含む。なお、本実施例において、特許請求の
範囲に記載された「囲み槽」は、環状のタンクである水
分解反応槽32となっているが、環状のタンクに限られ
ることなく、原子炉心を取り囲めるものであればいかな
る形状のものも用いることができる。
FIG. 2 is a block diagram showing the structure of the power generation reactor according to this embodiment. The power generation reactor according to this embodiment includes a water decomposition reaction tank 32 surrounding the reactor core 31, and an H 2 O supply line 34 for supplying water to the water decomposition reaction tank 32.
And the air collection pipe 3 for circulating the gas generated in the water decomposition reaction tank 32
5, a dehydration tower 37 for removing water from the gas flowing through the air collection pipe 35, and a gas component separation tower 38 for separating the dehydrated gas. In addition, in the present embodiment, the “enclosure” described in the claims is the water decomposition reaction tank 32 which is an annular tank, but it is not limited to the annular tank, and the reactor core can be removed. Any shape can be used as long as it can be enclosed.

【0017】ここで、環状のタンクとして構成された水
分解反応槽32は、Ruのような白金族元素を表面に担
持したTiO2 微粒子を水中に懸濁させる反応槽であ
り、実施例として用いられているのは、内径、外径、厚
さ、高さが各々300,350,50,400cmのド
ーナツ形状で、内容積が約40cm3 のものである。実
施例において、この槽32には半導体微粒子の他に、R
u金属微粒子のような白金族微粒子(〜数十μ)の懸濁
を含む。H2 O供給ライン34は、水分解により水が減
少するので、減少した水を適宜補給するためのものであ
る。脱水塔37で回収した水分は、反応槽32に戻す。
Here, the water decomposition reaction tank 32 configured as an annular tank is a reaction tank for suspending TiO 2 fine particles carrying a platinum group element such as Ru on the surface in water, and is used as an example. It is a donut shape having an inner diameter, an outer diameter, a thickness, and a height of 300, 350, 50, and 400 cm, respectively, and an inner volume of about 40 cm 3 . In the embodiment, in addition to the semiconductor fine particles, R
u Suspension of platinum group particles (~ several tens of µ) such as metal particles. The H 2 O supply line 34 is for replenishing the reduced water appropriately because the water is reduced by water decomposition. The water content recovered in the dehydration tower 37 is returned to the reaction tank 32.

【0018】ガス成分分離塔38では、得られる水素と
酸素、および実施例においてパージガスとして使用され
ている窒素がそれぞれ分離され、水素は水素貯蔵タンク
39に貯蔵される。ガス成分分離塔38は、ガスクロマ
ト法、ガス分離膜等を利用したもので構成する。水素貯
蔵タンク39は、通常のガスタンクや水素吸蔵合金など
により構成する。水分解反応槽32には、この他にも、
アニュラー管41や試料抜出バルブ42が取り付けられ
ている。反応槽32の底部には、ドーナツ状底部にそっ
て細孔をもったパージ管44を設置し、アニュラー管4
1から送られてくるパージガス(N2 ガス)によりバブ
リングを行い、発生水素ガスのキャリヤーと懸濁粒子の
凝集防止、かく拌効果の両方の役割を果たさせるように
している。パージガス(N2 ガス)については、アニュ
ラー管41、集気管35、ガス成分分離塔38、パージ
管44で、パージN2 ガス巡還システムを構成してい
る。試料抜出バルブ42は、必要に応じて槽内試料を交
換するためのものである。
In the gas component separation column 38, the obtained hydrogen and oxygen are separated from each other and nitrogen used as a purge gas in the embodiment, and the hydrogen is stored in the hydrogen storage tank 39. The gas component separation tower 38 is configured by using a gas chromatography method, a gas separation membrane, or the like. The hydrogen storage tank 39 is composed of a normal gas tank, a hydrogen storage alloy, or the like. In addition to this, in the water decomposition reaction tank 32,
An annular tube 41 and a sample extraction valve 42 are attached. At the bottom of the reaction tank 32, a purge pipe 44 having pores along the donut-shaped bottom is installed.
Bubbling is carried out by the purge gas (N 2 gas) sent from No. 1 so as to fulfill the roles of both the carrier of the generated hydrogen gas and the agglomeration of suspended particles and the stirring effect. Regarding the purge gas (N 2 gas), the annular pipe 41, the air collection pipe 35, the gas component separation tower 38, and the purge pipe 44 constitute a purge N 2 gas circulation system. The sample withdrawal valve 42 is for exchanging the sample in the tank as needed.

【0019】上記した表1の実験結果から、原子炉内へ
組み込んだ規模でのH2 ガス発生量を計算する。水素発
生効率は、前記表1のデータを用い、懸濁液500ml
に対して8mlH2 /hの発生効率があると仮定し、計
算した。
From the experimental results shown in Table 1 above, the amount of H 2 gas generated on the scale incorporated in the reactor is calculated. For the hydrogen generation efficiency, using the data in Table 1 above, 500 ml of suspension
It was calculated by assuming that there is a generation efficiency of 8 mlH 2 / h.

【0020】その結果、40m3 のこの反応槽では、原
子炉心31からのγ線実効線量率が1×108 R/hで
あれば65m3 2 /h、1×109 R/hであれば6
50m3 2 /hの水素の製造が可能となる。これは、
後者の発生量は高温ガス炉研究で計画されている発生量
(日本原子力学会誌Vol.35.No5(199
3))1330Nm3 /hの約半分になる。本実施例に
係る水分解・水素発生系を利用した原子炉では、このよ
うな発生量が通常の発電をしながら得られることにな
る。
As a result, in this 40 m 3 reactor, if the effective dose rate of γ rays from the reactor core 31 is 1 × 10 8 R / h, it is 65 m 3 H 2 / h, 1 × 10 9 R / h. If there is 6
It is possible to produce hydrogen of 50 m 3 H 2 / h. this is,
The amount of the latter is the amount planned for HTGR research (Journal of the Atomic Energy Society, Vol. 35. No. 5 (199).
3)) It is about half of 1330 Nm 3 / h. In the nuclear reactor utilizing the water decomposition / hydrogen generation system according to the present embodiment, such an amount of generation can be obtained while performing normal power generation.

【0021】安全面では、もし原子炉が緊急停止するよ
うな状態になれば、γ線場が急激になくなるので水素発
生も極端に減少し、水素製造も停止状態になる。そのた
め水素製造の停止制御が自動に行われることになる。ま
た反応槽内の液を抜けば、炉が運転していても水素発生
が停止される。
In terms of safety, if the reactor is in an emergency shutdown state, the γ-ray field disappears sharply, the amount of hydrogen generation is extremely reduced, and the hydrogen production is also stopped. Therefore, the stop control of hydrogen production is automatically performed. Further, if the liquid in the reaction tank is drained, hydrogen generation is stopped even if the furnace is operating.

【0022】他の利点としては、本実施例に係る水分解
・水素発生系を利用した原子炉は、それ自体外部への放
射線の漏出を防ぐものであるため、水素を製造しながら
原子炉の遮蔽ができることになる。
Another advantage is that the reactor utilizing the water splitting / hydrogen generation system according to this embodiment prevents the leakage of radiation to the outside, so that the reactor of the reactor is manufactured while hydrogen is being produced. It can be shielded.

【0023】[0023]

【発明の効果】以上説明したように、本発明に係る発電
原子炉によれば、原子炉から発生する放射線を有効活用
して水素を製造しながら放射線の漏出を防ぐことができ
る。
As described above, according to the power generating nuclear reactor of the present invention, it is possible to effectively utilize the radiation generated from the nuclear reactor to prevent hydrogen from leaking while producing hydrogen.

【0024】水素はクリーンなエネルギーとして将来が
期待されており、量子収率が悪い太陽光発電による水素
の製造に取って代わることもできる点で有用である。
Hydrogen is expected as a clean energy in the future, and is useful in that it can replace hydrogen production by solar power generation, which has a poor quantum yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る発電原子炉の水素発生量の計算
等を行うために作成したモデルの図である。
FIG. 1 is a diagram of a model created to calculate hydrogen generation amount of a power generation reactor according to the present invention.

【図2】 本発明に係る発電原子炉の構成を示すブロッ
ク図である。
FIG. 2 is a block diagram showing a configuration of a power generation reactor according to the present invention.

【符号の説明】[Explanation of symbols]

11 フラスコ、13 ガス補集容器、15 ガラス擦
り合わせコック、17排気管、31 原子炉心、32
水分解反応槽(アニュラータンク)、34H2 O供給ラ
イン、35 集気管、37 脱水塔、38 ガス成分分
離塔、41アニュラー管、42 試料抜出バルブ、44
パージ管。
11 flasks, 13 gas collection container, 15 glass rubbing cock, 17 exhaust pipe, 31 reactor core, 32
Water decomposition reaction tank (annular tank), 34 H 2 O supply line, 35 gas collection tube, 37 dehydration tower, 38 gas component separation tower, 41 annular tube, 42 sample extraction valve, 44
Purge tube.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原子炉の炉心の周囲を囲み、白金族元素
を半導体に担持した触媒体及び/又は白金族元素を水中
に懸濁させた懸濁液を貯留する囲み槽と、 前記囲み槽内における触媒体もしくは白金族元素の懸濁
状態を保持するための撹拌手段と、 前記囲み槽から発生した気体を捕獲する捕獲手段と、 この捕獲手段で捕獲された気体から水素を分離する分離
手段と、 を含み、 原子炉から発生するγ線のエネルギーにより水を分解し
て水素を製造し、同時に当該γ線の漏出を防止すること
を特徴とする発電原子炉。
1. A surrounding tank that surrounds a core of a nuclear reactor and stores a catalyst body in which a platinum group element is supported on a semiconductor and / or a suspension in which a platinum group element is suspended in water, and the surrounding tank. Stirring means for holding the suspended state of the catalytic body or platinum group element inside, capturing means for capturing the gas generated from the enclosure, and separating means for separating hydrogen from the gas captured by the capturing means A power generating nuclear reactor characterized by including: and producing hydrogen by decomposing water by the energy of γ rays generated from the nuclear reactor, and at the same time preventing leakage of the γ rays.
JP6326819A 1994-12-28 1994-12-28 Power reactor with hydrogen production mechanism Expired - Fee Related JP2907741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6326819A JP2907741B2 (en) 1994-12-28 1994-12-28 Power reactor with hydrogen production mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6326819A JP2907741B2 (en) 1994-12-28 1994-12-28 Power reactor with hydrogen production mechanism

Publications (2)

Publication Number Publication Date
JPH08184689A true JPH08184689A (en) 1996-07-16
JP2907741B2 JP2907741B2 (en) 1999-06-21

Family

ID=18192070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6326819A Expired - Fee Related JP2907741B2 (en) 1994-12-28 1994-12-28 Power reactor with hydrogen production mechanism

Country Status (1)

Country Link
JP (1) JP2907741B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021695A (en) * 2001-07-09 2003-01-24 Japan Atom Energy Res Inst Method for manufacturing hydrogen and oxygen using photocatalyst utilizing nuclear reactor, and device therefor
JP2004307328A (en) * 2003-03-25 2004-11-04 Sanyo Electric Co Ltd Hydrogen producing method, hydrogen producing apparatus and motor equipped with the same
JP2014172772A (en) * 2013-03-07 2014-09-22 Kobe Steel Ltd Fuel generation system and power generation system
JP2015049111A (en) * 2013-08-30 2015-03-16 日立Geニュークリア・エナジー株式会社 Shield body and shield method of electromagnetic radiation beam

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021695A (en) * 2001-07-09 2003-01-24 Japan Atom Energy Res Inst Method for manufacturing hydrogen and oxygen using photocatalyst utilizing nuclear reactor, and device therefor
JP4635190B2 (en) * 2001-07-09 2011-02-16 独立行政法人 日本原子力研究開発機構 Photocatalyst-based hydrogen / oxygen production method and apparatus using a nuclear reactor
JP2004307328A (en) * 2003-03-25 2004-11-04 Sanyo Electric Co Ltd Hydrogen producing method, hydrogen producing apparatus and motor equipped with the same
JP2014172772A (en) * 2013-03-07 2014-09-22 Kobe Steel Ltd Fuel generation system and power generation system
JP2015049111A (en) * 2013-08-30 2015-03-16 日立Geニュークリア・エナジー株式会社 Shield body and shield method of electromagnetic radiation beam

Also Published As

Publication number Publication date
JP2907741B2 (en) 1999-06-21

Similar Documents

Publication Publication Date Title
JP3945780B2 (en) Radionuclide adhesion suppression method and film forming apparatus for nuclear plant components
US3093564A (en) Gas handling systems for radioactive gases
RU2242059C2 (en) Method for separating rare nuclear fission products and their extraction from spent nuclear fuel, application of these products (alternatives)
JPS58113797A (en) Method and device for processing tritium-containing water solution, and electrode used for its device, its manufacture
JPH08183602A (en) Production of hydrogen
US4121984A (en) Production of hydrogen by radiolysis
KR20140101735A (en) Graphite Thermal Decontamination with Reducing Gases
JP2907741B2 (en) Power reactor with hydrogen production mechanism
JP6366532B2 (en) Filter vent method, filter vent device, and nuclear power plant
KR102236311B1 (en) Purification method for tritium-containing raw water and purification device therefor
US3993542A (en) Process and apparatus for extraction of gases produced during operation of a fused-salt nuclear reactor
CA1334091C (en) Radioactive catalyst and oxidation-reduction method and apparatus using same
JP5619685B2 (en) Method for producing platinum-impregnated oxide nanoparticles
Dinner et al. Next European Torus plasma exhaust and fuel processing systems
KR102357565B1 (en) A device that continuously produces hydrogen and sterilizes wastewater using gamma rays and zirconia, and a method that produces hydrogen and sterilizes wastewater using the same
JP2000329895A (en) Operation method of nuclear reactor plant and waste liquid processing method of nuclear reactor plant
JP2743087B2 (en) Reactor
Wada et al. Utilization of valuable metals from high level waste-decomposition of water using semiconductor photocatalytic method induced by gamma ray
US5183652A (en) Radioactive catalyst and oxidation-reduction method and apparatus using same
Yao et al. Corrosion of U233-doped uranium oxide using microfluidics methods
JP6543363B2 (en) Nuclear power spent fuel pool water purification method and device and spent fuel pool water treatment method and device
JP2000327301A (en) Hydrogen production apparatus, methanol production apparatus and atomic power apparatus
JP2003054902A (en) Photocatalyst use type hydrogen/oxygen manufacturing method using radiation and apparatus therefor
JPH04104096A (en) Reactor container
Kitabata et al. Tritium handling experience in 165MWe power generating station, Fugen

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees