JPH0861001A - Turbine step structure - Google Patents

Turbine step structure

Info

Publication number
JPH0861001A
JPH0861001A JP19816494A JP19816494A JPH0861001A JP H0861001 A JPH0861001 A JP H0861001A JP 19816494 A JP19816494 A JP 19816494A JP 19816494 A JP19816494 A JP 19816494A JP H0861001 A JPH0861001 A JP H0861001A
Authority
JP
Japan
Prior art keywords
blade
blades
turbine
moving
circumferential direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19816494A
Other languages
Japanese (ja)
Inventor
Kiyoshi Namura
清 名村
Eiji Saito
英治 齊藤
Yoshiaki Yamazaki
義昭 山崎
Masakazu Takazumi
正和 高住
Kazuo Ikeuchi
和雄 池内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19816494A priority Critical patent/JPH0861001A/en
Publication of JPH0861001A publication Critical patent/JPH0861001A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE: To provide a turbine step structure having no resonance of a moving blade due to the slipstream of a stator blade by applying a fluid exciting force to the moving blade passing through the field of flow. CONSTITUTION: In a turbine step structure constructed by assembling the stator blades and the moving blades of an axial flow turbine, the moving blades a on a full periphery are continuously connected together, in a circumferential direction by a linking member, etc., and when a disposing pitch in the circumferential direction indicated by an angle from the rotor center of the moving blade is PB, a disposing pitch PN in the circumferential direction indicated by an angle from the rotor center of the stator blade on the upstream side of the moving blade is set larger than 4PB/3 and smaller than 2PB. Thus, the resonance of the moving blade due to the slipstream of the stator blade is prevented and safety and reliability can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、蒸気タービンやガスタ
ービンなどの軸流タービンの静翼と動翼とを組合せてな
るタービン段落構造に関し、特に動翼を連結部材で連結
する構造に対する全周の動翼と静翼との組合せ構造に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbine stage structure in which a stationary blade and a moving blade of an axial flow turbine such as a steam turbine or a gas turbine are combined, and more particularly, to the entire circumference of a structure in which the moving blade is connected by a connecting member. The present invention relates to a combined structure of a moving blade and a stationary blade.

【0002】[0002]

【従来の技術】こうしたタービン段落構造に関しては、
特来、特開昭58−85304 号公報や特開平4−284101 号公
報に記載されているように、動翼と静翼とのピッチをず
らす等して形成されていた。
2. Description of the Related Art Regarding such a turbine stage structure,
Particularly, as described in JP-A-58-85304 and JP-A-4-284101, the blades are formed by shifting the pitch between the moving blades and the stationary blades.

【0003】[0003]

【発明が解決しようとする課題】従来の技術では、必ず
しも動翼の共振を抑制することはできず、信頼性の高い
段落構造を達成することはできなかった。
In the prior art, it was not always possible to suppress the resonance of the moving blade, and it was not possible to achieve a highly reliable paragraph structure.

【0004】そこで、本発明の目的はタービン段落構造
に伴う前記の欠点をなくし、静翼の後流(ウェイク)に
よる動翼の共振がないか、または、例え共振しても安全
で信頼性の高い新規な段落構造を提供することにある。
Therefore, the object of the present invention is to eliminate the above-mentioned drawbacks associated with the turbine stage structure, and to prevent the rotor blade from resonating due to the wake of the stationary blade, or even if it resonates, it is safe and reliable. It is to provide a highly novel paragraph structure.

【0005】[0005]

【課題を解決するための手段】蒸気タービンやガスター
ビンなどの軸流タービンの動翼に作用する励振力は、作
動流体の不均一さによる流体励振力,回転体自身のアン
バランスによる機械的な励振力,電磁的な励振力等があ
る。このうち流体励振力は最も普遍的でかつ動翼が共振
した場合、翼が破損に至る危険性も高い点で最も重要な
ものである。流体励振力は、円周方向にわたって流れの
不均一さがあることによって、その流れ場を通過する動
翼に作用するものであるから、励振周波数は回転数の整
数倍となる(以下、回転数の整数倍を励振次数と呼びj
で表す)。
The exciting force acting on the rotor blades of an axial flow turbine such as a steam turbine or a gas turbine is a fluid exciting force due to the nonuniformity of the working fluid, or a mechanical force due to an imbalance of the rotating body itself. Exciting force, electromagnetic exciting force, etc. Of these, the fluid excitation force is the most general one, and is the most important because the blade is highly likely to be damaged when the blade resonates. Since the fluid excitation force acts on the rotor blades passing through the flow field due to the non-uniformity of the flow in the circumferential direction, the excitation frequency is an integral multiple of the rotation speed (hereinafter, rotation speed The integral multiple of is called the excitation order j
Represents).

【0006】さて、このような流体励振力の中でも静翼
の後流(ウェイク)による動翼の励振現象がある。その
励振周波数は、全周の静翼本数をMNとすると、回転数
のMN倍であり、MN はタービンの段落によっても異な
るが、通常は数10から多いものでは100を超える値
が採られる。流体励振力は励振次数が大きくなるに従っ
て大きさが急激に減少するが、静翼本数のような特定の
次数では大きな励振力が存在することになる。また、そ
の励振周波数f(Hz)は回転数のMN 倍、すなわち、
回転数をΩ(rps)とすると、f=MNΩということで比較
的高く、このような励振が問題となる動翼は、タービン
の数多くの動翼の中でも低次の主要モードの固有振動数
が励振周波数に近いような比較的短い動翼、すなわち、
高中圧タービン段落用の動翼である。
[0006] Among such fluid exciting forces, there is an exciting phenomenon of the moving blade due to the wake of the stationary blade. The excitation frequency is M N times the number of revolutions, where M N is the number of stationary blades on the entire circumference, and M N differs depending on the paragraph of the turbine. To be taken. The magnitude of the fluid excitation force sharply decreases as the excitation order increases, but a large excitation force exists at a specific order such as the number of vanes. The excitation frequency f (Hz) is M N times the rotation speed, that is,
When the rotation speed is Ω (rps), it is relatively high because f = MN Ω, and the rotor blades that cause such an excitation are the natural vibrations of the lower major modes among many rotor blades of the turbine. Relatively short blades whose number is close to the excitation frequency, i.e.
These are blades for high- and medium-pressure turbine stages.

【0007】このような動翼の振動設計においては、タ
ービン運転範囲内において、動翼の主要モードの固有振
動数が静翼の後流による励振周波数と一致しないよう
に、動翼の固有振動数を設計し調整するか、または、静
翼本数を変えて励振周波数と動翼の固有振動数とが一致
しないようにする。高中圧タービンの段落に用いられる
比較的短い動翼は、一般に鉄塊に近い複雑な形状のもの
が多く、その固有振動数の精度よい解析は難しく、固有
振動数が励振周波数と一致しないようにすることは必ず
しも容易ではなかったが、本発明により、こうした問題
点を解決するに至った。
In the vibration design of such a moving blade, the natural frequency of the moving blade is set so that the natural frequency of the main mode of the moving blade does not coincide with the excitation frequency due to the wake of the stationary blade within the turbine operating range. Is designed and adjusted, or the number of stationary blades is changed so that the excitation frequency and the natural frequency of the moving blade do not match. The relatively short blades used in the paragraph of high- and medium-pressure turbines are generally of complicated shape close to iron ingot, and it is difficult to analyze the natural frequency accurately, so that the natural frequency does not match the excitation frequency. Although it was not always easy to do so, the present invention has solved these problems.

【0008】本発明においては、一つのタービン段落の
全周の動翼を連結部材で切れ目なく連結して全周1リン
グ構造にするとともに、全周の動翼本数をMB とする
時、該段落の静翼本数MNを、MB/2より大きく、か
つ、3MB/4 より小さくなるように構成する。
In the present invention, when the moving blades of the entire circumference of one turbine stage are seamlessly connected by a connecting member to form a one-ring structure of the entire circumference, and when the number of moving blades of the entire circumference is M B , The number of stationary vanes M N in the paragraph is set to be larger than M B / 2 and smaller than 3 M B / 4.

【0009】又、本発明のタービン段落構造は、全周の
動翼を連結部材で円周方向に切れ目なく連結するととも
に、該動翼のロータ中心からの角度で表された円周方向
の配列ピッチをpB とする時、該動翼の上流側にある静
翼のロータ中心からの角度で表された円周方向の配列ピ
ッチpN を、4pB/3より大きく、2pBより小さくす
ることを特徴とする。
Further, according to the turbine stage structure of the present invention, the rotor blades on the entire circumference are continuously connected by the connecting member in the circumferential direction, and the rotor blades are arrayed in the circumferential direction represented by the angle from the rotor center. When the pitch is p B , the arrangement pitch p N in the circumferential direction, which is represented by the angle from the rotor center of the stationary blades on the upstream side of the rotor blade, is made larger than 4 p B / 3 and smaller than 2 p B. It is characterized by

【0010】負荷運転回転数範囲を静翼の後流による節
直径数MB/4からMB/2のモードの共振が起きる範囲
外、すなわち、負荷運転するロータ回転数をΩ(H
z)、節直径数K(MBが偶数の時K=MB/2,MB
奇数の時K=(MB−1)/2)に対する固有振動数を
m(Hz)とするとき、fm/K<Ωとなるようにする
ことが好ましい。
The load operating speed range is outside the range where the resonance of the mode of the node diameter numbers M B / 4 to M B / 2 due to the wake of the stationary blade occurs, that is, the rotor operating speed under load operation is Ω (H
z), the natural frequency for the nodal diameter number K (when M B is the K = M B / 2, M B when the even odd K = (M B -1) / 2) and f m (Hz) At this time, it is preferable that f m / K <Ω.

【0011】[0011]

【作用】従来、蒸気タービンやガスタービンなどの軸流
タービンの動翼の固有振動数の調整は、翼自身の大きさ
や形状を変えること以外では円周方向に配列された翼を
互いに連結部材によって連結する構造とすることによっ
て行われることが多い。翼の連結構造には種々の種類が
あるが、軸流タービンの翼を例にとって従来から用いら
れている連結構造を示すと図2のようなものがある。さ
らに、これら連結部材が円周方向にわたり切れ目が設け
られる場合と設けられない場合とで構造的には区別され
る。連結部材が円周方向にわたり切れ目が設けられる場
合は、連結部材で連結された翼構造を有限群翼構造ある
いは単に群翼構造と呼ぶ。一方連結部材が円周方向にわ
たり切れ目が設けられない場合は、全周の翼が連結部材
によりすべてつながった状態になり、このような翼構造
を全周1リング翼構造と呼ぶ。前述のように、タービン
の翼の振動設計を考えた時、固有振動数や振動モードは
以上述べた翼構造によっても変わる。
In the past, the natural frequency of the moving blades of axial turbines such as steam turbines and gas turbines was adjusted by connecting the blades arranged in the circumferential direction to each other except changing the size and shape of the blades themselves. This is often done by using a structure in which they are connected. There are various types of blade connecting structures, and a connecting structure that has been conventionally used is shown in FIG. 2 for an example of an axial flow turbine blade. Further, there is a structural distinction between the case where these connecting members are provided with a circumferential cut and the case where they are not provided. When the connecting member is provided with a cut in the circumferential direction, the blade structure connected by the connecting member is called a finite group blade structure or simply a group blade structure. On the other hand, when the connecting member is not provided with a break in the circumferential direction, the blades on the entire circumference are all connected by the connecting member, and such a blade structure is referred to as a full-circle 1-ring blade structure. As described above, when considering the vibration design of the turbine blade, the natural frequency and the vibration mode also change depending on the blade structure described above.

【0012】ここで、翼の固有振動モードについて簡単
に説明を加えておく。一本の翼は、通常の片持ち梁と同
様に曲げあるいはねじりの固有振動モードを持つが、そ
れぞれの固有振動モードは、群翼として連結されること
により固有振動モード群を持つ。一本の翼のそれぞれの
固有振動モードに対する群翼の固有振動モードの数は連
結された翼本数と等しい数だけあり、例えば図3には、
一つの曲げの固有振動モードに対する5本つづり群翼の
5つの曲げの固有振動モードを示す。一方、全周1リン
グ翼は、全周の翼の振動が連成することにより、円板の
振動と同様に節直径モードと呼ばれる固有振動モードを
持ち、例えば図4には、全周の翼本数が48本の翼の節
直径数0から4までの固有振動モードを示す。また、節
直径数をkで表すと節直径モードの数は全周の翼本数を
Mとすると、0≦k≦K(Mが偶数の時K=M/2,M
が奇数の時K=(M−1)/2)となる。
Here, a brief description will be given of the natural vibration mode of the blade. One blade has a bending or torsional natural vibration mode similar to an ordinary cantilever, but each natural vibration mode has a natural vibration mode group by being connected as a group blade. The number of natural vibration modes of the group blade for each natural vibration mode of one blade is equal to the number of connected blades. For example, in FIG.
The natural vibration modes of five bendings of a five-spell group wing with respect to the natural vibration mode of one bending are shown. On the other hand, the all-round 1-ring blade has a natural vibration mode called a nodal diameter mode, which is similar to the vibration of the disk due to the coupling of the vibrations of the all-round blade. For example, in FIG. The natural vibration modes of the blade diameters 0 to 4 are shown for a blade having 48 blades. Further, when the number of node diameters is represented by k, the number of node diameter modes is 0 ≦ k ≦ K (when M is an even number, K = M / 2, M
Is an odd number, K = (M-1) / 2).

【0013】一方、このような動翼及び動翼構造に作用
する流体励振力は前述のように回転数の整数倍の周波数
を持つものであるが、振動設計上はタービンの運転範囲
内で翼の固有振動モードが励振力と共振しないように、
あるいは共振しても翼がこわれないようにすることが重
要な課題である。
On the other hand, the fluid excitation force acting on such a moving blade and a moving blade structure has a frequency that is an integral multiple of the rotational speed as described above, but in terms of vibration design, the blade is within the operating range of the turbine. So that the natural vibration mode of does not resonate with the excitation force,
Alternatively, it is an important issue to prevent the wings from breaking even if they resonate.

【0014】ここで、このような流体励振力が作用した
場合の翼の振動特性について検討を加える。群翼の場
合、励振周波数と固有振動数とが一致した場合、振動応
答の大きさ自体は群翼の具体的な構成,振動モードの
形,励振次数によって異なるが、基本的には共振すると
考えなければならない。言い換えれば、群翼の一つ固有
モードの固有振動数と励振周波数とが一致しさえすれば
どの励振次数の励振力が作用しても共振すると考えて振
動設計する必要がある。
Here, the vibration characteristics of the blade when such a fluid excitation force acts will be examined. In the case of a group wing, if the excitation frequency and the natural frequency match, the magnitude of the vibration response itself will differ depending on the specific configuration of the group wing, the shape of the vibration mode, and the excitation order, but it is basically considered to resonate. There must be. In other words, if the natural frequency of one eigenmode of the group blade and the excitation frequency match, it is necessary to design the vibration by considering that the resonance will occur regardless of the excitation force of any excitation order.

【0015】一方、全周1リング翼の場合の共振条件は
励振周波数と固有振動数とが一致するだけでなく、節直
径数kの固有モードが共振する条件として次式が満足さ
れなければならない。
On the other hand, in the case of a full-circle one-ring blade, the resonance condition must satisfy not only the excitation frequency and the natural frequency but also the condition that the eigenmode having the node diameter number k resonates. .

【0016】 j±k=λM …(1) ここで、λ:0または正の整数 k:全周1リング構造の翼の固有モードの節直径数(0
≦k≦M/2) M:全周の翼本数 例えば、λ=0の時はj=kの場合に、λ=1の時はj
−k=Mの場合に共振することを示している。
J ± k = λM (1) Here, λ: 0 or a positive integer k: Nodal diameter number (0
≦ k ≦ M / 2) M: number of blades in the entire circumference For example, when λ = 0, j = k, and when λ = 1, j
It shows that resonance occurs when −k = M.

【0017】さて、以上の知識の下で、静翼後流による
励振力の励振次数jがj=MN であり、その励振周波数
に近い低次の主要モードの固有振動数を持つ高中圧ター
ビン用の比較的短い動翼の振動問題を考えた場合、該動
翼の連結構造を全周1リング構造とし、かつ、全周の動
翼本数をMBとする時、該段落の静翼本数MN を、MB
2より大きく、かつ、3MB/4 より小さくなるように
構成することによる作用について説明する。
Now, based on the above knowledge, the excitation order j of the excitation force due to the stationary blade wake is j = M N , and the high-intermediate-pressure turbine having the natural frequency of the low-order main mode close to the excitation frequency. Considering the vibration problem of a relatively short blade for use in a vehicle, when the connecting structure of the blades is a one-ring structure around the entire circumference and the number of moving blades along the entire circumference is M B , the number of stationary blades in the paragraph is M N , M B /
The operation of the configuration that is larger than 2 and smaller than 3M B / 4 will be described.

【0018】図5は、高中圧タービン用の比較的短い動
翼を全周1リング構造とした時の節直径数kと固有振動
数との関係を示した例であり、接戦方向モード群と軸方
向モード群との固有振動数が示されている。固有振動数
は整数kに対するとびとびの値を持つが図中にはそれら
の固有振動数を結んだ実線で示してある。一般に節直径
数kの増加に伴う固有振動数の変化は、節直径数kの小
さい領域で大きく、節直径数kの大きい領域ではゆるや
かであるという特徴を持っている。したがって、この領
域を大きく二つの領域に分けるとすれば、節直径数kが
B/4 より小さい領域と、大きい領域とに分けて考え
ることができる。この区分は別の見方からすれば、前者
は接戦方向モード群と軸方向モード群とのそれぞれの固
有振動数群ごとに、前者の領域は固有振動数が低い領
域、後者は固有振動数が高い領域ということにもなる。
FIG. 5 shows an example showing the relationship between the node diameter number k and the natural frequency when a relatively short moving blade for a high-to-intermediate-pressure turbine has a one-ring structure around the entire circumference. The natural frequencies with the axial mode group are shown. The natural frequency has discrete values with respect to the integer k, but is shown by a solid line connecting the natural frequencies in the figure. In general, the change in the natural frequency with the increase in the knot diameter number k is large in the region where the knot diameter number k is small, and is gentle in the region where the knot diameter number k is large. Therefore, if this region is roughly divided into two regions, it can be considered that it is divided into a region in which the node diameter number k is smaller than M B / 4 and a region in which it is large. From a different point of view, the former is a region where the natural frequency is low in the former region, and the natural frequency is high in the latter region for each natural frequency group of the close combat mode group and the axial mode group. It will also be an area.

【0019】次に、このような全周1リング構造を持つ
動翼の振動がタービン運転時にどのように表れるか見て
みることにする。図6は、タービン回転数に対する全周
1リング翼の節直径モードの固有振動数を表した図でい
わゆるキャンベル線図と呼ばれるものである。図6の例
では、本発明の考え方をできるだけ簡明に説明するた
め、全周の動翼本数は実際のタービンに比べて少ないM
B=20 とし、節直径数k=0〜MB/2 の固有振動数
を破線で模式的に示してある。また、簡単のため、図5
のように接戦方向モード群と軸方向モード群との両方の
固有振動数を示すのではなく、いずれかのモード群の固
有振動数として模式的に示してある。なお、図中複数の
斜めの線は、回転数の整数倍(励振次数j倍)の周波数
を表す線であり、j=1〜20に対するものが示してあ
る。図中回転数の整数倍の周波数を表す線と破線で示し
た節直径モードの固有振動数の線との交点のうち、●,
○は、これらj=1〜20すべてについて励振力が存在
するとした時に、先の式(1)で表した共振条件を満足す
る点である。この図から、j=kの共振点は回転数の比
較的高い領域に、j−k=MB の共振点は回転数の低い
領域にあることが分かる。
Next, it will be examined how the vibration of the rotor blade having such a full-circle one-ring structure appears when the turbine is operating. FIG. 6 is a diagram showing the natural frequency of the nodal diameter mode of the one-circle circumferential blade with respect to the turbine rotational speed, which is a so-called Campbell diagram. In the example of FIG. 6, in order to explain the concept of the present invention as simply as possible, the number of rotor blades on the entire circumference is smaller than that of an actual turbine.
B = 20, and the natural frequency of the node diameter k = 0 to M B / 2 is schematically shown by a broken line. Also, for simplicity, FIG.
As described above, the natural frequencies of both the close combat mode group and the axial mode group are not shown, but the natural frequencies of either mode group are schematically shown. It should be noted that a plurality of slanted lines in the figure are lines that represent frequencies that are integral multiples of the number of revolutions (excitation order j times), and those for j = 1 to 20 are shown. Among the intersections of the line representing the frequency that is an integer multiple of the rotational speed in the figure and the line of the natural frequency of the nodal diameter mode indicated by the broken line, ●,
◯ is a point that satisfies the resonance condition expressed by the above equation (1) when the excitation force exists for all of these j = 1 to 20. From this figure, it can be seen that the resonance point of j = k is in a relatively high rotational speed region and the resonance point of j−k = M B is in a low rotational speed region.

【0020】さて、静翼後流による励振について考え
る。本発明では(MB/2)=10<MN<(3MB/4)
=15とするので、対応するj=MNの範囲を図中のハ
ッチングで示してある。まず、(MB/2)<MNとした
ことにより、静翼後流による励振次数j=MNは、動翼
の節直径数の上限k=(MB/2)より大きくなるの
で、式(1)に示した共振条件のうちj=kの共振は発
生しないようにできる。
Now, the excitation by the wake of the stationary blade will be considered. In the present invention, (M B / 2) = 10 <M N <(3M B / 4)
= 15, the corresponding range of j = M N is indicated by hatching in the figure. First, by setting (M B / 2) <M N , the excitation order j = M N due to the wake of the stationary blade becomes larger than the upper limit k = (M B / 2) of the nodal diameter number of the moving blade. Among the resonance conditions shown in the equation (1), the resonance of j = k can be prevented from occurring.

【0021】次に、(MB/2)<MNとすると、j+k
=MBの共振が起きる可能性があることがわかる。ただ
し、MN<(3MB/4)であるから、j+k=MBという
共振条件にあてはめて考えると、励振される節直径モー
ドは(MB/4)=5<k<(MB/2)=10のものに限
定されることになる。この領域の節直径モードの固有振
動数は先の図5で示したとおり、節直径数0<k<(MB
/4)のモードに比べ高い領域にあるが、一般的に振動
数が高いほど振動に要する運動エネルギーは大きく、し
たがって、たとえ同じ振幅の励振力が作用した時でも振
動応答が小さくなるという有利さがある。さて、以上は
図6のどの回転数範囲でも、静翼後流による大きな励振
力が存在する場合についての説明であるが、励振力につ
いてはタービンの負荷運転範囲との関係で論ずる必要が
ある。すなわち、タービンに負荷がかかっていない状態
では、作動流体の流量が非常に少なく、静翼後流による
流体励振力自体が小さくなるため、たとえ動翼が共振し
たとしても破損に至るような大きな振動応力は発生しな
いと考えられる。例えば、図6において回転数がター
ビンの定格回転数であり、回転数〜が負荷運転範囲
であるようにすれば、すなわち、ロータ回転数をΩ(H
z)、節直径数K(MBが偶数の時K=MB/2,MB
奇数の時K=(MB−1)/2)の固有振動数をfm(H
z)とするとき、fm/K<Ωとすることによって、上
述のj+k=MBという共振条件に対応する回転数範囲
では静翼後流による励振力は非常に小さくなり、共振し
ても非常に小さな振動応力となる。ただし、負荷運転範
囲が〜と広範囲に渡る場合はj+k=MB という条
件に対応する共振が起き得ることになるが、上述のよう
にj=MN<(3MB/4)とすることにより節直径数M
B/4<k<MB/2の振動応力の小さいモードだけが励
起されることになり、破損に至るような共振応力の発生
は回避しやすくなる。
Next, if (M B / 2) <M N , then j + k
It can be seen that a resonance of = M B may occur. However, since M N <(3M B / 4), considering the resonance condition of j + k = M B , the excited node diameter mode is (M B / 4) = 5 <k <(M B / 2) = 10 will be limited. As shown in FIG. 5, the natural frequency of the node diameter mode in this region is 0 <k <(M B
Although it is in a higher region than the / 4) mode, generally, the higher the frequency is, the larger the kinetic energy required for vibration is, and therefore the vibration response becomes smaller even when the excitation force of the same amplitude acts. There is. The above is a description of the case where a large exciting force due to the stationary blade wake exists in any rotational speed range of FIG. 6, but the exciting force needs to be discussed in relation to the load operating range of the turbine. In other words, when there is no load on the turbine, the flow rate of the working fluid is very small and the fluid exciting force itself due to the wake of the stationary blade becomes small. It is considered that no stress is generated. For example, in FIG. 6, if the rotation speed is the rated rotation speed of the turbine and the rotation speed is within the load operation range, that is, the rotor rotation speed is Ω (H
z), nodal diameter number K (M B is even when K = M B / 2, when M B is an odd number K = (M B -1) / 2 the natural frequency f m (H) of
z), by setting f m / K <Ω, the exciting force due to the stationary blade wake becomes very small in the rotation speed range corresponding to the above resonance condition of j + k = M B , and even if resonance occurs. Very small vibration stress. However, when the load operation range extends to a wide range, resonance corresponding to the condition of j + k = M B can occur, but by setting j = M N <(3M B / 4) as described above, Nodal diameter number M
Only B / 4 <k <smaller mode of M B / 2 of the vibration stress is to be excited, the generation of resonance stress that leads to breakage easily avoided.

【0022】[0022]

【実施例】以下本発明の実施例を図面によって説明す
る。図1は本発明の第一の実施例を示すものであって、
タービンの静翼と動翼とからなるタービン段落を半径方
向から見た平面図であって、周囲360°にわたり展開
して示してある。図7は本発明の第一の実施例の具体例
として全周の動翼本数が20本の場合についてタービン
段落を半径方向から見た平面図である。また、図8は本
発明のタービン段落を示す部分の斜視図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a first embodiment of the present invention,
FIG. 3 is a plan view of a turbine stage, which is composed of stationary blades and moving blades of the turbine, as viewed from the radial direction, and is shown expanded over a circumference of 360 °. FIG. 7 is a plan view of a turbine paragraph viewed from the radial direction when the number of moving blades on the entire circumference is 20 as a specific example of the first embodiment of the present invention. Further, FIG. 8 is a perspective view of a portion showing a turbine stage of the present invention.

【0023】図1において静翼1は円周方向に角度で表
されたピッチpN で等間隔に配置されている。同様に、
動翼2も円周方向に角度で表されたピッチpB で等間隔
に配置されている。ここで、隣接する動翼2は連結部材
3の端面4でたがいに接触して全周にわたり切れ目無く
連結されている。本発明においては、静翼ピッチとpN
動翼pBとは (4pB/3)<pN<2pB …(2) を満足するように設定されている。静翼,動翼のそれぞ
れのピッチの逆数は静翼,動翼の全周の本数囲MN,MB
に比例するから、式(2)をMN,MBを用いて表すと、
次のようになる。
In FIG. 1, the stationary blades 1 are arranged at equal intervals in the circumferential direction at a pitch p N expressed as an angle. Similarly,
The rotor blades 2 are also arranged at equal intervals in the circumferential direction at a pitch p B represented by an angle. Here, the adjacent moving blades 2 are in contact with each other at the end surface 4 of the connecting member 3 and are connected seamlessly over the entire circumference. In the present invention, the stator blade pitch and p N
The moving blade p B is set so as to satisfy (4p B / 3) <p N <2p B (2). The reciprocal of the pitch of each of the stationary blades and the moving blades is the total number of the blades of the stationary blades and the moving blades M N , M B
Therefore, when the equation (2) is expressed using M N and M B ,
It looks like this:

【0024】 (MB/2)<MN<(3MB/4) …(3) この結果、先に本発明の作用について詳しく説明したよ
うに、(MB/2)<MNとしたことにより、式(1)に示
した共振条件のうち静翼後流による励振次数j=MN
よるj=kの共振は発生しないようにでき、次に、(M
B/2)<MN<(3MB/4)としたことにより、たと
え、j+k=MBの共振が起きる可能性があっても、励
振される節直径モードは(MB/4)<k<(MB/2)
と固有振動数が比較的高く、したがって領域にあるが、
一般的に振動数が高いほど振動に要する運動エネルギー
は大きく、したがって、共振しても非常に小さな振動応
力となる節直径モードに限定できる。
(M B / 2) <M N <(3M B / 4) (3) As a result, (M B / 2) <M N as described above in detail regarding the operation of the present invention. By doing so, it is possible to prevent the resonance of j = k due to the excitation order j = M N due to the vane wake from the resonance conditions shown in the equation (1).
By setting B / 2) <M N <(3M B / 4), even if resonance of j + k = M B may occur, the excited node diameter mode is (M B / 4) < k <(M B / 2)
And the natural frequency is relatively high and therefore in the region,
Generally, the higher the frequency is, the larger the kinetic energy required for the vibration is. Therefore, it is possible to limit to the node diameter mode in which the vibration stress is very small even when the resonance occurs.

【0025】さらに、タービンの負荷運転するロータ回
転数をΩ(Hz)、節直径数K(MBが偶数の時、K=MB
/2,奇数の時、K=(MB−1)/2)に対する固有
振動数をfm(Hz)とするとき、fm/K<Ωとするこ
とによって、上記j+k=MBの共振が起きないように
することも可能となる。
Further, the rotor rotational speed under load operation of the turbine is Ω (Hz), and the node diameter number K (when M B is an even number, K = M B
/ 2, when odd, when the natural frequency for K = (M B −1) / 2) is f m (Hz), by setting f m / K <Ω, the resonance of j + k = M B can be obtained. It is possible to prevent the occurrence of.

【0026】次に、具体的に全周の動翼本数が20本の
場合について示した図7によって説明する。ただし、図
7では、連結部材3は図示していない。図7において動
翼1B〜20Bは円周方向に角度で表されたピッチpB
で等間隔に配置されている。これに対して、静翼は円周
方向に1N〜13Nまで角度で表されたピッチpNで等
間隔に配置されている。すなわち、pN=360°/1
3,pB=360°/20であり、これは上述の式
(2)の関係を満足している。全周で20本の動翼が全
周1リング構造である場合の節直径モードの節直径数k
の範囲は0〜10であり、ノズルウェイクによる励振次
数はj=13であるから、j=kを満足する共振は起こ
らないことになる。しかし、k=7のモードについて
は、j+k=MB=20 の共振が起きる可能性がある
が、一般にk=7のモードの固有振動数はk=5以下の
モードの固有振動数に比べて高いから、振動に要する運
動エネルギーが大きく、したがって、共振しても振動応
力は小さくできる場合が多い。さらに、タービンの負荷
運転するロータ回転数をΩ(Hz)、節直径数K=MB
2=10に対する固有振動数をfm(Hz)とすると
き、fm/K<Ωとすることによって、上記j+k=MB
の共振が起きないようにすることも可能となる。
Next, a concrete description will be given with reference to FIG. 7, which shows a case where the number of moving blades on the entire circumference is 20. However, in FIG. 7, the connecting member 3 is not shown. In FIG. 7, the rotor blades 1B to 20B have a pitch p B represented by an angle in the circumferential direction.
Are evenly spaced. On the other hand, the stationary blades are arranged at equal intervals in the circumferential direction at a pitch p N represented by an angle of 1N to 13N. That is, p N = 360 ° / 1
3, p B = 360 ° / 20, which satisfies the relationship of the above-mentioned formula (2). Nodal diameter number k in nodal diameter mode when 20 rotor blades have a 1-ring structure around the entire circumference
Is in the range of 0 to 10 and the excitation order by the nozzle wake is j = 13, so that resonance that satisfies j = k does not occur. However, for the mode of k = 7, resonance of j + k = M B = 20 may occur, but in general, the natural frequency of the mode of k = 7 is higher than that of the mode of k = 5 or less. Since it is high, the kinetic energy required for vibration is large, and therefore the vibration stress can often be made small even when resonating. Furthermore, the rotor rotation speed under load operation of the turbine is Ω (Hz), and the number of node diameters is K = M B /
When the natural frequency for 2 = 10 is f m (Hz), by setting f m / K <Ω, the above j + k = M B
It is also possible to prevent the resonance of.

【0027】次に、動翼と動翼とを連結する連結部材3
は、図8に示すように動翼2の先端部分から動翼と一体
形で円周方向にのびる板状の連結部材であって、隣接す
る動翼は連結部材3の端面4でたがいに接触して全周に
わたり切れ目無く連結されるようなものである。ここ
で、“接触して切れ目無く連結される”ということにつ
いて簡単に説明を補足しておく。まず、接触という概念
は幅があるが、隣接する動翼どうしの連結部材3の端面
4において、圧縮応力が発生するように押しつけられて
いる状態を指し、圧縮応力がなくなった状態を接触して
いない状態すなわち、切れ目がある状態と考える。した
がって、図7に示す例では、連結部材3は円周方向から
何らかの押しつけ力を加えることによって端面4が接触
状態となっているものである。例えば、図9は全周で2
0本の動翼2が連結部材3の端面4で互いに接触して全
周にわたり切れ目無く連結されている状態を示すが、接
触状態を確保するために、例えば、すべて、あるいは一
部の動翼の連結部材3の円周方向のピッチを所定のピッ
チよりやや大きく製作しておき、動翼をディスクに組み
立てる際に円周方向の圧縮応力が発生させることが可能
である。しかし、全周の動翼を切れ目なく1リングに連
結する方法はこれに限られるものではなく、例えば、先
の図2に示した種々の連結構造を用いて全周1リング構
造としたものであってもよいことはもちろんである。こ
のうち、図2の(c)と(f)に関して以下に補足説明
する。翼長が比較的長く、かつ半径方向に沿ってねじれ
ている翼の場合、回転中の遠心力により翼のアンツィス
ト(ねじりもどり)が生ずることはよく知られている。
これに関して先端部カバー7,中間部ロッド10のアン
ツィスト現象とカバーどうし、ロッドどうしを接触させ
てアンツィストを拘束して翼を連結する様子を翼の半径
方向外周側から見た平面図で示したものが図10,図1
1である。
Next, a connecting member 3 for connecting the moving blades to each other.
8 is a plate-like connecting member that extends integrally with the moving blade from the tip portion of the moving blade 2 in the circumferential direction as shown in FIG. 8, and adjacent moving blades contact each other at the end surface 4 of the connecting member 3. Then, it is like being connected seamlessly over the entire circumference. Here, a brief supplementary explanation will be given on the fact that "they are in contact with each other and are seamlessly connected". First, although the concept of contact has a width, it refers to a state in which the end faces 4 of the connecting members 3 of adjacent moving blades are pressed against each other so that a compressive stress is generated, and the state in which the compressive stress is eliminated is in contact. It is considered that there is no break, that is, there is a break. Therefore, in the example shown in FIG. 7, the end face 4 is in contact with the connecting member 3 by applying some pressing force from the circumferential direction. For example, Fig. 9 shows 2
The state where 0 moving blades 2 are in contact with each other at the end surface 4 of the connecting member 3 and are continuously connected over the entire circumference is shown. However, in order to ensure the contact state, for example, all or some moving blades are shown. It is possible to make the pitch of the connecting members 3 in the circumferential direction slightly larger than a predetermined pitch and to generate a compressive stress in the circumferential direction when the moving blade is assembled to the disk. However, the method of seamlessly connecting the rotor blades of the entire circumference to the one ring is not limited to this, and for example, a method of forming the entire circumference of the one ring structure by using the various connection structures shown in FIG. Of course, it is possible. Of these, a supplementary description will be given below regarding (c) and (f) of FIG. It is well known that, in the case of a blade having a relatively long blade length and being twisted along the radial direction, centrifugal force during rotation causes the blade to be untwisted.
Regarding this, an anzist phenomenon of the tip cover 7 and the intermediate rod 10 and a state in which the blades are connected by bringing the rods into contact with each other and restraining the anzist to connect the blades are shown in a plan view from the outer peripheral side in the radial direction of the blades. Figure 10 and Figure 1
It is 1.

【0028】図10(a)において、カバーとカバーの
間の間隙8はアンツィストが生ずると小さくなり、やが
て図10(b)に示すように間隙8はなくなり、すなわ
ち零間隙9となり、カバーとカバーは接触し、アンツィ
ストは拘束されることになる。
In FIG. 10 (a), the gap 8 between the covers becomes smaller when the untwist occurs, and eventually the gap 8 disappears as shown in FIG. 10 (b), that is, the zero gap 9, and the cover and the cover. Will come into contact and the Anzist will be detained.

【0029】また、図11に示した中間部ロッド10に
よる連結の場合についても同様である。なお、図10,
図11において間隙8がある状態は連結の切れ目がある
状態であり、零間隙9の状態となって初めて連結の切れ
目がない状態となることはもちろんである。
The same applies to the case of connection by the intermediate rod 10 shown in FIG. In addition, FIG.
In FIG. 11, the state where there is the gap 8 is a state where there is a disconnection of the connection, and it goes without saying that the state where there is no disconnection of the connection becomes the state of the zero gap 9.

【0030】以上の他に、全周の翼を切れ目無く連結す
る手段としては、図12に示すように、動翼1の先端部
分から動翼と一体形で円周方向にのびる板状の連結部材
3の端面4において、隣接動翼の両方の連結部材にまた
がり、端面4に沿ってのびるピン穴11を設け、そこに
ピン12を挿入するものであってもよい。この場合、隣
接動翼の両方の連結部材は端面4で必ずしも接触してい
なくともよく、回転中にピン12に作用する遠心力によ
って、ピン12がピン穴11に押しつけられることによ
って発生する摩擦力によって連結するものであってもよ
い。
In addition to the above, as means for seamlessly connecting the blades on the entire circumference, as shown in FIG. 12, a plate-like connection extending from the tip of the moving blade 1 integrally with the moving blade in the circumferential direction is provided. The end surface 4 of the member 3 may be provided with a pin hole 11 which extends over both connecting members of adjacent blades and extends along the end surface 4, and the pin 12 may be inserted therein. In this case, both connecting members of the adjacent rotor blades do not necessarily have to be in contact with each other at the end surface 4, and the frictional force generated by the pin 12 being pressed against the pin hole 11 by the centrifugal force acting on the pin 12 during rotation. It may be connected by.

【0031】次に、本発明のタービン段落構造をタービ
ンに適用した例について説明する。図13は本発明のタ
ービン段落構造を適用したタービンの部分を示す断面図
である。タービンの内ケーシング14に取り付けられた
静翼1とタービン軸13に設けられたディスク5に取り
付けられた動翼2からなるタービン段落が5段落で構成
されている例を示す。タービンの信頼性はどのタービン
段落が振動等によって破損しても損なわれるから、すべ
てのタービン段落に対して例えば本発明の主要課題であ
るノズルウェイクによる励振を受けた場合でも問題のな
い構造にしておく必要がある。これに対して、すべての
タービン段落に本発明のタービン段落を適用すればよい
ことはもちろんであるが、すべてのタービン段落に上述
のような信頼性上の課題があるわけではないので、本発
明のタービン段落を部分的に適用する物であってもよ
い。
Next, an example in which the turbine stage structure of the present invention is applied to a turbine will be described. FIG. 13 is a sectional view showing a portion of a turbine to which the turbine stage structure of the present invention is applied. An example is shown in which a turbine paragraph including five vanes 1 attached to the inner casing 14 of the turbine and rotor blades 2 attached to the disk 5 provided on the turbine shaft 13 is composed of five paragraphs. The reliability of the turbine is impaired even if any of the turbine paragraphs is damaged by vibration, etc., so that a structure that does not cause a problem even when it is excited by the nozzle wake, which is the main subject of the present invention, is applied to all turbine paragraphs. I need to put it. On the other hand, it goes without saying that the turbine paragraph of the present invention may be applied to all turbine paragraphs, but since not all turbine paragraphs have the above-mentioned reliability problems, the present invention It may be a partial application of the turbine paragraph.

【0032】[0032]

【発明の効果】以上説明したように、本発明によれば静
翼の後流(ウェイク)による動翼の共振がないか、また
は、共振しても安全な信頼性の高い新規な段落構造を提
供することができ、タービンの高信頼性化に貢献するこ
とができる。
As explained above, according to the present invention, there is no resonance of the moving blade due to the wake of the stationary blade, or there is a novel paragraph structure which is safe and highly reliable even if it resonates. It can be provided and can contribute to high reliability of the turbine.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示すタービン段落構造を半径
方向から見た展開平面図。
FIG. 1 is a developed plan view of a turbine paragraph structure showing an embodiment of the present invention as viewed from a radial direction.

【図2】一般の種々の翼連結構造の例を示す斜視図。FIG. 2 is a perspective view showing examples of various general blade connection structures.

【図3】群翼の固有振動モード例を示す斜視図。FIG. 3 is a perspective view showing an example of natural vibration modes of a group blade.

【図4】全周1リング翼の固有振動モード例を示す斜視
図。
FIG. 4 is a perspective view showing an example of a natural vibration mode of an all-circle one-ring blade.

【図5】全周1リング翼の節直径数と固有振動の関係を
示す模式図。
FIG. 5 is a schematic diagram showing the relationship between the number of node diameters and the natural vibration of a 1-ring blade all around.

【図6】全周1リング翼の回転中の振動特性を示す模式
図。
FIG. 6 is a schematic diagram showing vibration characteristics during rotation of an all-round single ring blade.

【図7】本発明の実施例を示すタービン段落構造を半径
方向から見た展開平面図。
FIG. 7 is a developed plan view of a turbine paragraph structure showing an embodiment of the present invention as viewed from the radial direction.

【図8】本発明の実施例を示すタービン段落構造の部分
の斜視図。
FIG. 8 is a perspective view of a portion of a turbine stage structure showing an embodiment of the present invention.

【図9】全周1リング翼構造の一例を示すタービン軸方
向から見た正面図。
FIG. 9 is a front view showing an example of a full-circle one-ring blade structure as seen from the turbine axial direction.

【図10】翼連結構造の一例を示す平面図。FIG. 10 is a plan view showing an example of a blade connecting structure.

【図11】翼連結構造の一例を示す平面図。FIG. 11 is a plan view showing an example of a blade connecting structure.

【図12】翼連結構造の一例を示す部分の斜視図。FIG. 12 is a perspective view of a portion showing an example of a blade connecting structure.

【図13】本発明のタービン段落構造を適用したタービ
ンの部分を示す断面図。
FIG. 13 is a sectional view showing a portion of a turbine to which a turbine stage structure of the present invention is applied.

【符号の説明】[Explanation of symbols]

1…静翼、2…動翼、3…翼連結部材、4…端面、5…
ディスク、6…翼根部、7…カバー、8…間隙、9…零
間隙、10…ロッド、11…ピン穴、12…ピン、13
…軸、14…内ケーシング、15…外ケーシング。
DESCRIPTION OF SYMBOLS 1 ... Stationary blade, 2 ... Moving blade, 3 ... Blade connecting member, 4 ... End surface, 5 ...
Disc, 6 ... Blade root, 7 ... Cover, 8 ... Gap, 9 ... Zero gap, 10 ... Rod, 11 ... Pin hole, 12 ... Pin, 13
... shaft, 14 ... inner casing, 15 ... outer casing.

フロントページの続き (72)発明者 高住 正和 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 池内 和雄 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内Front page continued (72) Masakazu Takasumi Masakazu Takasumi 502 Jinritsucho, Tsuchiura-shi, Ibaraki Machinery Research Laboratories, Hiritsu Seisakusho Co., Ltd. Hitachi, Ltd.Hitachi factory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】軸流タービンの静翼と動翼とを組合せてな
るタービン段落構造において、全周の動翼を連結部材で
円周方向に切れ目なく連結するとともに、該動翼の全周
の翼本数をMB とする時、該動翼の上流側にある静翼の
全周の翼本数MNを、MB/2より大きくすることを特徴
とするタービン段落構造。
1. A turbine stage structure comprising a combination of a stationary blade and a moving blade of an axial flow turbine, wherein the moving blades of the entire circumference are continuously connected in a circumferential direction by a connecting member, and the entire circumference of the moving blade is connected. A turbine paragraph structure characterized in that, when the number of blades is M B , the number of blades M N of the entire circumference of the stationary blade on the upstream side of the blade is larger than M B / 2.
【請求項2】軸流タービンの静翼と動翼とを組合せてな
るタービン段落構造において、全周の動翼を連結部材で
円周方向に切れ目なく連結するとともに、該動翼のロー
タ中心からの角度で表された円周方向の配列ピッチをp
B とする時、該動翼の上流側にある静翼のロータ中心か
らの角度で表された円周方向の配列ピッチpN を、4p
B/3より大きく、2pBより小さくすることを特徴とす
るタービン段落構造。
2. A turbine stage structure comprising a combination of stationary blades and moving blades of an axial flow turbine, wherein the moving blades on the entire circumference are continuously connected by a connecting member in the circumferential direction, and the rotor center of the moving blades is The array pitch in the circumferential direction expressed by the angle
When B is set, the array pitch p N in the circumferential direction, which is represented by the angle from the rotor center of the stationary blades on the upstream side of the moving blade, is 4p.
Greater than B / 3, turbine stage structure, which comprises less than 2p B.
【請求項3】軸流タービンの静翼と動翼とを組合せてな
るタービン段落構造において、全周の動翼を連結部材等
で円周方向に切れ目なく連結するとともに、該動翼の全
周の翼本数をMB とする時、該動翼の上流側にある静翼
の全周の翼本数MNを、MB/2より大きく、3MB/4
より小さくすることを特徴とするタービン段落構造。
3. A turbine stage structure comprising a combination of a stationary blade and a moving blade of an axial flow turbine, wherein the rotating blades of the entire circumference are continuously connected in a circumferential direction by a connecting member or the like, and the entire circumference of the moving blade is Is M B , the number of blades M N of the entire circumference of the stationary blade on the upstream side of the moving blade is larger than M B / 2, and 3 M B / 4
Turbine paragraph structure characterized by smaller size.
【請求項4】請求項1記載のタービン段落構造を備えた
タービン。
4. A turbine comprising the turbine stage structure according to claim 1.
JP19816494A 1994-08-23 1994-08-23 Turbine step structure Pending JPH0861001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19816494A JPH0861001A (en) 1994-08-23 1994-08-23 Turbine step structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19816494A JPH0861001A (en) 1994-08-23 1994-08-23 Turbine step structure

Publications (1)

Publication Number Publication Date
JPH0861001A true JPH0861001A (en) 1996-03-05

Family

ID=16386535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19816494A Pending JPH0861001A (en) 1994-08-23 1994-08-23 Turbine step structure

Country Status (1)

Country Link
JP (1) JPH0861001A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027449A1 (en) * 2011-08-22 2013-02-28 株式会社日立製作所 Method for calculating unsteady force acting on rotor blade or stator blade, turbine design technique and turbine manufacturing method
JP2014037775A (en) * 2012-08-10 2014-02-27 Hitachi Ltd Design method of turbine, manufacturing method of turbine and determination method of non-stationary force acting on moving blade or like

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027449A1 (en) * 2011-08-22 2013-02-28 株式会社日立製作所 Method for calculating unsteady force acting on rotor blade or stator blade, turbine design technique and turbine manufacturing method
JP2013044233A (en) * 2011-08-22 2013-03-04 Hitachi Ltd Turbine designing technique and turbine manufacturing method
EP2765275A4 (en) * 2011-08-22 2015-07-15 Mitsubishi Hitachi Power Sys Method for calculating unsteady force acting on rotor blade or stator blade, turbine design technique and turbine manufacturing method
JP2014037775A (en) * 2012-08-10 2014-02-27 Hitachi Ltd Design method of turbine, manufacturing method of turbine and determination method of non-stationary force acting on moving blade or like

Similar Documents

Publication Publication Date Title
JP3107266B2 (en) Fluid machinery and wing devices for fluid machinery
US6341941B1 (en) Steam turbine
US20020057969A1 (en) Steam turbine
JP4027640B2 (en) Rows of fluid guide members for turbomachines
CA2196481C (en) Steam turbine
US4130379A (en) Multiple side entry root for multiple blade group
US4377370A (en) Safety device for a rotating element of a turbine engine
US3377050A (en) Shrouded rotor blades
EP2339115B1 (en) Turbine rotor assembly and steam turbine
GB2138078A (en) Dynamic response modification and stress reduction in blade root dovetail
US4710102A (en) Connected turbine shrouding
WO2014203907A1 (en) Rotating body provided with blades
IT9020037A1 (en) ROTORIC ASSEMBLY FOR GAS TURBO ENGINE
US3367629A (en) Continuous shroud for rotor blades
JPH0861001A (en) Turbine step structure
US4776764A (en) Structure for an axial flow elastic fluid utilizing machine
JP2006144575A (en) Axial flow type rotary fluid machine
JPS5925844B2 (en) Closed channel disc for gas turbine engine
RU2033525C1 (en) Welded drum-type rotor of turbomachine
US3131461A (en) Method of making vibration damped turbo machinery
JPH0882202A (en) Hydraulic machine and blade device for hydraulic machine
JP2002295201A (en) Connection device of turbine rotor vane
JPH02169802A (en) Turbine blade lacing wire structure
JPS6149103A (en) Turbine rotor blade linking equipment
JP3697041B2 (en) Turbine impeller