JP5905767B2 - Dispersion stabilization method of neutral colloidal silica dispersion and neutral colloidal silica dispersion excellent in dispersion stability - Google Patents

Dispersion stabilization method of neutral colloidal silica dispersion and neutral colloidal silica dispersion excellent in dispersion stability Download PDF

Info

Publication number
JP5905767B2
JP5905767B2 JP2012093811A JP2012093811A JP5905767B2 JP 5905767 B2 JP5905767 B2 JP 5905767B2 JP 2012093811 A JP2012093811 A JP 2012093811A JP 2012093811 A JP2012093811 A JP 2012093811A JP 5905767 B2 JP5905767 B2 JP 5905767B2
Authority
JP
Japan
Prior art keywords
colloidal silica
dispersion
reaction
hydrolysis
neutral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012093811A
Other languages
Japanese (ja)
Other versions
JP2013220976A (en
Inventor
長 俊連
俊連 長
大山 隆一
隆一 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tama Chemical Co Ltd
Original Assignee
Tama Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tama Chemical Co Ltd filed Critical Tama Chemical Co Ltd
Priority to JP2012093811A priority Critical patent/JP5905767B2/en
Publication of JP2013220976A publication Critical patent/JP2013220976A/en
Application granted granted Critical
Publication of JP5905767B2 publication Critical patent/JP5905767B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicon Compounds (AREA)

Description

この発明は、例えば半導体装置の製造工程でシリコンウエハの鏡面研磨、酸化チタン光触媒等のハードコート剤用途において有機溶剤と混合使用されるバインダー、セラミック炉材やセラミックスファイバー等のセラミックス用途において使用されるバインダー、クロム酸系の金属表面処理剤、地盤改良注入剤等の種々の用途に好適な中性コロイダルシリカ分散液の分散安定化方法、及びこの方法により得られた分散安定性に優れた中性コロイダルシリカ分散液に関する。   The present invention is used in ceramics applications such as binders, ceramic furnace materials and ceramic fibers, which are used in combination with organic solvents in hard coat agent applications such as mirror polishing of silicon wafers and titanium oxide photocatalysts in the manufacturing process of semiconductor devices, for example. Dispersion stabilization method of neutral colloidal silica dispersion suitable for various uses such as binder, chromic acid type metal surface treatment agent, ground improvement injecting agent, etc., and neutrality excellent in dispersion stability obtained by this method The present invention relates to a colloidal silica dispersion.

高純度のコロイダルシリカを工業的に製造する方法として、珪酸ソーダ水溶液をイオン交換する方法、四塩化珪素の熱分解法、オルガノシリケートを酸触媒又はアルカリ触媒の存在下に水−アルコール混合溶媒中で加水分解する方法等が提案され実施されているが、オルガノシリケートを加水分解する方法は、反応に用いるオルガノシリケート、触媒及び溶媒等として高純度のものを使用することができるために、これら原料等に由来する不純物が極めて少なく、特に金属不純物含有量の少ない高純度コロイダルシリカを製造する方法として適しており、これまでに、このオルガノシリケートの加水分解法に関する幾つかの方法が提案されている。   Industrially producing high-purity colloidal silica includes ion-exchange of sodium silicate aqueous solution, pyrolysis of silicon tetrachloride, and organosilicate in water-alcohol mixed solvent in the presence of acid catalyst or alkali catalyst. Hydrolysis methods and the like have been proposed and implemented, but the organosilicate hydrolysis method can be used as a high-purity organosilicate, catalyst, solvent, etc. used in the reaction. It is suitable as a method for producing high-purity colloidal silica with a very small amount of impurities derived from the above, and particularly with a low content of metal impurities, and several methods for hydrolyzing the organosilicate have been proposed so far.

例えば、特許文献1には、高純度のオルガノシリケートを水酸化第四アンモニウム及び分散剤(水溶性界面活性剤等)の存在下に加水分解する方法が開示されており、また、その実施例には、加水分解反応で得られた反応混合物を減圧濃縮することにより、pH9〜10及びシリカ濃度10%のコロイダルシリカを得たことが記載されている。   For example, Patent Document 1 discloses a method for hydrolyzing a high-purity organosilicate in the presence of quaternary ammonium hydroxide and a dispersant (such as a water-soluble surfactant). Describes that colloidal silica having a pH of 9 to 10 and a silica concentration of 10% was obtained by concentrating the reaction mixture obtained by the hydrolysis reaction under reduced pressure.

また、特許文献2には、アルコキシシランに対してモル比0.5〜10のアルカリ触媒を使用し、水−アルコール混合溶媒中の水濃度を5〜20mol/Lとし、反応温度30℃以上で加水分解する方法が開示されており、また、その実施例1には、アルカリ触媒としてアンモニアを用い、テトラメトキシシランの加水分解反応で得られたシリカゾル液を100トル(Torr)で最終液温度が51℃になるまで減圧濃縮することにより、粒径100nm以下で単分散性が高くpH8.0のコロイダルシリカを得たことが記載されている。   In Patent Document 2, an alkali catalyst having a molar ratio of 0.5 to 10 with respect to alkoxysilane is used, the water concentration in the water-alcohol mixed solvent is 5 to 20 mol / L, and the reaction temperature is 30 ° C. or higher. A method for hydrolysis is disclosed, and Example 1 uses ammonia as an alkali catalyst, and a silica sol solution obtained by hydrolysis of tetramethoxysilane is 100 Torr and the final solution temperature is It is described that colloidal silica having a particle size of 100 nm or less and high monodispersibility and pH 8.0 was obtained by concentration under reduced pressure until reaching 51 ° C.

更に、特許文献3には、反応媒体をアルカリ濃度0.002〜0.1モル/L及び水濃度30モル/L以上に保ちながら、この反応媒体に上記アルカリ1モルに対しSi原子として7〜80モルのアルキルシリケートを加え、45℃〜反応媒体の沸点以下の温度でアルキルシリケートの加水分解を行い、生成した珪酸の重合を進行させて3〜100nmの粒子径を有するシリカゾルを製造する方法が開示されており、その実施例1には、加水分解反応で得られた反応混合物を減圧濃縮することによりpH10.6及びシリカ濃度22.2重量%のシリカゾルを得ると共に、このシリカゾルを陽イオン交換樹脂で処理することによりpH4.7及びシリカ濃度19.8重量%の酸性シリカゾルを得たことが記載されている。   Further, in Patent Document 3, while maintaining the reaction medium at an alkali concentration of 0.002 to 0.1 mol / L and a water concentration of 30 mol / L or more, the reaction medium contains 7 to 7 Si atoms with respect to 1 mol of the alkali. A method for producing a silica sol having a particle diameter of 3 to 100 nm by adding 80 mol of alkyl silicate, hydrolyzing the alkyl silicate at a temperature of 45 ° C. to the boiling point of the reaction medium, and proceeding polymerization of the produced silicic acid. In Example 1, the reaction mixture obtained by the hydrolysis reaction was concentrated under reduced pressure to obtain a silica sol having a pH of 10.6 and a silica concentration of 22.2% by weight. It is described that an acidic silica sol having a pH of 4.7 and a silica concentration of 19.8% by weight was obtained by treatment with a resin.

そして、特許文献4には、先ず、アルミニウム化合物を含有するアルカリ性シリカゾルを調製し、次いでこのアルミニウム化合物含有アルカリ性シリカゾルを陽イオン交換樹脂で処理して脱アルカリすることにより酸性シリカゾルを製造する方法が開示されており、また、特許文献5には、粒子径4〜30及びpH2〜9のシリカゾルにAl2O3/SiO2モル比0.0006〜0.004となるようにアルミン酸アルカリ水溶液を添加し、次いでイオン交換樹脂に接触させてpH2〜5及び粒子径4〜30の安定な酸性シリカゾルを製造する方法が開示されている。 Patent Document 4 discloses a method for producing an acidic silica sol by first preparing an alkaline silica sol containing an aluminum compound and then treating the aluminum compound-containing alkaline silica sol with a cation exchange resin to dealkali. In addition, in Patent Document 5, an alkali aluminate aqueous solution is added to a silica sol having a particle size of 4 to 30 and a pH of 2 to 9 so that the Al 2 O 3 / SiO 2 molar ratio is 0.0006 to 0.004. Then, a method for producing a stable acidic silica sol having a pH of 2 to 5 and a particle size of 4 to 30 by contacting with an ion exchange resin is disclosed.

更に、特許文献6には、加水分解可能な珪素化合物を加水分解・縮合して得られたコロイダルシリカを、シランカップリング剤等の変性剤で変性し、酸性分散媒であっても凝集やゲル化を起こすことがなく、長期間安定分散が可能で金属不純物含有量が極めて少ない高純度の変性コロイダルシリカを製造する方法が開示されている。   Furthermore, Patent Document 6 discloses that colloidal silica obtained by hydrolyzing and condensing a hydrolyzable silicon compound is modified with a modifying agent such as a silane coupling agent, so that even an acidic dispersion medium is agglomerated or gelled. There has been disclosed a method for producing high-purity modified colloidal silica that can be stably dispersed for a long period of time without causing chemical conversion and has an extremely low content of metal impurities.

更にまた、特許文献7には、珪酸アルカリ水溶液からアルカリを除去して得られた活性珪酸水溶液と第4アンモニウム塩基によって製造される第4アンモニウム塩基によって安定化されたコロイダルシリカであって、アルカリ金属を含まず、25℃における酸解離定数の逆数の対数値(pKa)が8.0〜12.5の弱酸及び第4アンモニウム塩基を組み合わせた緩衝溶液を含み、25℃においてpH8〜11の間で緩衝作用を有し、また、pHが10.2又は10.3のコロイダルシリカ分散液からなる半導体ウエハ研磨用組成物が開示されている。   Furthermore, Patent Document 7 discloses colloidal silica stabilized by an active silicic acid aqueous solution obtained by removing alkali from an aqueous silicic acid alkali solution and a quaternary ammonium base produced by a quaternary ammonium base, the alkali metal And a buffer solution combining a weak acid having a reciprocal of the acid dissociation constant at 25 ° C. (pKa) of 8.0 to 12.5 and a quaternary ammonium base, and having a pH of 8 to 11 at 25 ° C. A semiconductor wafer polishing composition comprising a colloidal silica dispersion having a buffering action and a pH of 10.2 or 10.3 is disclosed.

ところで、様々な用途に用いられるコロイダルシリカ分散液については、例えば半導体ウエハの研磨剤の分野では、今日のLSIの高集積化に伴って様々な種類の金属の配線や酸化膜等が1枚のウエハ上に存在し、また、各々の半導体ウエハについてそれぞれに適した研磨性能が要求されることから、微妙に異なる様々な組成や性状のコロイダルシリカが要求されており、また、例えばハードコート剤用途やセラミックス用途等のバインダー、クロム酸系の金属表面処理剤、地盤改良注入剤等の用途の分野では、僅かなアルカリ金属不純物の含有も嫌うほか、酸性のコロイダルシリカが要求されている。   By the way, for colloidal silica dispersions used in various applications, for example, in the field of abrasives for semiconductor wafers, various types of metal wiring, oxide films, and the like have become one piece with the high integration of today's LSIs. Since it exists on the wafer and polishing performance suitable for each semiconductor wafer is required, colloidal silica with various slightly different compositions and properties is required. In the fields of applications such as binders for ceramics and ceramics, chromic acid-based metal surface treatment agents, ground improvement injecting agents, and the like, acid colloidal silica is required in addition to the slight alkali metal impurities.

そこで、本発明者らは、先に、酸処理やイオン交換処理、更には変性処理等の特別な後処理をする必要がなく、また、アルカリ金属を始めとして金属不純物含有量が極めて少なく、しかも、例えば電子顕微鏡による粒度分布分析で求められる平均粒子径が5〜500nmの範囲で、標準偏差20以下及び多分散度指数0.15以下である球状コロイダルシリカ等の所定の性状を有するコロイダルシリカを容易に製造することができる方法について検討し、その結果、加水分解速度の速い易加水分解性オルガノシリケートを用い、また、加水分解触媒として特定の加水分解触媒を用い、この加水分解触媒を、少なくとも反応終了時の反応混合物中におけるシリカ(B)に対する加水分解触媒(A)の割合{触媒残存モル比(A/B)}が所定の値以下となるように、添加して反応させることにより、酸処理やイオン交換処理等の特別な後処理を行うことなく、容易にpH5〜8の中性コロイダルシリカを製造することができる中性コロイダルシリカの製造方法を提案した(特許文献8)。   Therefore, the present inventors do not need to perform special post-treatment such as acid treatment, ion exchange treatment, and modification treatment in advance, and the content of metal impurities including alkali metals is extremely low. For example, colloidal silica having a predetermined property such as spherical colloidal silica having a standard deviation of 20 or less and a polydispersity index of 0.15 or less in an average particle size range of 5 to 500 nm determined by particle size distribution analysis using an electron microscope. A method that can be easily produced was examined. As a result, a hydrolyzable organosilicate having a high hydrolysis rate was used, and a specific hydrolysis catalyst was used as the hydrolysis catalyst. The ratio of the hydrolysis catalyst (A) to the silica (B) in the reaction mixture at the end of the reaction (remaining catalyst molar ratio (A / B)) is below a predetermined value. Thus, by adding and reacting, neutral colloidal silica that can easily produce neutral colloidal silica having a pH of 5 to 8 without special post-treatment such as acid treatment or ion exchange treatment. A manufacturing method was proposed (Patent Document 8).

特公平04-056,774号公報Japanese Patent Publication No. 04-056,774 特公平04-065,006号公報Japanese Patent Publication No. 04-065,006 特開平06-316,407号公報JP 06-316,407 特公平04-055,126号公報Japanese Patent Publication No. 04-055,126 特開平06-199,515号公報Japanese Patent Laid-Open No. 06-199,515 特開2005-162,533号公報JP 2005-162,533 特開2008-072,094号公報JP 2008-072,094 特開2007-153,732号公報JP 2007-153,732 A

ところで、上記特許文献8の方法によるとその後の検討によりpH5〜8.5程度までの中性コロイダルシリカ分散液の製造が可能であるが、このようなpH5〜8.5の中性コロイダルシリカ分散液は、そのシリカ粒子が単分散粒子であり、一般に、その製造直後にはシリカ粒子が均一に分散しているものの、数時間あるいは数日が経過すると、一部のシリカ粒子のブラウン運動が制約されて沈降し、ブラウン運動が維持されている上方部分とブラウン運動が停止して沈降した下方部分の二層に分離する現象が生じ、このように二層分離したコロイダルシリカ分散液を、例えばシリコンウエハの鏡面研磨剤等の用途に用いると、研磨前半と後半で研磨速度に差が出る等の如き弊害が生じる。   By the way, according to the method of the above-mentioned Patent Document 8, it is possible to produce a neutral colloidal silica dispersion having a pH of about 5 to 8.5 by subsequent examination. Such neutral colloidal silica dispersion having a pH of 5 to 8.5 is possible. In the liquid, the silica particles are monodisperse particles. Generally, the silica particles are uniformly dispersed immediately after the production, but after several hours or days, the Brownian motion of some silica particles is restricted. As a result, the colloidal silica dispersion liquid separated into two layers, for example, silicon, is separated into two layers of an upper part where the Brownian motion is maintained and a lower part where the Brownian motion is stopped and settled. When used for applications such as a mirror polishing agent for wafers, problems such as a difference in polishing speed between the first half and the second half of the polishing occur.

そこで、本発明者らは、上記の如きpH5〜8.5の中性コロイダルシリカ分散液について、できるだけそのpHを中性に維持しながら、如何にして上記の二層分離現象を防止するかについて鋭意検討した結果、意外なことには、撹拌下に炭酸ガス及び濃度20重量%以下の酸水溶液から選ばれた1種又は2種以上の酸を添加することにより解決できることを見出し、本発明を完成した。   Therefore, the present inventors are concerned with the neutral colloidal silica dispersion having a pH of 5 to 8.5 as described above and how to prevent the above two-layer separation phenomenon while maintaining the pH as neutral as possible. As a result of intensive studies, it has been found that surprisingly, it can be solved by adding one or more acids selected from carbon dioxide and an acid aqueous solution having a concentration of 20% by weight or less under stirring. completed.

従って、本発明の目的は、pH5〜8.5の中性コロイダルシリカ分散液について、長時間に亘って二層分離現象の発生を防止することができ、得られたコロイダルシリカ分散液も中性に近いpH6.0〜8.1を有する中性コロイダルシリカ分散液の分散安定化方法を提供することにある。   Accordingly, it is an object of the present invention to prevent the occurrence of a two-layer separation phenomenon for a long time with respect to a neutral colloidal silica dispersion having a pH of 5 to 8.5, and the obtained colloidal silica dispersion is also neutral. It is to provide a method for stabilizing a neutral colloidal silica dispersion having a pH of about 6.0 to 8.1.

また、本発明の他の目的は、上記のコロイダルシリカ分散液の分散安定化方法によって調製され、シリカ濃度10〜40重量%及びpH6.0〜8.1の分散安定性に優れた中性コロイダルシリカ分散液を提供することにある。   Another object of the present invention is a neutral colloidal which is prepared by the above-mentioned method for stabilizing a colloidal silica dispersion and has excellent dispersion stability at a silica concentration of 10 to 40% by weight and pH 6.0 to 8.1. The object is to provide a silica dispersion.

すなわち、本発明は、加水分解触媒の存在下にオルガノシリケートを加水分解して得られたシリカ濃度10〜40重量%及びpH5〜8.5のコロイダルシリカ分散液の分散安定化方法であり、前記コロイダルシリカ分散液に対して、炭酸ガスを吹き込む炭酸ガス吹込み方法、及び/又は、撹拌下に酸水溶液として炭酸水溶液を添加する酸水溶液添加方法による分散安定化処理を行うことを特徴とする中性コロイダルシリカ分散液の分散安定化方法である。 That is, the present invention is a method for stabilizing the dispersion of a colloidal silica dispersion having a silica concentration of 10 to 40% by weight and a pH of 5 to 8.5 obtained by hydrolyzing an organosilicate in the presence of a hydrolysis catalyst, The dispersion stabilization treatment is performed on the colloidal silica dispersion by a carbon dioxide blowing method for blowing carbon dioxide and / or an acid aqueous solution addition method in which a carbonic acid aqueous solution is added as an acid aqueous solution with stirring. This is a method for stabilizing the dispersion of a porous colloidal silica dispersion.

本発明の方法により調製された中性コロイダルシリカ分散液は、シリカ濃度が10〜40重量%であってpHが6.0〜8.1であり、分散安定性に優れている。 Neutral colloidal silica dispersion prepared by the method of the present invention, pH silica concentration to a 10 to 40 wt% is from 6.0 to 8.1, that is excellent in dispersion stability.

本発明において、分散安定化処理の対象となるコロイダルシリカ分散液は、そのpH値がpH5以上pH8.5以下、好ましくはpH6以上pH8.5以下、より好ましくはpH7以上pH8.5以下の中性コロイダルシリカ分散液であり、どのような方法で製造されたものであってもよいが、好ましくは、特許文献8に記載の方法、すなわち、加水分解速度の速い易加水分解性オルガノシリケートを用い、また、加水分解触媒として特定の加水分解触媒を用い、この加水分解触媒を、少なくとも反応終了時の反応混合物中におけるシリカ(B)に対する加水分解触媒(A)の割合{触媒残存モル比(A/B)}が所定の値以下となるように、添加して反応させることにより、酸処理やイオン交換処理等の特別な後処理を行うことなく、中性コロイダルシリカ分散液を製造する方法により製造される。   In the present invention, the colloidal silica dispersion to be subjected to dispersion stabilization treatment has a pH value of pH 5 or more and pH 8.5 or less, preferably pH 6 or more and pH 8.5 or less, more preferably pH 7 or more and pH 8.5 or less. Although it is a colloidal silica dispersion and may be produced by any method, it is preferable to use a method described in Patent Document 8, that is, an easily hydrolyzable organosilicate having a high hydrolysis rate, Further, a specific hydrolysis catalyst is used as the hydrolysis catalyst, and this hydrolysis catalyst is at least a ratio of the hydrolysis catalyst (A) to the silica (B) in the reaction mixture at the end of the reaction {remaining catalyst molar ratio (A / B)} can be added and reacted so that the neutral colloid can be obtained without any special post-treatment such as acid treatment or ion exchange treatment. Produced by the method for manufacturing the Rushirika dispersion.

この製造方法で製造された中性コロイダルシリカ分散液は、アルカリ金属を始めとして金属不純物含有量が極めて少なく、しかも、例えば電子顕微鏡による粒度分布分析で求められる平均粒子径が5〜500nmの範囲で、標準偏差20以下及び多分散度指数0.15以下である球状コロイダルシリカであり、また、その粒子表面に多数の小突起を有して粒子全体としていわば金平糖の如き形状を有し、走査型電子顕微鏡(SEM)により観察した粒子像の算術平均を測定したSEM平均粒子径が大きい割にはBET比表面積が大きく、また、液相置換法にて測定された粒子密度(真比重)が高い、言い換えると硬度が硬いという性質を有しており、これによって優れた研磨速度を発現し、特にKOH等の加工促進剤の存在下にポリッシングコンパウンドにして研磨する化学的機械的研磨(CMP)用の研磨剤用途に極めて好適である。   The neutral colloidal silica dispersion produced by this production method has a very low content of metal impurities including alkali metals, and the average particle size obtained by, for example, particle size distribution analysis by an electron microscope is in the range of 5 to 500 nm. Spherical colloidal silica having a standard deviation of 20 or less and a polydispersity index of 0.15 or less, and a large number of small protrusions on the surface of the particle, and the entire particle has a shape like confetti, The BET specific surface area is large for the large SEM average particle diameter measured by the arithmetic average of the particle image observed by the electron microscope (SEM), and the particle density (true specific gravity) measured by the liquid phase substitution method is high. In other words, it has the property that the hardness is hard, thereby expressing an excellent polishing rate, especially in the presence of a processing accelerator such as KOH in the polishing compound. It is very suitable to abrasive applications for chemical mechanical polishing for polishing (CMP) Te.

また、本発明において分散安定化処理の対象となるコロイダルシリカ分散液は、そのシリカ濃度が10重量%以上40重量%以下、好ましくは10重量%以上40重量%以下である。シリカ濃度が10重量%より低いと、製造時、大量の水が必要になることと、シリカ濃度が低すぎ、応用範囲が狭くなるほか、比較的分散安定性が良好になって二層分離現象が発生し難くなり、反対に、40重量%を超えると、製造時にゲルが発生し易く、シリカ分が減る、また分散安定化前に、液に流動性がなくなり、分散安定化し難くなる。   In the present invention, the colloidal silica dispersion to be subjected to the dispersion stabilization treatment has a silica concentration of 10% by weight to 40% by weight, preferably 10% by weight to 40% by weight. If the silica concentration is lower than 10% by weight, a large amount of water is required at the time of production, the silica concentration is too low, the application range becomes narrow, and the dispersion stability becomes relatively good, resulting in a two-layer separation phenomenon. On the other hand, if it exceeds 40% by weight, gel is likely to be produced during production, the silica content is reduced, and the liquid loses its fluidity before dispersion stabilization, making it difficult to stabilize the dispersion.

本発明においては、分散安定化処理として、炭酸ガスを吹き込む炭酸ガス吹込み方法又は撹拌下に濃度20重量%以下の酸水溶液を添加する酸水溶液添加方法が行われるが、炭酸ガス吹込み方法又は酸水溶液添加方法のいずれかを行ってもよいほか、これらの方法を併用してもよいが、いずれにしても分散安定化処理の際には、炭酸ガスのバブリングやコロイダルシリカ分散液の撹拌等の手段により、コロイダルシリカ分散液を撹拌状態に維持することが必要である。   In the present invention, as the dispersion stabilization treatment, a carbon dioxide gas blowing method for blowing carbon dioxide gas or an acid aqueous solution addition method for adding an acid aqueous solution having a concentration of 20% by weight or less with stirring is performed. Either of the acid aqueous solution addition methods may be performed, or these methods may be used in combination. In any case, during the dispersion stabilization treatment, bubbling of carbon dioxide gas, stirring of the colloidal silica dispersion, etc. Thus, it is necessary to maintain the colloidal silica dispersion in a stirring state.

前記分散安定化処理を炭酸ガス吹込み方法で行う場合、コロイダルシリカ分散液中に吹き込まれる炭酸ガスとしては、それが100体積%の炭酸ガスであってもよく、また、窒素ガス等の不活性ガスで0.1体積%程度まで希釈された不活性ガス希釈炭酸ガスであってもよく、更には、空気であってもよいが、好ましくは、100体積%の炭酸ガス又は1体積%以上の不活性ガス希釈炭酸ガスであるのがよい。   When the dispersion stabilization treatment is performed by a carbon dioxide gas blowing method, the carbon dioxide gas blown into the colloidal silica dispersion may be 100% by volume carbon dioxide gas, or an inert gas such as nitrogen gas. An inert gas diluted carbon dioxide gas diluted to about 0.1% by volume with gas may be used, and further, air may be used, but preferably 100% by volume carbon dioxide gas or 1% by volume or more. An inert gas diluted carbon dioxide gas is preferable.

そして、この炭酸ガス吹込み方法の際の処理条件については、炭酸ガス吹込み自体が攪拌効果を有するので、通常0rpm以上3000rpm以下、好ましくは0rpm以上1000rpm以下の撹拌下に、0℃より高く100℃未満、好ましくは5℃以上80℃以下の温度で、炭酸ガスを0mL/分以上100000mL/分以下、好ましくは1mL/分以上10000mL/分以下の速度でコロイダルシリカ分散液中に導入するのがよく、この炭酸ガス吹込み方法による分散安定化処理の処理条件が上記の範囲を外れると、分散安定化が不十分になることがあり、液の飛び跳ねやガスが無駄になるという問題が生じる。   As for the processing conditions in this carbon dioxide blowing method, since the carbon dioxide blowing itself has a stirring effect, it is usually higher than 0 ° C. and higher than 0 ° C. under stirring of 0 rpm to 3000 rpm, preferably 0 rpm to 1000 rpm. The carbon dioxide gas is introduced into the colloidal silica dispersion at a temperature of less than 0 ° C., preferably 5 ° C. or more and 80 ° C. or less, at a rate of 0 mL / min to 100000 mL / min, preferably 1 mL / min to 10000 mL / min. Well, if the processing conditions of the dispersion stabilization treatment by this carbon dioxide gas blowing method are out of the above range, dispersion stabilization may be insufficient, causing problems such as splashing of liquid and waste of gas.

また、前記分散安定化処理を酸水溶液添加方法で行う場合、使用する酸水溶液としては、炭酸水溶液、濃度20重量%以下の希鉱酸水溶液、及び濃度20重量%以下の希有機酸水溶液から選ばれた1種又は2種以上の混合物であり、好ましくは、濃度10重量%以下の希鉱酸水溶液及び濃度10重量%以下の希有機酸水溶液から選ばれた1種又は2種以上の混合物であり、より好ましくは、濃度10重量%以下の塩酸、硝酸、硫酸、ギ酸、酢酸、クエン酸、コハク酸等を挙げることができ、コロイダルシリカ分散液の用途に応じて適宜選択される。   Further, when the dispersion stabilization treatment is performed by an acid aqueous solution addition method, the acid aqueous solution to be used is selected from a carbonic acid aqueous solution, a dilute mineral acid aqueous solution having a concentration of 20% by weight or less, and a dilute organic acid aqueous solution having a concentration of 20% by weight or less. 1 type or a mixture of two or more types, preferably one or a mixture of two or more types selected from a dilute mineral acid aqueous solution having a concentration of 10% by weight or less and a dilute organic acid aqueous solution having a concentration of 10% by weight or less. More preferably, hydrochloric acid, nitric acid, sulfuric acid, formic acid, acetic acid, citric acid, succinic acid, and the like having a concentration of 10% by weight or less can be mentioned, and they are appropriately selected according to the use of the colloidal silica dispersion.

この酸水溶液添加方法の際の処理条件については、通常1rpm以上3000rpm以下、好ましくは10rpm以上1000rpm以下の撹拌下に、通常0℃以上100℃以下、好ましくは5℃以上80℃以下の温度で、処理対象のコロイダルシリカ分散液中の触媒1モルに対し、酸水溶液を酸として通常0.0001モル以上10モル以下、好ましくは0.001モル以上1モル以下の範囲で添加するのがよく、この酸水溶液添加方法による分散安定化処理の処理条件が上記の範囲を外れると、分散安定化が不十分になることがあるほか、不安定になり、更にはゲル化という問題が生じる場合がある。   With respect to the treatment conditions in the method of adding the acid aqueous solution, the temperature is usually 0 ° C. or higher and 100 ° C. or lower, preferably 5 ° C. or higher and 80 ° C. or lower, with stirring at 1 rpm to 3000 rpm, preferably 10 rpm to 1000 rpm. An acid aqueous solution is usually added in an amount of 0.0001 mol or more and 10 mol or less, preferably 0.001 mol or more and 1 mol or less, based on 1 mol of the catalyst in the colloidal silica dispersion to be treated. If the treatment conditions of the dispersion stabilization treatment by the acid aqueous solution addition method are out of the above range, the dispersion stabilization may become insufficient, may become unstable, and may cause a problem of gelation.

本発明の方法により分散安定化処理された中性コロイダルシリカ分散液は、そのシリカ濃度が10重量%以上40重量%以下であってpH値がpH6.0以上8.1以下であり、ほとんどその分散安定化処理前のpH値を維持することができるほか、通常1数週間以上、更には数年に亘って優れた分散安定性が発揮され、二層分離現象が発生することがない。   The neutral colloidal silica dispersion subjected to the dispersion stabilization treatment by the method of the present invention has a silica concentration of 10% by weight to 40% by weight and a pH value of 6.0 to 8.1. In addition to maintaining the pH value before the dispersion stabilization treatment, excellent dispersion stability is usually exhibited over a few weeks or more, and for several years, and the two-layer separation phenomenon does not occur.

本発明によれば、pH5〜8.5の中性コロイダルシリカ分散液について、そのpH値をほとんど変化させることなく中性に維持しながら、容易に分散安定化させることができ、二層分離現象を効果的に防止することができる。   According to the present invention, a neutral colloidal silica dispersion having a pH of 5 to 8.5 can be easily dispersed and stabilized while maintaining a neutral pH value with almost no change. Can be effectively prevented.

〔pH5〜8.5の中性コロイダルシリカ分散液の調製〕
本発明において、処理対象のpH5〜8.5の中性コロイダルシリカ分散液は、例えば、以下の方法により調製される。
すなわち、加水分解触媒の存在下にオルガノシリケートを加水分解してコロイダルシリカを製造するコロイダルシリカの製造方法において、オルガノシリケートとして易加水分解性オルガノシリケートを用い、また、加水分解触媒として第四級アンモニウム類、アミノアルコール類、モルホリン類及びピペラジン類から選ばれた加水分解触媒を用い、この加水分解触媒を、少なくとも反応終了時の反応混合物中におけるシリカ(B)に対する加水分解触媒(A)の割合{触媒残存モル比(A/B)}が0.012以下となるように、添加して反応させ、酸処理及びイオン交換処理を行うことなくpH5〜8.5の中性コロイダルシリカを製造する方法である。
[Preparation of neutral colloidal silica dispersion at pH 5 to 8.5]
In the present invention, the neutral colloidal silica dispersion to be treated having a pH of 5 to 8.5 is prepared, for example, by the following method.
That is, in a method for producing colloidal silica by hydrolyzing an organosilicate in the presence of a hydrolysis catalyst to produce colloidal silica, an easily hydrolyzable organosilicate is used as the organosilicate, and a quaternary ammonium is used as the hydrolysis catalyst. The hydrolysis catalyst is selected from the group consisting of amino acids, amino alcohols, morpholines and piperazines, and the hydrolysis catalyst is used at least in the ratio of the hydrolysis catalyst (A) to the silica (B) in the reaction mixture at the end of the reaction. A method of producing neutral colloidal silica having a pH of 5 to 8.5 without adding an acid reaction and an ion exchange treatment so that the catalyst residual molar ratio (A / B)} is 0.012 or less. It is.

ここで、オルガノシリケートとして使用できるものは加水分解速度の速い易加水分解性オルガノシリケートであり、易加水分解性オルガノシリケートとは、オルガノシリケート10gと不純物0.1ppb以下の純水100gとを攪拌下に25℃で加水分解反応させ、1時間以内にこの加水分解反応が終了するものをいう。このような易加水分解性オルガノシリケートとしては、具体的には、トリメチルシリケート(加水分解反応が終了するまでの加水分解反応時間:3分)、テトラメチルシリケート(加水分解反応時間:5分)、トリエチルシリケート(加水分解反応時間:5分)、メチルトリメチルシリケート(加水分解反応時間:7分)等を挙げることができ、テトラエチルシリケート及びこれより炭素数の多いオルガノシリケートはその加水分解速度が遅くてゲル化し易く(何れも加水分解反応時間:24時間以上)、本発明方法で使用するオルガノシリケートとしては適していない。   Here, what can be used as the organosilicate is a readily hydrolyzable organosilicate having a high hydrolysis rate. The easily hydrolyzable organosilicate is obtained by stirring 10 g of organosilicate and 100 g of pure water having an impurity of 0.1 ppb or less. And the hydrolysis reaction is completed within 1 hour. Specific examples of such an easily hydrolyzable organosilicate include trimethyl silicate (hydrolysis reaction time until completion of hydrolysis reaction: 3 minutes), tetramethyl silicate (hydrolysis reaction time: 5 minutes), Examples include triethyl silicate (hydrolysis reaction time: 5 minutes), methyltrimethyl silicate (hydrolysis reaction time: 7 minutes), etc. Tetraethyl silicate and organosilicates having more carbon atoms have a slower hydrolysis rate. It easily gels (both hydrolysis reaction time: 24 hours or more) and is not suitable as an organosilicate used in the method of the present invention.

また、加水分解触媒として使用する第四級アンモニウム類については、例えば水酸化テトラメチルアンモニウム(TMAH)、水酸化テトラエチルアンモニウム(TEAH)、水酸化トリメチルエチルアンモニウム、水酸化トリメチルエタノールアンモニウム(コリン)、水酸化トリエチルエタノールアンモニウム、水酸化テトラプロピルアンモニウム、水酸化ブチルアンモニウム等の第四級アンモニウムや、これらの炭酸塩、重炭酸塩及びケイ酸塩を挙げることができ、加水分解反応には比較的高いpHが望ましいので、好ましくはテトラメチルアンモニウムヒドロキシド(TMAH)、コリン、又はテトラエチルアンモニウムヒドロキシド(TEAH)である。   The quaternary ammonium used as the hydrolysis catalyst includes, for example, tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide (TEAH), trimethylethylammonium hydroxide, trimethylethanolammonium hydroxide (choline), water Quaternary ammonium such as triethylethanolammonium oxide, tetrapropylammonium hydroxide, butylammonium hydroxide, and their carbonates, bicarbonates and silicates can be mentioned, and the hydrolysis reaction has a relatively high pH. Are preferably tetramethylammonium hydroxide (TMAH), choline, or tetraethylammonium hydroxide (TEAH).

また、加水分解触媒として使用するアミノアルコール類については、エタノールアミン誘導体を始めとして種々のアミノアルコールを用いることができるが、好適にはエタノールアミン誘導体であり、例えばモノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N,N-ジメチルエタノールアミン、N,N-ジエチルエタノールアミン、N,N-ジn-ブチルエタノールアミン、N-(β-アミノエチル)エタノールアミン、N-メチルエタノールアミン、N-メチルジエタノールアミン、N-エチルエタノールアミン、N-n-ブチルエタノールアミン、N-n-ブチルジエタノールアミン、N-tert-ブチルエタノールアミン、N-tert-ブチルジエタノールアミン等を挙げることができる。   As amino alcohols to be used as hydrolysis catalysts, various amino alcohols including ethanolamine derivatives can be used. Preferred are ethanolamine derivatives such as monoethanolamine, diethanolamine, and triethanolamine. N, N-dimethylethanolamine, N, N-diethylethanolamine, N, N-di-n-butylethanolamine, N- (β-aminoethyl) ethanolamine, N-methylethanolamine, N-methyldiethanolamine, N-ethylethanolamine, Nn-butylethanolamine, Nn-butyldiethanolamine, N-tert-butylethanolamine, N-tert-butyldiethanolamine and the like can be mentioned.

更に、加水分解触媒として使用するモルホリン類についても、種々のモルホリン誘導体を用いることができるが、好ましくはモルホリン、N-メチルモルホリン、N-エチルモルホリン等を挙げることができる。更にまた、加水分解触媒として使用するピペラジン類についても、種々のピペラジン誘導体を用いることができるが、好ましくはピペラジン、ヒドロキシエチルピペラジン等を挙げることができる。   Furthermore, various morpholine derivatives can be used for morpholines used as a hydrolysis catalyst, and preferably morpholine, N-methylmorpholine, N-ethylmorpholine and the like can be mentioned. Furthermore, various piperazine derivatives can be used as piperazines used as a hydrolysis catalyst, and preferred examples include piperazine and hydroxyethyl piperazine.

これら加水分解触媒として使用する第四級アンモニウム類、アミノアルコール類、モルホリン類及びピペラジン類は、その1種のみを単独で使用できるほか、必要により2種以上を混合物として使用することもできる。なお、従来この種の加水分解反応で用いられているアンモニアや、モノメチルアミン等の第一級アミン、ジメチルアミン等の第二級アミン、トリメチルアミン等の第三級アミン等のアミン類はその揮発性が高く、40℃以上の温度で加水分解反応を行う場合に反応系内の組成変動が起こり易く、希望通りの粒径を有する中性コロイダルシリカの製造が難しくなるので、加水分解触媒として適していない。   These quaternary ammoniums, amino alcohols, morpholines and piperazines used as hydrolysis catalysts can be used alone or in combination of two or more as necessary. In addition, ammonia used in this type of hydrolysis reaction, primary amines such as monomethylamine, secondary amines such as dimethylamine, and amines such as tertiary amines such as trimethylamine are volatile. When the hydrolysis reaction is carried out at a temperature of 40 ° C. or higher, the composition in the reaction system is likely to fluctuate, making it difficult to produce neutral colloidal silica having the desired particle size. Therefore, it is suitable as a hydrolysis catalyst. Absent.

この中性コロイダルシリカ分散液の調製においては、少なくとも反応終了時の反応混合物中におけるシリカ(B)に対する加水分解触媒(A)の割合{触媒残存モル比(A/B)}が0.012以下、好ましくは0.00035〜0.012の範囲内、より好ましくは0.0035〜0.011の範囲内となるように、加水分解触媒を反応系内に添加して加水分解反応させることが重要であり、この触媒残存モル比(A/B)が0.012を超えると、製造したコロイダルシリカがアルカリ性になり、所望の中性コロイダルシリカが得られなくなる。また、加水分解触媒(A)は存在しなくても本発明の加水分解反応は可能ではあるが、加水分解反応が進んで反応生成物中のシリカ濃度が5重量%以上になると反応混合物の増粘化が始まり、10重量%程度になるとゲル化が起こる。また、増粘し始める前の反応混合物を60万倍の電子顕微鏡で観察しても球状粒子としては確認できないので、好ましくはモル比(A/B)0.00035以上存在させるのがよく、より好ましくはモル比(A/B)0.0035以上存在させるのがよい。   In the preparation of this neutral colloidal silica dispersion, the ratio of the hydrolysis catalyst (A) to the silica (B) in the reaction mixture at the end of the reaction (remaining catalyst molar ratio (A / B)) is 0.012 or less. It is important to add a hydrolysis catalyst to the reaction system so that it is within the range of 0.00035 to 0.012, more preferably within the range of 0.0035 to 0.011. When the catalyst residual molar ratio (A / B) exceeds 0.012, the produced colloidal silica becomes alkaline and the desired neutral colloidal silica cannot be obtained. Although the hydrolysis reaction of the present invention is possible without the presence of the hydrolysis catalyst (A), the reaction mixture increases when the hydrolysis reaction proceeds and the silica concentration in the reaction product reaches 5% by weight or more. Viscosity starts and gelation occurs when it reaches about 10% by weight. Further, since the reaction mixture before starting to thicken cannot be confirmed as spherical particles even when observed with an electron microscope of 600,000 times, it is preferable that the molar ratio (A / B) is 0.00035 or more. The molar ratio (A / B) is preferably 0.0035 or more.

また、この中性コロイダルシリカ分散液の調製において、触媒残存モル比(A/B)を0.012以下にする方法については、反応終了時この触媒残存モル比(A/B)が0.012以下になっていればよくてその方法については特に制限されるものではないが、例えば、水と加水分解触媒(A)とを仕込んだ反応容器内に最終的に触媒残存モル比(A/B)が0.012以下、好ましくは触媒残存モル比(A/B)0.00035〜0.012の範囲内となるように計算されたオルガノシリケートを連続的にあるいは間欠的に導入する方法や、水だけを仕込んだ反応容器内に上記の最終的な触媒残存モル比の範囲内となるように計算された加水分解触媒とオルガノシリケートとを連続的にあるいは間欠的に導入する方法や、水と少量の加水分解触媒(A)とを仕込んだ反応容器内に上記の最終的な触媒残存モル比の範囲内となるように計算された加水分解触媒とオルガノシリケートとを連続的にあるいは間欠的に導入する方法等を挙げることができる。   In the preparation of the neutral colloidal silica dispersion, the catalyst residual molar ratio (A / B) is 0.012 or less at the end of the reaction. The method is not particularly limited as long as it is as follows. For example, the catalyst residual molar ratio (A / B) is finally contained in a reaction vessel charged with water and a hydrolysis catalyst (A). ) Is 0.012 or less, preferably the catalyst residual molar ratio (A / B) is calculated to be in the range of 0.00035 to 0.012, a method of continuously or intermittently introducing an organosilicate, A method in which a hydrolysis catalyst and an organosilicate calculated so as to be within the range of the final catalyst residual molar ratio are continuously or intermittently introduced into a reaction vessel charged with only water, Charged a small amount of hydrolysis catalyst (A) The calculated hydrolysis catalyst and organosilicate to be within a range of finished catalyst remaining molar ratio of the inside reaction container unit can be exemplified a method in which continuously or intermittently introduced.

また、加水分解反応の反応系内にはオルガノシリケートの加水分解反応に先駆けて粒子成長性能を有するコロイダルシリカの種子を仕込み、この反応系内にオルガノシリケート及び加水分解触媒を、触媒残存モル比(A/B)が0.012以下、好ましくは0.00035〜0.012の範囲内となるように、徐々に添加してもよく、これによって均一な粒子の中性コロイダルシリカを製造することができる。   In addition, in the reaction system of the hydrolysis reaction, colloidal silica seeds having particle growth performance were charged prior to the hydrolysis reaction of the organosilicate, and the organosilicate and hydrolysis catalyst were added to the reaction system in the catalyst residual molar ratio ( A / B) may be gradually added so that it is 0.012 or less, preferably in the range of 0.00035 to 0.012, thereby producing neutral colloidal silica with uniform particles. it can.

更に、この中性コロイダルシリカ分散液の調製において、加水分解反応の原料に用いるオルガノシリケート、加水分解触媒及び水として、金属不純物含有量が1ppm以下、好ましくは0.01ppm以下の高純度のものを用いることにより、容易に金属不純物含有量の少ない高純度の中性コロイダルシリカを製造することができる。   Furthermore, in the preparation of this neutral colloidal silica dispersion, as the organosilicate, hydrolysis catalyst and water used as the raw material for the hydrolysis reaction, a metal impurity content of 1 ppm or less, preferably 0.01 ppm or less is highly purified. By using it, high-purity neutral colloidal silica with a low metal impurity content can be easily produced.

そして、この中性コロイダルシリカ分散液の調製においては、初期の加水分解による活性珪酸の生成や、反応系内の加水分解触媒の量、反応系のpH値、反応温度、攪拌速度、及び反応時間等の加水分解反応の反応条件によって、生成するコロイダルシリカの粒径や分布が決まるので、この反応条件を制御することにより、容易に粒径制御や粒度分布制御を行うことができる。例えば、反応温度について着目すれば、反応温度を比較的低くすることにより比較的粒子径の小さなコロイダルシリカを製造することができ、反対に、反応温度を比較的高くすることにより比較的粒子径の大きなコロイダルシリカを製造することができる。   In the preparation of this neutral colloidal silica dispersion, the production of active silicic acid by the initial hydrolysis, the amount of hydrolysis catalyst in the reaction system, the pH value of the reaction system, the reaction temperature, the stirring speed, and the reaction time Since the particle size and distribution of the produced colloidal silica are determined by the reaction conditions of the hydrolysis reaction such as the above, the particle size control and the particle size distribution control can be easily performed by controlling the reaction conditions. For example, focusing on the reaction temperature, colloidal silica having a relatively small particle diameter can be produced by lowering the reaction temperature, and conversely, by increasing the reaction temperature relatively, Large colloidal silica can be produced.

上記の方法で製造される中性コロイダルシリカは、例えば半導体ウエハの研磨剤の分野で用いられるコロイダルシリカである場合、好ましくは、その電子顕微鏡による粒度分布分析で求められる平均粒子径が5〜500nm、より好ましくは5〜300nmの範囲であり、また、標準偏差が20以下、より好ましくは10以下であって、多分散度指数が0.15以下、より好ましくは0.10以下である球状コロイダルシリカであるのがよい。このような性状の中性コロイダルシリカは、粒度分布が均一で研磨剤あるいはその原料として用いた場合に被研磨面に均等な力が作用し、より平滑な平面を形成することができるという利点がある。   When the neutral colloidal silica produced by the above method is, for example, colloidal silica used in the field of semiconductor wafer abrasives, the average particle size determined by particle size distribution analysis by an electron microscope is preferably 5 to 500 nm. Spherical colloid having a standard deviation of 20 or less, more preferably 10 or less, and a polydispersity index of 0.15 or less, more preferably 0.10 or less. Preferably it is silica. Neutral colloidal silica having such a property has the advantage that when the particle size distribution is uniform and the polishing agent or its raw material is used, a uniform force acts on the surface to be polished and a smoother plane can be formed. is there.

〔中性コロイダルシリカ分散液の分散安定化処理〕
以上のようにして得られた処理対象のpH5〜8.5の中性コロイダルシリカ分散液については、上述したように、コロイダルシリカ分散液に対して、炭酸ガスを吹き込む炭酸ガス吹込み方法、及び/又は、撹拌下に濃度20重量%以下の酸水溶液を添加する酸水溶液添加方法により、分散安定化処理を実施し、シリカ濃度10〜40重量%及びpH6.0〜8.1の分散安定性に優れたコロイダルシリカ分散液を得る。
[Dispersion stabilization treatment of neutral colloidal silica dispersion]
About the neutral colloidal silica dispersion of pH 5 to 8.5 obtained as described above, as described above, a carbon dioxide blowing method for blowing carbon dioxide into the colloidal silica dispersion, and // By carrying out a dispersion stabilization treatment by an acid aqueous solution addition method in which an acid aqueous solution having a concentration of 20% by weight or less is added under stirring, a dispersion stability having a silica concentration of 10 to 40% by weight and a pH of 6.0 to 8.1. To obtain an excellent colloidal silica dispersion.

以下、実施例及び比較例に基づいて、本発明の好適な実施の形態を具体的に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail based on examples and comparative examples.

〔実施例1〕
攪拌機、温度計、コンデンサー付留出管及びオルガノシリケート導入管を備えた25リットル(L)のガラス容器中に、金属不純物含有量0.1ppb以下の純水18984gと金属不純物含有量10ppb以下のトリエタノールアミン(bp:361℃)6.55gとを仕込み、マントルヒーターを用いて反応容器内液温を70℃に保ちながら、金属不純物含有量10ppb以下のテトラメチルシリケート(多摩化学工業株式会社製)3407gを攪拌下に3時間かけて連続的に供給した。反応終了時において、反応容器内(反応系内)の反応混合物中におけるシリカ(B)に対するトリエタノールアミン(A)の割合{触媒残存モル比(A/B)}は0.00250であった。
[Example 1]
In a 25 liter (L) glass vessel equipped with a stirrer, thermometer, condenser distillation tube and organosilicate introduction tube, 18984 g of pure water with a metal impurity content of 0.1 ppb or less and a trie with a metal impurity content of 10 ppb or less. Tetramethylsilicate (manufactured by Tama Chemical Co., Ltd.) having a metal impurity content of 10 ppb or less while charging 6.55 g of ethanolamine (bp: 361 ° C.) and keeping the temperature of the reaction vessel at 70 ° C. using a mantle heater 3407 g was continuously fed over 3 hours under stirring. At the end of the reaction, the ratio of triethanolamine (A) to silica (B) in the reaction mixture in the reaction vessel (in the reaction system) (remaining catalyst molar ratio (A / B)) was 0.00250.

反応容器内へのテトラメチルシリケートの供給を終了した後、一旦反応容器内の温度を40℃まで下げ、真空ポンプで系内を減圧にし、その後加熱を再開し、反応容器内の反応混合物を更に52〜68℃に加熱し、生成したメタノールをコンデンサー付留出管から留出温度32〜67℃で留出させ、さらに純水9200gを添加しながら、水とメタノールを留去して、この反応容器内に生成した反応混合物(コロイダルシリカ)を13000gまで濃縮した。   After the supply of tetramethyl silicate into the reaction vessel is completed, the temperature in the reaction vessel is once lowered to 40 ° C., the system is depressurized with a vacuum pump, and then the heating is restarted, and the reaction mixture in the reaction vessel is further reduced. This reaction was conducted by heating to 52-68 ° C, distilling the produced methanol from the distillation tube with condenser at a distillation temperature of 32-67 ° C, and further distilling off water and methanol while adding 9200 g of pure water. The reaction mixture (colloidal silica) produced in the container was concentrated to 13000 g.

得られた反応混合物(コロイダルシリカ分散液)は、シリカ濃度20.3重量%、pH7.26及び粘度284mPa・sであり、静置すると6時間で二層に分離した。   The obtained reaction mixture (colloidal silica dispersion) had a silica concentration of 20.3% by weight, a pH of 7.26 and a viscosity of 284 mPa · s, and was allowed to stand to separate into two layers in 6 hours.

次に、この二層分離のコロイダルシリカ分散液(反応混合物)を40℃に加温し、55rpmで攪拌し、炭酸ガスを40mL/分で13分間吹き込み、分散安定化処理を行った。   Next, this two-layer separated colloidal silica dispersion (reaction mixture) was heated to 40 ° C., stirred at 55 rpm, and carbon dioxide was blown at 40 mL / min for 13 minutes to carry out a dispersion stabilization treatment.

得られたコロイダルシリカ分散液は、シリカ濃度20.3重量%、pH7.15、粘度7.11(mPa・s/25℃)、比重(25℃)1.116、及びCO2濃度28mg/Lであり、また、電子顕微鏡による粒度分布分析の結果は平均粒子径が22.6nmで、標準偏差が0.61nmで、多分散度指数が0.0270の球状中性コロイダルシリカであった。更に、原子吸光分光光度計によりサンプル採取量50gで金属不純物(Na、Fe、Cu、AL、K、Cr、Ni、Pb、Mn、Mg、Zn及びCa)を測定した結果、いずれも検出限界以下(Na<4ppb、Fe<6ppb、Cu<6ppb、AL<6ppb、K<4ppb、Cr<10ppb、Ni<10ppbpb<6ppb、Mn<4ppb、Mg<4ppb、Zn<4ppb、及びCa<4ppb)であった。 The resulting colloidal silica dispersion had a silica concentration of 20.3% by weight, a pH of 7.15, a viscosity of 7.11 (mPa · s / 25 ° C.), a specific gravity (25 ° C.) of 1.116, and a CO 2 concentration of 28 mg / L. Also, the result of particle size distribution analysis by electron microscope was spherical neutral colloidal silica having an average particle diameter of 22.6 nm, a standard deviation of 0.61 nm, and a polydispersity index of 0.0270. Furthermore, as a result of measuring metal impurities (Na, Fe, Cu, AL, K, Cr, Ni, Pb, Mn, Mg, Zn and Ca) with a sample collection amount of 50 g by an atomic absorption spectrophotometer, all are below the detection limit. (Na <4ppb, Fe <6ppb, Cu <6ppb, AL <6ppb, K <4ppb, Cr <10ppb, Ni <10ppbpb <6ppb, Mn <4ppb, Mg <4ppb, Zn <4ppb, and Ca <4ppb). It was.

更に、得られたコロイダルシリカ分散液について、温度20℃の下に静置し、目視により二層に分離したか否かを確認し、分散安定性を調べた。結果は、静置後6時間でも一層のままであり、更に一日後、一週間後、一年後でも一層のままであって、分散安定性に優れていることが判明した。   Further, the obtained colloidal silica dispersion was allowed to stand at a temperature of 20 ° C., and it was confirmed by visual observation whether or not it was separated into two layers, and the dispersion stability was examined. As a result, it was found that even after 6 hours of standing, it was still a layer, and even after a day, a week, and a year, it was still a layer and excellent in dispersion stability.

〔実施例2〕
攪拌機、温度計、コンデンサー付留出管及びオルガノシリケート導入管を備えた23Lのガラス容器中に、金属不純物含有量0.1ppb以下の純水18984gと金属不純物含有量10ppb以下のトリエタノールアミン(bp:361℃)6.55gとを仕込み、マントルヒーターを用いて反応容器内液温を70℃に保ちながら、金属不純物含有量10ppb以下のテトラメチルシリケート(多摩化学工業株式会社製)3407gを攪拌下に3時間かけて連続的に供給した。反応終了時において、反応容器内(反応系内)の反応混合物中におけるシリカ(B)に対するトリエタノールアミン(A)の割合{触媒残存モル比(A/B)}は0.00250であった。
[Example 2]
In a 23 L glass container equipped with a stirrer, thermometer, condenser distillation tube and organosilicate introduction tube, 18984 g of pure water with a metal impurity content of 0.1 ppb or less and triethanolamine (bp with a metal impurity content of 10 ppb or less) : 361 ° C) 6.55g, and while maintaining the liquid temperature in the reaction vessel at 70 ° C using a mantle heater, 3407g of tetramethyl silicate (manufactured by Tama Chemical Co., Ltd.) with a metal impurity content of 10ppb or less was stirred Was continuously fed over 3 hours. At the end of the reaction, the ratio of triethanolamine (A) to silica (B) in the reaction mixture in the reaction vessel (in the reaction system) (remaining catalyst molar ratio (A / B)) was 0.00250.

得られたシリカ濃度12.6重量%のコロイダルシリカ1410gと、金属不純物含有量0.1ppb以下の純水14598gと、金属不純物含有量10ppb以下のトリエタノールアミン15.49gとを仕込み、マントルヒーターを用いて反応容器内の液温を80℃に保ちながら、金属不純物含有量10ppb以下のテトラメチルシリケート(多摩化学工業株式会社製)6370gを攪拌下に3時間かけて連続的に供給した。反応終了時において、反応容器内(反応系内)の反応混合物中におけるシリカ(B)に対するエタノールアミン(A)の割合{触媒残存モル比(A/B)}は0.00250であった。   A mantle heater was prepared by charging 1410 g of the obtained colloidal silica having a silica concentration of 12.6% by weight, 14598 g of pure water having a metal impurity content of 0.1 ppb or less, and 15.49 g of triethanolamine having a metal impurity content of 10 ppb or less. While maintaining the liquid temperature in the reaction vessel at 80 ° C., 6370 g of tetramethyl silicate (manufactured by Tama Chemical Co., Ltd.) having a metal impurity content of 10 ppb or less was continuously supplied over 3 hours with stirring. At the end of the reaction, the ratio of ethanolamine (A) to silica (B) in the reaction mixture in the reaction vessel (in the reaction system) (remaining catalyst molar ratio (A / B)) was 0.00250.

反応容器内へのテトラメチルシリケートの供給を終了した後、一旦反応容器内の温度を40℃まで下げ、真空ポンプで系内を減圧にし、その後加熱を再開し、反応容器内の反応混合物を更に52〜68℃に加熱し、生成したメタノールをコンデンサー付留出管から留出温度32〜67℃で留出させ、更に純水9200gを添加しながら、水とメタノールを留去して、この反応容器内に生成した反応混合物(コロイダルシリカ)を13000gまで濃縮した。   After the supply of tetramethyl silicate into the reaction vessel is completed, the temperature in the reaction vessel is once lowered to 40 ° C., the system is depressurized with a vacuum pump, and then the heating is restarted, and the reaction mixture in the reaction vessel is further reduced. This reaction was conducted by heating to 52 to 68 ° C, distilling the produced methanol from the distillation tube with condenser at a distillation temperature of 32 to 67 ° C, and further distilling off water and methanol while adding 9200 g of pure water. The reaction mixture (colloidal silica) produced in the container was concentrated to 13000 g.

得られた反応混合物(コロイダルシリカ分散液)は、シリカ濃度20.3重量%、pH7.45及び粘度88.7mPa・sであり、静置すると6時間で二層に分離した。   The obtained reaction mixture (colloidal silica dispersion) had a silica concentration of 20.3% by weight, a pH of 7.45 and a viscosity of 88.7 mPa · s, and was allowed to stand to separate into two layers in 6 hours.

この二層分離のコロイダルシリカ分散液(反応混合物)を40℃に加温し、55rpmで攪拌しながら、炭酸ガスを40mL/分で16分間吹き込み、分散安定化処理を行った。   This two-layer separated colloidal silica dispersion (reaction mixture) was heated to 40 ° C. and stirred at 55 rpm, and carbon dioxide gas was blown at 40 mL / min for 16 minutes to effect dispersion stabilization.

得られたコロイダルシリカ分散液は、シリカ濃度20.3重量%、pH7.35、粘度3.01(mPa・s/25℃)、二次粒子径61.7nm、比重(25℃)1.116、及びCO2濃度32mg/Lであり、電子顕微鏡による粒度分布分析の結果は平均粒子径が45.7nmで、標準偏差が3.01nmで、多分散度指数が0.0659の球状中性コロイダルシリカであった。また、原子吸光光度計によりサンプル採取量50gで金属不純物を測定した結果は検出限界以下であった。 The resulting colloidal silica dispersion had a silica concentration of 20.3% by weight, a pH of 7.35, a viscosity of 3.01 (mPa · s / 25 ° C.), a secondary particle diameter of 61.7 nm, and a specific gravity (25 ° C.) of 1.116. , And CO 2 concentration of 32 mg / L, the result of particle size distribution analysis by electron microscope is a spherical neutral colloid with an average particle size of 45.7 nm, a standard deviation of 3.01 nm, and a polydispersity index of 0.0659. Silica. Moreover, the result of measuring metal impurities with an atomic absorption spectrophotometer at a sample collection amount of 50 g was below the detection limit.

更に、得られたコロイダルシリカ分散液について、実施例1と同様にして目視により二層に分離したか否かを確認し、分散安定性を調べた。結果は、静置後6時間でも一層のままであり、更に一日後、一週間後、一年後でも一層のままであって、分散安定性に優れていることが判明した。   Furthermore, about the obtained colloidal silica dispersion liquid, it was confirmed in the same manner as in Example 1 whether or not it was separated into two layers by visual observation, and the dispersion stability was examined. As a result, it was found that even after 6 hours of standing, it was still a layer, and even after a day, a week, and a year, it was still a layer and excellent in dispersion stability.

〔実施例3〕
実施例2と同様にして反応容器内に生成した反応混合物(コロイダルシリカ)を、実施例2とは異なって13000gまで濃縮することなく、そのまま水とメタノールとを留去し、仕込み量の合計とほぼ同じ22000gまで濃縮した。
得られた反応混合物(コロイダルシリカ分散液)は、シリカ濃度12.7重量%、pH7.21及び粘度32.7mPa・sであり、静置すると6時間で二層に分離した。
Example 3
Unlike in Example 2, the reaction mixture (colloidal silica) produced in the reaction vessel in the same manner as in Example 2 was distilled off as it was without concentrating to 13000 g. Concentrated to approximately 22,000 g.
The obtained reaction mixture (colloidal silica dispersion) had a silica concentration of 12.7% by weight, a pH of 7.21, and a viscosity of 32.7 mPa · s, and was allowed to stand to separate into two layers in 6 hours.

この二層分離のコロイダルシリカ分散液(反応混合物)を40℃に昇温し、55rpmで攪拌し、炭酸ガスを40mL/分で5分間吹き込み、分散安定化処理を行った。   This two-layer separated colloidal silica dispersion (reaction mixture) was heated to 40 ° C., stirred at 55 rpm, and carbon dioxide gas was blown at 40 mL / min for 5 minutes for dispersion stabilization treatment.

得られたコロイダルシリカ分散液は、シリカ濃度12.7重量%、pH7.09、粘度2.23(mPa・s/25℃)、二次粒子径61.6nm、比重(25℃)1.067、及びCO2濃度18mg/Lであり、電子顕微鏡による粒度分布分析の結果は平均粒子径が45.5nmで、標準偏差が2.98nmで、多分散度指数が0.0655の球状中性コロイダルシリカであった。また、原子吸光光度計によりサンプル採取量50gで金属不純物を測定した結果は検出限界以下であった。 The resulting colloidal silica dispersion had a silica concentration of 12.7% by weight, pH 7.09, viscosity 2.23 (mPa · s / 25 ° C.), secondary particle diameter 61.6 nm, specific gravity (25 ° C.) 1.067. , And a CO 2 concentration of 18 mg / L, and the result of particle size distribution analysis by electron microscope is a spherical neutral colloid with an average particle size of 45.5 nm, a standard deviation of 2.98 nm, and a polydispersity index of 0.0655. Silica. Moreover, the result of measuring metal impurities with an atomic absorption spectrophotometer at a sample collection amount of 50 g was below the detection limit.

更に、得られたコロイダルシリカ分散液について、実施例1と同様にして目視により二層に分離したか否かを確認し、分散安定性を調べた。結果は、静置後6時間でも一層のままであり、更に一日後、一週間後、一年後でも一層のままであって、分散安定性に優れていることが判明した。   Furthermore, about the obtained colloidal silica dispersion liquid, it was confirmed in the same manner as in Example 1 whether or not it was separated into two layers by visual observation, and the dispersion stability was examined. As a result, it was found that even after 6 hours of standing, it was still a layer, and even after a day, a week, and a year, it was still a layer and excellent in dispersion stability.

〔実施例4〕
実施例2で濃縮する際に水とメタノールを留去して、この反応容器内に生成した反応混合物(コロイダルシリカ)を8000gまで濃縮した。
得られたコロイダルシリカは、シリカ濃度32.6重量%、pH8.29及び粘度250mPa・sであり、静置すると6時間で二層に分離した。
Example 4
When concentrating in Example 2, water and methanol were distilled off, and the reaction mixture (colloidal silica) produced in the reaction vessel was concentrated to 8000 g.
The obtained colloidal silica had a silica concentration of 32.6% by weight, a pH of 8.29, and a viscosity of 250 mPa · s, and was allowed to stand to separate into two layers in 6 hours.

この二層分離のコロイダルシリカ分散液(反応混合物)を40℃に昇温し、55rpmで攪拌し、炭酸ガスを40mL/分で25分間吹き込み、分散安定化処理を行った。   This two-layer separated colloidal silica dispersion (reaction mixture) was heated to 40 ° C., stirred at 55 rpm, and carbon dioxide gas was blown at 40 mL / min for 25 minutes for dispersion stabilization treatment.

得られたコロイダルシリカ分散液は、シリカ濃度32.6重量%、pH8.08、粘度2.06(mPa・s/25℃)、二次粒子径61.5nm、比重(25℃)1.199、及びCO2濃度45mg/Lであり、電子顕微鏡による粒度分布分析の結果は平均粒子径が45.7nmで、標準偏差が3.03nmで、多分散度指数が0.0663の球状中性コロイダルシリカであった。また、原子吸光光度計によりサンプル採取量50gで金属不純物を測定した結果は検出限界以下であった。 The resulting colloidal silica dispersion had a silica concentration of 32.6% by weight, a pH of 8.08, a viscosity of 2.06 (mPa · s / 25 ° C.), a secondary particle diameter of 61.5 nm, and a specific gravity (25 ° C.) of 1.199. , And CO 2 concentration of 45 mg / L, and the result of particle size distribution analysis by electron microscope is a spherical neutral colloid with an average particle size of 45.7 nm, a standard deviation of 3.03 nm, and a polydispersity index of 0.0663. Silica. Moreover, the result of measuring metal impurities with an atomic absorption spectrophotometer at a sample collection amount of 50 g was below the detection limit.

更に、得られたコロイダルシリカ分散液について、実施例1と同様にして目視により二層に分離したか否かを確認し、分散安定性を調べた。結果は、静置後6時間でも一層のままであり、更に一日後、一週間後、一年後でも一層のままであって、分散安定性に優れていることが判明した。   Furthermore, about the obtained colloidal silica dispersion liquid, it was confirmed in the same manner as in Example 1 whether or not it was separated into two layers by visual observation, and the dispersion stability was examined. As a result, it was found that even after 6 hours of standing, it was still a layer, and even after a day, a week, and a year, it was still a layer and excellent in dispersion stability.

参考例5
実施例2で得られた二層分離のコロイダルシリカ分散液(反応混合物)を撹拌して均一化させた後、その100gを採取し、20℃で55rpmの攪拌下に、6%硝酸0.066gを添加し、分散安定化処理を行った。
[ Reference Example 5 ]
The two-layer separated colloidal silica dispersion (reaction mixture) obtained in Example 2 was stirred and homogenized, and 100 g thereof was collected and stirred at 20 ° C. and 55 rpm with 0.066 g of 6% nitric acid. Was added to carry out dispersion stabilization treatment.

得られたコロイダルシリカ分散液は、シリカ濃度20.3重量%、pH7.38、粘度4.86(mPa・s/25℃)、二次粒子径61.4nm、比重(25℃)1.116、及びHNO3濃度4mg/Lであり、電子顕微鏡による粒度分布分析の結果は平均粒子径が45.6nmで、標準偏差が3.02nmで、多分散度指数が0.0662の球状中性コロイダルシリカであった。また、原子吸光光度計によりサンプル採取量50gで金属不純物を測定した結果は検出限界以下であった。 The obtained colloidal silica dispersion had a silica concentration of 20.3% by weight, a pH of 7.38, a viscosity of 4.86 (mPa · s / 25 ° C.), a secondary particle diameter of 61.4 nm, and a specific gravity (25 ° C.) of 1.116. And HNO 3 concentration of 4 mg / L, and the result of particle size distribution analysis by electron microscope is a spherical neutral colloid with an average particle size of 45.6 nm, a standard deviation of 3.02 nm, and a polydispersity index of 0.0662. Silica. Moreover, the result of measuring metal impurities with an atomic absorption spectrophotometer at a sample collection amount of 50 g was below the detection limit.

更に、得られたコロイダルシリカ分散液について、実施例1と同様にして目視により二層に分離したか否かを確認し、分散安定性を調べた。結果は、静置後6時間でも一層のままであり、更に一日後、一週間後、一年後でも一層のままであって、分散安定性に優れていることが判明した。   Furthermore, about the obtained colloidal silica dispersion liquid, it was confirmed in the same manner as in Example 1 whether or not it was separated into two layers by visual observation, and the dispersion stability was examined. As a result, it was found that even after 6 hours of standing, it was still a layer, and even after a day, a week, and a year, it was still a layer and excellent in dispersion stability.

参考例6
実施例2で得られた二層分離のコロイダルシリカ分散液(反応混合物)を撹拌して均一化させた後、その100gを採取し、20℃で55rpmの攪拌下に、2%クエン酸0.26gを添加し、分散安定化処理を行った。
[ Reference Example 6 ]
The two-layer separated colloidal silica dispersion (reaction mixture) obtained in Example 2 was stirred and homogenized, and 100 g thereof was collected and stirred at 20 ° C. and 55 rpm with 0.2% citric acid. 26g was added and the dispersion stabilization process was performed.

得られたコロイダルシリカ分散液は、シリカ濃度20.3重量%、pH7.35、粘度3.01(mPa・s/25℃)、二次粒子径61.7nm、比重(25℃)1.116、及びクエン酸濃度32mg/Lであり、電子顕微鏡による粒度分布分析の結果は平均粒子径が45.7nmで、標準偏差が3.01nmで、多分散度指数が0.0659の球状中性コロイダルシリカであった。また、原子吸光光度計によりサンプル採取量50gで金属不純物を測定した結果は検出限界以下であった。   The resulting colloidal silica dispersion had a silica concentration of 20.3% by weight, a pH of 7.35, a viscosity of 3.01 (mPa · s / 25 ° C.), a secondary particle diameter of 61.7 nm, and a specific gravity (25 ° C.) of 1.116. And a citric acid concentration of 32 mg / L, and the result of particle size distribution analysis by electron microscope is a spherical neutral colloid having an average particle size of 45.7 nm, a standard deviation of 3.01 nm, and a polydispersity index of 0.0659. Silica. Moreover, the result of measuring metal impurities with an atomic absorption spectrophotometer at a sample collection amount of 50 g was below the detection limit.

更に、得られたコロイダルシリカ分散液について、実施例1と同様にして目視により二層に分離したか否かを確認し、分散安定性を調べた。結果は、静置後6時間でも一層のままであり、更に一日後、一週間後、一年後でも一層のままであって、分散安定性に優れていることが判明した。   Furthermore, about the obtained colloidal silica dispersion liquid, it was confirmed in the same manner as in Example 1 whether or not it was separated into two layers by visual observation, and the dispersion stability was examined. As a result, it was found that even after 6 hours of standing, it was still a layer, and even after a day, a week, and a year, it was still a layer and excellent in dispersion stability.

〔実施例7〕
実施例2で得られた二層分離のコロイダルシリカ分散液(反応混合物)を撹拌して均一化させた後、その100gを採取し、40℃で55rpmの攪拌下に、空気を4000mL/分で吹き込み、分散安定化処理を行った。空気吹込み開始後12時間で全体が均一化したコロイダルシリカ分散液を得た。
Example 7
After stirring and homogenizing the bilayer-separated colloidal silica dispersion (reaction mixture) obtained in Example 2, 100 g of the sample was collected and air was added at 4000 mL / min with stirring at 40 rpm and 55 rpm. Blowing and dispersion stabilization treatment were performed. A colloidal silica dispersion liquid was obtained in which the whole became uniform 12 hours after the start of air blowing.

更に、得られたコロイダルシリカ分散液について、実施例1と同様にして目視により二層に分離したか否かを確認し、分散安定性を調べた。結果は、静置後6時間でも一層のままであり、更に一日後、一週間後、一年後でも一層のままであって、分散安定性に優れていることが判明した。   Furthermore, about the obtained colloidal silica dispersion liquid, it was confirmed in the same manner as in Example 1 whether or not it was separated into two layers by visual observation, and the dispersion stability was examined. As a result, it was found that even after 6 hours of standing, it was still a layer, and even after a day, a week, and a year, it was still a layer and excellent in dispersion stability.

〔実施例8〕
実施例2で得られたシリカ濃度12.6重量%のコロイダルシリカ1410gと、金属不純物含有量0.1ppb以下の純水14598gと、金属不純物含有量10ppb以下のトリエタノールアミン41.1gとを仕込み、マントルヒーターを用いて反応容器内の液温を80℃に保ちながら、金属不純物含有量10ppb以下のテトラメチルシリケート(多摩化学工業株式会社製)6370gを攪拌下に3時間かけて連続的に供給した。反応終了時において、反応容器内(反応系内)の反応混合物中におけるシリカ(B)に対するエタノールアミン(A)の割合{触媒残存モル比(A/B)}は0.00610であった。
Example 8
1410 g of colloidal silica obtained in Example 2 having a silica concentration of 12.6% by weight, 14598 g of pure water having a metal impurity content of 0.1 ppb or less, and 41.1 g of triethanolamine having a metal impurity content of 10 ppb or less are charged. Then, 6370 g of tetramethyl silicate (manufactured by Tama Chemical Co., Ltd.) having a metal impurity content of 10 ppb or less was continuously supplied over 3 hours with stirring while maintaining the liquid temperature in the reaction vessel at 80 ° C. using a mantle heater. did. At the end of the reaction, the ratio of ethanolamine (A) to silica (B) (remaining catalyst molar ratio (A / B)) in the reaction mixture in the reaction vessel (in the reaction system) was 0.00610.

反応容器内へのテトラメチルシリケートの供給を終了した後、一旦反応容器内の温度を40℃まで下げ、真空ポンプで系内を減圧にし、その後加熱を再開し、反応容器内の反応混合物を更に52〜68℃に加熱し、生成したメタノールをコンデンサー付留出管から留出温度32〜67℃で留出させ、更に純水9200gを添加しながら、水とメタノールを留去して、この反応容器内に生成した反応混合物(コロイダルシリカ)を13000gまで濃縮した。   After the supply of tetramethyl silicate into the reaction vessel is completed, the temperature in the reaction vessel is once lowered to 40 ° C., the system is depressurized with a vacuum pump, and then the heating is restarted, and the reaction mixture in the reaction vessel is further reduced. This reaction was conducted by heating to 52 to 68 ° C, distilling the produced methanol from the distillation tube with condenser at a distillation temperature of 32 to 67 ° C, and further distilling off water and methanol while adding 9200 g of pure water. The reaction mixture (colloidal silica) produced in the container was concentrated to 13000 g.

得られた反応混合物(コロイダルシリカ分散液)は、シリカ濃度20.5重量%、pH8.45及び粘度90.7mPa・sであり、静置すると6時間で二層に分離した。   The obtained reaction mixture (colloidal silica dispersion) had a silica concentration of 20.5% by weight, a pH of 8.45 and a viscosity of 90.7 mPa · s, and was allowed to stand to separate into two layers in 6 hours.

この二層分離のコロイダルシリカ分散液(反応混合物)を40℃に加温し、55rpmで攪拌しながら、炭酸ガスを40mL/分で17分間吹き込み、分散安定化処理を行った。   This two-layer separated colloidal silica dispersion (reaction mixture) was heated to 40 ° C., and stirred at 55 rpm, and carbon dioxide was blown in at 40 mL / min for 17 minutes for dispersion stabilization treatment.

得られたコロイダルシリカ分散液は、シリカ濃度20.5重量%、pH8.10、粘度2.31(mPa・s/25℃)、二次粒子径61.7nm、比重(25℃)1.116、及びCO2濃度40mg/Lであり、電子顕微鏡による粒度分布分析の結果は平均粒子径が45.6nmで、標準偏差が2.98nmで、多分散度指数が0.0654の球状中性コロイダルシリカであった。また、原子吸光光度計によりサンプル採取量50gで金属不純物を測定した結果は検出限界以下であった。 The resulting colloidal silica dispersion had a silica concentration of 20.5% by weight, a pH of 8.10, a viscosity of 2.31 (mPa · s / 25 ° C.), a secondary particle diameter of 61.7 nm, and a specific gravity (25 ° C.) of 1.116. , And CO 2 concentration of 40 mg / L, and the result of particle size distribution analysis by electron microscope is a spherical neutral colloid having an average particle size of 45.6 nm, a standard deviation of 2.98 nm, and a polydispersity index of 0.0654. Silica. Moreover, the result of measuring metal impurities with an atomic absorption spectrophotometer at a sample collection amount of 50 g was below the detection limit.

更に、得られたコロイダルシリカ分散液について、実施例1と同様にして目視により二層に分離したか否かを確認し、分散安定性を調べた。結果は、静置後6時間でも一層のままであり、更に一日後、一週間後、一年後でも一層のままであって、分散安定性に優れていることが判明した。   Furthermore, about the obtained colloidal silica dispersion liquid, it was confirmed in the same manner as in Example 1 whether or not it was separated into two layers by visual observation, and the dispersion stability was examined. As a result, it was found that even after 6 hours of standing, it was still a layer, and even after a day, a week, and a year, it was still a layer and excellent in dispersion stability.

〔比較例1〕
実施例2で得られた二層分離のコロイダルシリカ分散液(反応混合物)を撹拌して均一化させた後、その1000gを採取し、20℃で55rpmの攪拌下に、60%硝酸0.066gを添加し、分散安定化処理を行った。
[Comparative Example 1]
The two-layer separated colloidal silica dispersion (reaction mixture) obtained in Example 2 was stirred and homogenized, and 1000 g of the mixture was sampled and 0.066 g of 60% nitric acid was stirred at 20 ° C. and 55 rpm. Was added to carry out dispersion stabilization treatment.

その後、実施例1と同様にして目視により二層に分離したか否かを確認し、分散安定性を調べた。結果は、6時間後でも一層のままであったが、容器の下にゲルが沈んでいた。   Thereafter, it was confirmed in the same manner as in Example 1 whether the two layers were visually separated, and the dispersion stability was examined. The result remained one layer after 6 hours, but the gel had sunk under the container.

Claims (9)

加水分解触媒の存在下にオルガノシリケートを加水分解して得られたシリカ濃度10〜40重量%及びpH5〜8.5のコロイダルシリカ分散液の分散安定化方法であり、
前記コロイダルシリカ分散液に対して、炭酸ガスを吹き込む炭酸ガス吹込み方法、及び/又は、撹拌下に酸水溶液として炭酸水溶液を添加する酸水溶液添加方法による分散安定化処理を行うことを特徴とする中性コロイダルシリカ分散液の分散安定化方法。
A dispersion stabilization method of a colloidal silica dispersion having a silica concentration of 10 to 40% by weight and a pH of 5 to 8.5 obtained by hydrolyzing an organosilicate in the presence of a hydrolysis catalyst,
The colloidal silica dispersion is subjected to a dispersion stabilization treatment by a carbon dioxide blowing method for blowing carbon dioxide and / or an acid aqueous solution addition method in which a carbonic acid aqueous solution is added as an acid aqueous solution with stirring. A method for stabilizing the dispersion of a neutral colloidal silica dispersion.
前記分散安定化処理が炭酸ガス吹込み方法である請求項1に記載の中性コロイダルシリカ分散液の分散安定化方法。   The dispersion stabilization method for a neutral colloidal silica dispersion according to claim 1, wherein the dispersion stabilization treatment is a carbon dioxide blowing method. 前記pH5〜8.5のコロイダルシリカ分散液が、オルガノシリケートとして易加水分解性オルガノシリケートを用い、また、加水分解触媒として第四級アンモニウム類、アミノアルコール類、モルホリン類及びピペラジン類から選ばれた1種又は2種以上の混合物を用い、この加水分解触媒を、少なくとも反応終了時の反応混合物中におけるシリカ(B)に対する加水分解触媒(A)の割合{触媒残存モル比(A/B)}が0.012以下となるように添加し反応させて得られた反応混合物である請求項1又は2に記載の中性コロイダルシリカ分散液の分散安定化方法。   The colloidal silica dispersion having a pH of 5 to 8.5 was selected from an easily hydrolyzable organosilicate as an organosilicate, and selected from quaternary ammoniums, amino alcohols, morpholines and piperazines as hydrolysis catalysts. One or two or more mixtures were used, and this hydrolysis catalyst was used at least as a ratio of hydrolysis catalyst (A) to silica (B) in the reaction mixture at the end of the reaction {remaining catalyst molar ratio (A / B)}. The method for stabilizing the dispersion of a neutral colloidal silica dispersion according to claim 1 or 2, wherein the dispersion is a reaction mixture obtained by adding and reacting so as to be 0.012 or less. 前記易加水分解性オルガノシリケートが、トリメチルシリケート、テトラメチルシリケート、トリエチルシリケート、又はメチルトリメチルシリケートである請求項3に記載の中性コロイダルシリカ分散液の分散安定化方法。   The method for stabilizing a dispersion of a neutral colloidal silica dispersion according to claim 3, wherein the easily hydrolyzable organosilicate is trimethyl silicate, tetramethyl silicate, triethyl silicate, or methyl trimethyl silicate. 触媒残存モル比(A/B)が0.00035〜0.012の範囲になるように、加水分解触媒の水溶液中にオルガノシリケートを導入する請求項3又は4に記載の中性コロイダルシリカ分散液の分散安定化方法。   The neutral colloidal silica dispersion according to claim 3 or 4, wherein the organosilicate is introduced into the aqueous solution of the hydrolysis catalyst so that the catalyst residual molar ratio (A / B) is in the range of 0.00035 to 0.012. Dispersion stabilization method. 加水分解反応の反応系内にはオルガノシリケートの加水分解反応に先駆けて粒子成長性能を有するコロイダルシリカの種子を仕込み、この反応系内にオルガノシリケート及び加水分解触媒を徐々に添加することにより均一な粒子のコロイダルシリカを製造する請求項1〜5のいずれかに記載の中性コロイダルシリカ分散液の分散安定化方法。   Prior to the hydrolysis reaction of the organosilicate, colloidal silica seeds having particle growth performance are charged in the reaction system of the hydrolysis reaction, and the organosilicate and hydrolysis catalyst are gradually added to the reaction system to obtain a uniform reaction. The method for stabilizing a dispersion of a neutral colloidal silica dispersion according to any one of claims 1 to 5, wherein colloidal silica of particles is produced. 金属不純物含有量が1ppm以下であるオルガノシリケート、第四級アンモニウム触媒及び水を原料とし、金属不純物含有量が1ppm以下の高純度コロイダルシリカを製造する請求項1〜6のいずれかに記載の中性コロイダルシリカ分散液の分散安定化方法。   The high-purity colloidal silica having a metal impurity content of 1 ppm or less is produced from an organosilicate having a metal impurity content of 1 ppm or less, a quaternary ammonium catalyst, and water as raw materials. Dispersion stabilization method of a porous colloidal silica dispersion. 加水分解反応を、粒子成長性能を有するコロイダルシリカからなる種子の存在下に行なう請求項1〜7のいずれかに記載の中性コロイダルシリカ分散液の分散安定化方法。   The method for stabilizing the dispersion of a neutral colloidal silica dispersion according to any one of claims 1 to 7, wherein the hydrolysis reaction is performed in the presence of seeds made of colloidal silica having particle growth performance. 製造されるコロイダルシリカが、電子顕微鏡による粒度分布分析で求められる平均粒子径5〜500nm、標準偏差20以下及び多分散度指数0.15以下の球状コロイダルシリカである請求項1〜8のいずれかに記載の中性コロイダルシリカ分散液の分散安定化方法。   The colloidal silica to be produced is a spherical colloidal silica having an average particle diameter of 5 to 500 nm, a standard deviation of 20 or less, and a polydispersity index of 0.15 or less, which are determined by particle size distribution analysis using an electron microscope. A method for stabilizing the neutral colloidal silica dispersion described in 1.
JP2012093811A 2012-04-17 2012-04-17 Dispersion stabilization method of neutral colloidal silica dispersion and neutral colloidal silica dispersion excellent in dispersion stability Active JP5905767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012093811A JP5905767B2 (en) 2012-04-17 2012-04-17 Dispersion stabilization method of neutral colloidal silica dispersion and neutral colloidal silica dispersion excellent in dispersion stability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012093811A JP5905767B2 (en) 2012-04-17 2012-04-17 Dispersion stabilization method of neutral colloidal silica dispersion and neutral colloidal silica dispersion excellent in dispersion stability

Publications (2)

Publication Number Publication Date
JP2013220976A JP2013220976A (en) 2013-10-28
JP5905767B2 true JP5905767B2 (en) 2016-04-20

Family

ID=49592221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012093811A Active JP5905767B2 (en) 2012-04-17 2012-04-17 Dispersion stabilization method of neutral colloidal silica dispersion and neutral colloidal silica dispersion excellent in dispersion stability

Country Status (1)

Country Link
JP (1) JP5905767B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6247077B2 (en) * 2013-11-06 2017-12-13 カーリットホールディングス株式会社 Electrolytic solution for electrolytic capacitor and electrolytic capacitor
JP6875247B2 (en) * 2017-10-11 2021-05-19 株式会社日本触媒 Composition
WO2024122583A1 (en) * 2022-12-08 2024-06-13 三菱ケミカル株式会社 Silica particle, production method for silica particle, silica sol, polishing composition, polishing method, manufacturing method for semiconductor wafer, and manufacturing method for semiconductor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4435391B2 (en) * 2000-08-04 2010-03-17 扶桑化学工業株式会社 Colloidal silica slurry
JP5080061B2 (en) * 2005-11-10 2012-11-21 多摩化学工業株式会社 Method for producing neutral colloidal silica
JP4731384B2 (en) * 2006-04-04 2011-07-20 多摩化学工業株式会社 Method for producing acidic and stable colloidal silica
CN101495409B (en) * 2006-07-31 2011-07-27 扶桑化学工业股份有限公司 Silica sol and process for production thereof

Also Published As

Publication number Publication date
JP2013220976A (en) 2013-10-28

Similar Documents

Publication Publication Date Title
JP5080061B2 (en) Method for producing neutral colloidal silica
JP5892882B2 (en) Method for producing colloidal silica
JP4566645B2 (en) Silica sol and method for producing the same
WO2010035613A1 (en) Colloidal silica containing silica secondary particles having bent structure and/or branched structure, and method for producing same
JPS6374911A (en) Production of fine spherical silica
JP4011566B2 (en) Silica sol and method for producing the same
KR102633383B1 (en) Method for producing silica sol
TWI741116B (en) Silica particle dispersion liquid and its manufacturing method
JP5221517B2 (en) Aluminum modified colloidal silica and method for producing the same
TWI746453B (en) Manufacturing method of silica sol
JP2013049620A (en) Method of preparing fumed metal oxide dispersion
JP2008290896A (en) Producing method of zirconia sol
JP2016008157A (en) Method for producing colloidal silica containing core-shell type silica particles
JP3584485B2 (en) Method for producing silica sol
JP2926915B2 (en) Elongated silica sol and method for producing the same
JP2019116396A (en) Silica-based particle dispersion and production method thereof
JP2021116225A (en) Method for producing silica particle, method for producing silica sol, polishing method, method for producing semiconductor wafer and method for producing semiconductor device
JP5905767B2 (en) Dispersion stabilization method of neutral colloidal silica dispersion and neutral colloidal silica dispersion excellent in dispersion stability
TW202112666A (en) Method for producing water glass containing chelating agent and silica sol
JP2004091220A (en) Method for manufacturing high purity silica sol dispersed in hydrophilic organic solvent, high purity silica sol dispersed in hydrophilic organic solvent obtained by the method, method for manufacturing high purity silica sol dispersed in organic solvent, and high purity silica sol dispersed in organic solvent obtained by the method
WO2018181713A1 (en) Production method for silica particle liquid dispersion
WO2018135585A1 (en) Silica particle liquid dispersion and production method therefor
JP7552145B2 (en) Silica sol, method for producing silica sol, polishing composition, polishing method, and method for producing semiconductor device
WO2023219004A1 (en) Colloidal silica and production method therefor
JP2022152370A (en) Method of producing colloidal silica, and colloidal silica

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160317

R150 Certificate of patent or registration of utility model

Ref document number: 5905767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250