JP2006046226A - Excitation reducing structure for rotor and stator blade - Google Patents

Excitation reducing structure for rotor and stator blade Download PDF

Info

Publication number
JP2006046226A
JP2006046226A JP2004229887A JP2004229887A JP2006046226A JP 2006046226 A JP2006046226 A JP 2006046226A JP 2004229887 A JP2004229887 A JP 2004229887A JP 2004229887 A JP2004229887 A JP 2004229887A JP 2006046226 A JP2006046226 A JP 2006046226A
Authority
JP
Japan
Prior art keywords
blade row
stationary blade
row
moving
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004229887A
Other languages
Japanese (ja)
Inventor
Masayuki Tomii
正幸 富井
Yasutomo Kaneko
康智 金子
Kazuishi Mori
一石 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004229887A priority Critical patent/JP2006046226A/en
Publication of JP2006046226A publication Critical patent/JP2006046226A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase resonance force reducing effect and estimate resonance force reducing effect. <P>SOLUTION: This structure is adopted to a rotary machine which consists of a stator blade train 1 and a rotor blade train 2. A rotor blade element of the rotor blade train 2 is indicated by an equation of motion: A-f(t)=0. A is expressed by a second degree differentiation term, a first degree differentiation term and a non-differentiation term (function of coordinates x) in relation to time of general coordinates x established in a rotary system. "f(t)" expresses external force received from the stator blade train element of the stator blade train. "x" is general coordinate especially is coordinate on a circle. A pitch of the stator blade train 1 is not constant and is expressed by a function P(t) in relation to time t of a rotation. Time variable t of the function P(t) is same as a variable t of the function f(t). The coordinate x is expressed by a function in relation to time as a solution of the equation of motion and pitch P(t) can be expressed by coordinates. Reduction of excitation can be optimized by expressing pitch by the function in relation to time without expressing as constant. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、動静翼の励振低減構造、特に、回転機械の動静翼の励振低減構造に関する。   The present invention relates to an excitation reduction structure for a moving and stationary blade, and more particularly to an excitation reduction structure for a moving and stationary blade of a rotary machine.

蒸気タービン、ガスタービンのような多段軸流ターボ機械には、高度な共振回避の技術の展開が求められる。ターボ機械は、静翼列の環状面に対向して動翼列として形成される回転翼が回転する。静翼列は、前段と後段に配置される。前段静翼のウェーク又は後段翼の圧力場に対する動翼の干渉(ポテンシャル干渉)により、いわゆる翼列干渉力が作用する。動翼に作用する翼列干渉力の基本周波数は、静翼枚数と回転数の積になる。その基本周波数が動翼の固有振動数に一致すれば、大きな共振応力が発生する。このような、共振応力の発生は、高サイクル疲労の重要な原因の一つである。   Multistage axial flow turbomachines such as steam turbines and gas turbines are required to develop advanced resonance avoidance techniques. In the turbomachine, rotating blades formed as a moving blade row are opposed to the annular surface of the stationary blade row. The stationary blade row is arranged at the front stage and the rear stage. A so-called cascade interference force acts due to the interference (potential interference) of the moving blade with the pressure field of the front stator vane or the latter blade. The fundamental frequency of cascade interference force acting on the moving blade is the product of the number of stationary blades and the number of rotations. If the fundamental frequency matches the natural frequency of the rotor blade, a large resonance stress is generated. Such generation of resonance stress is one of the important causes of high cycle fatigue.

翼列干渉力に対する共振応力の低減のためには、静翼を周方向(回転方向)に非対称に配置し、特定の周波数成分の翼列干渉力を低減させる技術が知られている。このような公知の技術は、共振回避が困難である可変速機に対して、特に、軸方向のスパンを拡大することが困難であるターボ機械で特に有効である。静翼の非対称配置技術は、全周を適当なN個のセグメントに分割している。その分割数は2であることが普通である。下記の2通りの非対称配置方法が知られている。
(1)Nセグメントの中の静翼枚数を変更すること(枚数変更法)
(2)Nセグメント間のピッチを変更すること(オフセット法)
非対称配置静翼列の枚数変更法の応答は、N=2であれば、次式で計算することができる。

Figure 2006046226
ここで、上付(t)は、xがtの関数であることを示し、式中の係数は下記の通りである。非対称配置静翼列のオフセット変更法の応答は、N=2であれば、次式で計算することができる。下付添字nは、モードの字数を示す。
Figure 2006046226
これらの式の定数記号と変数記号は、後述される。 In order to reduce the resonance stress with respect to the cascade interference force, a technique is known in which the stationary blades are arranged asymmetrically in the circumferential direction (rotation direction) to reduce the cascade interference force of a specific frequency component. Such a known technique is particularly effective for a variable speed machine in which it is difficult to avoid resonance, particularly in a turbo machine in which it is difficult to expand an axial span. The asymmetrical arrangement technique of the stationary blades divides the entire circumference into appropriate N segments. The number of divisions is usually two. The following two asymmetric arrangement methods are known.
(1) Change the number of stationary blades in the N segment (number change method)
(2) Changing the pitch between N segments (offset method)
The response of the method of changing the number of asymmetrically arranged stationary blade rows can be calculated by the following equation if N = 2.
Figure 2006046226
Here, the superscript (t) indicates that xn is a function of t, and the coefficients in the equation are as follows. The response of the offset changing method for the asymmetrically arranged stationary blade row can be calculated by the following equation if N = 2. The subscript n indicates the number of characters in the mode.
Figure 2006046226
The constant symbols and variable symbols of these equations will be described later.

枚数変更法は、対称配置構造に対して、30〜40%の共振力低減効果がある。この程度の効果は、不十分である。オフセット法は、現実的な動翼の減衰又は静翼枚数の範囲に対して枚数変更法と同程度の応答低減効果を得るためには、180度に近い角度のオフセット量が必要である。このことは、上半のセグメント(上半ケーシング)と下半のセグメントの境界で、静翼ピッチを大幅に変更することを余儀なくされることを意味する。このため、低次のハーモニック加振力に与える影響、又は、サージのような流れの安定性に与える影響が考慮されれば、オフセット法は現実的ではない。   The method of changing the number of sheets has a resonance force reduction effect of 30 to 40% with respect to the symmetrical arrangement structure. This level of effect is insufficient. The offset method requires an offset amount of an angle close to 180 degrees in order to obtain a response reduction effect comparable to that of the blade number change method over a realistic range of blade attenuation or number of stationary blades. This means that the vane pitch is forced to change significantly at the boundary between the upper half segment (upper half casing) and the lower half segment. For this reason, the offset method is not practical if the influence on the low-order harmonic excitation force or the influence on the flow stability such as surge is taken into consideration.

複数のピッチのノズルを用いてピッチを非一定化する技術は、後掲特許文献1で知られている。上半と下半でノズルのピッチを異ならせる技術は、後掲特許文献2で知られている。ノズルブロックを分割し隣接ブロックでピッチを異ならせる技術は、後掲特許文献3で知られている。2段目の静翼に対するウェーク流入位置がL.E.付近になるように配置されるクロッキング技術は、後掲特許文献4で知られている。可変ノズルのピッチを異ならせる技術は、後掲特許文献5で知られている。   A technique for making the pitch non-constant using a plurality of pitch nozzles is known from Patent Document 1 described later. A technique for making the nozzle pitch different between the upper half and the lower half is known from Patent Document 2 described later. A technique for dividing nozzle blocks and changing the pitch between adjacent blocks is known from Patent Document 3 listed later. The wake inflow position with respect to the second stage stationary blade is L.P. E. A clocking technique which is arranged so as to be close is known from Patent Document 4 described later. A technique for varying the pitch of the variable nozzles is known from Patent Document 5 described later.

枚数変更法又はオフセット法の公知の非対称配置静翼列は、各セグメント内で静翼は等ピッチで、配置されている。このような静翼列では、各セグメントに対して通過する動翼は同一振動数で加振されていて共振が成長するため、十分に満足することができる共振力低減効果を得ることが困難である。   In a known asymmetrically arranged stationary blade row of the number changing method or the offset method, the stationary blades are arranged at equal pitches within each segment. In such a stationary blade row, the moving blades that pass through each segment are vibrated at the same frequency and resonance grows, so that it is difficult to obtain a sufficient resonance force reduction effect. is there.

共振力低減効果をより増大することが求められる。更に、共振力低減効果を予測することが容易であることが望まれる。   It is required to further increase the effect of reducing the resonance force. Furthermore, it is desirable that it is easy to predict the resonance force reduction effect.

特開平8−61002号Japanese Patent Laid-Open No. 8-61002 特開平11−200808号JP-A-11-200808 特開平9−256802号JP-A-9-256802 特表平9−512320号Special table hei 9-512320 特開2000−204907号JP 2000-204907 A

本発明の課題は、共振力低減効果をより増大する動静翼の励振低減構造を提供することにある。
本発明の他の課題は、更に共振力低減効果を予測することが容易である動静翼の励振低減構造を提供することにある。
An object of the present invention is to provide an excitation reduction structure for a moving and stationary blade that further increases a resonance force reduction effect.
Another object of the present invention is to provide an excitation reduction structure for a moving and static blade that can easily predict a resonance force reduction effect.

本発明による動静翼の励振低減構造は、静翼列(1)と、動翼列(2)とから構成される回転機械に適用される。動翼列(2)の動翼列要素は、下記運動方程式:
A−f(t)=0
で表される。Aは回転系に設定される一般座標xの時間に関する2階微分項と1階微分項と非微分項(座標xの関数)とで表される。f(t)は静翼列の静翼列要素から受ける外力を示している。ここで、xは一般座標であり、特には、1円周上の座標である。静翼列(1)のピッチは、一定ではなく1回転の時間tの関数P(t)で表される。関数P(t)の時間変数tは、関数f(t)の変数tに同じである。運動方程式の解として、座標xは時間の関数で表され、ピッチP(t)は、座標で表され得る。
The structure for reducing excitation and movement of moving blades and stator blades according to the present invention is applied to a rotating machine including a stationary blade row (1) and a moving blade row (2). The moving blade row element of the moving blade row (2) has the following equation of motion:
A−f (t) = 0
It is represented by A is expressed by a second-order differential term, a first-order differential term, and a non-differential term (function of the coordinate x) with respect to time of the general coordinate x set in the rotating system. f (t) represents the external force received from the stationary blade row elements of the stationary blade row. Here, x is a general coordinate, in particular, a coordinate on one circumference. The pitch of the stationary blade row (1) is not constant and is expressed by a function P (t) of time t for one rotation. The time variable t of the function P (t) is the same as the variable t of the function f (t). As a solution to the equation of motion, the coordinate x can be expressed as a function of time, and the pitch P (t) can be expressed in coordinates.

ピッチを一定にせず時間の関数で表すことにより、励振の低減を最適化することができる。   By expressing the pitch as a function of time without making the pitch constant, the reduction in excitation can be optimized.

f(t)は、下記式:
f(t)=Fbsin[fk(t)・t]
Fb:動翼が受ける加振力
fk(t):加振力の角周波数
で表される。本式は、最も一般化された表現である。
f (t) is the following formula:
f (t) = Fbsin [fk (t) · t]
Fb: Exciting force fk (t) received by the moving blades: Expressed by the angular frequency of the exciting force. This expression is the most generalized expression.

その式は、特には、下記式:
fk(t)=N・Ω+α・t+β・t・t
α,β:係数
:静翼列要素の枚数
Ω:回転数(次元は時間の逆数)
で表される。係数は最適化の過程で求められる。特別には、β=0である。
The formula is in particular:
fk (t) = N T · Ω + α · t + β · t · t
α, β: Coefficient N T : Number of stationary blade row elements Ω: Number of rotations (dimension is reciprocal of time)
It is represented by The coefficient is obtained in the optimization process. Specifically, β = 0.

静翼列は、第1静翼列(1F)と、第1静翼列に対面する第2静翼列(1FF)とから多段に構成される。第1静翼列要素の枚数と第2静翼列要素の枚数が同じである場合には、第1静翼列と第2静翼列の間で回転方向の位相差を与えることは有効である。   The stationary blade row is configured in multiple stages from a first stationary blade row (1F) and a second stationary blade row (1FF) facing the first stationary blade row. When the number of first stator blade row elements is the same as the number of second stator blade row elements, it is effective to give a phase difference in the rotational direction between the first stator blade row and the second stator blade row. is there.

第1静翼列の隣り合う第1静翼列要素の間のピッチは回転方向の座標x上で等差数列で表され、且つ、第2静翼列の隣り合う第2静翼列要素の間のピッチは回転方向の座標x上で等差数列で表される。   The pitch between adjacent first stationary blade row elements of the first stationary blade row is represented by an arithmetic sequence on the coordinate x in the rotation direction, and the second stationary blade row element adjacent to the second stationary blade row. The pitch between them is represented by an arithmetic sequence on the coordinate x in the rotation direction.

動翼列は、第1動翼列と第2動翼列とから形成され、第1動翼列は第1静翼列に対面して配置され、且つ、第2動翼列は前記第2静翼列に対面して配置される。   The moving blade row is formed of a first moving blade row and a second moving blade row, the first moving blade row is arranged to face the first stationary blade row, and the second moving blade row is the second moving blade row. It is arranged facing the stationary blade row.

静翼列は、N1枚の静翼列要素が並ぶ上半静翼列と、N2枚の静翼列要素が並ぶ下半静翼列とから形成され、N1−N2=±2である。このような少ない枚数差は、励振低減効果を有効に示す。この場合に、動翼列の動翼列要素の枚数はNbで表され、下記式:
Nb=α・(N1+N2),α=2・(2n−1),n:自然数
で表されることが理論的に且つ実証的に好ましい。
The stationary blade row is formed of an upper half stationary blade row in which N1 stationary blade row elements are arranged and a lower half stationary blade row in which N2 stationary blade row elements are arranged, and N1−N2 = ± 2. Such a small number difference effectively shows an excitation reduction effect. In this case, the number of moving blade row elements of the moving blade row is represented by Nb, and the following formula:
Nb = α · (N1 + N2), α = 2 · (2n−1), n: It is theoretically and empirically preferable to be represented by a natural number.

静翼列は、N1枚の静翼列要素が並ぶ上半静翼列と、N2枚の静翼列要素が並ぶ下半静翼列とから形成される。この場合に、下記条件:
N1−N2=±1,且つ、40<(N1+N2)<80
が与えられることが理論的に且つ実証的に好ましい。
The stationary blade row is formed of an upper half stationary blade row in which N1 stationary blade row elements are arranged and a lower half stationary blade row in which N2 stationary blade row elements are arranged. In this case, the following conditions:
N1-N2 = ± 1, and 40 <(N1 + N2) <80
Is theoretically and empirically preferred.

静翼列は、N1枚の静翼列要素が並ぶ上半静翼列と、N2枚の静翼列要素が並ぶ下半静翼列とから形成される。この場合に、下記条件:
N1−N2=±1
が与えられる。この場合に、上半静翼列と下半静翼列は0.11ピッチのずれを有することが理論的に、且つ、実証的に好ましい。
The stationary blade row is formed of an upper half stationary blade row in which N1 stationary blade row elements are arranged and a lower half stationary blade row in which N2 stationary blade row elements are arranged. In this case, the following conditions:
N1-N2 = ± 1
Is given. In this case, it is theoretically and empirically preferable that the upper half stator blade row and the lower half stator blade row have a deviation of 0.11 pitch.

静翼列は、N1枚の静翼列要素が並ぶ上半静翼列と、N2枚の静翼列要素が並ぶ下半静翼列とから形成される。この場合に、下記条件:
N1−N2=0
が与えられる。この場合に、上半静翼列と下半静翼列は0.16ピッチのずれを有することが理論的に、且つ、実証的に好ましい。
The stationary blade row is formed of an upper half stationary blade row in which N1 stationary blade row elements are arranged and a lower half stationary blade row in which N2 stationary blade row elements are arranged. In this case, the following conditions:
N1-N2 = 0
Is given. In this case, it is theoretically and empirically preferable that the upper half stator blade row and the lower half stator blade row have a deviation of 0.16 pitch.

本発明による動静翼の励振低減構造は、数学的解析を可能にし、最適切に、励振を低減することができる。   The excitation-reduction structure for a moving blade and stationary blade according to the present invention enables a mathematical analysis and optimally reduces excitation.

本発明による動静翼の励振低減構造の実施の好ましい形態は、図に対応して、詳細に記述される。前置(前段)静翼列は、展開図として表される図1に示されるように、N個の静翼要素1により形成されている。多数の動翼2は、回転数Ω(1/t:tは単位時間)で静翼列1が形成する側面(回転面)に沿って回転する。N個の静翼1は、互いに合同であることが後述の計算を簡素化する点で好ましい。 A preferred embodiment of the structure for reducing vibration of a moving blade and stationary blade according to the present invention will be described in detail with reference to the drawings. As shown in FIG. 1 represented as a development view, the front (front stage) stationary blade row is formed by NT stationary blade elements 1. A large number of moving blades 2 rotate along the side surface (rotating surface) formed by the stationary blade row 1 at a rotational speed Ω (1 / t: t is a unit time). The NT stationary blades 1 are preferably congruent with each other from the viewpoint of simplifying the calculation described later.

1番目の静翼要素1と2番目の静翼要素1との間の中心位置間円周方向距離(ピッチ)は、2π/Nに設計的に設定されている。2番目の静翼要素1と3番目の静翼要素1との間の中心位置間円周方向距離(ピッチ)は、2π/(N+ΔN/N)に設計的に設定されている。ここで、ΔNは、隣り合う2つの静翼の間の等差ピッチを示す。i番目の静翼要素1と(i+1)番目の静翼要素1との間の中心位置間円周方向距離(静翼ピッチ)Pi−1は、次式で表される。
i−1=2π/{N+ΔN(i−1)/N)}
:全周の静翼の枚数(個数)
ΔN:ピッチ変化量(角度)
i−1は、等差数列であり、その等差はΔN/Nである。
The circumferential distance (pitch) between the center positions between the first stator blade element 1 and the second stator blade element 1 is set to 2π / NT by design. The circumferential distance (pitch) between the center positions between the second stator blade element 1 and the third stator blade element 1 is designed to be 2π / (N T + ΔN / N T ). Here, ΔN indicates an equal difference pitch between two adjacent stationary blades. A circumferential distance (stator blade pitch) Pi -1 between the center positions between the i-th stator blade element 1 and the (i + 1) -th stator blade element 1 is expressed by the following equation.
P i-1 = 2π / {N T + ΔN (i-1) / N T )}
N T : Number of stator blades (number)
ΔN: pitch change amount (angle)
P i-1 is an arithmetic sequence, and the difference is ΔN / N T.

このように、動翼2が前置静翼から受けるノズルウェーク励振力の周波数は動翼の1回転中に連続的に(等差ピッチ)で変化する。この変化により動翼をノズルウェーク振動数に共振させないために、動翼2が受ける加振力を知ることが重要である。その加振力f(t)は、次式で表される。
f(t)=Fbsin[(NΩ+ΔN・Ω・t/T)t]・・・(3)
(n−1)T<t<nT
T:ロータの回転周期
この加振力f(t)は、既述の公知の式(1)の右辺に置換され、動翼の振動を表す運動方程式は、次式(4)で表される。

Figure 2006046226
式中の(t)は、一般座標xが時間tの関数であることを示す。右辺に現れるFbは、動翼が前置静翼から受ける加振力の振幅を示す。 As described above, the frequency of the nozzle wake excitation force that the moving blade 2 receives from the front stationary blade changes continuously (equal difference pitch) during one rotation of the moving blade. It is important to know the excitation force that the moving blade 2 receives in order not to cause the moving blade to resonate with the nozzle wake frequency due to this change. The excitation force f (t) is expressed by the following equation.
f (t) = Fbsin [(N T Ω + ΔN · Ω · t / T) t] (3)
(N-1) T <t <nT
T: Rotational period of the rotor This excitation force f (t) is replaced with the right side of the already-known equation (1), and the equation of motion representing the vibration of the moving blade is expressed by the following equation (4). .
Figure 2006046226
(T) in the equation indicates that the general coordinate x is a function of time t. Fb appearing on the right side indicates the amplitude of the excitation force that the moving blade receives from the front stationary blade.

右辺のsinの中の値が1回転のうちで周期的に変化する式(4)は、1回転中で動翼に作用する加振力の振動数が一定でないことを明らかに示している。動翼の固有振動数は、動翼の1回転中で、式(4)で解かれる動翼の振動数に全期間で一致することはない(瞬間的に全周上の1点で一致することはあり得る。)。従って、動翼は、1回転中に共振することはなく、又は、その共振力は極端に減衰される。図2は、式(4)に基づいて動翼が受ける加振力の周波数を示している。周波数は、(N+ΔN)・ΩとN・Ωとの間で等周期的に変化し、動翼の固有振動数に原則的に一致せず、動翼が受ける共振力は持続的に減衰力を受けて、共振が効果的に回避される。 The expression (4) in which the value in the sin on the right side changes periodically in one rotation clearly shows that the frequency of the excitation force acting on the moving blade during one rotation is not constant. The natural frequency of the moving blade does not coincide with the moving blade frequency solved by Equation (4) over the entire period during one rotation of the moving blade (instantaneously matches at one point on the entire circumference). That is possible.) Therefore, the moving blade does not resonate during one rotation, or the resonance force is extremely attenuated. FIG. 2 shows the frequency of the excitation force that the moving blade receives based on the equation (4). The frequency changes periodically between (N T + ΔN) · Ω and NT · Ω, and in principle does not coincide with the natural frequency of the blade, and the resonance force that the blade receives is continuously Resonance is effectively avoided under the damping force.

図3は、本発明による動静翼の励振低減構造の実施の他の好ましい形態を示している。本形態では、静翼列1は、前置静翼列1Fと後置静翼列1Rとから形成されている。動翼2は、前置静翼列1Fと後置静翼列1Rの両面の間で回転する。前置静翼列1Fの枚数と等差数列のピッチ構造は図1の既述の前置静翼列のそれらの構造に同じである。後置静翼列1Rは、その枚数とその等差数列のピッチ構造の点で、前置静翼列1Fに同じである。後置静翼列1Rの回転方向の位相は、前置静翼列1Fに対してφaだけ前進方向に又は後退方向にずれている。本形態では、式(4)は次式(5)に変更される。

Figure 2006046226
ここで、Fbは既述のFbに同じであり、Faは動翼2が後置静翼列から受ける加振力の振幅を示している。図4に示されるように、前置静翼に対応する加振周波数と後置静翼に対応する加振周波数との間には、位相差φaが存在する。φaを適正に選択することにより、後置静翼列1Rは、更に、共振力を減衰させる。位相差φaは、前置静翼と後置静翼の回転方向の相対的位置を変更することにより容易に与えられ得る。 FIG. 3 shows another preferred form of implementation of the structure for reducing excitation of a stationary blade according to the present invention. In this embodiment, the stationary blade row 1 is formed of a front stationary blade row 1F and a rear stationary blade row 1R. The moving blade 2 rotates between both surfaces of the front stationary blade row 1F and the rear stationary blade row 1R. The number of the front stator blade rows 1F and the pitch structure of the arithmetic sequence are the same as those of the previously described stator vane row in FIG. The rear stationary blade row 1R is the same as the front stationary blade row 1F in terms of the number of the stationary blade rows 1R and the pitch structure of the equidistant number rows. The rotational direction phase of the rear stationary blade row 1R is shifted in the forward direction or the backward direction by φa with respect to the front stationary blade row 1F. In this embodiment, Expression (4) is changed to the following Expression (5).
Figure 2006046226
Here, Fb is the same as Fb described above, and Fa indicates the amplitude of the excitation force that the moving blade 2 receives from the rear stationary blade row. As shown in FIG. 4, there is a phase difference φa between the excitation frequency corresponding to the front stator blade and the excitation frequency corresponding to the rear stator blade. By appropriately selecting φa, the rear stationary blade row 1R further attenuates the resonance force. The phase difference φa can be easily given by changing the relative positions of the front stator blade and the rear stator blade in the rotation direction.

図5は、本発明による動静翼の励振低減構造の実施の更に他の好ましい形態を示している。本形態では、静翼列1は、前置静翼列1Fと2段前静翼列1FFとから形成されている。2段目動翼2Fは、前置静翼列1Fの下流側で回転する。前置静翼列1Fと2段前前置静翼列は、その枚数と等差数列のピッチ構造の点で互いに同じであり、且つ、図1の既述の前置静翼列のそれらの構造に同じである。前置静翼列1Fと2段前静翼列はそれらのピッチが同じように減少し又は増加して、前置静翼から受けるノズルウエーク励振力の周波数と2段前静翼列から受けるノズルウエーク励振力の周波数が連続的に変化することにより動翼の共振が抑制される点は、実施の既述の形態に同じであるが、2段前静翼列1FFと前置静翼列1Fの間に位相差φbを与えて、両方のノズルウエーク励振力を相殺させることにより、動翼の応答を小さくすることができ、更に動翼の共振を抑制することができる。そのようなφbとして、動翼が受ける加振力がより小さくなる適正な値が存在し、下記式により計算により求められ、実機により検証される。

Figure 2006046226
ここで、Fbは既述のFbに同じであり、Fb2は動翼2が2段前静翼列から受ける加振力の振幅を示している。図6に示されるように、前置静翼列1Fに対応するノズルウェーク励振力の加振周波数と2段前静翼列1FFに対応するそれの加振周波数との間には、位相差φbが存在する。動翼が受ける加振力が小さくなるようにφbが適当に選択される。 FIG. 5 shows still another preferred form of implementation of the structure for reducing excitation of a stationary blade according to the present invention. In this embodiment, the stationary blade row 1 is formed of a front stationary blade row 1F and a two-stage front stationary blade row 1FF. The second stage moving blade 2F rotates on the downstream side of the front stationary blade row 1F. The front stator blade row 1F and the two-stage front stator blade row are the same in terms of the number and the pitch structure of the arithmetic sequence, and those of the front stator blade row described above in FIG. It is the same as the structure. The pitch of the front stator blade row 1F and the two-stage front stator blade row is similarly reduced or increased, and the frequency of the nozzle wake excitation force received from the front stator blade and the nozzle received from the second stage stator blade row The point that the resonance of the moving blade is suppressed by continuously changing the frequency of the wake excitation force is the same as the embodiment described above, but the two-stage front stator blade row 1FF and the front stator blade row 1F are the same. By providing the phase difference φb between the two nozzles to cancel both nozzle wake excitation forces, the response of the rotor blade can be reduced, and the resonance of the rotor blade can be further suppressed. As such φb, there is an appropriate value for reducing the excitation force applied to the moving blade, which is calculated by the following formula and verified by an actual machine.
Figure 2006046226
Here, Fb is the same as Fb described above, and Fb2 indicates the amplitude of the excitation force that the moving blade 2 receives from the two-stage front stationary blade row. As shown in FIG. 6, there is a phase difference φb between the excitation frequency of the nozzle wake excitation force corresponding to the front stationary blade row 1F and the excitation frequency corresponding to the two-stage front stationary blade row 1FF. Exists. Φb is appropriately selected so that the vibration force applied to the moving blade is reduced.

図7は、本発明による動静翼の励振低減構造の実施の更に他の好ましい形態を示している。本形態では、静翼列1は、上半静翼列1Uと下半静翼列1Dとから形成されている。上半静翼列1Uと下半静翼列1Dは、同一円周上に配置されている。上半静翼列1Uの枚数と等差数列のピッチ構造は、下半静翼列1Dの枚数と等差数列のピッチ構造に同じである。動翼2が受ける加振力f(t)は、次式で表される。
f(t)=Fbsin[(NΩ+ΔN・Ω・t/T)t]・・・(7)
(n−1)T/2<t<nT/2
FIG. 7 shows still another preferred form of implementation of the structure for reducing excitation of a stationary blade according to the present invention. In this embodiment, the stationary blade row 1 is formed of an upper half stationary blade row 1U and a lower half stationary blade row 1D. The upper half stator blade row 1U and the lower half stator blade row 1D are arranged on the same circumference. The number of upper half stator blade rows 1U and the pitch structure of the difference number sequence are the same as the number of lower half stator blade rows 1D and the pitch structure of the difference number sequence. The excitation force f (t) that the moving blade 2 receives is expressed by the following equation.
f (t) = Fbsin [(N T Ω + ΔN · Ω · t / T) t] (7)
(N-1) T / 2 <t <nT / 2

上半静翼列1UのピッチPuと下半静翼列1DのピッチPdは、それぞれに次式で表される。
Pu=2π/{N+ΔN(i−1)/N)},i=1〜N/2
Pd=2π/[N+ΔN{i−(N/2+1)/N}],i=N/2+1〜N
動翼2は、1回転中に、ノズルウェーク励振力を半周期(1回転周期の半分)ごとに共振力の減衰抑制効果を受け、図8に示されるように、その減衰効果が現れる時間は1回転周期の間で半減し、共振力発生抑制効果の現れが速い。
The pitch Pu of the upper half stator blade row 1U and the pitch Pd of the lower half stator blade row 1D are respectively expressed by the following equations.
Pu = 2π / {N T + ΔN (i−1) / N T )}, i = 1 to N T / 2.
Pd = 2π / [N T + ΔN {i− (N T / 2 + 1) / N T }], i = N T / 2 + 1 to N T
The moving blade 2 receives the nozzle wake excitation force during one rotation, and the resonance force attenuation suppression effect every half cycle (half of one rotation cycle). As shown in FIG. The effect of suppressing the generation of resonance force is fast and halved during one rotation cycle.

既述の形態は、1回転中又は半回転中でピッチ変化が等差数列で表されている。ピッチ変化は、連続関数的に表されることにより更に精緻な共振発生抑制を実現することができる。
f(t)=Fbsin{fb(t)t},(n−1)<T<nT・・・(8)
ここで、動翼2が受ける加振力f(t)は、時間tの関数として与えられている。静翼のピッチを時間的に線形に変化させる場合には、その加振力の周波数fb(t)は次式で規定される。
fb(t)=NΩ+αt・・・(8−1)
静翼のピッチを時間的に非線形に変化させる場合には、fb(t)は次式で規定される。
fb(t)=NΩ+α・t+β・t・t・・・(8−2)
In the above-described form, the pitch change is represented by an even number sequence during one rotation or half rotation. By expressing the pitch change in a continuous function, it is possible to realize more precise resonance suppression.
f (t) = Fbsin {fb (t) t}, (n−1) <T <nT (8)
Here, the excitation force f (t) received by the moving blade 2 is given as a function of time t. When the pitch of the stationary blade is changed linearly with time, the frequency fb (t) of the excitation force is defined by the following equation.
fb (t) = N T Ω + αt (8-1)
When the pitch of the stationary blade is changed nonlinearly with time, fb (t) is defined by the following equation.
fb (t) = N T Ω + α · t + β · t · t (8-2)

より一般的には、関数fb(t)は、時間の多次数関数で規定されるが、2次関数で充分によい共振減衰特性を得ることができる。共振減衰特性を最適化するためには、周知の多様な最適化問題解決法により、係数α,βを最適値化することが好ましい。その場合には、流れの安定性又は性能のような拘束(制約)条件が考慮される。制約条件として、隣接静翼間のピッチ差を規定値以下にすることが適正に例示される。式(8−2)が適用される場合の動翼2の運動方程式は、下記式(9)で表される。

Figure 2006046226
過渡応答Xの最適値は、式(9)から求めることができる。過渡応答Xmaxが最小化されるように式(9)の係数α,βが求められる。 More generally, the function fb (t) is defined by a multi-order function of time, but a sufficiently good resonance damping characteristic can be obtained by a quadratic function. In order to optimize the resonance damping characteristics, it is preferable to optimize the coefficients α and β by various known optimization problem solving methods. In that case, constraints such as flow stability or performance are taken into account. As a constraint condition, appropriately setting the pitch difference between adjacent stationary blades to be equal to or less than a specified value is exemplified. The equation of motion of the moving blade 2 when the equation (8-2) is applied is represented by the following equation (9).
Figure 2006046226
The optimum value of the transient response X can be obtained from Equation (9). The coefficients α and β in Equation (9) are obtained so that the transient response Xmax is minimized.

前置静翼列1Fの枚数と後置静翼列1Rの枚数とが同じである場合に、前置静翼列1Fピッチ変化関数と後置静翼列1Rのピッチ変化関数とをそれぞれに規定することは、更に、共振減衰特性を良好にする。前置静翼列1Fから動翼が受けるノズルウェーク励振力の周波数と後置静翼列1Rから動翼が受けるポテンシャル干渉力の周波数を連続的に(段階的に)変化させることは、動翼の共振を更に有効に抑制することができる。更に、前置静翼列1Fと後置静翼列1Rの位相を適正に変化させることにより、ノズルウェーク励振力とポテンシャル干渉力を相殺して、動翼応答を減少させることにより、更に一層に、共振減衰特性を良好にすることができる。この場合の加振力f(t)は、次式で表される。
f(t)=Fbsin(fb(t)・t)+Fasin(fa(t)・t)・・・(10)
(n−1)T<t<nT,n=1,2,3・・・
既述の通りに運動方程式により求められる最大過度応答の最小化が実行され、最適化共振減衰効果を得ることができる。ここで、fb(t)は、図10に示されるように、前置静翼1Fから動翼が受ける加振力の角周波数を示し、fa(t)は後置静翼1Rから動翼が受ける加振力の角周波数を示す。
When the number of the front stator blade row 1F and the number of the rear stator blade row 1R are the same, the pitch change function of the front stator blade row 1F and the pitch change function of the rear stator blade row 1R are respectively defined. This further improves the resonance damping characteristics. Changing the frequency of the nozzle wake excitation force received by the moving blade from the front stationary blade row 1F and the frequency of the potential interference force received by the moving blade from the rear stationary blade row 1R continuously (stepwise) Can be more effectively suppressed. Further, by appropriately changing the phases of the front stationary blade row 1F and the rear stationary blade row 1R, the nozzle wake excitation force and the potential interference force are offset, and the blade response is further reduced. The resonance attenuation characteristics can be improved. The excitation force f (t) in this case is expressed by the following equation.
f (t) = Fbsin (fb (t) · t) + Fasin (fa (t) · t) (10)
(N-1) T <t <nT, n = 1, 2, 3,...
As described above, the minimization of the maximum transient response obtained by the equation of motion is executed, and the optimized resonance damping effect can be obtained. Here, as shown in FIG. 10, fb (t) indicates the angular frequency of the exciting force that the moving blade receives from the front stationary blade 1F, and fa (t) indicates that the moving blade is moved from the rear stationary blade 1R. Indicates the angular frequency of the excitation force received.

図11は、本発明による動静翼の励振低減構造の実施の更に他の好ましい形態を示している。本形態では、静翼列1Rは、4セグメントに分割され、静翼列1Ra,1Rb,1Rc,1Rdに分割されている。静翼列1Ra,1Rcでは、隣接静翼間のピッチは1/2ピッチずつ連続的にずれる。静翼列1Rbの隣接静翼間ピッチは静翼列1Rdの隣接静翼間ピッチに同じであり、且つ、静翼列1Rbと静翼列1Rdの間には1/2ピッチのずれが存在する。このようなピッチ配分は、領域遷移区間(隣り合う領域の近接区間)で大きい(極端に大きい)ピッチ差(公知のオフセット法の180度のような大きいオフセット量)が生じない。このようにピッチの急変を回避することにより、サージのような流れの安定性に及ぼす影響を小さくすることができる。   FIG. 11 shows still another preferred form of implementation of the structure for reducing excitation of a moving blade and stationary blade according to the present invention. In this embodiment, the stationary blade row 1R is divided into four segments, and is divided into stationary blade rows 1Ra, 1Rb, 1Rc, and 1Rd. In the stator blade rows 1Ra and 1Rc, the pitch between adjacent stator blades is continuously shifted by ½ pitch. The pitch between adjacent stationary blades of the stationary blade row 1Rb is the same as the pitch between adjacent stationary blades of the stationary blade row 1Rd, and there is a 1/2 pitch deviation between the stationary blade row 1Rb and the stationary blade row 1Rd. . Such pitch distribution does not cause a large (extremely large) pitch difference (a large offset amount such as 180 degrees in the known offset method) in the region transition section (adjacent section of adjacent regions). Thus, by avoiding a sudden change in pitch, the influence on the flow stability such as surge can be reduced.

図12は、応答低減割合(共振減衰効果度合)の低減方法を示し、本低減方法は既述の形態に対して適用される。図1〜図11の各形態で、下半セグメントの静翼枚数N1と上半セグメントの静翼枚数N2の関係は、下記式のように採択される。
N1−N2=2、又は、N1−N2=−2
図12に示されるように、全静翼枚数が160であるときに、応答低減割合は70%に達している。
FIG. 12 shows a method of reducing the response reduction ratio (resonance damping effect degree), and this reduction method is applied to the above-described embodiment. In each form of FIGS. 1 to 11, the relationship between the number N1 of the stationary blades in the lower half segment and the number N2 of the stationary blades in the upper half segment is adopted as follows.
N1-N2 = 2 or N1-N2 = -2
As shown in FIG. 12, when the total number of stationary blades is 160, the response reduction ratio reaches 70%.

隣り合う動翼どうしが互いに連結され環状に閉じる動翼列が形成される無限翼構造が採択されるターボ機械では、動翼の枚数Nbが下記式:
Nb=α・(N1+N2),α=2/(2n−1)・・・(11)
で規定される場合に、節直径モードが概ね逆相条件を満たし、より安定した応答低減効果を得ることができる。
In a turbomachine adopting an infinite blade structure in which adjacent blades are connected to each other to form an annular blade row that is closed annularly, the number Nb of blades is given by the following formula:
Nb = α · (N1 + N2), α = 2 / (2n−1) (11)
, The nodal diameter mode generally satisfies the reverse phase condition, and a more stable response reduction effect can be obtained.

図13は、応答低減割合の他の低減方法を示し、本低減方法は既述の形態に対して適用される。N1−N2=1又はN1−N2=−1に設定される。N1+N2=40〜80で、ノズルウェーク励振力による振動応答の応答低減割合は、概ね68%である。本発明の課題である応答低減割合を70%以下にする目標を概ね達成することができる。この場合にも、条件式(11)は有効である。   FIG. 13 shows another reduction method of the response reduction rate, and this reduction method is applied to the above-described embodiment. N1-N2 = 1 or N1-N2 = -1 is set. N1 + N2 = 40 to 80, and the response reduction rate of the vibration response due to the nozzle wake excitation force is approximately 68%. The goal of reducing the response reduction rate, which is the subject of the present invention, to 70% or less can be generally achieved. Also in this case, conditional expression (11) is effective.

図14は、オフセット法を用いる応答低減割合の他の低減方法を示し、本低減方法は既述の形態に対して適用される。図15は、上半セグメントと下半セグメントのピッチずらしを示している。図14の横軸は、上半セグメントと下半セグメントの共通のピッチずらし量を示している。(N1+N2)[H]([H]:ハーモニック数)の応答割合曲線は、(N1+N1)[H]の応答割合直線に対してオフセットピッチが0.11である点で交叉している。ピッチずらし量を0.11ピッチに規定することにより、最適の応答低減割合を得ることができる。本形態にも、条件式(11)は効果的に適用される。   FIG. 14 shows another reduction method of the response reduction rate using the offset method, and this reduction method is applied to the above-described embodiment. FIG. 15 shows the pitch shift between the upper half segment and the lower half segment. The horizontal axis in FIG. 14 indicates the common pitch shift amount for the upper half segment and the lower half segment. The response ratio curve of (N1 + N2) [H] ([H]: harmonic number) intersects the response ratio straight line of (N1 + N1) [H] at a point where the offset pitch is 0.11. By defining the pitch shift amount to be 0.11 pitch, an optimum response reduction ratio can be obtained. Conditional expression (11) is also effectively applied to this embodiment.

ターボ機械のシュラウドにより連結される全周綴り翼構造(無限翼構造)、又は、単独翼構造でフレキシブルなディスクを介して全周の翼が連成する場合には、翼全体の振動モードは一連の節直径を有する振動モード族に分化する。節直径を有する連成振動の共振応答では、下記の共振条件式が同時に満足される場合にのみ応答する。
ΩH=ω,H±ND=λNb
Ω:軸回転数
H:励振ハーモニック数
ω:連成系の固有振動数
ND:節直径数
λ:任意の整数
Nb:動翼枚数
When all-around blades are coupled via a flexible disk with an all-round spelled blade structure (infinite blade structure) connected by a shroud of a turbomachine or a single blade structure, the vibration mode of the entire blade is a series. It is differentiated into a family of vibration modes with a nodal diameter. The resonance response of a coupled vibration having a nodal diameter responds only when the following resonance condition formula is satisfied simultaneously.
ΩH = ω, H ± ND = λNb
Ω: Shaft rotation speed H: Excitation harmonic number ω: Coupled natural frequency ND: Nodal diameter λ: Arbitrary integer Nb: Number of blades

このような節直径を有する振動では、図16に示されるように、振動数と節直径の関係は(Nb/2)節直径を境にして折り返され対称の関係が存在する。
ω(Nb/2+i)=ω(Nb/2−i)
対称基準軸(逆相条件線)の近傍の2点P,Qでは、振動特性に大差はないが、対称基準軸から遠方ある2点P’,Q’では、振動特性に大差が生じる。上下のセグメントの静翼枚数を変化させる場合に、動翼が上下セグメントを通る際に応答する節直径はそれぞれに異なり、振動特性が異なるモードが励起される。このような場合には、上下セグメントの静翼枚数を変更することによる応答低減効果の予測が困難である。これに対して、逆相条件を満足する節直径付近では、上下セグメントの静翼枚数を変化させることにより、振動特性に与える影響は小さく、応答低減効果の予測が容易である。このような逆相条件は、励振ハーモニック数が全周静翼枚数(N1+N2)に一致するときに、節直径数がNb/2になることにより得られる。動翼枚数が下記の式(12)を満足する場合に、節直径モードが概ね逆相条件になり、既述の予測が容易であり、且つ、安定した応答低減効果を得ることができる。
Nb=α・(N1=N2),α=2/(2n−1)・・・(12)
In the vibration having such a node diameter, as shown in FIG. 16, the relationship between the frequency and the node diameter is folded back at the boundary of the (Nb / 2) node diameter, and there is a symmetrical relationship.
ω (Nb / 2 + i) = ω (Nb / 2−i)
There is no great difference in the vibration characteristics at the two points P and Q in the vicinity of the symmetrical reference axis (reverse phase condition line), but there is a large difference in the vibration characteristics at the two points P ′ and Q ′ far from the symmetrical reference axis. When changing the number of stationary blades in the upper and lower segments, the nodal diameters that respond when the moving blade passes through the upper and lower segments are different, and modes having different vibration characteristics are excited. In such a case, it is difficult to predict the response reduction effect by changing the number of stationary blades in the upper and lower segments. In contrast, by changing the number of stationary blades in the upper and lower segments near the nodal diameter that satisfies the antiphase condition, the influence on the vibration characteristics is small, and the response reduction effect can be easily predicted. Such a reverse phase condition is obtained when the number of nodal diameters is Nb / 2 when the number of excitation harmonics matches the total number of stator blades (N1 + N2). When the number of moving blades satisfies the following formula (12), the nodal diameter mode is almost in an anti-phase condition, the above-described prediction is easy, and a stable response reduction effect can be obtained.
Nb = α · (N1 = N2), α = 2 / (2n−1) (12)

図17は、上下セグメントの静翼枚数差が0である(N1−N2=0)場合に、上半セグメントと下半セグメントを周方向に0.16ピッチでずらすことによる応答低減割合を示している。(N1+N2)[H]対応の応答低減割合曲線は、0.16ピッチの位置で、(N1+N2±1)[H]対応の応答低減割合曲線に交叉する。0.16ピッチのずらしは、最適応答低減効果を示す。   FIG. 17 shows the response reduction ratio by shifting the upper half segment and the lower half segment by 0.16 pitch in the circumferential direction when the difference in the number of stationary blades in the upper and lower segments is 0 (N1-N2 = 0). Yes. The response reduction rate curve corresponding to (N1 + N2) [H] crosses the response reduction rate curve corresponding to (N1 + N2 ± 1) [H] at a position of 0.16 pitch. A shift of 0.16 pitch indicates an optimum response reduction effect.

翼列は、組立を容易にするために、上半分と下半分に分けられて製作される。通常、上半分は、下半分の上面である水平面に載置されて結合される。   The cascade is manufactured by dividing it into an upper half and a lower half in order to facilitate assembly. Usually, the upper half is placed on and coupled to a horizontal plane that is the upper surface of the lower half.

図1は、本発明による動静翼の励振低減構造の実施の好ましい形態を示す展開図である。FIG. 1 is a developed view showing a preferred embodiment of an excitation reducing structure for a moving and stationary blade according to the present invention. 図2は、周波数を示すグラフである。FIG. 2 is a graph showing the frequency. 図3は、本発明による動静翼の励振低減構造の実施の他の好ましい形態を示す展開図である。FIG. 3 is a developed view showing another preferred embodiment of the structure for reducing the excitation of a moving blade according to the present invention. 図4は、他の周波数を示すグラフである。FIG. 4 is a graph showing other frequencies. 図5は、本発明による動静翼の励振低減構造の実施の更に他の好ましい形態を示す展開図である。FIG. 5 is a development view showing still another preferred embodiment of the implementation of the structure for reducing excitation of moving blades according to the present invention. 図6は、更に他の周波数を示すグラフである。FIG. 6 is a graph showing yet another frequency. 図7は、本発明による動静翼の励振低減構造の実施の更に他の好ましい形態を示す展開図である。FIG. 7 is a development view showing still another preferred embodiment of the implementation of the structure for reducing excitation of moving blades according to the present invention. 図8は、更に他の周波数を示すグラフである。FIG. 8 is a graph showing yet another frequency. 図9は、更に他の周波数を示すグラフである。FIG. 9 is a graph showing yet another frequency. 図10は、更に他の周波数を示すグラフである。FIG. 10 is a graph showing yet another frequency. 図11は、本発明による動静翼の励振低減構造の実施の更に他の好ましい形態を示す正面図である。FIG. 11 is a front view showing still another preferred embodiment of the implementation of the structure for reducing excitation of a moving blade and stationary blade according to the present invention. 図12は、応答低減を示すグラフである。FIG. 12 is a graph showing response reduction. 図13は、他の応答低減を示すグラフである。FIG. 13 is a graph showing another response reduction. 図14は、更に他の応答低減を示すグラフである。FIG. 14 is a graph showing still another response reduction. 図15は、本発明による動静翼の励振低減構造の実施の更に他の好ましい形態を示す正面図である。FIG. 15 is a front view showing still another preferred embodiment of the implementation of the structure for reducing excitation of moving blades according to the present invention. 図16は、逆相条件を示すグラフである。FIG. 16 is a graph showing reverse phase conditions. 図17は、オフセットと応答低減を示すグラフである。FIG. 17 is a graph showing offset and response reduction.

符号の説明Explanation of symbols

1,1F,1FF…静翼列(静翼列要素)
2…動翼列(動翼列要素)
1,1F, 1FF ... Static blade row (Static blade row element)
2 ... Rotor blade row (Robot row element)

Claims (14)

静翼列と、
動翼列とを具え、
前記動翼列の動翼列要素は、下記運動方程式:
A−f(t)=0
で表され、前記Aは回転系に設定される一般座標xの時間に関する2階微分項と1階微分項と非微分項とで表され、前記f(t)は前記静翼列の静翼列要素から受ける外力を示し、
前記静翼列のピッチは、一定ではなく1回転の時間tの関数P(t)で表される
動静翼の励振低減構造。
A stationary blade row,
With a row of blades,
The moving blade row element of the moving blade row has the following equation of motion:
A−f (t) = 0
A is represented by a second-order differential term, a first-order differential term and a non-differential term with respect to time of the general coordinate x set in the rotating system, and f (t) is a stationary blade of the stationary blade row Indicates the external force received from the row element,
The pitch of the stationary blade row is not constant, and is expressed by a function P (t) of time t of one rotation.
前記f(t)は、下記式:
f(t)=Fbsin[fk(t)・t]
Fb:動翼が受ける加振力
fk(t):加振力の角周波数
で表される
請求項1の動静翼の励振低減構造。
The f (t) is represented by the following formula:
f (t) = Fbsin [fk (t) · t]
Fb: Excitation force fk (t) received by the moving blades: Expressed by the angular frequency of the excitation force.
前記式は、下記式:
fk(t)=N・Ω+α・t+β・t・t
α,β:係数
:静翼列要素の枚数
Ω:回転数(次元は時間の逆数)
で表される
請求項2の動静翼の励振低減構造。
Said formula is:
fk (t) = N T · Ω + α · t + β · t · t
α, β: Coefficient N T : Number of stationary blade row elements Ω: Number of rotations (dimension is reciprocal of time)
The excitation-reduction structure for a moving and static blade according to claim 2, represented by:
β=0である
請求項3の動静翼の励振低減構造。
The structure for reducing excitation of a stationary blade according to claim 3, wherein β = 0.
前記関数P(t)は、前記運動方程式を解くことにより得られる座標xの関数としてP(x(t))で表される
請求項1の動静翼の励振低減構造。
The excitation-reduction structure of a moving blade according to claim 1, wherein the function P (t) is represented by P (x (t)) as a function of a coordinate x obtained by solving the equation of motion.
前記静翼列の隣り合う静翼列要素の間のピッチは、回転方向の前記座標x上で等差数列で表される
請求項5の動静翼の励振低減構造。
The excitation-reduction structure for a moving and stationary blade according to claim 5, wherein a pitch between adjacent stationary blade row elements of the stationary blade row is represented by an arithmetic sequence on the coordinate x in the rotation direction.
前記静翼列は、
第1静翼列と、
前記第1静翼列に軸方向に並ぶ第2静翼列を備え、
前記第1静翼列の第1静翼列要素と前記第2静翼列の第2静翼列要素の間には、回転方向に位相差が与えられ、且つ、前記第2静翼列要素の枚数は前記第1静翼列要素の枚数に等しい
請求項1の動静翼の励振低減構造。
The stationary blade row is
A first stationary blade row;
A second stator blade row arranged in the axial direction in the first stator blade row;
A phase difference is provided in the rotational direction between the first stationary blade row element of the first stationary blade row and the second stationary blade row element of the second stationary blade row, and the second stationary blade row element The structure of claim 1, wherein the number of the first stationary blade row elements is equal to the number of the first stationary blade row elements.
前記第1静翼列の隣り合う第1静翼列要素の間のピッチは回転方向の前記座標x上で等差数列で表され、且つ、前記第2静翼列の隣り合う第2静翼列要素の間のピッチは回転方向の前記座標x上で前記等差数列で表される
請求項7の動静翼の励振低減構造。
The pitch between adjacent first stationary blade row elements of the first stationary blade row is represented by an arithmetic sequence on the coordinate x in the rotation direction, and the second stationary blade adjacent to the second stationary blade row. The excitation-reduction structure for a moving blade and the stationary blade according to claim 7, wherein a pitch between the row elements is represented by the arithmetic sequence on the coordinate x in the rotation direction.
前記動翼列は、
第1動翼列と、
第2動翼列を備え、
前記第1動翼列は前記第1静翼列に対面して配置され、且つ、前記第2動翼列は前記第2静翼列に対面して配置される
請求項7又は8の動静翼の励振低減構造。
The blade row is
A first blade row,
A second blade row,
The moving blades and stator blades according to claim 7 or 8, wherein the first moving blade row is disposed facing the first stationary blade row, and the second moving blade row is disposed facing the second stationary blade row. Excitation reduction structure.
前記静翼列は、
N1枚の静翼列要素が連続して並ぶ上半静翼列と、
N2枚の静翼列要素が連続して並ぶ下半静翼列とを備え、
N1−N2=±2である
請求項1〜9から選択される1請求項の動静翼の励振低減構造。
The stationary blade row is
An upper half vane row in which N1 vane row elements are continuously arranged;
A lower half stationary blade row in which N2 stationary blade row elements are continuously arranged,
N1-N2 = ± 2. The excitation-reduction structure for a moving and static blade according to claim 1, wherein the structure is reduced from N1 to N2.
前記動翼列の動翼列要素の枚数はNbで表され、下記式:
Nb=α・(N1+N2),α=2・(2n−1),n:自然数
で表される
請求項10の動静翼の励振低減構造。
The number of moving blade row elements of the moving blade row is represented by Nb, and the following formula:
The vibration reduction structure for a moving blade according to claim 10, wherein Nb = α · (N1 + N2), α = 2 · (2n−1), and n: a natural number.
前記静翼列は、
N1枚の静翼列要素が連続して並ぶ上半静翼列と、
N2枚の静翼列要素が連続して並ぶ下半静翼列とを備え、
下記条件:
N1−N2=±1,且つ、40<(N1+N2)<80
(ここで大小比較記号は等号を含む)
が与えられている
請求項1〜9から選択される1請求項の動静翼の励振低減構造。
The stationary blade row is
An upper half vane row in which N1 vane row elements are continuously arranged;
A lower half stationary blade row in which N2 stationary blade row elements are continuously arranged,
The following conditions:
N1-N2 = ± 1, and 40 <(N1 + N2) <80
(Here, the large and small comparison symbols include the equal sign.)
The structure for reducing excitation of a moving blade and a stationary blade according to claim 1, wherein the structure is reduced.
前記静翼列は、
N1枚の静翼列要素が連続して並ぶ上半静翼列と、
N2枚の静翼列要素が連続して並ぶ下半静翼列とを備え、
下記条件:
N1−N2=±1
が与えられ、前記上半静翼列と前記下半静翼列は0.11ピッチのずれを有する
請求項1〜9から選択される1請求項の動静翼の励振低減構造。
The stationary blade row is
An upper half vane row in which N1 vane row elements are continuously arranged;
A lower half stationary blade row in which N2 stationary blade row elements are continuously arranged,
The following conditions:
N1-N2 = ± 1
The excitation-reduction structure for a moving and stationary blade according to claim 1, wherein the upper half stator blade row and the lower half stator blade row have a deviation of 0.11 pitch.
前記静翼列は、
N1枚の静翼列要素が連続して並ぶ上半静翼列と、
N2枚の静翼列要素が連続して並ぶ下半静翼列とを備え、
下記条件:
N1−N2=0
が与えられ、前記上半静翼列と前記下半静翼列は0.16ピッチのずれを有する
請求項1〜9から選択される1請求項の動静翼の励振低減構造。
The stationary blade row is
An upper half vane row in which N1 vane row elements are continuously arranged;
A lower half stationary blade row in which N2 stationary blade row elements are continuously arranged,
The following conditions:
N1-N2 = 0
The excitation-reduction structure for a moving and stationary blade according to claim 1, wherein the upper half stator blade row and the lower half stator blade row have a deviation of 0.16 pitch.
JP2004229887A 2004-08-05 2004-08-05 Excitation reducing structure for rotor and stator blade Withdrawn JP2006046226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004229887A JP2006046226A (en) 2004-08-05 2004-08-05 Excitation reducing structure for rotor and stator blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004229887A JP2006046226A (en) 2004-08-05 2004-08-05 Excitation reducing structure for rotor and stator blade

Publications (1)

Publication Number Publication Date
JP2006046226A true JP2006046226A (en) 2006-02-16

Family

ID=36025095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004229887A Withdrawn JP2006046226A (en) 2004-08-05 2004-08-05 Excitation reducing structure for rotor and stator blade

Country Status (1)

Country Link
JP (1) JP2006046226A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2462921A (en) * 2008-08-27 2010-03-03 Snecma Method for reducing the vibration levels of a propfan of contrarotating bladed disks of a turbine engine
WO2013027449A1 (en) * 2011-08-22 2013-02-28 株式会社日立製作所 Method for calculating unsteady force acting on rotor blade or stator blade, turbine design technique and turbine manufacturing method
JP2014037775A (en) * 2012-08-10 2014-02-27 Hitachi Ltd Design method of turbine, manufacturing method of turbine and determination method of non-stationary force acting on moving blade or like

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2462921A (en) * 2008-08-27 2010-03-03 Snecma Method for reducing the vibration levels of a propfan of contrarotating bladed disks of a turbine engine
GB2462921B (en) * 2008-08-27 2012-09-05 Snecma Method for reducing the vibration levels of a propfan of contrarotating bladed discs of a turbine engine
WO2013027449A1 (en) * 2011-08-22 2013-02-28 株式会社日立製作所 Method for calculating unsteady force acting on rotor blade or stator blade, turbine design technique and turbine manufacturing method
JP2013044233A (en) * 2011-08-22 2013-03-04 Hitachi Ltd Turbine designing technique and turbine manufacturing method
EP2765275A4 (en) * 2011-08-22 2015-07-15 Mitsubishi Hitachi Power Sys Method for calculating unsteady force acting on rotor blade or stator blade, turbine design technique and turbine manufacturing method
JP2014037775A (en) * 2012-08-10 2014-02-27 Hitachi Ltd Design method of turbine, manufacturing method of turbine and determination method of non-stationary force acting on moving blade or like

Similar Documents

Publication Publication Date Title
JP5519835B1 (en) Rotating body with wings
US8277166B2 (en) Use of non-uniform nozzle vane spacing to reduce acoustic signature
JP4678406B2 (en) Stator blade row of turbo fluid machine
US8600707B1 (en) Process for analyzing a labyrinth seal for flutter
US8534991B2 (en) Compressor with asymmetric stator and acoustic cutoff
AU2014228703B2 (en) Vane arrangement having alternating vanes with different trailing edge profile
US9963974B2 (en) Reduction of equally spaced turbine nozzle vane excitation
Wilson et al. The effect of stagger variability in gas turbine fan assemblies
JP5494972B2 (en) Axial-flow turbomachine and its modification method
Brailko et al. Computational and experimental investigation of unsteady and acoustic characteristics of counter-rotating fans
JP2006046226A (en) Excitation reducing structure for rotor and stator blade
EP2960432B1 (en) Rotor and gas turbine engine including a rotor
Monk et al. Reduction of aerodynamic forcing through introduction of stator asymmetry in axial compressors
JP2008208835A (en) Method for reducing vibration level of bladed wheel in turbomachine
US10267155B2 (en) Method for intentionally mistuning a turbine blade of a turbomachine
US8375698B2 (en) Method for reducing the vibration levels of a propfan of contrarotating bladed disks of a turbine engine
JP2013177816A (en) Axial-flow turbomachine
CN103114954A (en) Method for improving pressure pulsation of mixed-flow type pump turbine
JP2019515178A (en) Method for contouring blades of an axial flow turbomachine
Jüngst et al. Aeroelastic effects in a transonic compressor with nonaxisymmetric tip clearance
JPH0514120B2 (en)
Burgos et al. Application of phase-lagged boundary conditions to rotor/stator interaction
Vinayaka et al. Frequency evaluation for mechanical integration of shrouded HP rotor blades in an aircraft engine compressor
JP2004332562A (en) Stationary blade cascade of axial compressor
JP3524955B2 (en) Runner structure of hydraulic machine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071106