JP5901631B2 - 検知システムおよび自己テスト方法 - Google Patents

検知システムおよび自己テスト方法 Download PDF

Info

Publication number
JP5901631B2
JP5901631B2 JP2013520833A JP2013520833A JP5901631B2 JP 5901631 B2 JP5901631 B2 JP 5901631B2 JP 2013520833 A JP2013520833 A JP 2013520833A JP 2013520833 A JP2013520833 A JP 2013520833A JP 5901631 B2 JP5901631 B2 JP 5901631B2
Authority
JP
Japan
Prior art keywords
signal
detection system
detection
threshold
harmonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013520833A
Other languages
English (en)
Other versions
JP2013539336A (ja
JP2013539336A5 (ja
Inventor
ファックスボグ、フレデリック、アール.
イェンセン、ウォレス
ノエ、テレンス、アール.
エイド、クレイグ
ジャクソン、デイビッド、ブレイク
フックス、グレッグ
ノードリング、ゲール
Original Assignee
エンプリマス、エルエルシー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エンプリマス、エルエルシー filed Critical エンプリマス、エルエルシー
Publication of JP2013539336A publication Critical patent/JP2013539336A/ja
Publication of JP2013539336A5 publication Critical patent/JP2013539336A5/ja
Application granted granted Critical
Publication of JP5901631B2 publication Critical patent/JP5901631B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H5/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection
    • H02H5/005Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to ionising radiation; Nuclear-radiation circumvention circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/04Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • G01R23/20Measurement of non-linear distortion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/04Details with warning or supervision in addition to disconnection, e.g. for indicating that protective apparatus has functioned
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/50Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to the appearance of abnormal wave forms, e.g. ac in dc installations
    • H02H3/52Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to the appearance of abnormal wave forms, e.g. ac in dc installations responsive to the appearance of harmonics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/04Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for transformers
    • H02H7/045Differential protection of transformers
    • H02H7/0455Differential protection of transformers taking into account saturation of current transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Protection Of Static Devices (AREA)
  • Protection Of Transformers (AREA)
  • Measurement Of Current Or Voltage (AREA)

Description

本出願は、PCT国際特許出願として、米国を除くすべての指定国に対する出願人を米国企業であるエンプリマス社の名で、また、米国を指定国とする場合のみの出願人をフレデリック・アール.・ファックスボグ、ウォレス・イェンセン、テレンス・アール.・ノエ、クレイグ・エイド、デイビッド・ブレイク・ジャクソン、グレッグ・フックス、ゲール・ノードリングの名で、2011年7月20日に出願された。
(関連出願への参照)
本出願は、2010年7月20日に出願された米国の仮特許出願で「Geomagnetic Storm Sensor for Protecting Electrical Systems」というタイトルの第61/366,081号に基づく優先権を主張する。そして、その仮特許出願は、参照によって本出願に完全に取り入れられる。
(技術分野)
本発明は、一般に、高電圧トランス(変圧器)防護システムに関し、特に、高電圧トランス、電力装置、電子機器およびコンピュータ・システムを保護するために用いられる制御システムに関する。
電気機器、特に交流電流を使用して動作する電気機器は、入力信号や状況の変化の影響を受けやすい。一般的な構成では、米国内の交流装置は、所定の大きさ(例えば、北米内では120ボルト、ヨーロッパ内では240ボルト)を有する60Hz(または、ヨーロッパ内では50Hz)の電力線源を受けることを要求する。これらの電源は若干異なっているかもしれないが、特定の電流によって使用するように製造された装置は、一般に、受信した電力信号におけるわずかな変化を扱うことができる。
場合によっては、電力信号は、外部の状況や高調波(基本波以外の正弦波)によって大きく変化する可能性がある。電力信号上に高調波や準直流電流(擬似直流電流)を引き起こす可能性がある外部の状況とは、地磁気嵐や電気機器の影響を含む。そのようなイベントは、電力信号の入力電圧と入力電流(およびその結果として生じる電力)が劇的に変化する原因になり、そして、その電力信号を受けている電気機器に損害を引き起こす可能性の原因になる。地磁気嵐や、高高度電磁パルス(HEMP)に付随するE3パルスは、高電圧電力の発生、伝達および分配のシステム部品(すなわち電力搬送線と電力トランス)において、直流電流や、GIC(Geomagnetic Induced Currents:地磁気誘導電流)と呼ばれる準直流電流を、誘導する可能性がある。これらの直流電流は、特に古いかメンテナンス不足のトランスにおいて、そのようなトランスの過度の反応電力の損失、加熱、損害、故障を引き起こす可能性がある電力トランスのコアで、半周期飽和を引き起こす可能性がある。さらに、半周期飽和は、一次周波数(50Hzまたは60Hz)の高調波の生成を引き起こす可能性がある。この高調波の成分は、電力システムのリレー(中継装置)を起動する原因になる可能性がある。それにより、必須の補償部品が分離されてしまうことがある。これにより、その後、送電網の局所部分や広域部分の崩壊が起こってしまうことがある。
およそ過去20年の間、電力システムにおいてGICやHEMP(E3)によって誘導される電流を減らすためのいくつかのアプローチが、提案された。これらの解決は、一般に、2,3の形式のうちの1つをとる。解決の第1の種類では、容量回路を使い、交流電流接地経路と誘導直流電流のためのブロックとを同時に提供する。これらの解決は、一般に、通常の設置されたトランス接続と容量回路を介した接地との間におけるスイッチングを可能にする一組のスイッチを含む。これらの解決では、トランス中性点への意図しない開接地接続を考慮する必要があるか、あるいは、接地故障状況を処理するための高価な電子機器を必要とする可能性がある。これらの容量回路を用いた解決は、電流の操作上のパラメータと比較して、電力システムのリレー装置の再調整を必要とするかもしれない。
解決の第2の種類は、一般に、活性要素の連続使用を含み、トランス中性点を流れる直流電流や準直流電流から接地接続までの潜在的に有害なGICイベントを減らす。任意の故障がこれらのシステムを不信頼にしてしまうので、これらの解決は、一般に、高価な電力装置を必要とし、そして、絶えず動作中である。さらに、この解決が電力システム内で最初に取り入れられるとき、多くのリレー/ブレーカはそれらのセッティングの再調整を必要とする。
解決の第3の種類は、一般に、抵抗アプローチを使用する。抵抗アプローチにおいて、固定価値抵抗が用いられ、トランスの接地接続に対する中性点を流れる直流電流を連続的に減らす。しかし、これらのアプローチにおいて、抵抗は、一般に、高い抵抗値を有していなければならず、また、直流電流や準直流電流を、減らすだけで、除くわけではない。さらに、これらの解決の種類の設置の間、電力システムのリレー装置の再調整が必要となるかもしれない。このように、電力供給システムに適合し、信頼性があって低コストの防護回路を提供する解決法は存在しない。さらにまた、充分な現場メンテナンスを必要としないそのような防護システムを制御するための信頼性があってテスト可能なシステムは存在しない。
電力システムにおいてGICやE3によって誘導された電流を減らしたりブロックしたりするためのいくつかのアプローチが提案されている。しかし、これらのシステムで、起こりえるさまざまなタイプの潜在的に有害な事象に取り組むための包括的な解決法を提供するものはない。特に、まずGICやE3イベントの存在を検知し、それから直流電流ブロッキングデバイスを切り換えて高電圧トランスを保護する検知制御システムを用いるという既知のアプローチがなかった。
これらの理由および他の理由から、改善が望まれている。
以下の開示にしたがって、上記の問題や他の問題は解決される。
第1の実施形態では、電気防護回路を有する検知制御システムが、開示される。システムは、複数の検知部品を含む。複数の検知部品は、トランス電力線やEMPとIEMIの環境イベントにおける有害な高調波と直流電流や準直流電流を検知する。これらの検知部品は、高調波アナライザ、トランス中性点とアースの間に電気的に接続された分路抵抗、トランス中性点とアースの間に電気的に接続されたホール効果電流センサ、および、シールド筐体に対して外部に配置される電磁界検知器を含むが、それらに限定されない。そのシステムは、さらに、複数の閾値検知部を含む。複数の閾値検知部は、検知部品からの信号を、調整可能な所定の信号と比較する。そして、閾値検知部は、検知部品からの信号が所定の信号値を上回るとき、制御部(コントローラ)に信号指示を出力する。制御部は、また、シールド筐体内に配置され、複数の閾値検知部の少なくとも1台から信号指示を受け取ると、外部防護回路内でノーマルクローズスイッチ(通常閉じているスイッチ)を開く。制御部は、さらに、制御入力部を含む。制御入力部は、シールド筐体から離れた電力システム・オペレータから指示を受ける。制御部は、さらに、1つ以上の自己テスト手順を実行する。自己テスト手順では、潜在的に有害な信号をシミュレーションし、システムが正常に機能しているかどうかを判定する。いくつかの実施形態において、制御部は、シールド筐体(例えば、制御システム)から離れた電力システム・オペレータからの信号の受信に応じて、ノーマルクローズスイッチを開く。システムは、電気的部品を電磁パルス(EMP)やIEMIから保護するように構成されたシールド筐体を含んでいてもよい。そのようなオプションの構成では、フィルタはシールド筐体の内部の周囲に沿って配置される。そして、フィルタは、高周波で強力な電磁気の信号がシールド筐体内に入って潜在的に電気的部品に損害を与えるのを防ぐ。
第2の実施形態では、電気防護回路を有する検知制御システムが、開示される。システムは、シールド筐体を含む。シールド筐体は、電気的部品を電磁パルス(EMP)やIEMIから保護する。フィルタはシールド筐体の内部の周囲に沿って配置される。そして、フィルタは、高周波で強力な電磁気の信号がシールド筐体内に入って潜在的に電気的部品に損害を与えるのを防ぐ。システムは、さらに、シールド筐体内に配置された少なくとも1つの高調波アナライザを含む。高調波アナライザは、トランス電力線における有害な高調波を検知する。システムは、さらに、少なくとも1台の閾値検知部を含む。閾値検知部は、高調波アナライザからの信号を、調整可能な所定の信号と比較する。閾値検知部は、高調波アナライザからの信号が所定の信号値を上回るとき、制御部に信号指示を出力する。制御部は、また、シールド筐体内に配置され、複数の閾値検知部の少なくとも1台から信号指示を受け取ると、すぐに、外部防護回路内でノーマルクローズスイッチを開く。制御部は、さらに、制御入力部を含む。制御入力部は、シールド筐体から離れた電力システム・オペレータから指示を受ける。
第3の実施形態では、トランス内における電力高調波を検知する方法が開示される。その方法は、シールド筐体内で電力線信号を受信することと、その電力線信号に基づく総高調波歪値を生成することを含む。その方法は、さらに、総高調波歪値を閾値検知部内の予めセットされた閾値と比較することと、総高調波歪値が所定の値を上回ったことを検知すると、すぐに、スイッチ制御出力を生成することをさらに含む。そして、スイッチ制御出力は、トランス中性点と接地接続の間に位置するノーマルクローズスイッチを開く。
さらなる実施形態では、検知制御システムを自己テストする方法が開示される。その方法は、トランスにおいて電力システム周波数とは異なる周波数を有する交流信号を印加すること、交流テスト信号の既知の振幅と直流電流ブロッキング部品による電流測定値に基づいて、直流電流ブロッキング部品のブロッキング特性(例えば、インピーダンス)の機能と大きさを測定すること、を含む。その方法は、さらに、直流電流ブロッキング部品のブロッキング特性の大きさを予測値と比して、直流電流ブロッキング部品の正確な動作を決定することを含む。その方法は、さらに、高調波のテスト信号を電力線信号に印加することを含む。そして、高調波信号は、高調波アナライザに付随する閾値検知部によって定義された所定の閾値を超える振幅を有する。そして、閾値は振幅の範囲を定める。その方法は、さらに、高調波アナライザにおける高調波のテスト信号を分析し、高調波アナライザが高調波のテスト信号の存在を検知したかどうかを判定することを含む。その方法は、また、直流電圧信号をトランス中性点に印加し、トランス中性点とアースの間に流れている直流電流をシミュレーションすること、電磁気の検知器(EM)信号を印加すること、を含む。EM信号は、閾値検知部によって定義された所定の閾値を超える振幅を有する。閾値は、振幅の範囲を定める。
高電圧トランス環境の実施形態に接続された検知制御電子機器の概略正面図である。 本発明の制御システムの外部の電気防護回路の実施形態を示す。 電気防護回路の実施形態を含む連続接地システムに接続された検知制御システムの実施形態を示す。 外部電磁界検知器を含むシールド筐体内で含まれる検知制御システムの実施形態である。 シールド筐体内に含まれる検知制御システムの実施形態である。 検知制御システム内に含まれる高調波アナライザの実施形態である。 検知制御システム内に含まれる高調波アナライザの他の実施形態である。 検知制御システム内に含まれる高調波アナライザの他の実施形態である。 検知制御システム内に含まれる閾値検出回路の実施形態を示す。 自己テスト機能を含む検知制御電子機器の実施形態を示す。
本発明では、全般的に、電力線において高調波を引き起こす有害な直流電流や準直流電流を検知し、電気防護回路でスイッチ・アセンブリを制御して高電圧トランスと他の電気機器を有害な直流電流や準直流電流から保護するシステムと方法について述べる。大きな直流中性点電流と高調波電圧は、(太陽の)地磁気嵐、高高度電磁E3パルス(HEMP−E3)や他の電気機器(例えばスイッチング電源、アーク溶接装置、プラズマ・カット装置、放電加工装置、アーク灯、その他。それらは同じ送電網やローカル電力回路の上にある。)の結果として生じる。概説すると、本発明では、50Hzまたは60Hzの電力線源の高調波や潜在的に有害な中性点直流電流を検知し、そのような高調波や直流電流が検知された場合に、装置を制御して動作の保護モードに切り替える方法とシステムについて記述する。
GIC(太陽の地磁気嵐)やEMP・E3パルスからの高電圧電力システムの保護は、電力線信号における有害な直流電流と外部の高電磁気イベントを検知するシステムを使用することで、実現される。本明細書で開示される検知システムは、高い(および超高の)高電圧力トランスの中性点接続における直流電流の存在を検知するのに用いられる電子機器を提供する。検知システムは、さらに、直流電流に起因する電力線信号上の高調波や、トランスのワインディング(巻線)内の半波の充満を検知する高調波(あるいは総高調波)歪(HDまたはTHD)センサを含んでいてもよい。検知システムは、さらに、外部の電磁パルス(EMP)イベントを検知する電磁界検知器を含んでいてもよい。検知システムは、分路抵抗を流れる電流を計算する検知器や、トランス中性点に電気的に接続されたホール効果電流センサをさらに含んでいてもよい。本発明は、電気防護回路に信号を送り、電気防護回路内に含まれる直流電流ブロッキングアセンブリ内のスイッチ・アセンブリの動作を制御する。制御システムは、電気防護回路内のスイッチを制御し、高電圧トランスを地磁気やEMP(E3パルス)によって誘導された電流から保護する。直流電流ブロッキング部品(一つ以上のコンデンサ、抵抗、または。それらの組合せを含む。)は、電気防護回路内にしっかりと配線され、妨害不能な交流電流接地経路を高電力システム(例えば「Y」字形に構成された高トランスや自動トランスの中性点)に提供する。通常の動作中に、第2の並列接地経路は低いインピーダンスと、閉スイッチ・アセンブリを介した標準的な接地経路を提供する。
図1は、本発明の実施形態によって保護されている電気機器例の概略正面図と、本発明の特定の部品の物理的な配置である。本実施形態において、電気機器(高電圧トランス100として示されている。)の一区画は、電気防護回路102に電気的に接続している。図2−図9に本実施形態によれば、電気防護回路102は、例えば、以下に記す装置の少なくとも一部を含んでもよい。高電圧トランス100は、一般に、所定パッド101に取り付けられる。電気防護回路102は、前記したように高電圧トランス100に電気的に接続していて、入れ物に入っていて、接地支持物103上に電気的に載置される。GICイベントから保護することに加えて、すべての制御電子機器(半導体装置)は、EMP/IEMIシールド・電気的フィルタ筐体104内に入れられる。EMP/IEMIシールド・電気的フィルタ筐体104は、電気防護回路102および高電圧トランス100に電気的に接続され、検知・スイッチ制御回路105を含む。システムは、EMP/IEMIシールド・電気的フィルタ筐体104無しで、トランスを、GICとEMP・E3イベントに対して保護するが、EMP・El、E2やIEMIパルスの脅威に対して保護しないことに、注意すべきである。
特定の実施形態において、電気防護回路102は、図2−図3において言及するスイッチ・アセンブリと直流電流ブロッキング部品を含む。一方、以下の図3−図10に図示されるように、制御システム104は、検知・スイッチ作動回路を含む。しかし、電気保護装置のための部品の他の配置が提供されてもよい。
図2は、本発明の検知制御電子機器で使用可能な電気防護回路200の第1の全体的な実施形態を示す。回路200は、一般に、トランス12(本実施形態内のY−トランスとして示されている。)のトランス中性点10とアース14の間に、接続される。電気防護回路200は、トランス中性点10とアース14の間に接続された電気的被制御スイッチ204を含むスイッチ・アセンブリ202を含む。分路抵抗206は、スイッチ204とアース14の間に接続される。分路抵抗206は、トランス中性点10とアース14の間に流れる直流電流を検知するのに使用される。特定の実施形態において、分路抵抗206は、一般に、数ミリオームオーダの低抵抗である。これは、スイッチを介した低インピーダンス接地接続を可能とする。他の実施形態において、分路抵抗206は、ホール効果電流センサや他の非接触電流センサによって代用可能である。さらに、電気的に制御される高電圧接地スイッチ208は、トランス中性点10とスイッチ204の間に接続され、例えば、接地故障イベントの間、スイッチ204を高電圧から保護する。いくつかの実施形態において、アース14は、事業所アース網に接続する。一方、他の実施形態において、アース14は、順番に接地されているトランス・ハウジングに接続する。
スイッチ204は、高速動作する電気的制御されるスイッチ(例えば高電圧ブレーカ(遮断器)スイッチ)であれば任意の種類のものでよい。本実施形態において、スイッチ204は、電気制御入力部を介して素早く開くノーマルクローズ接続である。実施形態の制御入力部に接続されている代表的な検知制御回路は、図3−図10に関連して以下でさらに言及される。
直流電流ブロッキング部品210は、トランス中性点10とアース14の間に、スイッチ・アセンブリ202と並列に接続される。下記の例でさらに説明されるように、直流電流ブロッキング部品210は、アース14と、トランス中性点10の間の電流経路を遮断することができる直流電流ブロッキングデバイス(例えば、コンデンサや抵抗)を含んでもよい。これにより、トランス中性点10内の有害な直流電流や準直流電流の接地電流を防ぐ。直流電流や準直流電流の接地電流は、トランス12に対してその後に損害を発生させるものである。特定のアプリケーションに従い、コンデンサか抵抗(またはそれらの組合せ)のブロッキング装置210は、防護回路302内で使用可能である。さらに、特定の実施形態において、直流電流ブロッキング部品210は、アース14にしっかりと配線される。したがって、もし、スイッチ204、208が不意に故障したとしても、AC(交流電流)接地をトランス(または他の電力部品)に提供する。
通常動作中、トランス中性点10は、スイッチ・アセンブリ202を介して接地されている。つまり、スイッチ・アセンブリ202(スイッチ204と高電圧接地スイッチ208を含む。)は、ノーマルクローズ位置にある。これは、設備機器により用いられる標準接地構成と合致する。したがって、例えば、本明細書で開示されているような接地システムは、使用の前に取り付けられる設備機器の電気機器への再調整を必要としない。作動のこの第1のモードでは、直流電流ブロッキング部品210はエネルギーを与えられない。その理由は、スイッチングアセンブリがそのまわりでショートを形成するからである。もし、この通常の動作モード(GICでない)で動いている間に接地故障が検知されれば、電力システムのリレーが故障した装置を絶縁させるまで、スイッチ・アセンブリによる接地は、接地故障を処理する。接地接続への中性点において高電力高調波か準直流電流のいずれかが検知されたとき、スイッチ・アセンブリは、GIC検知制御電子機器によって開けられる。動作のこの第2のモードにおいて、直流電流ブロッキング部品210は、交流電流設置をトランス中性点に提供する。動作のこの方法は、GICかEMP・E3イベントとのいずれかに付随する直流電流や準直流電流から保護する。このGIC保護モードは、遠隔地の電力システム・オペレータが「イベント終了」を宣言し、スイッチ・アセンブリ202を再び閉じるまで、継続する。
いくつかの実施形態において、GICと接地故障が同時発生する確率はとても低いが、そのようなイベントが発生した場合にも対応するために、サージアレスタ212、つまり、バリスタ、MOV(金属酸化物バリスタ)、その他のそのようなサージアレスタとして知られている装置を動作させて、ブロッキング部品210を保護する。それから、スイッチ・アセンブリ208は、トランス中性点電流トランス214を介して故障電流を検知しているリレーからの信号によって、再び閉じられる。トランス中性点電流トランス214は、逆に、高電圧スイッチ208を起動させ、それを再び閉じる。したがって、サージアレスタ212は、接地故障の1つの繰り返しの範囲内で、また、スイッチングアセンブリ202が再び閉じられるまでの初期接地を提供する。この同時イベント(GICと接地故障)の確率はとても小さく、実際には、それがシステムの有効期間内に一度も起きない可能性があることに注意すべきである。
サージアレスタ212のコストを下げるために、1回のイベントだけに対して保護をして、それから交換を必要とするような使い捨ての装置である低コストのサージアレスタを使うことが望ましい場合がある。そのサージアレスタが使用済みになった後、そのデザインによるその部分はアースへの短絡回路になる。第2のオプションは、第1のサージアレスタが使用済みになったときに必要に応じて2番目のサージアレスタがスイッチングされて交換されるように、スイッチを用いてさらなるサージアレスタを第1の設備内に取り入れることである。第3のオプションは、サージアレスタが故障することなく多くの接地故障イベントに耐えることを保証するような非常に丈夫なサージアレスタを、第1の設備内に取り入れることである。
スイッチ・アセンブリを開くことによって、図2に示される直流電流ブロッキング部品210は、交流電流接地経路をトランス中性点10に提供する一方、地磁気嵐やEMP・E3イベントによって誘導された直流電流や準直流電流をブロックするとともに減少させる。直流電流や準直流電流を遮断することは、トランス12を、トランスの過度の反応電力損失、過熱、損害、故障さえまでも引き起こす半周期飽和への突入から、保護する。さらに、直流電流を遮断することは、また、電力システムにおける高調波の生成を防止する。高調波は、逆に、電力リレーの妨害や、電力補償部品の遮断や、過度の反応電力負担や、送電網の小さな部分や大きな部分の潜在的な崩壊を、防止する。
さらに、直流電流ブロッキング部品210の信頼性を増やすために、複数のコンデンサまたは抵抗の並列接続されたバンク(接点端子群)が使用可能で、もし、これらのコンデンサまたは抵抗の一つ以上が故障したなら、他のコンデンサまたは抵抗がブロッキング部品として使用可能になる。
さらに、そして、以下で開示するように、電磁パルス(EMP)やIEMIのE1部分やE2部分に対して保護するために、そのようなシステム敏感な検知制御電子機器は、シールドされ電気的に濾波される筐体(例えば図1の制御システム104を含む筐体)内に配置される。シールド筐体内に収容されないすべての部品は、高感度半導体電子機器を含むというわけではなくて、それゆえに、EMPかIEMIのイベントに対しても生き残る。検知制御電子機器がシールド/電気的濾波筐体内に配置されない他の実施形態において、トランスは、それでもなお地磁気によって誘導されたGICから保護される。そのような筐体の中身に関するさらなる詳細は、以下でさらに詳述される。
いろいろな実施形態において、異なる種類の電気防護回路が使われる。実施形態において、電気防護回路は、同時係属の米国特許出願番号第13/159,374号で「Continuous Uninterruptable AC Grounding System for Power System Protection」というタイトルの特許出願の記述内容を含む。その特許出願は、参照によって本出願に完全に取り入れられる。
図3では、本発明の検知制御システム310に電気的に接続した電気防護回路302を含むシステム300の代表的な実施形態が示される。この代表的な実施形態において、ホール効果電流センサが、接地接続に対するトランス中性点内の直流電流を計測するために、図2の分路抵抗206(以下では「電流検出ユニット314」)の代わりに使用されている。そのような実施形態において、ホール効果センサは、EMPかIEMIが発生した場合は、その攻撃によって犠牲になる。また、トランス10のフェーズに接続したCVT(Capacitive Voltage Transformer)がEMPやIEMIが発生した場合は、その攻撃によって同様に犠牲になる。
検知制御回路310は、制御電子機器、例えば検知制御モジュール312や電流検知ユニット314を含む。リレー制御回路316は、検知制御電子機器312に接続し、スイッチ204、208を起動するのに用いられるスイッチ制御出力313を生成する。
検知制御モジュール312は、GICイベントが起きたときに半周期飽和トランス内で発生する高調波を検知する。例えば、モジュール312は、トランスフェーズの1つの上に配置される標準的な容量電圧トランス(CVT)(図示せず)からの信号を測定する高調波センサを含んでもよい。中性点直流電流か高調波センサのいずれかからの信号が設定値を上回ると、信号が送られ、スイッチングアセンブリ202内の2つのスイッチを開く。その設定値は、それぞれの特定の設置の保護条件にしたがい、設備機器や電力システムの技術者によって選ばれる。直流電流や準直流電流の設定値のための典型的範囲は、約5−50アンペアの範囲内である。電力高調波レベルの設定値のための典型的範囲は、約1%〜10%の総高調波歪(THD)の範囲内である。電流検知ユニット314は、分路抵抗206をまたぐ地磁気嵐に起因する中性点の直流電流や準直流電流を測定し、その測定の結果を検知制御モジュール312に送り、必要に応じてリレー制御回路316を起動する。
本実施形態において、制御回路310は、シールド筐体320に囲まれ、筐体320の周囲に配置される複数のフィルタ322を含む。フィルタ322は、高周波数や高電力の電磁放射が筐体内に入るのを防ぐ。それによって、高感度の検知制御電子機器を潜在的な妨害や損害にさらす。これらのフィルタ322は、一般に、サージ抑制機能を有するローパスフィルタや帯域パスフィルタであればよく、任意の高電圧信号が筐体に入るのを抑制する。本実施形態では、シールド筐体322は、すべての開口部の周囲に伝導性のガスケットを有するEMP/IEMIファラデーシールド筐体であり、一般に、約14kHz〜10GHzの電磁気周波数からの放射性保護を提供する。さらに、本実施形態において、フィルタ322は、CVT入力326、オペレータ入出力328、スイッチ制御出力313、および、分路抵抗206の片側に接続する電流検知入力330上と同様、電力入力324上に、配置される。さらに、筐体320の内外への任意のファイバ通信は、カットオフ周波数を通過させない適切な光導波路を介して濾波される。これにより、EMPとIEMIのイベントに対する保護を本質的に提供する。
動作中、GICイベントが制御回路310によって検知されたとき、低直流電圧スイッチ(すなわちスイッチ204)は、スイッチ制御出力313を介して、リレー制御回路316によって開く。この動作の後、信号は、高電圧接地スイッチ208を開く。その後、接地スイッチ208は、通常、地磁気嵐イベントの期間(通常、一日のうちの2、3時間のオーダ)の間、開いたままである。この期間中、直流電流ブロッキング部品210は、このケース・コンデンサ304内にあり、ACを、トランス12のトランス中性点10に接地する。地磁気嵐が通った後、接地スイッチ208の再びのクローズは、通常、電力システムのオペレータによって制御される。しかし、いくつかの設備機器は、例えば、所定の時間後、それらのシステムがそれらのスイッチを自動的に再びクローズするように構成するのを好むかもしれない。
トランス保護がEMPやIEMIの攻撃があったときに電磁界から保護する機能を継続するのを確実にするために、検知器352は、図3に示すようにこの防護システムに加えられ、フィルタ322を介して検知制御電子機器312に接続することが可能である。検知器352は、筐体320の外側にある。検知器352により、EMPのE1かE2、または、IEMIパルスの検知を実現できる。その検知は、順番に用いられ、スイッチ204、208を含むスイッチ・アセンブリ202を開く。したがって、検知器352は、必要なトランス保護においてスイッチングを行う。EM検知器352は、制御筐体の頂部上または側面に接して取り付けられ、シールド導体管によって保護された制御電子機器310に対して接続する。
いろいろな実施形態において、様々な種類の電磁界検知器が、検知器352として使われる。実施形態において、電磁界検知器は、同時係属の米国特許出願番号第12/906,902号で「Electromagnetic Field Detection Systems and Methods」というタイトルの特許出願の記述内容を含む。その特許出願は、参照によって本出願に完全に取り入れられる。
動作中、もし、ホール効果センサやCVT(図示せず)が電磁気のイベントによって損害を受けたり破壊されたりしても、EM検知器352は、高電圧トランス10を保護するスイッチ・アセンブリ202を開く。
本発明の検知制御システム310は、シールド筐体320内に含まれる。シールド筐体の周囲には、検知制御電子機器312に電気的に接続された複数のフィルタ322が整列している。いくつかの実施形態において、検知制御電子機器は、高調波アナライザ406、複数の閾値検知部408、および、図4でさらに記載される制御部410を含む。検知制御電子機器312は、電力線における潜在的に有害な高調波や直流電流を検知して、電気防護回路302内の直流電流スイッチ204と高電圧接地スイッチ208を操作する。
図4では、本発明の検知制御システム400の第1の総合的な実施形態が示される。図4は、トランス12やその他の電気機器(つまり本発明の対象)に対するいろいろな異なる種類の潜在的に有害な信号を検知するためのシステムを例示する。特に、そのシステムは、本発明による、電力高調波、直流(および準直流電流信号)、ならびに、EMP/IEMIイベントを検知する検知制御システム400を含む。
本実施形態の検知制御システム400は、シールド筐体402の周囲に沿って並んだ複数のフィルタ404を有するシールド筐体402を含む。検知制御システム400は、さらに、シールド筐体402の外に配置された電磁界検知器412(例えば、図3の検知器352に類似)を含み、フィルタ404に電気的に接続される。それぞれのフィルタ404は、閾値検知部408a−c(集合的に「閾値検知部408」と呼ぶ。)、高調波アナライザ406、または、制御部410に直接、電気的に接続している。高調波アナライザ406の出力は、閾値検知部408bに電気的に接続される。それぞれの閾値検知部408a−cは、制御部410に信号を出力する。制御部410は、複数のフィルタ404を介して、信号をシールド筐体402から遠くに送信する。
動作中、検知制御システム400内の部品は、ΕΜΡ/IΕΜΙシールド筐体402内に含まれる。シールド筐体402は、検知制御電子機器を電磁干渉から保護するように構成されている。シールド筐体402の周囲には、複数のローパスフィルタ404や帯域パスフィルタ404が整列し、高周波数で高電力の電磁気の信号が、高感度の検知制御電子機器を潜在的な妨害と損害にさらす筐体に入るのを防止する。フィルタ402は、通常、前記した図3のフィルタ322に類似する。
特定の実施形態において、以下でさらに詳述されるように、本発明は、シールド筐体402内に配置される高調波アナライザ406を含む。高調波アナライザ406は、検知部品の他の例であり、トランス12から入って来る電力線信号に加わっている総高調波歪(THD)を検知する。高調波アナライザ406は、以下でさらに詳述されるように、制御部410に電気的に接続される。
本実施形態において、複数の閾値検知部408a−cは、それぞれ、検知部品(例えば電磁界検知器412)から入って来る信号指示を、調整可能な所定の閾値と比較するように構成された。所定の閾値を超えると、対応する閾値検知部408は、また、シールド筐体402内に配置された制御部410に送る。図3で示すように、制御部410は、スイッチ204のような電気防護回路200の外部の部品の少なくとも1つを動かすように構成された。例えば、トランス中性点とアースの間に位置する分路抵抗206を流れる直流電流や準直流電流が閾値検知部408の所定の閾値を超えると、閾値検知部408は制御部410に指示を送る。そうすると、制御部410は、フィルタ404を介して信号を送り、高電圧トランス12を損害から保護するためにトランス中性点とアースの間に位置するノーマルクローズスイッチ204を開く。
本実施形態において、閾値検知部408a−cのそれぞれは、所定の種の信号や、あるいは、異なる起動閾値を有する信号を検知するように構成可能である。例えば、閾値検知部408aは、所定の閾値を超える所定の直流を検知するように構成されており、第1の閾値を超えたとき、制御部410を起動する。しかし、閾値検知部408bは、高調波アナライザ406から信号を受け取り、他の異なる信号の検知と同時に、または、他の異なる信号閾値レベルで、制御部410を起動する。同じことは閾値検知部408cにも言え、閾値検知部408cは電磁界検知器412から信号を受け取る。他の実施形態において、さらなる種の潜在的に有害な信号は、監視され、制御部410を起動するために閾値検知部に供給される。
制御部410は、多種類のプログラム可能な回路のいずれでもよく、閾値検知部408a−cの一つ以上からの信号の受信に応じてスイッチング出力信号を生成する。いくつかの実施形態において、制御部410は、閾値検知部か制御入力部414からの信号の検知にしたがい、プログラム可能な論理に基づくスイッチング出力を管理するように構成されたマイクロプロセッサである。本実施形態において、制御入力部414は、制御部410に電気的に接続され、シールド筐体402から離れたシステム制御部まで続く。制御入力部414は、システム制御部と制御部410の間でデータを交換する。そして、制御入力部414は、例えば検知制御電子機器によって引き起こされたスイッチングイベントの履歴を通信するとともに、遠隔の起動とリセットの機能を提供する。制御入力部414は、また、目的物の監視に対する潜在的に有害な信号をシミュレーションするように構成された一つ以上の自己テスト手順を実行する。図示のように、制御部410は、例えば、スイッチ指示や高電圧接地スイッチ指示入力に基づくスイッチ動作をテストする。これらの自己テスト手順は、以下で充分に詳述する。
図5は、トランス内の電力高調波を検知するための本発明の実施形態を例示する。電子機器500は、例えば、図4の検知制御電子機器400の一部として、あるいは、高調波信号が直流電流信号の検知の連携動作よりも主要な懸念である状況における独立的要素として、使用可能である。本実施形態は、複数のフィルタ504が整列されたシールド筐体502に含まれる一連の検知制御部品を含む。これらのフィルタは、図4に記載されたフィルタに類似している。検知部品501は、フィルタ504、高調波アナライザ506および閾値検知部508を含む。フィルタ504は、伝導された高エネルギー電磁パルスと意図的な電磁干渉(IΕΜΙ)を遮断するために、シールド筐体502まで延びている信号線に電気的に接続される。フィルタ504は、閾値検知部508に信号を出力する高調波アナライザ506に電気的に接続される。閾値検知部508は、シールド筐体502内に含まれる制御部510にも、電気的に接続される。
他の実施形態において、例えば、直流電流が主要な懸念である状況では、トランス中性点から接地接続に流れる直流電流信号だけを検知する。
本発明は、また、制御部510に電気的に接続されている通信バス514を含む。通信バス514は、シールド筐体502から離れたシステム・オペレータまで続く。通信バス514は、また、目的物の監視に対する潜在的に有害な信号をシミュレーションするように構成された一つ以上の自己テスト手順を実行する。これらの自己テスト手順は、以下で充分に詳述する。
動作中、高調波アナライザ506は、フィルタ504を介して電力トランス12のフェーズの1つの上に配置されるCVT(図に示されない)から、電圧信号を受け取る。高調波アナライザ506は、トランス12内の電力高調波を検知する。高調波アナライザ506で検知された高調波は、閾値検知部508の調整可能な所定の閾値と比較される。高調波が閾値検知部508の所定の閾値を超えると、閾値検知部508は、シールド筐体502内に位置する制御部510に対して、閾値を超えたことを示す信号を送る。いくつかの実施形態において、高調波アナライザ、閾値検知部および制御部のすべては、マイクロプロセッサの範囲内で実行される。制御部510は、フィルタ504を介してスイッチ表示信号を送り、DCスイッチ(例えば図2、図3のスイッチ204)を開き、引き続き、高電圧接地スイッチ208を開いてトランス12を保護する信号を送り、および/または、トランス中性点内の潜在的に有害な直流電流から保護して送電網を電気的に安定に保ち、電力線信号における高調波を減らす。
図6−図8に示すように、いろいろな実施形態の検知制御電子機器は、図3−図5のシステム内で使用可能な高調波アナライザ(例えば、高調波アナライザ406として)を含む。図6は、高調波アナライザ600の第1の可能な実施形態を例示する。高調波アナライザ600は、トランス12内の高調波を検知するための、図4で示す高調波アナライザ406として、あるいは、図5で示す高調波アナライザ506として、使用可能である。本実施形態は、マイクロプロセッサ600を使い、高速フーリエ変換(FFT)を計算し、電力信号603内の電力高調波を検知する。本実施形態は、FFT計算部602と総高調波歪計算部606を有するマイクロプロセッサ800を含む。マイクロプロセッサ600内のFFT計算部602は、電力線信号603を複数の周波数信号に変える、つまり、複数の帯域パスフィルタのバンクとして動作する。システムのサンプル・レートとFFTにおける点の数は、入力信号の高調波のそれぞれがFFT内で特有の出力インデックスに対応する異なるフィルタビンに分類されるように、決められる。そして、これらの信号605は、FFTフィルタバンド602内で帯域パスフィルタを使用している60Hz(または50Hz)電力周波数の高調波の範囲に対応している複数の周波数帯607に分けられる。それから、これらの高調波は、マイクロプロセッサ600内の総高調波歪計算部606を用いて、総高調波歪(THD)609を計算するのに用いられる。
それから、この総高調波歪信号609は、マイクロプロセッサ(例えば、閾値検知器608として例示)内の予めセットされた閾値レベルと比較される。THD信号が現在のレベルを超えると、信号が送られ、スイッチ204、208を含むスイッチ・アセンブリを開く。
図7は、高調波アナライザ700のさらに可能な実施形態を例示する。高調波アナライザ700は、トランス12内の電力高調波を検知するために、図4で示す高調波アナライザ406や図5で示す高調波アナライザ506の代わりに使用可能である。高調波アナライザ700は、フィルタ701と閾値検知部716の間に電気的に接続される。
全体的に、これらの部品は、検知部品501を備えている。本実施形態の高調波アナライザ700は、アンプ704と位相補正モジュール706に電気的に接続されたローパスフィルタ702を含む。位相補正モジュール706の出力は、加算アンプ708に電気的に接続される。加算アンプ708の出力は、整流回路709に接続する。整流回路709は信号の振幅を調整する。その結果、加算アンプ708の出力は、総高調波歪に比例する信号714になる。
動作中、本実施形態の高調波アナライザ700は、フィルタ処理後位相シフト信号712から、フィルタ非処理電力線信号710を差し引く。その後、フィルタ処理後位相シフト信号712は、振幅を調整され、総高調波歪信号714を出力する。本実施形態は、フィルタ非処理電力線信号710の雑音(ノイズ)をフィルタ処理するように構成されたローパスフィルタ702を含む。ローパスフィルタから、フィルタを通した電力線信号は、振幅調整のためのアンプ704を通過する。それから、信号は、振幅を調整されフィルタを通した信号の位相を同期させるように構成された位相補正モジュール706を通過する。それから、フィルタ処理後位相シフト信号712は、加算アンプ708で、フィルタ非処理電力線信号710と比較される。加算アンプ708は、2つの信号の引き算をし、電力線信号の電力線高調波714を出力する。それから、電力線高調波信号は、整流回路709で調整され、電力線上のTHDに比例する電圧を生成する。それから、総高調波歪信号714は、図5に関連して上述した総高調波歪との比較のために、閾値検知部716に送られる。
図8は、トランス12内の電力高調波を検知するための図4で示す高調波アナライザ406や図5で示す高調波アナライザ506として使用できる高調波アナライザ800の他の可能な実施形態を例示する。高調波アナライザ800は、ローパスフィルタ801と閾値検知器812に電気的に接続された電力線信号を含む。この代表的な実施形態の高調波アナライザ800は、位相固定正弦波発振器804に電気的に接続されたローパスフィルタ802を含む。正弦波発振器804は、60Hz(あるいは50Hz)の電力線信号を複製する高調波の成分がない歪のない信号を生成するのに用いられる。振幅調整回路808(振幅補正回路)は、発振器804の出力を調整し、期待される電力線信号周波数に一致させる。振幅の出力が調整され、位相固定正弦波発振器804(振幅補正回路808から)は、加算アンプ810に電気的に接続される。
最後に、加算アンプ810の出力は、整流回路811に接続している。整流回路811は、電力線上で総高調波歪(THD)と比例する信号818を生成する。これらの部品は、全体に検知部品801を備えている。
本実施形態は、図7の高調波アナライザ700と同様であるが、位相固定正弦波発振器808を使い、フィルタ未処理電力線信号814から引き算される歪のない120V、60Hz(または、歪のない240V、50Hz)の基準信号を生成する。この他の実施形態は、フィルタ未処理電力線信号814の雑音と高調波を除去するように構成されたローパスフィルタ802を含む。それから、フィルタを通した信号が、位相固定正弦波発振器804への基準信号入力として使われる。位相固定正弦波発振器804は、加算アンプ810においてフィルタ未処理電力線信号814と比較される歪のない120V、60Hzの信号816を発生する。加算アンプ810と整流回路811は、電力線信号814に加わっている総高調波歪と比例していて、かつ、閾値検知器812に送られる信号818を出力する。
図9は、トランス12内の電力高調波および直流電流と比較するための図4で示す閾値検知部408や図5で示す閾値検知部508として使用できる閾値検知部900の可能な実施形態を例示する。本実施形態の閾値検知部は、比較器(コンパレータ)904に電気的に接続された整流回路(例えば、図7の整流回路709または図8の整流回路811)から、高調波や準直流電流を受け取る。比較器904は、基準信号生成部906と保持/リセット部908に電気的に接続される。保持/リセット部908は、閾値検知部900の外部に位置し、電気的に接続する制御部910に、信号を出力する。
動作中、閾値検知部は、入って来る電力線信号や高調波アナライザ406から高調波や準直流電流を受け取る。比較器904は、整流された信号903を基準信号907と比較する。比較器904は、トランス12にとって許容できる高調波歪を定める調整可能な基準信号生成部906から、基準信号907を受け取る。基準信号907と入力信号903の比較と同時に、比較器904は、保持/リセット部908で受けとることができる信号を生成する。それから、受け取られた信号は、図2−図3で示すようなスイッチ204を起動させるのに用いられる制御部910に、送られる。
図10は、図4の本発明の代表的な実施形態を表すが、さらに、自己テスト機能を含み、適切なシステム運用を確実にする。本発明のこの実施形態は、自己テスト用直流電圧源1012、自己テスト高調波源1014、自己テスト電磁界検知源1016、シールド筐体402内に位置する自己テスト交流電圧源1018を含む。いくつかの実施形態において、これらの自己テスト機能は、制御部410によって周期的に自動的に起動する。これらの自己テスト機能は、また、シールド筐体402から離れた場所にある制御システムを操作しているユーザによって起動してもよい。
自己テスト交流電圧源1018は、トランス12において受け取られるのとは異なる周波数で、AC信号を生成する。交流電圧は、フィルタ1004を介してシールド筐体402を出て、トランス中性点10に印加される。図2で示す電気防護回路200は、その通常の動作モードでは、交流電圧源1018によって発生するAC信号の既知の振幅に基づく直流電流ブロッキングデバイス210を通る電流の大きさを測定する。制御部410は、直流電流ブロッキングデバイス210の大きさを期待値と比較し、直流電流ブロッキング部品210が正確に動いているかどうかを判定する。
本発明の範囲内の他の自己テスト機能は、トランス中性点10における直流のアース14への接続をシミュレーションすることを目的とする直流を生成する自己テスト直流電圧源1012である。生成された直流電流は、トランス中性点10における直流電流のアース14への接続の通常の動作の範囲外にある。自己テスト直流電圧源1012によって生成された直流電流は、フィルタ1004を介してシールド筐体402を出て、直流信号入力を介してシールド筐体402に再び入る。それから、発生する信号は、トランス10にとって許容できる既知の値と比較するために閾値検知部408に通される。もし、検知制御システム1000が正常に動作していると、制御部410は、フィルタ404を介してシールド筐体402を出る指示信号を発生し、電気防護回路200内のスイッチ204を開く。もし、制御部410がスイッチ204を開かないと、制御部410は、遠隔制御システムへのエラー・メッセージを、シールド筐体402の外部に送る。
本発明の範囲内の他の自己テスト機能は、電力線信号上で望ましくない高調波をシミュレーションすることを目的とする高調波信号を生成する自己テスト高調波源1014である。生成された高調波信号は、フィルタ1005を介してシールド筐体402を出て、電力線信号入力を介してシールド筐体402に再び入る。信号は、生成された高調波信号を、既知の許容可能な周波数と比較する高調波アナライザ406に通される。もし、検知制御システム1000が正常に動作していると、制御部410は、フィルタ404を介してシールド筐体402を出る指示信号を発生し、図2で示すように電気防護回路200内のスイッチ204を開く。もし、制御部410がスイッチ204を開かないと、制御部410は、遠隔制御システムへのエラー・メッセージを、シールド筐体402の外部に送る。
上記の明細書、例およびデータは、本発明の構成の製造と使用についての完全な説明を提供する。本発明の多くの実施形態が本発明の趣旨と範囲から逸脱することなく実施可能であるので、本発明は以下に記載される特許請求の範囲によって定まる。

Claims (16)

  1. トランス中性点を流れる高直流電流を含む潜在的に有害な電磁信号と、主要な電力周波数の高調波とを検知する検知システムであって、
    前記検知システムは、
    送電網上の1つ以上の接続ポイントと接続した1つ以上の電気信号線に電気的に接続された複数の検知部品と、
    それぞれの閾値検知部が、前記複数の検知部品から選ばれた1つの検知部品から入ってくる信号を、閾値を有する所定の信号と比較する、複数の閾値検知部と、
    前記複数の閾値検知部のそれぞれからの出力を受信する制御部であって、検知した閾値を超える高調波信号または直流電流信号からなる指示を前記複数の閾値検知部のうちの少なくとも1つから受信することにより、少なくとも1つの外部スイッチ部品を作動するように構成された制御部と、
    少なくとも前記複数の閾値検知部および前記制御部を収納する内体積部を有すると共に前記内体積部を電磁干渉からシールドするように構成されているシールド筐体と、
    前記シールド筐体の周囲に配置され、前記シールド筐体の外部から前記内体積部内まで延びている前記電気信号線に接続され、高周波数で高電力の電磁信号が前記シールド筐体内に入ってくるのを防ぐ複数のフィルタと
    を有することを特徴とする検知システム。
  2. 前記複数の検知部品は、
    高調波アナライザと、
    前記トランス中性点とアースの間に電気的に接続された分路抵抗と、
    前記トランス中性点とアースの間に接続された接地線に接続されたホール効果電流センサと、
    電磁界検知器と、
    から構成される検知器のグループから選択される
    ことを特徴とする請求項1に記載の検知システム。
  3. 前記高調波アナライザは、前記シールド筐体内に配置されている
    ことを特徴とする請求項に記載の検知システム。
  4. 前記分路抵抗は、前記シールド筐体の外部に配置されている
    ことを特徴とする請求項に記載の検知システム。
  5. 前記ホール効果電流センサは、前記シールド筐体の外部に配置されている
    ことを特徴とする請求項に記載の検知システム。
  6. 前記電磁界検知器は、前記シールド筐体の外部に配置されている
    ことを特徴とする請求項に記載の検知システム。
  7. 前記外部スイッチ部品は前記トランス中性点と接地接続の間に接続されたノーマルクローズスイッチからなり、
    前記制御部は、前記ノーマルクローズスイッチを開くように構成された
    ことを特徴とする請求項1に記載の検知システム。
  8. 前記外部スイッチ部品はノーマルクローズスイッチからなり、
    前記制御部は、前記複数の閾値検知部のいずれかから、閾値を超える高調波信号または直流電流信号が前記トランス中性点上で検知されたことを示す信号を受けると、前記ノーマルクローズスイッチを開くように構成された
    ことを特徴とする請求項1に記載の検知システム。
  9. 前記複数の閾値検知部の少なくとも1つから受信した前記指示は、その閾値検知部に関連付けられた閾値を超える検知した高調波信号、直流電流信号、または、電磁パルス信号を表す
    ことを特徴とする請求項1に記載の検知システム。
  10. 前記閾値検知部それぞれは、異なる関連付け閾値を有している
    ことを特徴とする請求項に記載の検知システム。
  11. 前記異なる関連付け閾値それぞれは、調整可能である
    ことを特徴とする請求項10に記載の検知システム。
  12. 前記制御部に電気的に接続され、前記シールド筐体から離れた検知システムのオペレータから指示を受ける制御入力部を、さらに有する
    ことを特徴とする請求項1に記載の検知システム。
  13. 前記制御部は、品質を下げる有害なイベントにおいて想定通りに前記検知システムが動作することを確認するように構成された1つ以上の自己テスト手順を実行するように構成された
    ことを特徴とする請求項1に記載の検知システム。
  14. 前記1つ以上の自己テスト手順は、
    前記トランスにおいて、電力システム周波数とは異なる周波数を有する交流信号を印加すること、
    高調波アナライザにおける高調波アナライザに付随する閾値検知部によって定義され振幅の範囲を定める所定の閾値を超える振幅を有する高調波信号を印加すること、
    直流電圧信号を前記トランス中性点に印加し、前記トランス中性点を流れる直流電流をシミュレーションすること、
    閾値検知部によって定義され振幅の範囲を定める所定の閾値を超える振幅を有する電磁気検知器信号を印加することから構成される手順のグループから選択される
    ことを特徴とする請求項13に記載の検知システム。
  15. 請求項1に記載された検知システム内で実施可能な自己テスト方法であって、
    前記検知システムは前記トランス中性点とアースとの間に電気的に接続された直流電流ブロッキング部品を有し、
    前記直流電流ブロッキング部品は抵抗およびコンデンサの少なくとも1つを有し、
    前記検知システムは、
    トランスにおいて電力システム周波数とは異なる周波数を有する交流電流信号を印加し、
    前記交流電流信号の既知の振幅と直流電流ブロッキング部品を通る電流測定値に基づいて、直流電流ブロッキング部品のインピーダンスの機能と大きさを測定し、
    前記直流電流ブロッキング部品のインピーダンスの大きさを予測値と比較して、前記直流電流ブロッキング部品正確動作しているかどうかを決定し、
    高調波アナライザに付随する閾値検知部によって定義され振幅の範囲を定める所定の閾値を超える振幅を有する高調波信号を電力線信号に印加し、
    前記高調波アナライザにおける前記高調波信号を分析して、前記高調波アナライザが前記高調波信号の存在を検知したかどうかを判定し、
    直流電圧信号を前記トランス中性点に印加して、前記トランス中性点とアースの間に流れている直流電流をシミュレーションし、
    閾値検知部によって定義され振幅の範囲を定める所定の閾値を超える振幅を有する電磁気検知器信号を印加する
    ことを特徴とする自己テスト方法。
  16. さらに、前記交流電流信号、前記高調波信号、前記直流電圧信号、および、前記電磁気検知器信号のうちの1つ以上の検知に応じて、前記制御部において前記少なくとも1つの外部スイッチ部品を作動させる制御信号を生成する
    ことを特徴とする請求項15に記載の自己テスト方法。
JP2013520833A 2010-07-20 2011-07-20 検知システムおよび自己テスト方法 Active JP5901631B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US36608110P 2010-07-20 2010-07-20
US61/366,081 2010-07-20
PCT/US2011/044658 WO2012012517A2 (en) 2010-07-20 2011-07-20 Sensing and control electronics for a power grid protection system

Publications (3)

Publication Number Publication Date
JP2013539336A JP2013539336A (ja) 2013-10-17
JP2013539336A5 JP2013539336A5 (ja) 2014-09-11
JP5901631B2 true JP5901631B2 (ja) 2016-04-13

Family

ID=44509636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013520833A Active JP5901631B2 (ja) 2010-07-20 2011-07-20 検知システムおよび自己テスト方法

Country Status (13)

Country Link
US (1) US8537508B2 (ja)
EP (1) EP2596561B1 (ja)
JP (1) JP5901631B2 (ja)
KR (1) KR102035752B1 (ja)
CN (1) CN103201919B (ja)
AU (1) AU2011282204B2 (ja)
BR (1) BR112013001343B1 (ja)
CA (1) CA2805587C (ja)
DK (1) DK2596561T3 (ja)
HK (1) HK1186005A1 (ja)
IL (1) IL224227A (ja)
MX (1) MX2013000743A (ja)
WO (1) WO2012012517A2 (ja)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE48775E1 (en) 2010-07-20 2021-10-12 Techhold, Llc Self-testing features of sensing and control electronics for a power grid protection system
US9077172B2 (en) 2012-05-21 2015-07-07 Emprimus, Llc Self-testing features of sensing and control electronics for a power grid protection system
US8878396B2 (en) 2010-07-20 2014-11-04 Emprimus, Llc Continuous uninterruptable AC grounding system for power system protection
US9018962B2 (en) * 2012-04-25 2015-04-28 Advanced Power Technologies, Inc Method and apparatus for protecting power transformers from large electro-magnetic disturbances
US9564753B2 (en) 2012-05-21 2017-02-07 Emprimus, Llc Transformer protection circuit and method
DE102012105045A1 (de) * 2012-06-12 2013-12-12 Maschinenfabrik Reinhausen Gmbh Vorrichtung zum Kalibirieren eines Leistungsmesssystems für Leistungstransformatoren
KR101693606B1 (ko) 2012-06-25 2017-01-06 에이디씨 텔레커뮤니케이션스 인코포레이티드 능동 광학 모듈에 대한 물리 계층 관리
US9874613B2 (en) 2012-11-05 2018-01-23 Doble Engineering Company Method and system of apparatuses for testing utility power devices
EP2914969B1 (en) 2012-11-05 2022-06-15 Doble Engineering Company Method and apparatus for testing utility power devices
MX355500B (es) 2013-02-20 2018-04-20 Emprimus Llc Proteccion contra voltaje excesivo para sistemas de energia.
KR101707706B1 (ko) * 2013-07-03 2017-02-16 엘에스산전 주식회사 보호 장치 및 그의 동작 검증 방법
KR20150030820A (ko) * 2013-09-12 2015-03-23 현대중공업 주식회사 송전선로 감시장치
BR112016006413A2 (pt) * 2013-09-24 2017-12-26 Commscope Technologies Llc módulo óptico ativo conectável com suporte de conectividade gerenciado e tabela de memória simulada
US9396866B2 (en) * 2013-11-04 2016-07-19 Alberto Raul Ramirez Blocker of geomagnetically induced currents (GIC)
CN103941071B (zh) * 2014-04-24 2016-09-14 华北电力大学 高铁牵引网供电系统地磁感应电流监测方法与装置
US9562938B2 (en) * 2014-05-09 2017-02-07 Raytheon Company Method and system to detect and characterize electromagnetic pulses for the protection of critical infrastructure components
US10243346B2 (en) * 2014-12-18 2019-03-26 Mohd Hasan Ali Apparatus for mitigation of adverse effects of geomagnetically induced currents on transformers
WO2016112118A1 (en) 2015-01-06 2016-07-14 Greg Fuchs Systems and methods for actuating a transformer neutral blocking system
WO2016171960A1 (en) * 2015-04-23 2016-10-27 New York University Reduction of geomagnetically induced currents
KR101718306B1 (ko) * 2015-07-27 2017-03-27 주식회사 퍼슨 옥테니딘염산염(Octenidine dihydrochloride)의 개선된 합성방법과 옥타니딘염산염을 포함하는 새로운 복합제의 제조방법
US10985559B2 (en) 2017-02-03 2021-04-20 Techhold Llc Method and system for improved operation of power grid components in the presence of direct current (DC)
US11451047B2 (en) 2017-03-30 2022-09-20 Techhold, Llc Protection of electrical devices based on electromagnetic pulse signal
US11224150B2 (en) * 2017-11-07 2022-01-11 Centerpoint Energy, Inc. Electromagnetic mitigation modules for public utility facilities
CN107911144B (zh) * 2017-12-12 2023-11-24 淮阴工学院 一种电力线载波通信抗干扰装置
US10530151B2 (en) * 2018-01-09 2020-01-07 Timothy A Carty System and method for suppressing electromagnetic pulse-induced electrical system surges
WO2020069384A1 (en) 2018-09-28 2020-04-02 Emprimus, Llc Power grid protection via transformer neutral blocking systems and triggered phase disconnection
CN109470920B (zh) * 2018-12-19 2021-01-26 广东工业大学 一种cvt谐波电压的测量方法、系统及装置
US11451044B2 (en) 2019-11-22 2022-09-20 Techhold, Llc Automated self testing of power grid transformer protection systems
CN110994552B (zh) * 2019-12-05 2021-07-27 华中科技大学 一种变压器中性点地电流抑制装置的自主投切方法
MX2022009635A (es) 2020-02-06 2022-11-09 Aclara Tech Llc Detector de fallas de alta impedancia.
US11374503B2 (en) 2020-03-13 2022-06-28 Savannah River Nuclear Solutions, Llc DC compensation for power transformer through neutral DC injection
IL298453A (en) 2020-05-22 2023-01-01 Techhold Llc Overvoltage protection assembly
US11404861B2 (en) * 2020-08-28 2022-08-02 The Mitre Corporation System and methods for mitigating ground induced currents on commercial power infrastructure
EP4289035A1 (en) 2021-02-08 2023-12-13 TechHold, LLC Control system for transformer protection system
CA3231686A1 (en) 2021-08-30 2023-03-09 Aclara Technologies Llc Integrated switched capacitor bank
WO2023056216A2 (en) * 2021-10-01 2023-04-06 Faraday Defense Corporation Apparatus for detection of electrical disturbances resulting from electromagnetic pulse and solar storm
US11990746B2 (en) * 2021-10-01 2024-05-21 Faraday Defense Corporation Apparatus for detection of electrical disturbances resulting from electromagnetic pulse and solar storm
GB2619295B (en) * 2022-05-30 2024-07-03 Energy Res Lab Ltd EMP protection system

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3619723A (en) * 1970-09-30 1971-11-09 Gen Electric Sensitive peak current detector for ground fault protection circuits
US3916261A (en) 1974-02-25 1975-10-28 Square D Co Ground fault protective system including improved impedance detecting means
US4153891A (en) * 1977-12-16 1979-05-08 General Electric Company Transient voltage distribution improving line shield for layer wound power transformer
US4297738A (en) * 1979-10-29 1981-10-27 Electric Power Research Institute, Inc. Apparatus for and method of detecting high impedance faults on distribution circuits with delta connected loads
JPS5846804A (ja) * 1981-09-11 1983-03-18 株式会社日立製作所 保護継電装置
JPS5913313A (ja) * 1982-07-13 1984-01-24 Mitsubishi Electric Corp 変圧器の直流偏磁矯正方法
US4654806A (en) 1984-03-30 1987-03-31 Westinghouse Electric Corp. Method and apparatus for monitoring transformers
JP2607648B2 (ja) * 1988-11-24 1997-05-07 株式会社日立製作所 電力変換装置
JPH03207224A (ja) * 1990-01-08 1991-09-10 Hitachi Ltd 地磁気誘導電流補償装置
US5136453A (en) 1990-04-04 1992-08-04 Oliver Bernard M Method and means for suppressing geomagnetically induced currents
US5179489A (en) 1990-04-04 1993-01-12 Oliver Bernard M Method and means for suppressing geomagnetically induced currents
US5390064A (en) 1992-07-07 1995-02-14 American Superconductor Corp. Current limiters in power utility applications
CA2183176C (en) 1995-08-18 2000-10-24 Brian R. Pelly High power dc blocking device for ac and fault current grounding
US5684466A (en) * 1995-09-12 1997-11-04 The Charles Machine Work, Inc. Electrical strike system control for subsurface boring equipment
US5982276A (en) * 1998-05-07 1999-11-09 Media Fusion Corp. Magnetic field based power transmission line communication method and system
US5930099A (en) 1998-06-30 1999-07-27 Siemens Westinghouse Power Corporation Grounding arrangement for a powerline system
US6362628B2 (en) * 1998-12-21 2002-03-26 Pass & Seymour, Inc. Arc fault circuit detector device detecting pulse width modulation of arc noise
JP2001028829A (ja) * 1999-07-13 2001-01-30 Toshiba Corp ディジタル形保護継電装置
US6691068B1 (en) * 2000-08-22 2004-02-10 Onwafer Technologies, Inc. Methods and apparatus for obtaining data for process operation, optimization, monitoring, and control
US7529069B1 (en) * 2002-08-08 2009-05-05 Weems Ii Warren A Apparatus and method for ground fault detection and location in electrical systems
KR20050038252A (ko) * 2003-10-21 2005-04-27 한전케이디엔 주식회사 내부에 중계장치를 구비하는 변압기를 포함하는원격검침시스템
SE527406C2 (sv) 2004-05-10 2006-02-28 Forskarpatent I Syd Ab Förfarande och DC-avledare för skydd av kraftsystem mot geomagnetiskt inducerade strömmar
CN100517897C (zh) * 2006-11-24 2009-07-22 华中科技大学 接地变压器中性点直流电流抑制装置
US7589943B2 (en) 2007-03-24 2009-09-15 Ramirez Vanessa De Los Angeles GIC reducer
US8248740B2 (en) 2008-09-19 2012-08-21 Advanced Fusion Systems, Llc High speed current shunt
US8300378B2 (en) 2008-09-19 2012-10-30 Advanced Fusion Systems, Llc Method and apparatus for protecting power systems from extraordinary electromagnetic pulses
CN201328068Y (zh) * 2008-12-15 2009-10-14 甘肃容和矿用设备集团有限公司 矿用隔爆型变频器电磁兼容系统
US8878396B2 (en) 2010-07-20 2014-11-04 Emprimus, Llc Continuous uninterruptable AC grounding system for power system protection

Also Published As

Publication number Publication date
BR112013001343B1 (pt) 2020-02-27
BR112013001343A2 (pt) 2016-05-17
AU2011282204A1 (en) 2013-02-07
HK1186005A1 (zh) 2014-02-28
CN103201919A (zh) 2013-07-10
CN103201919B (zh) 2016-08-17
EP2596561A2 (en) 2013-05-29
KR20130132397A (ko) 2013-12-04
JP2013539336A (ja) 2013-10-17
US20120019962A1 (en) 2012-01-26
MX2013000743A (es) 2013-07-05
AU2011282204B2 (en) 2015-09-03
EP2596561B1 (en) 2016-04-06
CA2805587C (en) 2018-12-04
IL224227A (en) 2016-04-21
DK2596561T3 (en) 2016-07-25
US8537508B2 (en) 2013-09-17
WO2012012517A3 (en) 2012-09-13
CA2805587A1 (en) 2012-01-26
KR102035752B1 (ko) 2019-10-23
WO2012012517A2 (en) 2012-01-26

Similar Documents

Publication Publication Date Title
JP5901631B2 (ja) 検知システムおよび自己テスト方法
JP6856808B2 (ja) 変圧器中性点遮断システムを動作させるためのシステムおよび方法
US9077172B2 (en) Self-testing features of sensing and control electronics for a power grid protection system
US9564753B2 (en) Transformer protection circuit and method
JP6251322B2 (ja) 電力系統保護用の連続無停止ac接地システム
USRE48775E1 (en) Self-testing features of sensing and control electronics for a power grid protection system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140722

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150623

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150824

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160308

R150 Certificate of patent or registration of utility model

Ref document number: 5901631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250