JP5903012B2 - Turbine design method, turbine manufacturing method, and method for determining unsteady force acting on moving blades, etc. - Google Patents

Turbine design method, turbine manufacturing method, and method for determining unsteady force acting on moving blades, etc. Download PDF

Info

Publication number
JP5903012B2
JP5903012B2 JP2012178698A JP2012178698A JP5903012B2 JP 5903012 B2 JP5903012 B2 JP 5903012B2 JP 2012178698 A JP2012178698 A JP 2012178698A JP 2012178698 A JP2012178698 A JP 2012178698A JP 5903012 B2 JP5903012 B2 JP 5903012B2
Authority
JP
Japan
Prior art keywords
blade
excitation force
stationary
distance
force due
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012178698A
Other languages
Japanese (ja)
Other versions
JP2014037775A (en
Inventor
智美 田中
智美 田中
鹿野 芳雄
芳雄 鹿野
穣 山下
穣 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2012178698A priority Critical patent/JP5903012B2/en
Publication of JP2014037775A publication Critical patent/JP2014037775A/en
Application granted granted Critical
Publication of JP5903012B2 publication Critical patent/JP5903012B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

本発明は、タービンの設計手法、タービンの製造方法及び動翼等に作用する非定常力の判定方法に係り、特に、蒸気タービンやガスタービン等のターボ機械における静翼及び動翼から構成されるタービン段落の設計方法に関する。   The present invention relates to a turbine design method, a turbine manufacturing method, and a method for determining an unsteady force acting on a moving blade and the like, and in particular, includes a stationary blade and a moving blade in a turbomachine such as a steam turbine or a gas turbine. The present invention relates to a turbine paragraph design method.

軸流タービンは、ケーシング内に、ロータと複数の動翼及び静翼とを備えている。静翼は、ガスや蒸気などの流体のもつ熱エネルギを運動エネルギに変換し動翼を回転させるものである。ステータに組込まれた静翼と、ロータ溝に植込まれた動翼とは、タービン段落を構成する。   The axial flow turbine includes a rotor, a plurality of moving blades, and stationary blades in a casing. A stationary blade converts the thermal energy of a fluid such as gas or steam into kinetic energy and rotates the moving blade. The stationary blades incorporated in the stator and the moving blades implanted in the rotor groove constitute a turbine stage.

タービン段落における静翼は、下流に位置する動翼に対して、圧力場や速度場(ノズルウェイク)の周期的な時間変動を生じさせる。これが非定常力となって動翼に作用する。このとき、動翼は静翼本数に回転数の整数倍を乗じた振動数で励振される。一般的に、圧力場の変動を励起する干渉はポテンシャル干渉、速度場の変動を励起する干渉はウェイク干渉という。蒸気タービンの高圧段、および中圧段では、動翼に作用する非定常力の主成分は、ポテンシャル干渉とウェイク干渉である。この二つの干渉の相互作用で生じる非定常力をNPF(Nozzle Passing Frequency)励振力という。NPF励振力によって動翼が壊れないように設計することが重要である。   The stationary blades in the turbine stage cause periodic time fluctuations of the pressure field and the velocity field (nozzle wake) with respect to the moving blades located downstream. This becomes an unsteady force and acts on the moving blade. At this time, the moving blades are excited at a frequency obtained by multiplying the number of stationary blades by an integral multiple of the number of rotations. In general, interference that excites fluctuations in the pressure field is called potential interference, and interference that excites fluctuations in the velocity field is called wake interference. In the high-pressure stage and the intermediate-pressure stage of the steam turbine, the main components of unsteady force acting on the moving blade are potential interference and wake interference. The unsteady force generated by the interaction of the two interferences is called NPF (Nozzle Passing Frequency) excitation force. It is important to design so that the rotor blades are not broken by the NPF excitation force.

動翼に作用するNPF励振力は、静翼と動翼の軸方向距離や、静翼の大きさ、静翼と動翼の本数比、翼形状で変化することが知られている。ポテンシャル干渉とウェイク干渉、それぞれの干渉による励振力は、静翼後縁端部と動翼前縁端部の軸方向距離、すなわち静動翼間距離が短くなると増大する傾向があることは知られている。しかし、ポテンシャル干渉とウェイク干渉の和であるNPF励振力は、ポテンシャル干渉とウェイク干渉の位相の組み合わせによって、静動翼間距離に対して単調な変化とならないことも分かっている。現象が複雑であるため、NPF励振力はCFD(Computational Fluid Dynamics)の非定常計算によって直接求める場合が多い。   It is known that the NPF excitation force acting on the moving blades varies depending on the axial distance between the stationary blades and the moving blades, the size of the stationary blades, the number ratio of the stationary blades to the moving blades, and the blade shape. It is known that the excitation force due to potential interference and wake interference, respectively, tends to increase as the axial distance between the trailing edge of the stationary blade and the leading edge of the stationary blade, that is, the distance between the stationary blades decreases. ing. However, it has also been found that the NPF excitation force, which is the sum of potential interference and wake interference, does not change monotonically with the distance between the stationary blades due to the combination of the phase of potential interference and wake interference. Since the phenomenon is complicated, the NPF excitation force is often obtained directly by non-stationary calculation of CFD (Computational Fluid Dynamics).

T. Nakajima, Y. Shikano, Y. Yamashita, Prediction of Effects of Potential Field Interaction and Wake Interaction on Unsteady Force for Buckets:IGTC2011-0053, pp.1-8 (2011)T. Nakajima, Y. Shikano, Y. Yamashita, Prediction of Effects of Potential Field Interaction and Wake Interaction on Unsteady Force for Buckets : IGTC2011-0053, pp.1-8 (2011)

NPF励振力はCFDの非定常計算によって直接求める場合が多いが、計算には時間がかかる。また、静動翼間距離とNPF励振力の定量的な関係を得ようとすると、CFDで数多く計算し、その点を結んでプロットする以外に方法はなかった。しかし、この手法では計算に時間がかかる。また、規則性が分からないため、計算回数を減らすと、静動翼間距離に対するNPF励振力の変化の傾向を知ることができる程度であり、任意の静動翼間距離におけるNPF励振力を定量的に予測することが難しい。そのため、非定常力を定められた閾値以下としながら、静動翼間距離や静翼の大きさ、翼本数を柔軟に変更することは設計上困難であった。   NPF excitation force is often obtained directly by non-stationary calculation of CFD, but the calculation takes time. In addition, when trying to obtain a quantitative relationship between the distance between the stationary blades and the NPF excitation force, there was no other way than to perform many calculations using CFD and plot the points together. However, this method takes time to calculate. In addition, since regularity is not known, if the number of calculations is reduced, it is possible to know the tendency of the change in NPF excitation force with respect to the distance between the stationary blades. Quantify the NPF excitation force at any distance between the stationary blades. Difficult to predict. For this reason, it has been difficult in terms of design to flexibly change the distance between the stationary blades, the size of the stationary blades, and the number of blades while keeping the unsteady force below a predetermined threshold.

一方、静動翼間距離を短くすると、側壁の摩擦損失が抑制されるため、性能向上が期待できる。また、蒸気タービンのような多段タービンでは、各段落における静動翼間距離はロータの長さに影響するため、静動翼間距離の短縮はロータ長の短縮に寄与し、ロータ剛性を高める効果が期待できる。   On the other hand, when the distance between the stationary blades is shortened, the friction loss of the side walls is suppressed, and therefore an improvement in performance can be expected. In multi-stage turbines such as steam turbines, the distance between the stationary blades in each stage affects the length of the rotor, so shortening the distance between the stationary blades contributes to shortening the rotor length and increases the rotor rigidity. Can be expected.

しかしながら、設計上、NPF励振力によって翼が壊れないようにするには、NPFから十分離調した静翼を採用するのが簡便である。この手法は、採用可能な静翼本数に制限を設ける方法であるため、離調結果によっては、性能を劣化させる静翼や軸方向に長い静翼の採用を余儀なくされる場合がある。NPF励振力が過大にならないように、静動翼間距離や静翼の大きさをあらかじめ制限する設計手法もある。しかし、NPF励振力を定量的に評価できないことから、NPF励振力が過大に評価されやすい。このとき、必要以上に大きい静翼の採用や、必要以上に長い軸方向間距離の採用をせざるをえないことがある。   However, by design, it is easy to use a stationary blade that is well separated from NPF so that the blade is not broken by the NPF excitation force. Since this method limits the number of stationary blades that can be employed, depending on the detuning result, there may be a case where a stationary blade that degrades performance or a stationary blade that is long in the axial direction may be used. There is also a design method that limits the distance between the stationary blades and the size of the stationary blades in advance so that the NPF excitation force does not become excessive. However, since the NPF excitation force cannot be quantitatively evaluated, the NPF excitation force is easily overestimated. At this time, it may be unavoidable to use an unnecessarily large stationary blade or an unnecessarily long axial distance.

そこで、本発明者等は、NPF励振力を定量的に予測する新たな手法を提案している(非特許文献1)。この新たな手法では、一つの翼列モデルについて粘性解析及び非粘性解析を行い、これらの解析によって動翼に作用する非定常力(NPF励振力)及びポテンシャル干渉による励振力を求め、粘性解析結果と非粘性解析結果の差から動翼に作用するウェイク干渉による励振力を求めている。そして、これらを複数の静動翼間距離について行うことにより、ポテンシャル干渉及びウェイク干渉による励振力をそれぞれ静動翼間距離の関数として数式化し、数式化したポテンシャル干渉及びウェイク干渉による励振力に基づき、静動翼間距離が任意の値のときの、動翼に作用する非定常力を算出するようにしている。この手法により、任意の静動翼間距離におけるNPF励振力を定量的に予測することができる。そして、本発明者等は、このNPF励振力を定量的に予測する新たな手法を利用して、動翼に作用する非定常力を低減し、かつ、性能の低下やロータ軸長の増大を防ぐことが可能なタービン段落構造を容易に構築することが可能なタービン設計方法を、特願2011-180246号として提案している。   Thus, the present inventors have proposed a new method for quantitatively predicting the NPF excitation force (Non-patent Document 1). In this new method, viscosity analysis and non-viscous analysis are performed on one cascade model, and the unsteady force (NPF excitation force) acting on the rotor blade and the excitation force due to potential interference are obtained by these analyses. The excitation force due to the wake interference acting on the rotor blades is obtained from the difference between the results of the non-viscous analysis. Then, by performing these for a plurality of stationary blade distances, the excitation force due to the potential interference and the wake interference is expressed as a function of the distance between the stationary blades, respectively, based on the formulated potential interference and the excitation force due to the wake interference. The unsteady force acting on the moving blades when the distance between the stationary blades is an arbitrary value is calculated. This method can quantitatively predict the NPF excitation force at any distance between the stationary blades. The present inventors use this new method for quantitatively predicting the NPF excitation force to reduce the unsteady force acting on the rotor blade, and to reduce the performance and increase the rotor shaft length. Japanese Patent Application No. 2011-180246 has proposed a turbine design method capable of easily constructing a turbine stage structure that can be prevented.

この設計手法では、粘性解析、非粘性解析ともに静動翼間距離の値を変えて数ケース実施してポテンシャル干渉による励振力とウェイク干渉による励振力を数式化する必要がある。   In this design method, it is necessary to formulate the excitation force due to potential interference and the excitation force due to wake interference by changing the value of the distance between the stationary blades for both viscous analysis and inviscid analysis.

以上をまとめると、CFDによりNPF励振力を直接算出してNPF励振力を定められた閾値以下となるように設計する方法では計算時間がかかり現実的ではなく、また、他の設計手法では、NPF励振力を定められた閾値以下とするとき、必要以上に大きいノズルや静動翼間距離を採用する場合があり、これらは性能低下やロータ軸長の増大を招く可能性がある。   To summarize the above, it is not practical to calculate the NPF excitation force directly by CFD and design the NPF excitation force to be below the specified threshold, and it is not practical to use other design methods. When the excitation force is set to be equal to or less than a predetermined threshold value, an excessively large nozzle or a distance between the stationary blades may be employed, which may cause performance degradation and increase of the rotor shaft length.

本発明者等が提案した新たな設計手法では、従来の課題を解決することができ、動翼に作用する非定常力を低減し、かつ、性能の低下やロータ軸長の増大を防ぐことが可能なタービン段落構造を容易に構築することが可能となるが、この新たな設計方法おいても、粘性解析、非粘性解析ともに静動翼間距離などの因子の値を変えて数ケース実施する必要がある。   With the new design method proposed by the present inventors, it is possible to solve the conventional problems, reduce unsteady force acting on the rotor blades, and prevent deterioration in performance and increase in rotor shaft length. It is possible to easily construct a possible turbine stage structure, but even with this new design method, both the viscosity analysis and the non-viscous analysis are carried out by changing the values of factors such as the distance between stationary blades. There is a need.

また、上述の課題は、下流側のタービン段落の静翼に作用する非定常力、BPF(Bucket Passing Frequency)励振力を定められた閾値以下となるように設計する方法についても同様である。   In addition, the above-mentioned problem is also applied to the method of designing the unsteady force acting on the stationary blade of the turbine stage on the downstream side and the BPF (Bucket Passing Frequency) excitation force to be equal to or less than a predetermined threshold value.

本発明の目的は、動翼または静翼に作用する非定常力(NPF励振力またはBPF励振力)を低減し、かつ、性能の低下やロータ軸長の増大を防ぐことが可能なタービン段落構造を容易に構築することが可能な新たなタービン設計方法を提供することにある。   An object of the present invention is to provide a turbine stage structure capable of reducing unsteady force (NPF excitation force or BPF excitation force) acting on a moving blade or a stationary blade and preventing a decrease in performance and an increase in rotor shaft length. It is an object of the present invention to provide a new turbine design method that can be easily constructed.

本発明は、上記課題を解決するため、翼基本形状が決定された静翼と動翼のモデルを用いて粘性解析及び非粘性解析によってそれぞれ動翼に作用する非定常力及びポテンシャル干渉による励振力を任意の静動翼間距離について求め、粘性解析結果と非粘性解析結果の差から動翼に作用するウェイク干渉による励振力を前記任意の静動翼間距離について求め、求められたポテンシャル干渉及びウェイク干渉による励振力に基づきポテンシャル干渉による励振力の位相とウェイク干渉による励振力の位相を静動翼間距離の関数として数式化し、数式化したポテンシャル干渉及びウェイク干渉による励振力の位相差が同位相とならない、もしくは同位相からある程度離れた位相となるように、静動翼間距離を決定することを特徴とする。   In order to solve the above problems, the present invention uses a stationary blade model and a moving blade model whose basic shape has been determined, and a non-stationary force acting on the moving blade and an excitation force due to potential interference, respectively. For the distance between the stationary blades, the excitation force due to the wake interference acting on the blade from the difference between the viscosity analysis result and the non-viscous analysis result is obtained for the distance between the stationary blades, and the potential interference and Based on the excitation force due to wake interference, the phase of the excitation force due to potential interference and the phase of the excitation force due to wake interference are expressed as a function of the distance between the stationary blades, and the phase difference between the calculated potential interference and the excitation force due to wake interference is the same. It is characterized in that the distance between the stationary blades is determined so that the phase does not become a phase or a phase that is somewhat away from the phase.

また、同一タービン段落の静翼と動翼に替えて、上流側のタービン段落の動翼と下流側のタービン段落の静翼との間の関係として、動静翼間距離を決定することを特徴とする。   In addition, instead of the stationary blade and the moving blade of the same turbine stage, the distance between the moving blade and the stationary blade is determined as a relationship between the moving blade of the upstream turbine stage and the stationary blade of the downstream turbine stage. To do.

本発明によれば、タービン設計において、動翼又は静翼に作用する非定常力(NPF励振力又はBPF励振力)を低減し、かつ、性能の低下やロータ軸長の増大を防ぐことが可能なタービン段落構造を容易に構築することができる。   According to the present invention, in turbine design, it is possible to reduce unsteady force (NPF excitation force or BPF excitation force) acting on a moving blade or a stationary blade, and to prevent deterioration in performance and increase in rotor shaft length. A turbine stage structure can be easily constructed.

例えば、タービン段落における静翼と動翼の軸方向距離である静動翼間距離について、不必要に翼性能を低下させたり、ロータ軸長を増加させることなく、動翼に作用するNPF励振力が過大とならない静動翼間距離を容易に決定することができる。   For example, the NPF excitation force that acts on the rotor blades without unnecessarily degrading blade performance or increasing the rotor shaft length for the distance between the stator blades and the rotor blades in the turbine stage, which is the axial distance between the stator blades and the rotor blades. It is possible to easily determine the distance between the stationary blades that does not become excessive.

そして、本発明では、励振力を求めるための粘性解析及び非粘性解析の計算ケースを、例えば、1回とすることができる。   And in this invention, the calculation case of the viscosity analysis and non-viscous analysis for calculating | requiring an exciting force can be made into 1 time, for example.

上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

本発明の実施例のタービン段落の設計手法を説明する代表図。The representative figure explaining the design method of the turbine paragraph of the Example of this invention. 本発明の実施例が適用されるタービン段落の概略構成を示す断面図。Sectional drawing which shows schematic structure of the turbine stage to which the Example of this invention is applied. 本発明の実施例が適用されるタービン段落の説明図。Explanatory drawing of the turbine paragraph to which the Example of this invention is applied. NPF励振力と、ポテンシャル干渉による励振力、ウェイク干渉による励振力の位相差の関係の一例を示すグラフ。The graph which shows an example of the relationship between the phase difference of NPF excitation force, excitation force by potential interference, and excitation force by wake interference. 本発明の実施例に基づく静動翼間距離設定方法を説明するNPF励振力と静動翼間距離の関係の一例を示すグラフ。The graph which shows an example of the relationship between NPF excitation force and the distance between stationary blades explaining the distance setting method between stationary blades based on the Example of this invention. 本発明の実施例に基づく静動翼間距離設定方法を説明する動翼転向角と静動翼間距離の関係の一例を示すグラフ。The graph which shows an example of the relationship of the moving blade turning angle and the distance between stationary blades explaining the distance setting method between stationary blades based on the Example of this invention. 本発明の基となるタービン段落の設計手法を説明する図。The figure explaining the design method of the turbine paragraph used as the basis of this invention. ある翼高さの断面におけるポテンシャル干渉とウェイク干渉における励振力の振幅を数式化したグラフ。The graph which formulated the amplitude of the excitation force in the potential interference and wake interference in the cross section of a certain blade height. ある翼高さの断面におけるポテンシャル干渉とウェイク干渉における励振力の位相を数式化したグラフ。The graph which formulated the phase of the excitation force in the potential interference and the wake interference in the cross section of a certain blade height. 本発明の他の実施例であるタービン段落の設計手法を説明する図。The figure explaining the design method of the turbine paragraph which is the other Example of this invention. 本発明の他の実施例に基づく静動翼間距離設定方法を説明するNPF励振力と静動翼間距離の関係の一例を示すグラフ。The graph which shows an example of the relationship between the NPF excitation force and the distance between stationary blades explaining the distance setting method based on the other Example of this invention. 実機で用いられるタービン静翼の一例の断面図。Sectional drawing of an example of the turbine stationary blade used with an actual machine. CFD非定常計算に用いられるタービン静翼の一例の断面図。Sectional drawing of an example of a turbine stationary blade used for CFD unsteady calculation. CFD非定常計算に用いられるタービン静翼の他の一例の断面図。Sectional drawing of the other example of the turbine stationary blade used for CFD unsteady calculation.

以下、図面を用いて、本発明の実施例を説明する。本発明は、蒸気タービンやガスタービン等におけるタービン段落(タービン静翼とタービン動翼の対)に適用可能なものであるが、以下の説明では蒸気タービンのタービン段落に適用した場合の実施例について説明する。また、後述のように、本発明は、タービン動翼が次のタービン段落のタービン静翼に作用する非定常力(BPF(Bucket Passing Frequency)励振力)を生じさせる場合(動翼後縁端部と静翼前縁端部の動静翼間距離の設計)にも適用可能である。さらには、静翼-動翼-静翼といった1.5段や、複数段を対象としても良い。   Embodiments of the present invention will be described below with reference to the drawings. The present invention is applicable to a turbine stage (a pair of turbine stationary blades and turbine rotor blades) in a steam turbine, a gas turbine, or the like. In the following description, an embodiment in the case of being applied to a turbine stage of a steam turbine is described. explain. In addition, as described later, the present invention provides a case where the turbine blade generates an unsteady force (BPF (Bucket Passing Frequency) excitation force) that acts on the turbine stationary blade in the next turbine stage (the trailing edge of the blade). And the design of the distance between the moving and stationary blades at the leading edge of the stationary blade. Furthermore, 1.5 stages such as stationary blades-moving blades-stator blades or a plurality of stages may be targeted.

図2に本発明が適用されるタービン段落の一例を示す。図2は概略構成を示す断面図である。ステータ側である車室内壁(又は外輪)2と内輪Fとの間に固定された静翼Nの後流側に、ロータ3のディスクRbに植込まれた動翼Bが配置される。動翼の先端には動翼カバーCbが設けられている。タービンには、静翼Nと動翼Bから構成されるタービン段落が複数設置されている。静動翼間距離dは、静翼Nの翼部Bnの後縁端aと動翼Bの翼部Bbの前縁端bのロータ軸方向Xの距離である。静動翼間距離dは、従来、翼高さ方向Zに向かって、翼先端部tから翼根元部rまで同値となるように構成されているものや、翼高さ方向Zに向かって、翼根元部rから翼先端部tに向かって増大するように構成されているものなどがある。以下、タービン段落における静動翼間距離dの決定方法を中心に説明する。   FIG. 2 shows an example of a turbine stage to which the present invention is applied. FIG. 2 is a cross-sectional view showing a schematic configuration. On the downstream side of the stationary blade N fixed between the vehicle interior wall (or outer ring) 2 and the inner ring F on the stator side, the moving blade B implanted in the disk Rb of the rotor 3 is arranged. A blade cover Cb is provided at the tip of the blade. The turbine is provided with a plurality of turbine stages including a stationary blade N and a moving blade B. The stationary blade-to-blade distance d is the distance in the rotor axial direction X between the trailing edge a of the blade Bn of the stationary blade N and the leading edge b of the blade Bb of the blade B. The stationary blade-to-blade distance d is conventionally configured to have the same value from the blade tip t to the blade root r in the blade height direction Z, or in the blade height direction Z. Some are configured to increase from the blade root r toward the blade tip t. Hereinafter, the method for determining the distance d between the stationary blades in the turbine stage will be mainly described.

本発明の実施例の理解を容易にするために、先ず、本発明のもととなったタービン段落の設計方法の概要を説明し、その後、本発明の実施例を説明する。本発明のもととなったタービン段落の設計方法は、本発明者等が先に特願2011-180246号として提案したものである。   In order to facilitate understanding of the embodiments of the present invention, first, the outline of the design method of the turbine stage which is the basis of the present invention will be described, and then the embodiments of the present invention will be described. The design method of the turbine paragraph which is the basis of the present invention was previously proposed by the present inventors as Japanese Patent Application No. 2011-180246.

図7は本発明のもととなるタービン段落の設計手法を説明するフロー図である。翼形状を決定する第一工程10と、NPF励振力を算出する第二工程20、静動翼間距離を決定する第三工程30で構成される。   FIG. 7 is a flowchart for explaining the design method of the turbine stage which is the basis of the present invention. The first step 10 for determining the blade shape, the second step 20 for calculating the NPF excitation force, and the third step 30 for determining the distance between the stationary blades.

第一工程10は仕様の決定11と翼基本形状の決定12で構成される。仕様の決定11では設計対象のタービンの仕様、即ち環境条件を決める。次に、翼基本形状の決定12では定められた環境条件下において、性能を達成し、蒸気の曲げや遠心引張に耐えられる構造となるように、翼の基本形状を決定する。この第一工程10は、基本的には従来と同様であり、詳細な説明を省略する。   The first step 10 includes a specification decision 11 and a blade basic shape decision 12. In the specification determination 11, the specification of the turbine to be designed, that is, the environmental condition is determined. Next, in the determination of the blade basic shape 12, the basic shape of the blade is determined so as to achieve the performance under a predetermined environmental condition and to withstand the bending and centrifugal tension of steam. This first step 10 is basically the same as the conventional one, and detailed description thereof is omitted.

第一工程10によって決定した静翼と動翼を用いて、第二工程20では静動翼間距離dとNPF励振力の関係を求め、任意の静動翼間距離dにおけるNPF励振力を算出する。NPF励振力は翼高さ方向において異なるので、第二工程20は、必要な翼高さの数だけ、1〜10ケース程度実施する。   Using the stationary blades and moving blades determined in the first step 10, the second step 20 calculates the relationship between the stationary blade distance d and the NPF excitation force, and calculates the NPF excitation force at any stationary blade distance d. To do. Since the NPF excitation force varies in the blade height direction, the second step 20 is performed for about 1 to 10 cases as many as the required blade height.

第一工程10においてモデル化した静翼と動翼を対象に、CFD(Computational Fluid Dynamics)の非定常計算によって任意の静動翼間距離における粘性解析21と非粘性解析22を実施する。これらの粘性解析21と非粘性解析22は、ポテンシャル干渉による励振力とウェイク干渉による励振力の数式化(静動翼間距離の関数で数式化)が可能となるように、静動翼間距離を変化させて数回を行う。各解析で得た力をフーリエ変換すると、各励振次数における励振力の振幅と位相が得られる。   For the stationary blades and moving blades modeled in the first step 10, the viscosity analysis 21 and the non-viscous analysis 22 at an arbitrary distance between the stationary blades are performed by unsteady calculation of CFD (Computational Fluid Dynamics). These viscous analysis 21 and non-viscous analysis 22 are the distance between stationary blades so that the excitation force due to potential interference and the excitation force due to wake interference can be formulated (functions of the distance between stationary blades). Change the number of times. When the force obtained in each analysis is Fourier transformed, the amplitude and phase of the excitation force in each excitation order can be obtained.

粘性解析21から得られた力はNPF励振力である。部分噴射や排気室近くの段落など、特殊な条件で稼動する段落を除けば、NPF励振力F(t)はポテンシャル干渉の力とウェイク干渉の力の和であり、式(1)で表せる。 The force obtained from the viscosity analysis 21 is the NPF excitation force. Except for paragraphs that operate under special conditions such as partial injection and paragraphs near the exhaust chamber, NPF excitation force F N (t) is the sum of potential interference force and wake interference force, and can be expressed by equation (1). .

(t)=Asin(ωt+α)
=Asin(ωt+α)+Asin(ωt+α) (1)
ここで、Aは振幅、ωは角速度、tは時間、αは位相を示し、また、振幅Aと位相αの添字は、pはポテンシャル干渉による成分、wはウェイク干渉による成分、NはNPF励振力の成分を示す。
F N (t) = A N sin (ωt + α N )
= A p sin (ωt + α p ) + A w sin (ωt + α w ) (1)
Here, A is the amplitude, ω is the angular velocity, t is the time, α is the phase, and the suffixes of the amplitude A and the phase α are p is a component caused by potential interference, w is a component caused by wake interference, and N is an NPF excitation. Indicates the force component.

非粘性解析22から得られた力はポテンシャル干渉による励振力F(t)(=Asin(ωt+α))であるとみなせるため、ウェイク干渉による励振力F(t)(=Asin(ωt+α))は、粘性解析によって得た力(=Asin(ωt+α)+Asin(ωt+α))から非粘性解析によって得た力(=Asin(ωt+α))を引くことで得られる。これによって静動翼間距離を関数にした各干渉の励振力の振幅と位相の数式が得られる。静動翼間距離を変化させて解析を数回行い、図8(a)及び図8(b)のようにグラフ化する。尚、図8(a)及び図8(b)において、横軸(x)は静動翼間距離をノズルコード長で除して無次元化している。励振力の振幅について、図8(a)からも分かるように、ポテンシャル干渉は指数近似することができ、ウェイク干渉は累乗近似することができる。また、図8(b)からも分かるように、位相については、干渉の種類によらず線形近似することができる。このようにグラフ化することによって、ポテンシャル干渉の振幅Aと位相α及びウェイク干渉の振幅Aと位相αについて、静動翼間距離を因子とする関数で数式化する(図8(a)及び図8(b)における数式のh、j、m、n、k、l、k、lの数値を特定する)。以上の作業により、任意の翼高さにおけるポテンシャル干渉による励振力とウェイク干渉による励振力の数式化23bが可能となる(静動翼間距離の関数で数式化できる。)。 Since the force obtained from the inviscid analysis 22 can be regarded as the excitation force F p (t) (= A p sin (ωt + α p )) due to potential interference, the excitation force F w (t) due to wake interference (= A w sin a (ωt + α w)), the force obtained by the viscosity analysis (= a p sin (ωt + α p) + a w sin force obtained by inviscid analysis from (ωt + α w)) ( = a p sin (ωt + α p)) Obtained by drawing. As a result, an equation of amplitude and phase of the excitation force of each interference as a function of the distance between the stationary blades is obtained. The analysis is performed several times while changing the distance between the stationary blades and graphed as shown in FIGS. 8 (a) and 8 (b). In FIGS. 8A and 8B, the horizontal axis (x) is dimensionless by dividing the distance between the stationary blades by the nozzle cord length. As can be seen from FIG. 8A, the potential interference can be exponentially approximated and the wake interference can be approximated to a power. Further, as can be seen from FIG. 8B, the phase can be linearly approximated regardless of the type of interference. By thus graphed, the amplitude A w and phase alpha w amplitude A p and phase alpha p and wake interference potential interference, a mathematical formula as a function of the factor static and dynamic blades distance (FIG. 8 ( a) and numerical values of h, j, m, n, k p , l p , k w , and l w in the mathematical expressions in FIG. Through the above-described operation, it becomes possible to formulate 23b of the excitation force due to potential interference and the excitation force due to wake interference at an arbitrary blade height (it can be expressed as a function of the distance between the stationary blades).

次に、任意の静動翼間距離におけるNPF励振力の算出24bを行う。NPF励振力はポテンシャル干渉による励振力とウェイク干渉による励振力の和であることから、数式化23bで得た数式若しくは図8(a)及び図8(b)のグラフに基づき任意の静動翼間距離(CFDによる解析をしていない静動翼間距離を含む任意の静動翼間距離)におけるポテンシャル干渉による励振力F(t)とウェイク干渉による励振力F(t)を求め、求められたポテンシャル干渉による励振力F(t)とウェイク干渉による励振力F(t)を加算することにより任意の静動翼間距離におけるNPF励振力の算出24bを行う。 Next, the calculation 24b of the NPF excitation force at an arbitrary distance between the stationary blades is performed. Since the NPF excitation force is the sum of the excitation force due to potential interference and the excitation force due to wake interference, any stationary blade based on the equation 23b or the graphs of FIGS. 8 (a) and 8 (b) The excitation force F p (t) due to potential interference and the excitation force F w (t) due to wake interference at the inter-space distance (arbitrary inter-blade distance including the inter-static blade distance not analyzed by CFD) are obtained, By calculating the excitation force F p (t) caused by the potential interference and the excitation force F w (t) caused by the wake interference, the calculation 24b of the NPF excitation force at an arbitrary distance between the stationary blades is performed.

また、任意の静動翼間距離におけるA、A、α、αを、図8(a)及び図8(b)のグラフ若しくは数式から求め、式(1)におけるAとαを下記式(2)及び(3)から求めて、式(1)に基づき任意の静動翼間距離におけるNPF励振力F(t)を算出することができる。 Further, A p , A w , α p , α w at an arbitrary distance between the stationary blades are obtained from the graphs or equations in FIGS. 8A and 8B, and A N and α in equation (1) are obtained. N is obtained from the following formulas (2) and (3), and the NPF excitation force F N (t) at an arbitrary distance between the stationary blades can be calculated based on the formula (1).

=√{(Acosα+Acosα)+(Asinα+Asinα)} (2)
α=tan−1{(Asinα+Asinα)/(Acosα+Acosα)} (3)
以上の第二工程20を、翼高さを変えて実施する。そして、第三工程30において、NPF励振力が閾値以下となる静動翼間距離を選定する。上述の第二工程20と第三工程30は、静動翼間距離を決定する必要がある各段落に対して実施する。
A N = √ {(A p cos α p + A w cos α w ) 2 + (A p sin α p + A w sin α w ) 2 } (2)
α N = tan −1 {(A p sin α p + A w sin α w ) / (A p cos α p + A w cos α w )} (3)
The second step 20 described above is performed while changing the blade height. Then, in the third step 30, the distance between the stationary blades is selected so that the NPF excitation force is equal to or less than the threshold value. The second step 20 and the third step 30 described above are performed for each paragraph in which the distance between the stationary blades needs to be determined.

上述の図7の手法を用いれば、従来のCFDの非定常計算によって直接NPF励振力を計算するよりも計算時間を短縮できる。即ち、NPF励振力はポテンシャル干渉による励振力とウェイク干渉による励振力と異なり、複雑に変化し、規則性が分からない(例えば、後述の図5のように複雑に変化する。)。このため、図5のような滑らかな曲線を得るためには、横軸に与えた因子の種類や範囲によるが、概ね10ケース以上計算しなくてはならず、計算に時間がかかる。なおかつ未計算の静動翼間距離におけるNPF励振力は定量的に予測できない可能性が高い。   If the method of FIG. 7 described above is used, the calculation time can be reduced as compared with the case where the NPF excitation force is directly calculated by the conventional CFD non-stationary calculation. That is, the NPF excitation force differs in complexity from the excitation force due to potential interference and the excitation force due to wake interference, and regularity is not known (for example, it changes complicatedly as shown in FIG. 5 described later). For this reason, in order to obtain a smooth curve as shown in FIG. 5, although it depends on the type and range of factors given on the horizontal axis, it is necessary to calculate approximately 10 cases or more, which takes time. In addition, it is highly possible that the NPF excitation force at the uncalculated distance between the stationary blades cannot be predicted quantitatively.

上述した図7に示す手法では、ポテンシャル干渉による励振力とウェイク干渉による励振力を静動翼間距離の関数で数式化し、これらに基づき任意の静動翼間距離におけるNPF励振力を算出することができる。言い換えれば、従来では不可能であったNPF励振力を一般化することができる。   In the method shown in FIG. 7 described above, the excitation force due to potential interference and the excitation force due to wake interference are expressed as a function of the distance between the stationary blades, and based on these, the NPF excitation force at an arbitrary distance between the stationary blades is calculated. Can do. In other words, it is possible to generalize the NPF excitation force that was impossible in the past.

しかし、上述した図7に示す手法においてもポテンシャル干渉とウェイク干渉の振幅、位相を数式化するためには、静動翼間距離を3〜6ケース程度変更して粘性解析と非粘性解析の両方を実施しなくてはならない。このため、図7の手法でも最適な静動翼間距離を決定することは容易ではない。   However, also in the method shown in FIG. 7 described above, in order to formulate the amplitude and phase of potential interference and wake interference, the distance between the stationary blades is changed by about 3 to 6 cases, and both viscous analysis and inviscid analysis are performed. Must be implemented. For this reason, it is not easy to determine the optimum distance between the stationary blades even with the method of FIG.

そこで、本発明の実施例では、静動翼間距離の決定をさらに容易にするものである。   Therefore, in the embodiment of the present invention, the determination of the distance between the stationary blades is further facilitated.

図7に示す方法では、NPF励振力を定量的に求めるためにポテンシャル干渉による励振力とウェイク干渉による励振力を静動翼間距離の関数で数式化している。この数式化のために静動翼間距離を数回変更して計算する必要がある。しかしながら、式(1)で示すように、NPF励振力はポテンシャル干渉とウェイク干渉、2つの干渉による励振力の和であり、両干渉による励振力が同位相のときNPF励振力は極大に近くなり、逆位相のとき極小に近くなる。即ち、NPF励振力そのものを求めなくても、NPF励振力が極大となる範囲を避けて静動翼間を設定することにより、動翼に作用するNPF励振力を低減し、かつ、性能の低下やロータ軸長の増大を防ぐことが可能なタービン段落構造を容易に構築することが可能となる。   In the method shown in FIG. 7, in order to quantitatively determine the NPF excitation force, the excitation force due to potential interference and the excitation force due to wake interference are expressed as a function of the distance between the stationary blades. In order to formulate this, it is necessary to calculate by changing the distance between the stationary blades several times. However, as shown in Equation (1), the NPF excitation force is the sum of the excitation force due to potential interference and wake interference, and the two interferences. When the excitation force due to both interferences is in phase, the NPF excitation force is close to the maximum. When the phase is opposite, it becomes close to the minimum. In other words, even if the NPF excitation force itself is not calculated, the NPF excitation force acting on the moving blades can be reduced and the performance deteriorated by setting the space between the stationary blades while avoiding the range where the NPF excitation force is maximized. In addition, it is possible to easily construct a turbine stage structure that can prevent an increase in the rotor shaft length.

そこで、本発明の実施例では、ポテンシャル干渉による励振力の位相とウェイク干渉による励振力の位相を静動翼間距離の関数として数式化し、数式化したポテンシャル干渉及びウェイク干渉による励振力の位相差が同位相とならない、もしくは同位相からある程度離れた位相となるように、静動翼間距離を決定する。   Therefore, in the embodiment of the present invention, the phase of the excitation force due to the potential interference and the phase of the excitation force due to the wake interference are expressed as a function of the distance between the stationary blades, and the phase difference between the excitation force due to the potential interference and the wake interference is expressed as a formula. The distance between the stationary blades is determined so that the phase does not become the same phase or a phase separated from the same phase to some extent.

ポテンシャル干渉による励振力の位相αpとウェイク干渉による励振力の位相αwは、図8(b)に示すように、干渉の種類によらず線形近似することができ、次式で表せる。静動翼間距離(横軸x)はノズルコード長Cnで無次元化したd/Cnで表している。 The phase α p of the excitation force due to potential interference and the phase α w of the excitation force due to wake interference can be linearly approximated regardless of the type of interference as shown in FIG. The distance between the stationary blades (horizontal axis x) is represented by d / C n which is dimensionless with the nozzle code length C n .

αp=kp*(d/Cn)+lp (4)
αw=kw*(d/Cn)+lw (5)
そして、後で詳述するように、位相の近似式の傾きkは幾何学的に得られることが分かっている(非特許文献3)。従って、任意の静動翼間距離(1点)におけるポテンシャル干渉による励振力とウェイク干渉による励振力のそれぞれの位相αp,αwが分かれば、切片lp,lwを求めることができ、ポテンシャル干渉による励振力の位相とウェイク干渉による励振力の位相をそれぞれ静動翼間距離の関数として数式化することがでる。これらの数式化のためには、任意の静動翼間距離(1点)について、粘性解析と非粘性解析を行えば良いので、本発明者等が先に提案した設計手法よりも計算回数を低減することができる。
α p = k p * (d / C n ) + l p (4)
α w = k w * (d / C n ) + l w (5)
As will be described later in detail, it is known that the gradient k of the approximate expression of the phase can be obtained geometrically (Non-Patent Document 3). Therefore, if the phases α p and α w of the excitation force due to potential interference and the excitation force due to wake interference at an arbitrary distance between the stationary blades (one point) are known, intercepts l p and l w can be obtained, The phase of the excitation force due to potential interference and the phase of the excitation force due to wake interference can be respectively expressed as a function of the distance between the stationary blades. In order to formulate these, viscosity analysis and non-viscosity analysis can be performed for an arbitrary distance (1 point) between the stationary blades. Therefore, the number of calculations is larger than the design method proposed previously by the present inventors. Can be reduced.

次に、図1を用いて本発明の一実施例であるタービン段落の設計手法を詳細に説明する。   Next, the design method of the turbine stage which is one Example of this invention is demonstrated in detail using FIG.

翼形状を決定する第一工程10と、NPF励振力を算出する第二工程20、静動翼間距離を決定する第三工程30で構成される。第一工程10は図7の手法と同様であるので説明を省略する。   The first step 10 for determining the blade shape, the second step 20 for calculating the NPF excitation force, and the third step 30 for determining the distance between the stationary blades. The first step 10 is the same as the method of FIG.

第一工程10によって決定した静翼と動翼を用いて、第二工程20ではNPF励振力を構成するポテンシャル干渉による励振力とウェイク干渉による励振力の位相差を求める。NPF励振力は翼高さ方向において異なるので、第二工程20は、必要な翼高さの数だけ、1〜10ケース程度実施する。図7の手法では、第二工程は、粘性解析21と非粘性解析22を必要な静動翼間距離だけ実施しているが、本実施例では任意の静動翼間距離(1点)について実施すれば良い。   Using the stationary blade and the moving blade determined in the first step 10, the second step 20 obtains the phase difference between the excitation force due to potential interference and the excitation force due to wake interference that constitute the NPF excitation force. Since the NPF excitation force varies in the blade height direction, the second step 20 is performed for about 1 to 10 cases as many as the required blade height. In the method of FIG. 7, in the second step, the viscosity analysis 21 and the inviscidity analysis 22 are performed only for the required distance between the stationary blades, but in this embodiment, for any distance between the stationary blades (one point) Just do it.

第一工程10においてモデル化した静翼と動翼を対象に、CFD(Computational Fluid Dynamics)の非定常計算によって任意の静動翼間距離における粘性解析21と非粘性解析22を実施する。各解析で得た力をフーリエ変換すると、各励振次数における励振力の振幅と位相が得られる。粘性解析21でNPF励振力F(t)(=Asin(ωt+α))を得る点、非粘性解析22でポテンシャル干渉による励振力F(t)(=Asin(ωt+α))を得る点は、粘性解析21によって得た力から非粘性解析22によって得た力を引くことでウェイク干渉による励振力F(t)(=Asin(ωt+α))を得る点は、図7の手法と同じであり、説明を省略する。従って、これらにより、任意の静動翼間距離における(粘性解析21と非粘性解析22を実施した点における)各干渉の励振力の振幅と位相が得られる。 For the stationary blades and moving blades modeled in the first step 10, the viscosity analysis 21 and the non-viscous analysis 22 at an arbitrary distance between the stationary blades are performed by unsteady calculation of CFD (Computational Fluid Dynamics). When the force obtained in each analysis is Fourier transformed, the amplitude and phase of the excitation force in each excitation order can be obtained. The point of obtaining NPF excitation force F N (t) (= A N sin (ωt + α N )) in the viscosity analysis 21, and the excitation force F p (t) (= A p sin (ωt + α p ) due to potential interference in the inviscid analysis 22 ) Is obtained by subtracting the force obtained by the inviscid analysis 22 from the force obtained by the viscosity analysis 21 to obtain the excitation force F w (t) (= A w sin (ωt + α w )) by the wake interference. The method is the same as that shown in FIG. Therefore, these provide the amplitude and phase of the excitation force of each interference (at the point where the viscosity analysis 21 and the inviscid analysis 22 are performed) at any distance between the stationary blades.

上述したように、位相は静動翼間距離dに対して線形近似できることが分かっている(図8(b)や非特許文献3参照)。また、位相の近似式の傾きkは幾何学的に得られることも分かっている(非特許文献3参照)。例えば静動翼間距離dをノズルコード長Cnで無次元化したd/Cnで位相を線形近似する場合、上述の式(4)(5)式における位相の傾きkは次式で得られる。 As described above, it has been found that the phase can be linearly approximated with respect to the distance d between the stationary blades (see FIG. 8B and Non-Patent Document 3). It is also known that the slope k of the approximate phase equation can be obtained geometrically (see Non-Patent Document 3). For example, when the phase is linearly approximated by d / C n where the distance d between the stationary blades is made dimensionless by the nozzle code length C n , the phase gradient k in the above equations (4) and (5) is obtained by the following equation. It is done.

kp=(tanγn+tanβb)*360*Cn/tb*(Nn/Nb) (6)
kw=-(tanγn-tanβb)*360*Cn/tb*(Nn/Nb) (7)
ここで、βは入口角、γは出口角、Cはコード長、tはピッチ、Nは翼本数、添字のbは動翼、nはノズル(静翼)に関する値である(図3参照)。このように、位相の近似式の傾きは幾何学的に得ることができる。尚、幾何学的条件は、上述の第一工程10で定まる。
k p = (tan γ n + tan β b ) * 360 * C n / t b * (N n / N b ) (6)
k w =-(tan γ n -tan β b ) * 360 * C n / t b * (N n / N b ) (7)
Where β is the inlet angle, γ is the outlet angle, C is the cord length, t is the pitch, N is the number of blades, the subscript b is the moving blade, and n is the value relating to the nozzle (static blade) (see FIG. 3). . In this way, the slope of the approximate expression for the phase can be obtained geometrically. The geometric condition is determined in the first step 10 described above.

一方、切片に関しては幾何学的に得るのは困難であることが分かっており、定量的に切片を得たい場合、CFDが最も有効な手段である。   On the other hand, it has been found that it is difficult to obtain an intercept geometrically, and CFD is the most effective means for obtaining an intercept quantitatively.

粘性解析21と非粘性解析22で得たポテンシャル干渉による励振力とウェイク干渉による励振力の位相αを用いると、次式で切片lが求まる。   Using the phase α of the excitation force due to potential interference and the excitation force due to wake interference obtained in the viscosity analysis 21 and the inviscid analysis 22, the intercept l can be obtained by the following equation.

l=α-k*(d/Cn) (8)
位相の近似式の傾きk、切片lが求まると、任意の静動翼間距離における各干渉の位相αpwの数式化23aが実行される(上述の式(4)(5)が得られる。)。
l = α-k * (d / C n ) (8)
When the slope k and the intercept l of the approximate expression of the phase are obtained, formula 23a of the phases α p and α w of each interference at an arbitrary distance between the stationary blades is executed (the above expressions (4) and (5) are performed). can get.).

次に、ポテンシャル干渉による励振力とウェイク干渉による励振力の位相式(式(4)(5))を用いて、任意の静動翼間距離に関する位相差の算出24aを実行する。位相差が360degの整数倍、つまり同位相となるとき、2つの干渉の和であるNPF励振力はほぼ極大となる。なお、NPF励振力の位相は、上述の式(3)のとおりポテンシャル干渉とウェイク干渉の振幅、位相で決まるため、2つの干渉の位相差のみではNPF励振力が極大値となる静動翼間距離を正確には予測できないことを注記する。   Next, a phase difference calculation 24a relating to an arbitrary distance between the stationary blades is executed using a phase expression (expressions (4) and (5)) of the excitation force due to potential interference and the excitation force due to wake interference. When the phase difference is an integral multiple of 360 deg, that is, the same phase, the NPF excitation force, which is the sum of the two interferences, is almost maximized. Note that the phase of the NPF excitation force is determined by the amplitude and phase of potential interference and wake interference as shown in the above equation (3). Therefore, between the stationary blades where the NPF excitation force reaches the maximum value only with the phase difference between the two interferences. Note that the distance cannot be accurately predicted.

ただし、図4のとおり、ポテンシャル干渉による励振力とウェイク干渉による励振力の位相差が極値となるときの静動翼間距離は、NPF励振力が極値となる静動翼間距離に概ね近いことも分かっている。   However, as shown in FIG. 4, the distance between the stationary blades when the phase difference between the excitation force due to potential interference and the excitation force due to wake interference becomes an extreme value is roughly the distance between the stationary blades where the NPF excitation force becomes an extreme value. I know it ’s close.

同様に、ポテンシャル干渉による励振力とウェイク干渉による励振力の位相差が360degの整数倍に180degを加えた値、つまり逆位相となるとき、NPF励振力は極小値に近くなる。   Similarly, when the phase difference between the excitation force due to potential interference and the excitation force due to wake interference is a value obtained by adding 180 degrees to an integral multiple of 360 degrees, that is, an opposite phase, the NPF excitation force is close to a minimum value.

以上の第二工程20を、翼高さを変えて実施する。   The second step 20 described above is performed while changing the blade height.

第三工程30において静動翼間距離を決定する。NPF励振力が過大にならないように、ポテンシャル干渉による励振力とウェイク干渉による励振力の位相差が同位相にならない、もしくは同位相からある程度離れた位相となるように静動翼間距離を採用する。   In the third step 30, the distance between the stationary blades is determined. In order to prevent the NPF excitation force from becoming excessive, the inter-stator blade distance is adopted so that the phase difference between the excitation force due to potential interference and the excitation force due to wake interference does not become the same phase, or a phase somewhat away from the same phase. .

上述の第二工程20と第三工程30は、静動翼間距離を決定する必要がある各段落に対して実施する。   The second step 20 and the third step 30 described above are performed for each paragraph in which the distance between the stationary blades needs to be determined.

本発明の実施例の手法によれば、粘性解析と非粘性解析は各1回実施すればよく、ポテンシャル干渉による励振力とウェイク干渉による励振力の位相差から、NPF励振力が過大となりにくい静動翼間距離を採用できる。尚、静動翼間距離の決定において、NPF励振力の極大値または極小値は得られないため、事前にポテンシャル干渉による励振力とウェイク干渉による励振力の振幅が推測できる場合に本手法を用いるのが望ましい。例えば翼形状や熱条件が類似の翼において、ポテンシャル干渉による励振力とウェイク干渉による励振力は同程度となることが予測できる場合などに有効である。また、本手法によって採用した静動翼間距離におけるNPF励振力をCFDによって直接求め、それが所定の閾値以下となるかどうかを確認しながら行うようにしても良い。   According to the method of the embodiment of the present invention, the viscosity analysis and the inviscidity analysis need only be performed once, and the NPF excitation force is less likely to be excessive due to the phase difference between the excitation force due to potential interference and the excitation force due to wake interference. The distance between rotor blades can be adopted. Note that the maximum or minimum value of the NPF excitation force cannot be obtained when determining the distance between the stationary blades. Use this method when the amplitude of the excitation force due to potential interference and the excitation force due to wake interference can be estimated in advance. Is desirable. For example, it is effective when it can be predicted that the excitation force due to potential interference and the excitation force due to wake interference will be approximately the same in a blade having similar blade shape and thermal conditions. Further, the NPF excitation force at the distance between the stationary blades adopted by this method may be directly obtained by CFD, and it may be performed while confirming whether or not it is below a predetermined threshold.

なお、上述の実施例における静動翼間距離のサーベイ数は必要最小限のものであり、予測精度向上のために、より多くの静動翼間距離で検討してもよい。   It should be noted that the number of surveys of the distance between the stationary blades in the above-described embodiment is the minimum necessary and may be considered with a larger distance between the stationary blades in order to improve the prediction accuracy.

次に、図5及び図6を用いて本発明の実施例における第三工程の一例を説明する。   Next, an example of the third step in the embodiment of the present invention will be described with reference to FIGS.

図5において、横軸は静動翼間距離をノズルコード長で除して無次元化している。縦軸は閾値Vで無次元化している。閾値Vは動翼破損限界値(許容値)に相当する。任意の翼断面において、ポテンシャル干渉による励振力とウェイク干渉による励振力の位相差の採用範囲を、例えば、逆位相に対して70degのマージンとして設定すると、採用できる静動翼間距離の範囲は図5のとおりとなる。このマージンの範囲は評価対象段落、翼高さによって自由に変更できる。なお、図5において実線は、本発明の実施例を確認するために、図7の手法で定量的に求めたNPF励振力を示すものである。   In FIG. 5, the horizontal axis is dimensionless by dividing the distance between the stationary blades by the nozzle cord length. The vertical axis is dimensionless with a threshold value V. The threshold value V corresponds to the blade breaking limit value (allowable value). If the adoption range of the phase difference between the excitation force due to potential interference and the excitation force due to wake interference is set as a margin of 70 deg with respect to the opposite phase in any blade cross section, the range of the distance between the stationary blades that can be adopted is shown in the figure. As shown in 5. The margin range can be freely changed according to the evaluation target paragraph and the wing height. In FIG. 5, the solid line indicates the NPF excitation force obtained quantitatively by the method of FIG. 7 in order to confirm the embodiment of the present invention.

図6は第三工程の他の一例である。横軸は動翼転向角であり、動翼入口角と動翼出口角を足した値である。一般的に翼根元部は動翼転向角が大きく、翼先端部は動翼転向角が小さい。縦軸は静動翼間距離をノズルコード長で除して無次元化している。任意の段落について、ポテンシャル干渉による励振力とウェイク干渉による励振力の位相差を、周方向力FT、軸方向力FAに対して翼長方向に求め、位相差の採用範囲を、例えば、逆位相に対して90degのマージンとして一律に設定すると、採用できる静動翼間距離の範囲は図6の斜線部の領域となる。なお、このマージンの範囲は評価対象段落、翼高さによって自由に変更できる。なお、周方向力と軸方向力と分けて図示しているが、解析によって得られた翼面上の圧力(励振力)は、翼面法線方向にかかる力として周方向力(=FT)と軸方向力(=FA)に分解でき、これらを積分すると翼に作用する合力としての周方向力と軸方向力が求まる。   FIG. 6 shows another example of the third step. The horizontal axis is the blade turning angle, which is the value obtained by adding the blade inlet angle and the blade exit angle. In general, the blade root has a large blade turning angle, and the blade tip has a small blade turning angle. The vertical axis is dimensionless by dividing the distance between the stationary blades by the nozzle code length. For any given paragraph, the phase difference between the excitation force due to potential interference and the excitation force due to wake interference is obtained in the blade length direction with respect to the circumferential force FT and axial force FA, and the adoption range of the phase difference is, for example, antiphase On the other hand, if the 90 deg margin is set uniformly, the range of the distance between the stationary blades that can be adopted is the shaded area in FIG. The margin range can be freely changed according to the evaluation target paragraph and wing height. Although the circumferential force and the axial force are illustrated separately, the pressure (excitation force) on the blade surface obtained by analysis is the circumferential force (= FT) as the force applied in the blade surface normal direction. And axial force (= FA) can be decomposed, and when these are integrated, a circumferential force and an axial force are obtained as a resultant force acting on the blade.

次に本発明の他の実施例を説明する。   Next, another embodiment of the present invention will be described.

図9は本発明の他の実施例を示すフロー図である。図9に示す手法は、図1と図7に示す手法の欠点を補うものである。即ち、本実施例では、図7の手法よりも計算数が少なくてすみ、また、図1の手法と異なりNPF励振力を定量的に予測できる利点がある。ただし、図7の手法に比べればNPF励振力の予測精度が悪い。   FIG. 9 is a flowchart showing another embodiment of the present invention. The method shown in FIG. 9 compensates for the drawbacks of the methods shown in FIGS. That is, in this embodiment, the number of calculations is smaller than that of the method of FIG. 7, and there is an advantage that the NPF excitation force can be predicted quantitatively unlike the method of FIG. However, the prediction accuracy of the NPF excitation force is worse than the method of FIG.

本実施例において、第一工程10は、図1、図7と同様であり、説明を省略する。   In the present embodiment, the first step 10 is the same as that shown in FIGS.

第二工程20において、任意の静動翼間距離1点において、粘性解析21と非粘性解析22を実施する。これにより、図1と同様に、ポテンシャル干渉による励振力とウェイク干渉による励振力の位相の数式化23a、位相差の算出24aが実施される。次に、位相差から、検討したい静動翼間距離の範囲において、NPF励振力が極値付近となる静動翼間距離の算出25をする。静動翼間距離の算出25で得た静動翼間距離n個に評価したい静動翼間距離の最小値、最大値を加えた計n+2個だけ粘性解析(NPF励振力を得る解析)を実施し、各点を結ぶと、図10の点線のようになる。実線は、図7の手法で定量的に求めたNPF励振力を示すものである。図10から分かるように、NPF励振力を概ね定量的に予測できる。   In the second step 20, a viscosity analysis 21 and an inviscid analysis 22 are performed at an arbitrary distance between the stationary blades. As a result, similarly to FIG. 1, the phase conversion 23a and the phase difference calculation 24a of the excitation force due to potential interference and the excitation force due to wake interference are performed. Next, based on the phase difference, the distance 25 between the stationary blades is calculated so that the NPF excitation force is near the extreme value in the range of the distance between the stationary blades to be examined. Calculation of distance between stationary blades Calculate the viscosity of n + 2 in total by adding the minimum and maximum distances between the stationary blades to be evaluated to the n distance between the stationary blades obtained in 25 (analysis to obtain NPF excitation force) ) And connecting the points, the result is the dotted line in FIG. The solid line indicates the NPF excitation force obtained quantitatively by the method of FIG. As can be seen from FIG. 10, the NPF excitation force can be predicted almost quantitatively.

第三工程30において、図10を用いてNPF励振力が閾値以下となる静動翼間距離を決定する。   In the third step 30, the distance between the stationary blades and the blade at which the NPF excitation force is equal to or less than the threshold value is determined using FIG.

上述の第二工程20と第三工程30は、静動翼間距離を決定する必要がある各段落に対して実施する。   The second step 20 and the third step 30 described above are performed for each paragraph in which the distance between the stationary blades needs to be determined.

本実施例によれば、図7の手法よりも計算数が少なくすることができ、図1の手法と異なりNPF励振力をある程度定量的に予測できる。   According to the present embodiment, the number of calculations can be reduced as compared with the method of FIG. 7, and unlike the method of FIG. 1, the NPF excitation force can be predicted quantitatively to some extent.

なお、図1の実施例と同様に、図9の実施例における静動翼間距離のサーベイ数は必要最小限のものであり、予測精度向上のために、より多くの静動翼間距離で検討してもよい。   As in the embodiment of FIG. 1, the number of surveys of the distance between the stationary blades in the embodiment of FIG. 9 is the minimum necessary, and in order to improve the prediction accuracy, the distance between the stationary blades is larger. You may consider it.

図11は本発明が適用されるタービン静翼の一例である翼断面を示す。通常、静翼Nの後縁端部aは丸い円弧形状である。ウェイク干渉の効果を無視できないタービン段落を設計対象とするとき、静翼の後縁端部が丸いと、図1、図7、図9の非粘性解析22においてウェイクが生成されるため、ポテンシャル干渉による励振力をCFDによって得ることができない場合がある。そのため、本実施例では、ポテンシャル干渉による励振力をCFD(非粘性解析22)によって得られるように、CFD非定常計算に用いられるタービン静翼を工夫している。   FIG. 11 shows a blade cross section as an example of a turbine stationary blade to which the present invention is applied. Usually, the trailing edge end a of the stationary blade N has a circular arc shape. When the turbine stage in which the effect of the wake interference cannot be ignored is designed, if the trailing edge of the stationary blade is round, the wake is generated in the inviscid analysis 22 in FIGS. The excitation force due to may not be obtained by CFD. Therefore, in this embodiment, the turbine vane used for CFD unsteady calculation is devised so that the excitation force due to potential interference can be obtained by CFD (non-viscous analysis 22).

図12は、本実施例においてCFD非定常計算に用いられるタービン静翼の翼断面を示す。本実施例では、図11に示す静翼の後縁端形状(厚み等)を変更せずに翼腹側面及び翼背側面を延長して後縁端部aが鋭く尖った形状となるようにしている。静翼Nの後縁端部aが鋭く尖っているとき、ウェイク干渉の効果を無視できないタービン段落が設計対象となる場合でも、図1、図7、図9の非粘性解析22においてウェイクの生成が抑制されるため、ポテンシャル干渉による励振力をCFDによって得ることができる。尚、この場合、図1、図7、図9の粘性解析21も同様の翼モデルで計算を行い、粘性解析21の結果から非粘性解析22の結果を差し引くことでウェイク干渉の励振力を求める。   FIG. 12 shows a blade cross section of a turbine stationary blade used for CFD unsteady calculation in this embodiment. In this embodiment, without changing the trailing edge end shape (thickness, etc.) of the stationary blade shown in FIG. 11, the blade belly side surface and the blade back side surface are extended so that the trailing edge end portion a has a sharp pointed shape. ing. When the trailing edge a of the stationary blade N is sharply sharp, even if a turbine stage in which the effect of wake interference cannot be ignored is designed, the wake generation is performed in the inviscid analysis 22 of FIGS. Therefore, the excitation force due to potential interference can be obtained by CFD. In this case, the viscosity analysis 21 in FIGS. 1, 7, and 9 is also calculated with the same blade model, and the excitation force of the wake interference is obtained by subtracting the result of the inviscid analysis 22 from the result of the viscosity analysis 21. .

図13はCFD非定常計算に用いられるタービン静翼の他の例の翼断面を示す。本実施例では、静翼Nのノズルコード長は変えずに、後縁端厚みを図11に比べて小さくしている。ウェイク干渉の効果を無視できないタービン段落が設計対象となる場合でも、静翼Nの後縁端厚みを薄くすることで、図12の実施例と同様に、図1、図7、図9の非粘性解析22においてウェイクが生成されないため、ポテンシャル干渉による励振力をCFDによって得ることができる。計算対象の静翼の後縁端部の厚みを、元の静翼に比べて25%以下に小さくするとウェイクの生成を抑制できる。後縁端部の厚みを小さくするためには、例えば静翼の腹側において、中央部から後縁端部にかけての翼厚みを小さくし、当該部分の流れが基のノズルと同様のものとなるようにするなどの工夫を行っている。   FIG. 13 shows a blade cross section of another example of a turbine stationary blade used for CFD unsteady calculation. In this embodiment, the nozzle cord length of the stationary blade N is not changed, and the trailing edge thickness is smaller than that in FIG. Even when a turbine stage in which the effect of wake interference cannot be ignored is a design target, by reducing the thickness of the trailing edge of the stationary blade N, as in the embodiment of FIG. Since no wake is generated in the viscosity analysis 22, the excitation force due to potential interference can be obtained by CFD. Wake generation can be suppressed by reducing the thickness of the trailing edge of the stationary blade to be calculated to 25% or less compared to the original stationary blade. In order to reduce the thickness of the trailing edge, for example, on the ventral side of the stationary blade, the thickness of the blade from the central portion to the trailing edge is reduced, and the flow of the portion is the same as that of the base nozzle. I am trying to make it.

上述の実施例では、ポテンシャル干渉による励振力の位相とウェイク干渉による励振力の位相を静動翼間距離の関数として数式化し、数式化したポテンシャル干渉及びウェイク干渉による励振力の位相差が同位相とならない、もしくは同位相からある程度離れた位相となるように、静動翼間距離を決定しているが、他の因子の関数で数式化して、その因子における最適化を行うことも可能である。例えば、動翼・静翼の本数比や、動翼・静翼のコード長比を因子として、上述の実施例を適用することにより、動翼・静翼の本数比や、動翼・静翼のコード長比の最適化を行うことができる。   In the above embodiment, the phase of the excitation force due to potential interference and the phase of the excitation force due to wake interference are expressed as a function of the distance between the stationary blades, and the phase difference between the excitation force due to potential interference and wake interference is the same phase. The distance between the stationary blades is determined so that it does not become a phase or a phase away from the same phase to some extent, but it is also possible to formulate it with a function of other factors and optimize for that factor . For example, by applying the above-described embodiments with the ratio of the number of moving blades / stator blades and the code length ratio of the moving blades / stator blades as factors, the ratio of the number of moving blades / stator blades, The code length ratio can be optimized.

また、上述の実施例では、動翼に作用する非定常力、NPF励振力を対象とした設計方法を説明したが、下流側のタービン段落の静翼に作用する非定常力、BPF(Bucket Passing Frequency)励振力についても同様の方法で予測でき、上流側のタービン段落の動翼後縁端部と下流側のタービン段落の静翼前縁端部の軸方向距離、動静翼間距離の設計に適用することも可能である。   In the above-described embodiment, the design method for the unsteady force acting on the moving blade and the NPF excitation force has been described. However, the unsteady force acting on the stationary blade of the downstream turbine stage, BPF (Bucket Passing Frequency) Excitation force can also be predicted in the same way, and it can be used to design the axial distance between the trailing edge of the moving blade in the upstream turbine stage and the leading edge of the stationary blade in the downstream turbine stage, and the distance between the moving blade and stationary blade. It is also possible to apply.

また、本発明を適用する解析モデルは、静翼と動翼が一対のもの(1段落)を考えているが、静翼-動翼-静翼といった1.5段や、複数段でも同様に検討可能である。   In addition, the analysis model to which the present invention is applied assumes a pair of stationary blades and moving blades (one paragraph), but it can be similarly examined in 1.5 stages such as stationary blades-moving blades-stator blades or multiple stages. It is.

以上の本発明に基づき、タービン段落における静動翼間距離や動静翼間距離などを設計することにより、不必要に翼性能を低下させたり、ロータ軸長を増加させることなく、動翼に作用するNPF励振力や静翼に作用するBPF励振力を素早く効果的に定められた閾値以下とすることができる。そして、本発明の設計方法により設計したタービン段落に基づきタービンを製造することにより、NPF励振力又はBPF励振力が過大とならず、また、翼性能を向上し、ロータ軸長を短くしたタービンを実現することができる。   Based on the above-mentioned present invention, by designing the distance between the stationary blades and the stationary blades in the turbine stage, it acts on the blades without unnecessarily degrading the blade performance or increasing the rotor shaft length. The NPF excitation force to be applied and the BPF excitation force acting on the stationary blade can be quickly and effectively set to a threshold value or less. Then, by manufacturing the turbine based on the turbine stage designed by the design method of the present invention, the NPF excitation force or BPF excitation force is not excessive, and the blade performance is improved and the rotor shaft length is shortened. Can be realized.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加,削除,置換をすることが可能である。   In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Moreover, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

X…軸方向、Z…半径方向、2…車室内壁、3…ロータ、N…静翼、Bn…静翼翼部、a…静翼後縁端、B…動翼、Bb…動翼翼部、b…動翼前縁端、d…静動翼間距離、p…翼中央部、r…翼根元部、t…翼先端部、A…ポテンシャル干渉による励振力の振幅、A…ウェイク干渉による励振力の振幅、α…ポテンシャル干渉による励振力の位相、α…ウェイク干渉による励振力の位相、FT…周方向力、FA…軸方向力、V…閾値、β…翼入口角、γ…翼出口角、C…コード長、t…ピッチ。 X: axial direction, Z: radial direction, 2 ... vehicle interior wall, 3 ... rotor, N ... stationary blade, Bn ... stationary blade wing, a ... stationary blade trailing edge, B ... moving blade, Bb ... moving blade wing, b ... rotor blade leading edge end, d ... static-dynamic wings distance, p ... wing central, r ... the blade root, t ... wing tip, of the excitation force by a p ... potential interference amplitude, a w ... wake interference Amplitude of excitation force due to α, α p ... phase of excitation force due to potential interference, α w ... phase of excitation force due to wake interference, FT ... circumferential force, FA ... axial force, V ... threshold, β ... blade inlet angle, γ ... blade exit angle, C ... code length, t ... pitch.

Claims (6)

静翼と動翼から構成されるタービン段落における前記静翼の後縁端部と前記動翼の前縁端部の軸方向距離である静動翼間距離を決定するタービンの設計方法であって、
翼基本形状が決定された静翼と動翼のモデルを用いて、粘性解析によって任意の前記静動翼間距離における前記動翼に作用する非定常力を求め、
前記モデルを用いて非粘性解析によって前記任意の静動翼間距離における前記動翼に作用するポテンシャル干渉による励振力を求め、
前記粘性解析の結果と前記非粘性解析の結果の差から前記任意の静動翼間距離における前記動翼に作用するウェイク干渉による励振力を求め、
前記求められたポテンシャル干渉による励振力及びウェイク干渉による励振力の位相差が同位相に近い値とならないように静動翼間距離を決定することを特徴とするタービンの設計手法。
A turbine design method for determining a distance between a stationary blade and a stationary blade, which is an axial distance between a trailing edge of the stationary blade and a leading edge of the blade in a turbine stage composed of a stationary blade and a moving blade, ,
Using the stationary blade and moving blade model for which the blade basic shape has been determined, the unsteady force acting on the moving blade at any distance between the stationary blades is determined by viscosity analysis,
Using the model to determine the excitation force due to potential interference acting on the rotor blades at the arbitrary inter-stator blade distance by inviscid analysis,
From the difference between the result of the viscosity analysis and the result of the non-viscous analysis, the excitation force due to the wake interference acting on the moving blade at the distance between the arbitrary stationary blades is obtained,
A turbine design method, wherein a distance between stationary blades is determined so that a phase difference between the obtained excitation force due to potential interference and the excitation force due to wake interference does not become a value close to the same phase.
請求項1において、前記モデルにおける前記静翼として後縁端が鋭く尖った静翼を用いて前記粘性解析及び前記非粘性解析を行うことを特徴とするタービンの設計手法。   The turbine design method according to claim 1, wherein the viscosity analysis and the inviscid analysis are performed using a stationary blade having a sharp trailing edge as the stationary blade in the model. 請求項1において、前記モデルにおける前記静翼として後縁端出口厚みを前記翼基本形状が決定された静翼に比べて25%以下になるように後縁部分を薄くした静翼を用いて前記粘性解析及び前記非粘性解析を行うことを特徴とするタービンの設計手法。   2. The stator blade according to claim 1, wherein the stator blade in the model is a stator blade having a trailing edge portion thinned so that a trailing edge end outlet thickness is 25% or less as compared with the stator blade having the determined blade basic shape. A turbine design method characterized by performing a viscosity analysis and the inviscid analysis. 静翼と動翼から構成されるタービン段落を複数有し、上流側のタービン段落の動翼の後縁単部と下流側のタービン段落の静翼の前縁端部との軸方向距離である動静翼間距離を決定するタービンの設計方法であって、
翼基本形状が決定された動翼と静翼のモデルを用いて、粘性解析によって任意の前記動静翼間距離における前記静翼に作用する非定常力を求め、
前記モデルを用いて非粘性解析によって前記任意の動静翼間距離における前記静翼に作用するポテンシャル干渉による励振力を求め、
前記粘性解析の結果と前記非粘性解析の結果の差から前記任意の動静翼間距離における前記静翼に作用するウェイク干渉による励振力を求め、
前記求められたポテンシャル干渉による励振力及びウェイク干渉による励振力の位相差が同位相に近い値とならないように動静翼間距離を決定することを特徴とするタービンの設計手法。
This is the axial distance between the single trailing edge of the moving blade of the upstream turbine stage and the leading edge of the stationary blade of the downstream turbine stage. A turbine design method for determining a distance between a moving blade and a stationary blade,
Using the moving blade and stationary blade model for which the blade basic shape has been determined, the unsteady force acting on the stationary blade at any distance between the moving and stationary blades is determined by viscosity analysis,
Using the model to determine the excitation force due to potential interference acting on the stationary blade at the arbitrary inter-blade blade distance by inviscid analysis,
From the difference between the result of the viscosity analysis and the result of the non-viscous analysis, the excitation force due to the wake interference acting on the stationary blade at the distance between the arbitrary moving and stationary blades is obtained,
A turbine design method characterized by determining a distance between a moving blade and a stationary blade so that a phase difference between the obtained excitation force due to potential interference and the excitation force due to wake interference does not become a value close to the same phase.
請求項1〜4の何れか1項に記載の設計方法を用いて製造することを特徴とするタービンの製造方法。   A method for manufacturing a turbine, wherein the turbine is manufactured using the design method according to claim 1. 静翼と動翼から構成されるタービン段落における前記動翼又は静翼に作用する非定常力の判定方法であって、
翼基本形状が決定された静翼と動翼のモデルを用いて、粘性解析によって因子の任意の値1点における前記動翼又は静翼に作用する非定常力を求め、
前記モデルを用いて非粘性解析によって前記任意1点の値における前記動翼又は静翼に作用するポテンシャル干渉による励振力を求め、
前記粘性解析から得た非定常力と前記非粘性解析から得たポテンシャル干渉による励振力の差から前記任意の値1点における前記動翼又は静翼に作用するウェイク干渉による励振力を求め、
求められた前記任意の値1点における前記ポテンシャル干渉による励振力及び前記ウェイク干渉による励振力に基づき前記ポテンシャル干渉による励振力と前記ウェイク干渉による励振力のそれぞれの位相を前記因子の関数として数式化し、
前記求められたポテンシャル干渉による励振力の位相の数式及びウェイク干渉による励振力の位相の数式に基づき、前記因子の特定値(非定常力の判定対象)における、ポテンシャル干渉による励振力とウェイク干渉による励振力の位相差を求めて、前記位相差が同位相となるときには前記動翼または静翼に作用する非定常力がほぼ極大となると判定し、前記位相差が逆位相となるときには前記動翼または静翼に作用する非定常力がほぼ極小となると判定することを特徴とする動翼又は静翼に作用する非定常力の判定方法。
A method for determining unsteady force acting on a moving blade or a stationary blade in a turbine stage composed of a stationary blade and a moving blade,
Using the stationary blade and moving blade model for which the blade basic shape has been determined, the unsteady force acting on the moving blade or the stationary blade at any one point of the factor is obtained by viscosity analysis,
Using the model, the excitation force due to potential interference acting on the moving blade or stationary blade at the value of the arbitrary one point is obtained by inviscid analysis,
From the difference between the unsteady force obtained from the viscosity analysis and the excitation force due to potential interference obtained from the non-viscous analysis, the excitation force due to wake interference acting on the moving blade or stationary blade at the arbitrary value 1 point is obtained,
Based on the excitation force due to the potential interference and the excitation force due to the wake interference at the obtained arbitrary value at one point, the phase of each of the excitation force due to the potential interference and the excitation force due to the wake interference is expressed as a function of the factor. ,
Based on the equation of the phase of the excitation force due to the potential interference and the equation of the phase of the excitation force due to the wake interference, based on the excitation force due to the potential interference and the wake interference in the specific value of the factor (unsteady force determination target) The phase difference of the excitation force is obtained, and when the phase difference becomes the same phase, it is determined that the unsteady force acting on the moving blade or the stationary blade is almost maximized, and when the phase difference becomes the opposite phase, the moving blade Alternatively, a method for determining an unsteady force acting on a moving blade or a stationary blade, wherein the unsteady force acting on the stationary blade is determined to be substantially minimal .
JP2012178698A 2012-08-10 2012-08-10 Turbine design method, turbine manufacturing method, and method for determining unsteady force acting on moving blades, etc. Expired - Fee Related JP5903012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012178698A JP5903012B2 (en) 2012-08-10 2012-08-10 Turbine design method, turbine manufacturing method, and method for determining unsteady force acting on moving blades, etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012178698A JP5903012B2 (en) 2012-08-10 2012-08-10 Turbine design method, turbine manufacturing method, and method for determining unsteady force acting on moving blades, etc.

Publications (2)

Publication Number Publication Date
JP2014037775A JP2014037775A (en) 2014-02-27
JP5903012B2 true JP5903012B2 (en) 2016-04-13

Family

ID=50286091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012178698A Expired - Fee Related JP5903012B2 (en) 2012-08-10 2012-08-10 Turbine design method, turbine manufacturing method, and method for determining unsteady force acting on moving blades, etc.

Country Status (1)

Country Link
JP (1) JP5903012B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115680902B (en) * 2022-10-13 2024-05-03 中国航发四川燃气涡轮研究院 Method for adjusting axial force of aero-engine rotor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0861001A (en) * 1994-08-23 1996-03-05 Hitachi Ltd Turbine step structure
JP2006046226A (en) * 2004-08-05 2006-02-16 Mitsubishi Heavy Ind Ltd Excitation reducing structure for rotor and stator blade
WO2008128877A1 (en) * 2007-04-24 2008-10-30 Alstom Technology Ltd Turbomachine
JP2012047100A (en) * 2010-08-26 2012-03-08 Ihi Corp Turbo machine
JP5494972B2 (en) * 2010-12-07 2014-05-21 株式会社日立製作所 Axial-flow turbomachine and its modification method

Also Published As

Publication number Publication date
JP2014037775A (en) 2014-02-27

Similar Documents

Publication Publication Date Title
JP5462225B2 (en) Turbine design method and turbine manufacturing method
Rose et al. Improving the efficiency of the Trent 500 HP turbine using non-axisymmetric end walls: Part II—Experimental validation
CA2731092C (en) Axial turbomachine with low tip clearance losses
Yoon et al. The effect of clearance on shrouded and unshrouded turbines at two levels of reaction
JP5630576B2 (en) gas turbine
JP2022505328A (en) Profile structure for aircraft or turbomachinery
JP2014015858A (en) Axial flow turbine rotor blade
Yoon et al. Effect of the stator hub configuration and stage design parameters on aerodynamic loss in axial compressors
US20170218773A1 (en) Blade cascade and turbomachine
Jenny et al. A low pressure turbine with profiled endwalls and purge flow operating with a pressure side bubble
Praisner et al. Predictions of unsteady interactions between closely coupled HP and LP turbines with co-and counter-rotation
Schnoes et al. Automated calibration of compressor loss and deviation correlations
Salles et al. Comparison of two numerical algorithms for computing the effects of mistuning of fan flutter
Liu et al. A theory on the onset of acoustic resonance in a multistage compressor
Saren et al. Experimental and numerical investigation of airfoil clocking and inner-blade-row gap effects on axial compressor performance
JP5903012B2 (en) Turbine design method, turbine manufacturing method, and method for determining unsteady force acting on moving blades, etc.
Qin et al. Active flow control on a highly loaded compressor stator cascade with synthetic jets
Li et al. Hydraulic optimization and loss analyses of a low specific-speed centrifugal pump with variable-thickness blades
JP2010025000A (en) Centrifugal fluid machine
US20140241899A1 (en) Blade leading edge tip rib
Witteck et al. Comparison of transient blade row methods for the CFD analysis of a high-pressure turbine
Müller et al. Influence of detailing on aerodynamic forcing of a transonic axial turbine stage and forced-response prediction for low-engine-order (LEO) excitation
Rebholz et al. Turbine aerodynamic low-frequency oscillation and noise reduction using partial shrouds
RU2689489C1 (en) Method of creating frequency inconsistency between blades of the vane wheel of a gas turbine engine and corresponding vane wheel
Rebholz et al. Tip-shroud cutbacks in a low-pressure gas turbine stage

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140827

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160311

R150 Certificate of patent or registration of utility model

Ref document number: 5903012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees