JP5903584B2 - Ultrasonic flow meter - Google Patents
Ultrasonic flow meter Download PDFInfo
- Publication number
- JP5903584B2 JP5903584B2 JP2012115302A JP2012115302A JP5903584B2 JP 5903584 B2 JP5903584 B2 JP 5903584B2 JP 2012115302 A JP2012115302 A JP 2012115302A JP 2012115302 A JP2012115302 A JP 2012115302A JP 5903584 B2 JP5903584 B2 JP 5903584B2
- Authority
- JP
- Japan
- Prior art keywords
- time
- propagation time
- ultrasonic
- measuring means
- ultrasonic sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/66—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
- G01F1/667—Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/66—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
Description
本発明は、特に超音波によって流速または流量を計測する装置に関するものである。 The present invention particularly relates to an apparatus for measuring a flow velocity or a flow rate by ultrasonic waves.
従来の超音波流量計は、図5に示すように、流路1に超音波センサA2および超音波センサB3を流れの方向に相対して設置しており、制御部4はタイマ5をスタートさせると同時に駆動回路6を動作させる。そして、まず、方向切り替え回路8により、超音波センサA2を送信側、超音波センサB3を受信側に設定し、駆動回路6により駆動された超音波センサA2から送信された超音波は、超音波センサB3で受信され、超音波センサB3の出力を受けた受信検知回路7により受信検知される。この際、タイマ5は超音波が送信されてから受信検知されるまでの伝搬時間TAを計測する。
In the conventional ultrasonic flowmeter, as shown in FIG. 5, the ultrasonic sensor A2 and the ultrasonic sensor B3 are installed in the
次に、制御部4は方向切り替え回路8を動作させ超音波の伝搬方向を切り替える。つまり駆動回路6は超音波センサB3に接続され、超音波センサA2の受信出力は受信検知回路7に接続される。あとは前述した方法と同様に逆方向への超音波の伝搬時間TBを測定する。
Next, the
そして、被計測流体の流速をV、被計測流体の流れ方向と超音波の伝搬経路の交差角をθ、2つの超音波センサ間の距離をLとすると、流速Vは次式で求めることができる。 When the flow velocity of the fluid to be measured is V, the crossing angle between the flow direction of the fluid to be measured and the propagation path of the ultrasonic wave is θ, and the distance between the two ultrasonic sensors is L, the flow velocity V can be obtained by the following equation. it can.
V=L/2・cosθ・(1/TB−1/TA)
従って、流路の断面積をSとすると、被計測流体の流量Qは、
Q=S・L/2・cosθ・(1/TB−1/TA)
となる。
V = L / 2 · cos θ · (1 / TB-1 / TA)
Therefore, if the cross-sectional area of the flow path is S, the flow rate Q of the fluid to be measured is
Q = S · L / 2 · cos θ · (1 / TB-1 / TA)
It becomes.
ここで、流路の断面積S、交差角θ、2つの超音波センサ間の距離Lは既知であるので、定数C=S・L/2・cosθとすると
Q=C・(1/TA−1/TB)=C・(TB−TB)/TA・TB・・・(式1)
と表すことができる。
Here, since the cross-sectional area S of the flow path, the crossing angle θ, and the distance L between the two ultrasonic sensors are known, assuming that the constant C = S · L / 2 · cos θ, Q = C · (1 / TA− 1 / TB) = C · (TB−TB) / TA · TB (Formula 1)
It can be expressed as.
しかしながら、実際には伝搬時間を測定する回路内の伝搬時間TAを測定している経路と伝搬時間TBを測定している経路とは異なる経路であり時間差が存在している。この時間差が流量測定時の誤差として発生するので、この誤差を解消するため流量がゼロのときのTAとTBとが同じ値となる補正値を保存手段9で保存し補正に使用している。 However, in reality, the path for measuring the propagation time TA in the circuit for measuring the propagation time is different from the path for measuring the propagation time TB, and there is a time difference. Since this time difference occurs as an error during flow rate measurement, a correction value in which TA and TB are the same when the flow rate is zero is stored in the storage means 9 and used for correction in order to eliminate this error.
そして、回路内における経路の違いによる生じる時間差をΔTとして、次式で流量Qを求めることができる。 Then, the flow rate Q can be obtained by the following equation, where ΔT is the time difference caused by the path difference in the circuit.
なお、次式では、回路の経路の違いによりTAよりもTBの方がより時間を要するものとして、式1のTAについては、ΔT/2加算し、TBについてΔT/2減算することで、誤差を解消するようにしている。
In the following equation, it is assumed that TB requires more time than TA due to a difference in circuit path. For TA in
Q=C×[(TB−ΔT/2)−(TA+ΔT/2)]/[(TA+ΔT/2)×(TB−ΔT/2)] Q = C × [(TB−ΔT / 2) − (TA + ΔT / 2)] / [(TA + ΔT / 2) × (TB−ΔT / 2)]
しかしながら前記従来の構成では、保存手段9に保存された補正値は定数であるため、温度や電源電圧、経年変化等により回路の動作が変化し、異なる計測経路間の時間差が変動した場合、正確な補正ができず測定誤差が発生していた。 However, since the correction value stored in the storage unit 9 is a constant in the conventional configuration, the circuit operation changes due to temperature, power supply voltage, aging, etc., and the time difference between different measurement paths varies. Correction could not be made and a measurement error occurred.
本発明は前記従来の課題を解決するもので、誤差の少ない超音波流量計を提供することを目的とする。 The present invention solves the above-described conventional problems, and an object thereof is to provide an ultrasonic flowmeter with little error.
前記従来の課題を解決するために、本発明の超音波流量計は、被計測流体が流れる流路と、前記流路の上流側に設置された超音波センサA及び下流側に設置された超音波センサBと、前記超音波センサAから発信された超音波が前記被計測流体を伝搬し前記超音波センサBで受信されるまでの超音波の伝搬時間TAを測定する伝搬時間測定手段Aと、前記超音波センサBから発信された超音波が前記被計測流体を伝搬し前記超音波センサAで受信されるまでの超音波の伝搬時間TBを測定する伝搬時間測定手段Bと、前記伝搬時間測定手段Aと前記伝搬時間測定手段Bと同一半導体内で構成し前記半導体の遅延時間を測定する遅延時間測定手段と、調整時における前記伝搬時間測定手段Aと前記伝搬時間測定手段Bの測定時間の時間差TdA、及び、前記遅延時間測定手段で計測された半導体の遅延時間TdBを保存する保存手段と、流量計測時における前記伝搬時間TAと前記伝搬時間TBとの時間差を、前記保存手段で保存した前記時間差TdAと前記遅延時間TdBと前記遅延時間測定手段で測定された遅延時間とで補正して流量を算出する演算手段を備えたもので、保存手段に保存した補正値を遅延時間測定手段の出力で補正するので、回路の遅延時間が変動した場合であっても適正な補正値を得ることができるものである。 In order to solve the conventional problem, an ultrasonic flowmeter of the present invention includes a flow path through which a fluid to be measured flows, an ultrasonic sensor A installed upstream of the flow path, and an ultrasonic sensor installed downstream. An acoustic wave sensor B, and a propagation time measuring means A for measuring an ultrasonic wave propagation time TA until the ultrasonic wave transmitted from the ultrasonic sensor A propagates through the measured fluid and is received by the ultrasonic sensor B; A propagation time measuring means B for measuring an ultrasonic propagation time TB until an ultrasonic wave transmitted from the ultrasonic sensor B propagates through the fluid to be measured and is received by the ultrasonic sensor A, and the propagation time. The measuring means A and the propagation time measuring means B are configured in the same semiconductor, the delay time measuring means for measuring the delay time of the semiconductor, the measurement time of the propagation time measuring means A and the propagation time measuring means B at the time of adjustment Time difference TdA The storage means for storing the semiconductor delay time TdB measured by the delay time measurement means, and the time difference TdA stored by the storage means is the time difference between the propagation time TA and the propagation time TB at the time of flow rate measurement. And calculating means for calculating the flow rate by correcting the delay time TdB and the delay time measured by the delay time measuring means, and correcting the correction value stored in the storage means by the output of the delay time measuring means Therefore, an appropriate correction value can be obtained even when the delay time of the circuit varies.
本発明の超音波流量計は、伝搬時間測定手段における回路の経路の違いによる時間差を適正な補正値により補正することで正確な流量を計測することができる。 The ultrasonic flowmeter of the present invention can measure an accurate flow rate by correcting a time difference due to a difference in circuit path in the propagation time measuring means with an appropriate correction value.
第1の発明は、被計測流体が流れる流路と、前記流路の上流側に設置された超音波センサA及び下流側に設置された超音波センサBと、前記超音波センサAから発信された超音波が前記被計測流体を伝搬し前記超音波センサBで受信されるまでの超音波の伝搬時間TAを測定する伝搬時間測定手段Aと、前記超音波センサBから発信された超音波が前記被計測流体を伝搬し前記超音波センサAで受信されるまでの超音波の伝搬時間TBを測定する伝搬時間測定手段Bと、前記伝搬時間測定手段Aと前記伝搬時間測定手段Bと同一半導体内で構成し前記半導体の遅延時間を測定する遅延時間測定手段と、調整時における前記伝搬時間測定手段Aと前記伝搬時間測定手段Bの測定時間の時間差TdA、及び、前記遅延時間測定手段で計測された半導体の遅延時間TdBを保存する保存手段と、流量計測時における前記伝搬時間TAと前記伝搬時間TBとの時間差を、前記保存手段で保存した前記時間差TdAと前記遅延時間TdBと前記遅延時間測定手段で測定された遅延時間とで
補正して流量を算出する演算手段を備えたものである。
The first invention is transmitted from the flow path through which the fluid to be measured flows, the ultrasonic sensor A installed upstream of the flow path, the ultrasonic sensor B installed downstream, and the ultrasonic sensor A. The propagation time measuring means A for measuring the propagation time TA of the ultrasonic wave until the ultrasonic wave propagates through the fluid to be measured and is received by the ultrasonic sensor B, and the ultrasonic wave transmitted from the ultrasonic sensor B Propagation time measuring means B that measures the propagation time TB of the ultrasonic wave that propagates through the fluid to be measured and is received by the ultrasonic sensor A, and the same semiconductor as the propagation time measuring means A and the propagation time measuring means B The delay time measuring means configured to measure the delay time of the semiconductor, the time difference TdA between the measurement times of the propagation time measuring means A and the propagation time measuring means B at the time of adjustment, and the delay time measuring means Half The storage means for storing the body delay time TdB, and the time difference between the propagation time TA and the propagation time TB at the time of measuring the flow, the time difference TdA, the delay time TdB and the delay time measurement means stored by the storage means. And calculating means for calculating the flow rate by correcting with the delay time measured in (1).
そして、調整時に保存手段に保存した値は、伝搬時間測定手段A、Bの温度や動作電圧、経時変化により実際の値がずれるが、同様に遅延時間測定手段の値も変化するので、その変化量に応じて保存手段に保存した値を補正し、ほぼ実動時の伝搬時間測定手段Aと前記伝搬時間測定手段Bとのずれを補正するので、正確な測定結果を得ることができる。 The values stored in the storage means at the time of adjustment differ from the actual values due to the temperature and operating voltage of the propagation time measuring means A and B, and changes with time, but the value of the delay time measuring means also changes. Since the value stored in the storage means is corrected according to the amount and the deviation between the propagation time measurement means A and the propagation time measurement means B during actual operation is corrected, an accurate measurement result can be obtained.
第2の発明は、特に第1の発明において、前記遅延時間測定手段がリングオシレータと発振周波数測定手段により構成されているもので、半導体の遅延時間が遅くなると前記リングオシレータの発振周波数は遅くなる。そして、この発振周波数を前記発振周波数測定手段により測定することで、演算手段はこの発振周波数の変化量で半導体の遅延時間を得ることができもので、容易な構成で半導体内に遅延時間測定手段が実現できる。 In the second invention, in particular, in the first invention, the delay time measuring means is constituted by a ring oscillator and an oscillation frequency measuring means, and when the delay time of the semiconductor is delayed, the oscillation frequency of the ring oscillator is delayed. . Then, by measuring the oscillation frequency by the oscillation frequency measuring means, the calculating means can obtain the delay time of the semiconductor by the amount of change of the oscillation frequency, and the delay time measuring means in the semiconductor with an easy configuration. Can be realized.
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.
(実施の形態1)
図1は、本発明の第1の実施の形態における、超音波流量計の全体のブロック図を示すものである。図に示すように、本実施の形態の超音波流量計は、被計測流体が流れる流路1の上流側に設置された超音波センサA2と、下流側に設置された超音波センサB3と、超音波センサA2から発信された超音波が流路1内を満たしている被計測流体を伝搬し超音波センサB3で受信されるまでの超音波の伝搬時間TAを測定する伝搬時間測定手段A11と、逆に、超音波センサB3から発信された超音波が流路1内を満たしている被計測流体を伝搬し超音波センサA2で受信されるまでの超音波の伝搬時間TBを測定する伝搬時間測定手段B12と、伝搬時間測定手段A11と伝搬時間測定手段B12と同一半導体13内で構成し前記半導体の遅延時間を測定する遅延時間測定手段14を有している。
(Embodiment 1)
FIG. 1 is a block diagram showing the entire ultrasonic flowmeter according to the first embodiment of the present invention. As shown in the figure, the ultrasonic flowmeter of the present embodiment includes an ultrasonic sensor A2 installed on the upstream side of the
また、調整時に伝搬時間測定手段A11と伝搬時間測定手段B12とのとの時間差TdA、及び、遅延時間測定手段14で計測された半導体の遅延時間TdBを保存する保存手段15と、実際の流量計測時に測定された伝搬時間TA’と伝搬時間TB’との時間差TdA’を、保存手段15で保存した時間差TdAと遅延時間TdB及び遅延時間測定手段14で測定されたこの時の半導体の遅延時間TdB’で補正して流量を算出する演算手段16とを備える。
In addition, the storage unit 15 that stores the time difference TdA between the propagation time measurement unit A11 and the propagation time measurement unit B12 and the delay time TdB of the semiconductor measured by the delay
ここで、調整時には、流量をゼロとして、伝搬時間測定手段A11と伝搬時間測定手段B12で計測された伝搬時間TAと伝搬時間TBの時間差TdAを補正値として保存手段15で保存する。また、この時の時間差TdAは、半導体における伝搬時間測定手段A11と伝搬時間測定手段B12の経路の違いで生じるものであり、時間や温度によって変動を生じるものである。 Here, at the time of adjustment, the flow rate is set to zero, and the time difference TdA between the propagation time TA and the propagation time TB measured by the propagation time measuring means A11 and the propagation time measuring means B12 is saved by the saving means 15 as a correction value. Further, the time difference TdA at this time is caused by a difference in the path between the propagation time measuring means A11 and the propagation time measuring means B12 in the semiconductor, and varies depending on time and temperature.
図2および図3は本発明の第1の実施の形態における、超音波センサA2、超音波センサB3と伝搬時間測定手段A11および伝搬時間測定手段B12の接続経路の違いを示すブロック図であり、以下、本実施の形態について、図1〜3を用いて説明する。 2 and 3 are block diagrams showing differences in connection paths of the ultrasonic sensor A2, the ultrasonic sensor B3, the propagation time measuring means A11, and the propagation time measuring means B12 according to the first embodiment of the present invention. Hereinafter, the present embodiment will be described with reference to FIGS.
まず、図2に示すように、方向切り替え回路8により、超音波センサA2が駆動回路6に、超音波センサB3が受信検知回路7に接続される。この状態において、制御部4はタイマ5をスタートさせると同時に駆動回路6を動作させる。そして、駆動回路6により駆動された超音波センサA2から送信された超音波は、流路内の被計測流体を伝搬して超音波センサB3で受信され、超音波センサB3の出力を受けた受信検知回路7により受信検知される。この際、タイマ5は超音波が送信されてから受信検知されるまでの順方向の伝
搬時間TAを計測する。
First, as shown in FIG. 2, the
次に、図3に示すように、制御部4は方向切り替え回路8を動作させ超音波の伝搬方向を切り替える。つまり駆動回路6は超音波センサB3に接続され、超音波センサA2の受信出力は受信検知回路7に接続される。そして、伝搬時間TAの計測と同様に逆方向の伝搬時間TBを測定する。
Next, as shown in FIG. 3, the
ここで調整時に保存手段15に保存した時間差TdAは、伝搬時間測定手段A11、B12の温度や動作電圧、経時変化により実際の値とのずれが発生する。同様に遅延時間測定手段14で計測される半導体の遅延時間TdBの値も変化し、その変化は、伝搬時間測定手段A11と伝搬時間測定手段B12と遅延時間測定手段14とがいずれも同一半導体内で構成されているため、増減の値は相関のあるものとなる。 Here, the time difference TdA stored in the storage unit 15 at the time of adjustment is deviated from the actual value due to the temperature, operating voltage, and temporal change of the propagation time measuring units A11 and B12. Similarly, the value of the delay time TdB of the semiconductor measured by the delay time measuring means 14 also changes. This change is caused by the propagation time measuring means A11, the propagation time measuring means B12, and the delay time measuring means 14 being all in the same semiconductor. Therefore, the increase / decrease value is correlated.
従って、流量計測時における伝搬時間測定手段A11と伝搬時間測定手段B12の経路の違いで生じる測定時間の時間差TdA’は、TdA’=TdA×(TdB’/TdB)として求めることができる。 Therefore, the time difference TdA ′ of the measurement time caused by the difference in the path between the propagation time measurement unit A11 and the propagation time measurement unit B12 during flow rate measurement can be obtained as TdA ′ = TdA × (TdB ′ / TdB).
演算手段16では、求めた時間差TdA’が実際の計測における伝搬時間測定手段A11と伝搬時間測定手段B12との経路により生じるとみなし補正値として流量を演算により算出する。 The calculating means 16 calculates the flow rate as a correction value by assuming that the obtained time difference TdA 'is caused by the path between the propagation time measuring means A11 and the propagation time measuring means B12 in actual measurement.
以上により、伝搬時間測定手段における回路の経路の違いによる時間差を適正な補正値により補正することで正確な流量を計測することができる。 As described above, an accurate flow rate can be measured by correcting the time difference due to the difference in the circuit path in the propagation time measuring means with the appropriate correction value.
図4は本発明の第1の実施の形態における遅延時間測定手段14を示す回路図であり、遅延時間測定手段14をリングオシレータ17とカウンタ18とで構成している。リングオシレータはNAND19と複数のインバータ20とでリング状に構成され、入力信号AがHIでNAND回路の入力に入っている期間リングオシレータ17は発振をし、その発振数をカウンタ18でカウントする。
FIG. 4 is a circuit diagram showing the delay time measuring means 14 in the first embodiment of the present invention. The delay time measuring means 14 is composed of a ring oscillator 17 and a
ここで、入力信号AをLoとする期間を電圧変動や温度変化による影響を受けにくい発振子を利用し一定の時間に制御することで、この時間内のリングオシレータ17の発振数をカウントする。この発振数は遅延時間に反比例することになる。このようにして遅延時間を簡易な回路構成で半導体内部に実現することができる。 Here, the number of oscillations of the ring oscillator 17 within this time is counted by controlling the period during which the input signal A is Lo using a resonator that is not easily affected by voltage fluctuations or temperature changes. The number of oscillations is inversely proportional to the delay time. In this way, the delay time can be realized in the semiconductor with a simple circuit configuration.
本発明の超音波流量計によると、伝搬時間測定手段における回路の経路の違いによる時間差を適正な補正値により補正することで正確な流量を計測することができる。 According to the ultrasonic flowmeter of the present invention, an accurate flow rate can be measured by correcting a time difference due to a difference in circuit path in the propagation time measuring means with an appropriate correction value.
1 流路
2 超音波センサA
3 超音波センサB
11 伝搬時間測定手段A
12 伝搬時間測定手段B
14 遅延時間測定手段
15 保存手段
16 演算手段
1 Flow
3 Ultrasonic sensor B
11 Propagation time measurement means A
12 Propagation time measurement means B
14 Delay time measurement means 15 Storage means 16 Calculation means
Claims (2)
前記流路の上流側に設置された超音波センサA及び下流側に設置された超音波センサBと、
前記超音波センサAから発信された超音波が前記被計測流体を伝搬し前記超音波センサBで受信されるまでの超音波の伝搬時間TAを測定する伝搬時間測定手段Aと、
前記超音波センサBから発信された超音波が前記被計測流体を伝搬し前記超音波センサAで受信されるまでの超音波の伝搬時間TBを測定する伝搬時間測定手段Bと、
前記伝搬時間測定手段Aと前記伝搬時間測定手段Bと同一半導体内で構成し前記半導体の遅延時間を測定する遅延時間測定手段と、
調整時における前記伝搬時間測定手段Aと前記伝搬時間測定手段Bの測定時間の時間差TdA、及び、前記遅延時間測定手段で計測された半導体の遅延時間TdBを保存する保存手段と、
流量計測時における前記伝搬時間TAと前記伝搬時間TBとの時間差を、前記保存手段で保存した前記時間差TdAと前記遅延時間TdBと前記遅延時間測定手段で測定された遅延時間とで補正して流量を算出する演算手段を備えた超音波流量計。 A flow path through which the fluid to be measured flows;
An ultrasonic sensor A installed on the upstream side of the flow path and an ultrasonic sensor B installed on the downstream side;
A propagation time measuring means A for measuring an ultrasonic wave propagation time TA until an ultrasonic wave transmitted from the ultrasonic sensor A propagates through the fluid to be measured and is received by the ultrasonic sensor B;
A propagation time measuring means B for measuring an ultrasonic propagation time TB until the ultrasonic wave transmitted from the ultrasonic sensor B propagates through the fluid to be measured and is received by the ultrasonic sensor A;
The propagation time measuring means A and the propagation time measuring means B are configured in the same semiconductor, and the delay time measuring means for measuring the delay time of the semiconductor;
Storage means for storing a time difference TdA between the measurement times of the propagation time measurement means A and the propagation time measurement means B at the time of adjustment, and a semiconductor delay time TdB measured by the delay time measurement means;
The flow rate is corrected by correcting the time difference between the propagation time TA and the propagation time TB at the time of flow rate measurement with the time difference TdA, the delay time TdB, and the delay time measured by the delay time measurement unit. An ultrasonic flowmeter provided with a calculation means for calculating
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012115302A JP5903584B2 (en) | 2012-05-21 | 2012-05-21 | Ultrasonic flow meter |
PCT/JP2013/003138 WO2013175743A1 (en) | 2012-05-21 | 2013-05-17 | Ultrasonic flowmeter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012115302A JP5903584B2 (en) | 2012-05-21 | 2012-05-21 | Ultrasonic flow meter |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013242217A JP2013242217A (en) | 2013-12-05 |
JP5903584B2 true JP5903584B2 (en) | 2016-04-13 |
Family
ID=49623454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012115302A Active JP5903584B2 (en) | 2012-05-21 | 2012-05-21 | Ultrasonic flow meter |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5903584B2 (en) |
WO (1) | WO2013175743A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6899228B2 (en) * | 2017-02-15 | 2021-07-07 | 株式会社Screenホールディングス | Board processing equipment |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2757600B2 (en) * | 1991-07-30 | 1998-05-25 | 株式会社デンソー | Time A / D conversion circuit |
JPH11304559A (en) * | 1998-04-23 | 1999-11-05 | Matsushita Electric Ind Co Ltd | Flow rate measuring apparatus |
JP2007232659A (en) * | 2006-03-03 | 2007-09-13 | Ricoh Elemex Corp | Ultrasonic flowmeter |
JP5282750B2 (en) * | 2010-03-12 | 2013-09-04 | 株式会社デンソーウェーブ | Time measuring device and sensor device |
-
2012
- 2012-05-21 JP JP2012115302A patent/JP5903584B2/en active Active
-
2013
- 2013-05-17 WO PCT/JP2013/003138 patent/WO2013175743A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2013175743A1 (en) | 2013-11-28 |
JP2013242217A (en) | 2013-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9638557B2 (en) | Ultrasonic flowmeter having an arithmetic operation unit for calculating propagation time correction value | |
US7634366B2 (en) | Fluid flow measuring instrument | |
JP2011158470A (en) | Ultrasonic flowmeter | |
JP5906388B2 (en) | Flow measuring device | |
WO2012081195A1 (en) | Flow volume measuring device | |
JP5903584B2 (en) | Ultrasonic flow meter | |
JP4835068B2 (en) | Fluid flow measuring device | |
JP4973035B2 (en) | Ultrasonic flow meter | |
JP4858220B2 (en) | Ultrasonic current meter | |
JP5548951B2 (en) | Flow measuring device | |
JP5990770B2 (en) | Ultrasonic measuring device | |
JP7203355B2 (en) | gas meter | |
JP2008175667A (en) | Fluid flow measuring device | |
JP2008175668A (en) | Fluid flow measuring device | |
JP6767628B2 (en) | Flow measuring device | |
JP4784530B2 (en) | Timer device | |
JP2008180566A (en) | Flow velocity or flow rate measuring device, and program therefor | |
JP5092414B2 (en) | Flow velocity or flow rate measuring device | |
JP2007232659A (en) | Ultrasonic flowmeter | |
JP4894551B2 (en) | Ultrasonic current meter | |
JP4858219B2 (en) | Ultrasonic current meter | |
JP5309188B2 (en) | Ultrasonic flow meter | |
JP2021060304A (en) | Time measurement circuit and ultrasonic flowmeter | |
JP2013142574A (en) | Ultrasonic flowmeter | |
JP2008175542A (en) | Flow velocity or flow rate measuring instrument |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20141003 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150519 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151208 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151221 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5903584 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |