JP5900552B2 - ケーブル - Google Patents

ケーブル Download PDF

Info

Publication number
JP5900552B2
JP5900552B2 JP2014162651A JP2014162651A JP5900552B2 JP 5900552 B2 JP5900552 B2 JP 5900552B2 JP 2014162651 A JP2014162651 A JP 2014162651A JP 2014162651 A JP2014162651 A JP 2014162651A JP 5900552 B2 JP5900552 B2 JP 5900552B2
Authority
JP
Japan
Prior art keywords
cable
hdmi
data
new hdmi
sink device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014162651A
Other languages
English (en)
Other versions
JP2015053265A (ja
Inventor
一彰 鳥羽
一彰 鳥羽
和良 鈴木
和良 鈴木
市村 元
元 市村
俊英 林
俊英 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2014162651A priority Critical patent/JP5900552B2/ja
Publication of JP2015053265A publication Critical patent/JP2015053265A/ja
Application granted granted Critical
Publication of JP5900552B2 publication Critical patent/JP5900552B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は、ケーブルに関し、特に、ビデオなどのデジタル信号を伝送するケーブルに関する。
近年、CE(Consumer Electronics)機器をつなぐ、デジタルインタフェースとして、HDMI(High Definition Multimedia Interface)が幅広く用いられており、業界でのデファクトスタンダードとなっている。例えば、非特許文献1には、HDMI規格についての記載がある。このHDMI規格においては、3データ差動ラインペア(TMDS Channel 0/1/2)を用いて、デジタル信号としてビデオ、オーディオ、コントロールの各信号の伝送を行っている。
High-Definition Multimedia Interface Specification Version 1.4,June 5 2009
現在、このデジタル信号の伝送速度としてHDMI規格上で決められている値は、最大でもおよそ10.2Gbpsとなっている。高品質3D(3 dimension)のビデオ信号や、今後の4k2k(QFHD)やさらなる高画質コンテンツのビデオ信号に対応することを考えると、HDMIでも15Gbps、20Gbpsといった現在の規格上での最高値以上への拡張が、今後求められる状況にある。
このHDMIの高速化に対しては、二つのアプローチが考えられる。ひとつは、現在の3データ差動ラインペアをそのまま用いて、データを伝送するクロックスピードを上げて、その分だけ伝送レートを上げる方式である。しかし、この方法によれば、銅線の差動ペアを用いることによる物理的限界から、クロックスピードをあげるのみによる伝送帯域の拡張は困難である。また、もしこの方法が可能だとしても伝送距離が極端に短くなることが想定される。つまり、機器を結ぶHDMIケーブルの長さが限定させられてしまう課題がある。
もうひとつの、本発明に関係する解決の手段としては、現在の3つのデータ差動ラインペア数を、4つ以上に増やすことである。それに応じて、データを伝送するレーンが増える分だけデータレートを上げることができる。しかし、このデータ差動ラインペアを増やす方法では、その際に、現行のHDMIとの互換性が課題となる。具体的には、例えば、単にデータ差動ラインペアの数だけコネクタのピンを従来の19ピンから増やすとすると、過去の機器との接続に置いて互換性を欠く事となり、ユーザにとって、誤解と混乱を招き、相応しくない。
それを解決する手段としては、コネクタ(プラグ、レセプタクル)の互換を保つことである。つまり従来の19ピンのコネクタから、コネクタを変更することなく、ケーブル自体においても機能的な不良が出ないように、配線を考慮する必要がある。
この発明の目的は、ビデオなどのデジタル信号を良好に伝送し得るケーブルを提供することにある。
この発明の概念は、
送信装置から受信装置に所定チャネル数の差動信号によりデジタル信号を送信するケーブルであって、
上記送信装置または上記受信装置に、上記ケーブルの信号伝送能力を示す情報を提供する情報提供機能部を有する
ケーブルにある。
例えば、情報提供機能部は、受信装置または送信装置からの要求に応じて、ケーブルの信号伝送能力を示す情報を、ケーブルを介して、受信装置または送信装置に提供する。また、例えば、情報提供機能部は、上記送信装置が上記受信装置から上記ケーブルを介して読み出す能力情報の一部を書き換える。また、例えば、情報提供機能部は、送信装置または上記受信装置に、近距離無線通信により、ケーブルの信号伝送能力を示す情報を提供する。
この発明によれば、ビデオなどのデジタル信号を良好に伝送できる。
この発明の実施の形態としてのAVシステムの構成例を示すブロック図である。 ソース機器、HDMIケーブルおよびシンク機器の組み合わせ例を示す図である。 ソース機器のデータ送信部とシンク機器のデータ受信部の構成例(現行HDMIの動作モード時)を示す図である。 ソース機器のデータ送信部とシンク機器のデータ受信部の構成例(新HDMIの動作モード時)を示す図である。 TMDS伝送データの構造例を示す図である。 現行HDMI(Type A)および新HDMIのピンアサイメントを比較して示す図である。 現行HDMIおよび新HDMIのソース機器、シンク機器のレセプタクルのピン配置を示す図である。 現行HDMIケーブルの構造例を示す図である。 新HDMIケーブルの構造例を示す図である。 新HDMIケーブルの他の構造例を示す図である。 ソース機器の制御部の動作モード制御の処理手順の一例を示すフローチャートである。 ソース機器の制御部の制御により表示部(ディスプレイ)に表示されるUI画面の一例を示す図である。 ソース機器の制御部の動作モード制御の処理手順の他の例を示すフローチャートである。 EDID上に新たに定義されるフラグ情報の例を示す図である。 制御部におけるケーブルが新HDMIに対応しているか否かの判断の方法を説明するための図であって、新HDMIケーブルのプラグにLSIが内蔵されていることを示す図である。 制御部におけるケーブルが新HDMIに対応しているか否かの判断の方法を説明するための図であって、新HDMIケーブル内LSIのEDIDデータ書換え回路の一例を示す図である。 制御部におけるケーブルが新HDMIに対応しているか否かの判断の方法を説明するための図であって、新HDMIケーブルのプラグにRFタグチップ(LSI)が内蔵されていることを示す図である。 制御部におけるケーブルが新HDMIに対応しているか否かの判断の方法を説明するための図であって、ケーブルの電気的特性の測定を行うことで、ケーブルが新HDMIに対応しているか否かを判断することを説明するための図である。 ケーブルの電気的特性の測定を行うことで、ケーブルが新HDMIに対応しているか否かを判断することを説明するための図である。 新HDMIのケーブルプラグ、レセプタクルの形状の他の例を説明するための図である。 現行HDMIケーブルと新HDMIケーブルのプラグの斜視図である。
以下、発明を実施するための形態(以下、「実施の形態」とする)について説明する。なお、説明を以下の順序で行う。
1.実施の形態
2.変形例
<1.実施の形態>
[AVシステムの構成例]
図1は、実施の形態としてのAV(Audio and Visual)システム100の構成例を示している。このAVシステム100は、ソース機器110とシンク機器120とが接続されて構成されている。ソース機器110は、例えば、ゲーム機、ディスクプレーヤ、セットトップボックス、デジタルカメラ、携帯電話などのAVソースである。シンク機器120は、例えば、テレビ受信機、プロジェクタ等である。
ソース機器110およびシンク機器120は、ケーブル200を介して接続されている。ソース機器110には、データ送信部112が接続された、コネクタを構成するレセプタクル111が設けられている。シンク機器120には、データ受信部122が接続された、コネクタを構成するレセプタクル121が設けられている。また、ケーブル200の一端にはコネクタを構成するプラグ201が設けられ、その他端にはコネクタを構成するプラグ202が設けられている。ケーブル200の一端のプラグ201はソース機器110のレセプタクル111に接続され、このケーブル200の他端のプラグ202はシンク機器120のレセプタクル121に接続されている。
ソース機器110は、制御部113を有している。この制御部113は、ソース機器110の全体を制御する。この実施の形態において、ソース機器110のデータ送信部112は、現行HDMIおよび新HDMIの双方に対応している。制御部113は、ケーブル200が新HDMIに対応し、かつシンク機器120が新HDMIに対応していると判断する場合、データ送信部112を新HDMIの動作モードで動作するように制御する。一方、制御部113は、少なくとも、シンク機器120が現行HDMIにのみ対応していると判断する場合、あるいはケーブル200が現行HDMIに対応していると判断する場合、データ送信部112を現行HDMIの動作モードで動作するように制御する。
シンク機器120は、制御部123を有している。この制御部123は、シンク機器120の全体を制御する。この実施の形態において、シンク機器120のデータ受信部122は、現行HDMIにのみ、あるいは現行HDMIおよび新HDMIの双方に対応している。データ受信部122が現行HDMIおよび新HDMIの双方に対応している場合、制御部123は、このデータ受信部122を、ソース機器110のデータ送信部112と同じ動作モードで動作するように制御する。この場合、制御部123は、ソース機器110からCECなどのラインを通じて送られる動作モードの判断結果に基づいて、データ受信部122の動作モードを制御する。ケーブル200は、現行HDMI、あるいは新HDMIに対応している。
図1に示すAVシステム100において、図2(a)に示すように、ケーブル200が新HDMIに対応し、また、シンク機器120が現行HDMIおよび新HDMIの双方に対応しているとき、新HDMIでのデータ伝送が行われる。この際、ソース機器110のデータ送信部112およびシンク機器120のデータ受信部122は、新HDMIの動作モードで動作するように制御される。
また、図1に示すAVシステム100において、図2(b)〜(d)に示すように、少なくとも、ケーブル200が現行HDMIに対応しているか、あるいはシンク機器120が現行HDMIにのみ対応しているとき、現行HDMIでのデータ伝送が行われる。この際、ソース機器110のデータ送信部112は、現行HDMIの動作モードで動作するように制御される。また、現行HDMIおよび新HDMIの双方に対応しているシンク機器120のデータ受信部122は、現行HDMIの動作モードで動作するように制御される。なお、図2(b)の場合には、データ転送レートを低くするなどしてケーブル200が新HDMIのデータ伝送が可能なときには、新HDMIモードでのデータ伝送が行われることがある。
[データ送信部、データ受信部の構成例]
図3、図4は、図1のAVシステム100における、ソース機器110のデータ送信部112と、シンク機器120のデータ受信部122の構成例を示している。データ送信部112は、有効画像区間(「アクティブビデオ区間」ともいう)において、非圧縮の1画面分のビデオデータに対応する差動信号を、複数のチャネルで、データ受信部122に一方向に送信する。
ここで、有効画像区間は、一の垂直同期信号から次の垂直同期信号までの区間から、水平帰線区間及び垂直帰線区間を除いた区間である。また、データ送信部112は、水平帰線区間または垂直帰線区間において、少なくともビデオデータに付随するオーディオデータや制御データ、その他の補助データ等に対応する差動信号を、複数のチャネルで、データ受信部122に一方向に送信する。
データ受信部122は、アクティブビデオ区間において、複数のチャネルで、データ送信部122から一方向に送信されてくる、ビデオデータに対応する差動信号を受信する。また、このデータ受信部122は、水平帰線区間または垂直帰線区間において、複数のチャネルで、データ送信部112から一方向に送信されてくる、オーディオデータや制御データに対応する差動信号を受信する。
データ送信部112とデータ受信部122とからなるHDMIシステムの伝送チャネルには、以下のものがある。まず、伝送チャネルとして、差動信号チャネル(TMDSチャネル、TMDSクロックチャネル)がある。ビデオデータ等のデジタル信号を伝送するための差動信号チャネルは、現行HDMIにおいては3チャネルであるが、新HDMIにおいては6チャネルである。
現行HDMIにおける差動信号チャネルについて説明する。図3に示すように、データ送信部112からデータ受信部122に対して、ビデオデータおよびオーディオデータを、ピクセルクロックに同期して、一方向にシリアル伝送するための伝送チャネルとしての、3つのTMDSチャネル#0〜#2がある。また、TMDSクロックを伝送する伝送チャネルとしての、TMDSクロックチャネルがある。
データ送信部112のHDMIトランスミッタ81は、例えば、非圧縮のビデオデータを対応する差動信号に変換し、3つのTMDSチャネル#0,#1,#2で、ケーブル200を介して接続されているデータ受信部122に、一方向にシリアル伝送する。また、HDMIトランスミッタ81は、非圧縮のビデオデータに付随するオーディオデータ、必要な制御データその他の補助データ等を、対応する差動信号に変換し、3つのTMDSチャネル#0,#1,#2で、データ受信部122に、一方向にシリアル伝送する。
さらに、HDMIトランスミッタ81は、3つのTMDSチャネル#0,#1,#2で送信するビデオデータに同期したTMDSクロックを、TMDSクロックチャネルで、データ送信部122に送信する。ここで、1つのTMDSチャネル#i(i=0,1,2)では、TMDSクロックの1クロックの間に、10ビットのビデオデータが送信される。
データ受信部122のHDMIレシーバ82は、TMDSチャネル#0,#1,#2で、データ送信部112から一方向に送信されてくる、ビデオデータに対応する差動信号と、オーディオデータや制御データに対応する差動信号を受信する。この場合、データ送信部112からTMDSクロックチャネルで送信されてくるピクセルクロック(TMDSクロック)に同期して受信する。
次に、新HDMIにおける差動信号チャネルについて説明する。図4に示すように、データ送信部112からデータ受信部122に対して、ビデオデータおよびオーディオデータを、ピクセルクロックに同期して、一方向にシリアル伝送するための伝送チャネルとしての、6つのTMDSチャネル#0〜#5がある。なお、この新HDMIでは、TMDSクロックの伝送は省略され、受信側においては受信データからクロックを再生するセルフクロック方式が採用される。
データ送信部112のHDMIトランスミッタ81は、例えば、非圧縮のビデオデータを対応する差動信号に変換し、6つのTMDSチャネル#0〜#5で、ケーブル200を介して接続されているデータ受信部122に、一方向にシリアル伝送する。また、このHDMIトランスミッタ81は、非圧縮のビデオデータに付随するオーディオデータ、必要な制御データその他の補助データ等を、対応する差動信号に変換し、6つのTMDSチャネル#0〜#5で、データ受信部122に、一方向にシリアル伝送する。
データ受信部122のHDMIレシーバ82は、TMDSチャネル#0〜#5で、データ送信部112から一方向に送信されてくる、ビデオデータに対応する差動信号と、オーディオデータや制御データに対応する差動信号を受信する。この場合、HDMIレシーバ82は、受信データからピクセルクロックを再生し、そのピクセルクロック(TMDSクロック)に同期して受信する。
HDMIシステムの伝送チャネルには、上述のTMDSチャネル、TMDSクロックチャネルの他に、DDC(Display Data Channel)やCECラインと呼ばれる伝送チャネルがある。DDCは、ケーブル200に含まれる図示しない2本の信号線からなる。DDCは、データ送信部112が、データ受信部122から、E−EDID(Enhanced Extended Display Identification Data)を読み出すために使用される。
すなわち、データ受信部122は、HDMIレシーバ82の他に、自身の能力(Configuration/capability)に関する能力情報であるE−EDIDを記憶している、EDID ROM(EEPROM)を有している。データ送信部112は、例えば、制御部113からの要求に応じて、ケーブル200を介して接続されているデータ受信部122から、E−EDIDを、DDCを介して読み出す。
データ送信部112は、読み出したE−EDIDを制御部113に送る。制御部113は、このE−EDIDを、図示しないフラッシュROMあるいはDRAMに格納する。制御部113は、E−EDIDに基づき、データ受信部122の能力の設定を認識できる。例えば、制御部113は、データ受信部122を有するシンク機器120が、現行HDMIの他に、新HDMIに対応しているか否か等を認識する。CECラインは、ケーブル200に含まれる図示しない1本の信号線からなり、データ送信部112とデータ受信部122との間で、制御用のデータの双方向通信を行うために用いられる。
また、ケーブル200には、HPD(Hot Plug Detect)と呼ばれるピンに接続されるライン(HPDライン)が含まれている。ソース機器は、このHPDラインを利用して、シンク機器の接続を検出することができる。なお、このHPDラインは双方向通信路を構成するHEAC−ラインとしても使用される。また、ケーブル200には、ソース機器からシンク機器に電源を供給するために用いられる電源ライン(+5V Power Line)が含まれている。さらに、ケーブル200には、ユーティリティラインが含まれている。このユーティリティラインは双方向通信路を構成するHEAC+ラインとしても使用される。
図5は、TMDS伝送データの構造例を示している。この図5は、TMDSチャネル#0〜#2、あるいはTMDSチャネル#0〜#5において、横×縦がBピクセル×Aラインの画像データが伝送される場合の、各種の伝送データの区間を示している。HDMIのTMDSチャネルで伝送データが伝送されるビデオフィールド(Video Field)には、伝送データの種類に応じて、3種類の区間が存在する。この3種類の区間は、ビデオデータ区間(Video Data period)、データアイランド区間(Data Island period)、およびコントロール区間(Control period)である。
ここで、ビデオフィールド区間は、ある垂直同期信号の立ち上がりエッジ(active edge)から次の垂直同期信号の立ち上がりエッジまでの区間である。このビデオフィールド区間は、水平ブランキング期間(horizontal blanking)、垂直ブランキング期間(vertical blanking)、並びに、アクティブビデオ区間(Active Video)に分けられる。このアクティブビデオ区間は、ビデオフィールド区間から、水平ブランキング期間および垂直ブランキング期間を除いた区間であるビデオデータ区間は、アクティブビデオ区間に割り当てられる。このビデオデータ区間では、非圧縮の1画面分の画像データを構成するBピクセル(画素)×Aライン分の有効画素(Active pixel)のデータが伝送される。
データアイランド区間およびコントロール区間は、水平ブランキング期間および垂直ブランキング期間に割り当てられる。このデータアイランド区間およびコントロール区間では、補助データ(Auxiliary data)が伝送される。すなわち、データアイランド区間は、水平ブランキング期間と垂直ブランキング期間の一部分に割り当てられている。このデータアイランド区間では、補助データのうち、制御に関係しないデータである、例えば、オーディオデータのパケット等が伝送される。コントロール区間は、水平ブランキング期間と垂直ブランキング期間の他の部分に割り当てられている。このコントロール区間では、補助データのうちの、制御に関係するデータである、例えば、垂直同期信号および水平同期信号、制御パケット等が伝送される。
ここで、レセプタクル111のピンアサイメントを説明する。最初に、現行HDMIのピンアサイメント(タイプA)を説明する。この現行HDMIのピンアサイメントは、第1のピンアサイメントを構成する。図6(a)は、この現行HDMIのピンアサイメントを示している。TMDSチャネル#i(i=0〜2)の差動信号であるTMDS Data#i+とTMDS Data#i−は、差動ラインである2本のラインにより伝送される。ピン(ピン番号が7,4,1のピン)はTMDS Data#i+に割り当てられ、ピン(ピン番号が9,6,3のピン)はTMDS Data#i−に割り当てられている。なお、ピン番号が8,5,2のピンは、TMDS Data#i Shield(i=0〜2)に割り当てられている。
TMDSクロックチャネルの差動信号であるTMDS Clock+とTMDS Clock−は差動ラインである2本のラインにより伝送される。ピン番号が10のピンはTMDS Clock+に割り当てられ、ピン番号が12のピンはTMDS Clock−に割り当てられている。なお、ピン番号が11のピンは、TMDS Clock Shieldに割り当てられている。
また、制御用のデータであるCEC信号は、CECラインにより伝送される。ピン番号が13であるピンは、CEC信号に割り当てられている。また、E−EDID等のSDA(Serial Data)信号は、SDAラインにより伝送される。ピン番号が16であるピンは、SDA信号に割り当てられている。また、SDA信号の送受信時の同期に用いられるクロック信号であるSCL(Serial Clock)信号は、SCLラインにより伝送される。ピン番号が15であるピンは、SCLに割り当てられている。なお、上述のDDCラインは、SDAラインおよびSCLラインにより構成される。
また、ピン番号が19であるピンは、HPD/HEAC−に割り当てられている。また、ピン番号が14であるピンは、ユーティリティ/HEAC+に割り当てられている。また、ピン番号が17であるピンは、DDC/CEC Ground/HEAC Shieldに割り当てられている。さらに、ピン番号が18であるピンは、電源(+5V Power)に割り当てられている。
次に、新HDMIのピンアサイメントを説明する。この新HDMIのピンアサイメントは、第2のピンアサイメントを構成する。図6(b)は、この新HDMIのピンアサイメントを示している。TMDSチャネル#i(i=0〜5)の差動信号であるTMDS Data#i+とTMDS Data#i−は、差動ラインである2本のラインにより伝送される。ピン(ピン番号が1,4,7,10,2,8のピン)はTMDS Data#i+に割り当てられ、ピン(ピン番号が3,6,9,12,5,11のピン)はTMDS Data#i−に割り当てられている。
また、制御用のデータであるCEC信号は、CECラインにより伝送される。ピン番号が13であるピンは、CEC信号に割り当てられている。また、E−EDID等のSDA(Serial Data)信号は、SDAラインにより伝送される。ピン番号が16であるピンは、SDA信号に割り当てられている。また、SDA信号の送受信時の同期に用いられるクロック信号であるSCL(Serial Clock)信号は、SCLラインにより伝送される。ピン番号が15であるピンは、SCLに割り当てられている。なお、上述のDDCラインは、SDAラインおよびSCLラインにより構成される。
また、ピン番号が19であるピンは、HPD/HEAC−に割り当てられている。また、ピン番号が14であるピンは、ユーティリティ/HEAC+に割り当てられている。また、ピン番号が17であるピンは、DDC/CEC Ground/HEAC Shieldに割り当てられている。さらに、ピン番号が18であるピンは、電源(+5V Power)に割り当てられている。
上述したように、新HDMIピンアサイメント(図6(b)参照)では、現行HDMIピンアサイメント(図6(a)参照)でシールド端子として用いられている端子(ピン番号が2,5,8,11のピン)が、データ端子として用いられている。また、新HDMIピンアサイメントでは、現行HDMIピンアサイメントでクロック信号の差動信号の信号端子として用いられている端子(ピン番号が10,12のピン)が、データ端子として用いられている。
ソース機器110のデータ送信部112は、現行HDMIの動作モードで動作するとき、図6(a)に示す現行HDMIピンアサイメントを選択し、新HDMIの動作モードで動作するとき、図6(b)に示す新HDMIピンアサイメントを選択する。なお、上述ではソース機器110のレセプタクル111のピンアサイメントを説明した。詳細説明は省略するが、シンク機器120のデータ受信部122が現行HDMIおよび新HDMIの双方に対応している場合におけるシンク機器120のレセプタクル121のピンアサイメントに関しても同様である。
図7(a),(b)は、ソース機器110のレセプタクル111のピン配置を示している。図7(a)は現行HDMIのピン配置を示し、図7(b)は新HDMIのピン配置を示している。なお、レセプタクル111のピンアサイメントとして現行HDMIピンアサイメントが選択されるとき、ピン番号が2,5,8,11のピンは、ソース機器110及びシンク機器120にて、接地状態、あるいはシンク機器120にて接地状態、ソース機器110にてハイインピーダンス状態、あるいはシンク機器120にてハイインピーダンス状態、ソース機器110にて接地状態とされる。なお、詳細説明は省略するが、シンク機器120のデータ受信部122が現行HDMIおよび新HDMIの双方に対応している場合におけるシンク機器120のレセプタクル121のピン配置に関しても同様である。
図8(a)は、ケーブル200として使用される現行HDMIケーブルの構造例を示している。この現行HDMIケーブルは、3つのデータラインペアがそれぞれ特性を得るためにシールドツイストペア部として構成されている。また、クロックラインペアと、HEAC機能のためにユーティリティおよびHPDのラインペアも、シールドツイストペア部として構成されている。
図8(b)は、シールドツイストペア部の構造例を示している。このシールドツイストペア部は、2本の電線3と、ドレイン線4とが、シールド部材5で覆われた構造となっている。なお、電線3は、芯線1が被覆部2により覆われて構成されている。
現行HDMIケーブルでは、データおよびクロックの各シールドツイストペア部を構成するドレイン線は、このケーブルの端部に取りつけられたプラグのピンに接続されている。この場合、各ドレイン線は、上述したレセプタクル(現行HDMIのピン配置)の各シールド端子(ピン番号が2,5,8,11のシールド用ピン)に対応したピン(端子)に接続されている。これらのシールド端子はソース機器110及びシンク機器120において接地される。これにより、データおよびクロックの各シールドツイストペア部を構成するドレイン線は、プラグがレセプタクル(現行HDMIのピン配置)に接続された状態では接地された状態となる。
図9は、ケーブル200として使用される新HDMIケーブルの構造例を示している。この新HDMIケーブルは、6つのデータラインペアがそれぞれ特性を得るためにシールドツイストペア部として構成されている。また、HEAC機能のためにユーティリティおよびHPDのラインペアも、シールドツイストペア部として構成されている。
新HDMIケーブルは、現行HDMIケーブル(図8(a)参照)に比べて、接続すべき個々の銅線の数が増えている。この新HDMIケーブルでは、ケーブルの両端のプラグの専用ピンにて接続されていた各シールドツイストペア部を構成するドレイン線は、プラグの金属製のシェルに接続される。これにより、シールド用ピンが開放され、プラグの必要ピン数の増加が回避され、新HDMIケーブルにおけるプラグは、現行HDMIケーブルのプラグと同様のものとされている。このように、各シールドツイストペア部を構成するドレイン線がプラグの金属製のシェルに接続されるものにあっては、プラグが差し込まれるレセプタクルのシェルが接地レベルと接続されていることにより、差動ペアラインのシールドを確保することができる。
図10は、ケーブル200として使用される新HDMIケーブルの他の構造例を示している。この新HDMIケーブルは、断面形状を平たくしたことを除き、実質的な構造は、上述の図9に示す新HDMIケーブルと同様である。なお、このように断面形状を平たくすることで、断面積を小さくでき、また、インピーダンス整合を取りやすくなることが知られている。
[現行HDMIと新HDMIの動作モード制御]
次に、ソース機器110の制御部113の動作モード制御についてさらに説明する。上述したように、制御部113は、ケーブル200が新HDMIに対応し、かつシンク機器120が新HDMIに対応していると判断する場合、データ送信部112を新HDMIの動作モードに制御する。また、制御部113は、それ以外の場合、データ送信部112を現行HDMIの動作モードに制御する。
図11のフローチャートは、制御部113の動作モード制御の処理手順を示している。制御部113は、ステップST1において、処理を開始し、その後に、ステップST2の処理に移る。このステップST2において、制御部113は、ソース機器110、つまりデータ送信部112が新HDMIに対応しているか否かを判断する。制御部113は、自身が存在するソース機器110(データ送信部112)の能力情報を予め備えていることから、この判断に関しては容易に行うことができる。なお、この実施の形態において、ソース機器110は新HDMIに対応していることが明らかであるので、制御部113は、このステップST2の判断処理を省略してもよい。
ソース機器110が新HDMIに対応していると判断するとき、制御部113は、ステップST3において、シンク機器120、つまりデータ受信部113が新HDMIに対応しているか否かを判断する。この判断の詳細については、後述する。シンク機器120が新HDMIに対応していると判断するとき、制御部113は、ステップST4の処理に移る。このステップST4において、制御部113は、ケーブル200が新HDMIに対応しているか否かを判断する。この判断の詳細については、後述する。
ケーブル200が新HDMIに対応していると判断するとき、制御部113は、ステップST5の処理に移る。このステップST5において、制御部113は、データ送信部112が新HDMIの動作モードで動作するように制御する。また、ステップST2、ステップST3、ステップST4で、それぞれ、ソース機器110、シンク機器120、ケーブル200が新HDMIに対応していないと判断するとき、制御部113は、ステップST6の処理に移る。このステップST6において、制御部113は、データ送信部112が現行HDMIの動作モードで動作するように制御する。
なお、制御部113は、例えば、ステップST3でシンク機器120が新HDMIに対応していると判断したとき、最終的な動作モードの判断結果を、ケーブル200を介して、シンク機器120に送信する。この判断結果の送信は、例えば、ソース機器110からデータ伝送前にインフォフレームなどの制御情報として送られる。シンク機器120においては、このソース機器110からの動作モードの判断結果に基づき、制御部123により、データ受信部122がソース機器110のデータ送信部112と同じ動作モードで動作するように制御される。
また、制御部113は、ステップST5でデータ送信部112が新HDMIの動作モードで動作するように制御するとき、その旨を示すUI画面を、例えば、図12(a)に示すように、表示部(ディスプレイ)に表示するように制御してもよい。このUI画面により、ユーザは、ソース機器110とシンク機器120とが新HDMIで接続されたことを、容易に把握できる。なお、UI画面が表示される表示部(ディスプレイ)は、ソース機器110に設けられた図示しない表示部(ディスプレイ)、あるいは、シンク機器120に設けられた図示しない表示部(ディスプレイ)である。これは、以下の各UI表示に関しても同様である。
また、制御部113は、ステップST4でケーブル200が新HDMIに対応していないと判断し、ステップST6の処理に移るとき、その旨を示すUI画面を、例えば、図12(c)に示すように、表示部(ディスプレイ)に表示するように制御してもよい。このUI画面により、ユーザは、ソース機器110とシンク機器120とが新HDMIに対応しているが、ケーブル200だけが新HDMIに対応していないことを容易に認識でき、ケーブル200を新HDMIケーブルに取り替える等の対策を取ることができる。
また、図11のフローチャートの処理手順では、制御部113は、ステップST4でケーブル200が新HDMIに対応していると判断するとき、直ちに、ステップST5に進み、データ送信部112が新HDMIの動作モードで動作するように制御している。しかし、制御部113は、データ伝送前にあらかじめCECなどのラインを通じてコマンドをやり取りすることにより、ステップST4でケーブル200が新HDMIに対応していると判断するとき、ユーザに、新HDMIあるいは現行HDMI(従来HDMI)のいずれかを選択させるようにしてもよい。
その場合、制御部113は、そのためのUI画面を、例えば、図12(b)に示すように、表示部(ディスプレイ)に表示するように制御する。ユーザは、このUI画面に基づいて、新HDMIあるいは現行HDMIのいずれかを選択する。図12(b)は、「新HDMI」が選択されている状態を示している。制御部113は、ユーザの選択に応じて、データ送信部112が新HDMIあるいは現行HDMIの動作モードで動作するように制御する。
図13のフローチャートは、その場合における制御部113の動作モード制御の処理手順を示している。この図13において、図11と対応する部分には同一符号を付し、その詳細説明は省略する。制御部113は、ステップST4でケーブル200が新HDMIに対応していると判断するとき、ステップST7の処理に進む。このステップST7において、制御部113は、新HDMIあるいは現行HDMIのいずれかを選択するためのUI画面を表示部(ディスプレイ)に表示するように制御する。このUIの表示はソース機器110が伝送路200を通じてビデオ信号として伝送してもよいし、シンク機器120が自身で表示するよう指示してもよい。
その後、制御部113は、ステップST8の処理に移る。このステップST8において、ユーザのリモコンなどによる操作を制御部123はCECなどのラインを通じて通知することにより、制御部113は、ユーザが新HDMIあるいは現行HDMIのいずれを選択したかを判断する。ユーザが新HDMIを選択したとき、制御部113は、ステップST5において、データ送信部112が新HDMIの動作モードで動作するように制御する。一方、ユーザが現行HDMIを選択したとき、制御部113は、ステップST6において、データ送信部112が現行HDMI(従来HDMI)の動作モードで動作するように制御する。
「シンク機器の新HDMIへの対応判断」
制御部113における、シンク機器120が新HDMIに対応しているか否かの判断の方法について説明する。この判断方法としては、例えば、以下の第1の判断方法および第2の判断方法がある。
「第1の判断方法」
制御部113は、シンク機器120からケーブル200のDDCライン(SDAラインおよびSCLライン)を用いて読み出したEDIDに基づいて、シンク機器120が新HDMIに対応しているか否かの判断を行う。EDID自体は、フォーマット上で規定されたデータ構造になっている。このEDIDの所定の場所に、新たに、シンク機器120が新HDMI(新しい伝送)に対応しているか否かを示すフラグ情報が新たに定義されるとする。
図14は、EDID上に新たに定義されるフラグ情報の例を示している。本来、EDIDは様々なシンク機器120の能力を示すデータ構造体である。図14は、説明の簡単化のために、EDIDの、この発明に関係するバイトのみを示し、最低限に簡素化している。第2ビットに、シンク機器120が新HDMIに対応しているか否かを示す1ビットのフラグ情報“New Rx Sink”が記載されている。また、第1ビットに、ケーブル200が新HDMIに対応しているか否かを示す1ビットのフラグ情報“New Cable”が新たに定義される。
制御部113は、シンク機器122から読み出したEDIDに、上述の1ビットのフラグ情報“New Rx Sink”が存在するとき、シンク機器120が新HDMIに対応していると判断する。すなわち、シンク機器120が現行HDMIにのみ対応している場合、シンク機器122から読み出したEDIDに、上述の1ビットのフラグ情報“New Rx Sink”は存在しない。
「第2の判断方法」
制御部113は、シンク機器120との間で、ケーブル200を通じて通信を行うことで、シンク機器120が新HDMIに対応しているか否かの判断を行う。例えば、制御部113は、CECラインを用いて、コマンドベースで、シンク機器120が新HDMIに対応しているか否かを確認する。
また、例えば、制御部113は、ユーティリティラインおよびHPDラインで構成される双方向通信路(HEAC機能)を用いてシンク機器120との間で通信を行って、シンク機器120が新HDMIに対応しているか否かを確認する。さらに、例えば、制御部113は、伝送が有効になるまでは未使用のライン、例えばユーティリティラインなどを用いて、なんらかの信号のやり取りを行って、シンク機器120が新HDMIに対応しているか否かを確認する。
「ケーブルの新HDMIへの対応判断」
次に、制御部113における、ケーブル200が新HDMIに対応しているか否かの判断の方法について説明する。この判断方法には、例えば、以下の第1〜第4の判断方法がある。第1〜第3の判断方法は、ケーブル200が新HDMIケーブルであるとき、このケーブル200が持つ情報提供機能を用いて行う判断方法である。
「第1の判断方法」
この第1の判断方法の場合、図15に示すように、新HDMIケーブルには、例えばプラグに、LSI(Large Scale Integration)が内蔵されている。例えば、ソース機器110から+5Vが供給されている状態で、シンク機器120は、HPDをLに落としている間にCECプロトコルにより、このLSIに、出力を要求する。なお、この場合のシンク機器120は、新HDMIに対応しているシンク機器である。LSIは、シンク機器120からの出力要求に応じて、このLSI内に実装されるレジスタ値(新HDMI対応である旨、および伝送可能なデータ帯域などのケーブル特性データ)を、シンク機器120に、CECプロトコルで報告する。
シンク機器120は、LSIから報告された情報を自身のEDIDに追記する。シンク機器120は、この追記の後に、HPDをHにすることで、ソース機器110にEDIDの読み出しを指示する。制御部113は、シンク機器120から読み出したEDIDに基づいて、ケーブル200が新HDMIに対応しているか否かの判断を行う。すなわち、制御部113は、ケーブル200が新HDMI対応である旨などの情報が含まれているとき、ケーブル200が新HDMIに対応していると判断する。
なお、上述では、シンク機器120がCECプロトコルによりLSIに出力を要求するように説明した。しかし、ソース機器110自体が、CECプロトコルによりLSIに出力を要求し、LSIからレジスタ値(新HDMI対応である旨、および伝送可能なデータ帯域などのケーブル特性データ)の報告を直接受けるようにすることも考えられる。
「第2の判断方法」
この第2の判断方法の場合にも、図15に示すように、新HDMIケーブルには、例えばプラグに、LSIが内蔵されている。ソース機器110は、例えばHPDがLからHに変化するタイミングで、シンク機器120から、その能力を示すEDIDを読み出して取得する。この場合、EDIDは、SDA/SCLのラインを使い、シンク機器120のEEPROM内に書かれているデータをシリアル伝送することにより、ソース側に通知される。
LSIは、EDID伝送中に、EDID情報が伝送されるライン、つまりSDA/SCLの信号を観察する。そして、LSIは、ケーブル200が新HDMIに対応しているか否かを示すフラグ情報(図14の所定バイトの第1ビット)が伝送される際に、そのビット値を、ケーブル200が新HDMIに対応している状態、つまりフラグが立っている状態に変更する。つまり、シンク機器120のEDIDROM(EEPROM)上のデータは“00000100”であるが、伝送中にケーブル内のLSIがデータを書換え、ソース機器110が受信する際には“00000110”となる。
制御部113は、シンク機器120から読み出したEDIDに基づいて、ケーブル200が新HDMIに対応しているか否かの判断を行う。すなわち、制御部113は、ケーブル200が新HDMIに対応しているか否かを示すフラグ情報(図14の所定バイトの第1ビット)が、新HDMIに対応している状態になっているとき、ケーブル200が新HDMIに対応していると判断する。
図16は、ケーブル内LSIのEDIDデータ書換え回路の一例を示している。このLSIは、SCLライン上のクロックをカウントするカウンタと、このカウンタのカウント値に基づいて、SDAライン上のデータを書き換えるドライバを有している。
「第3の判断方法」
この第3の判断方法の場合、図17に示すように、新HDMIケーブルには、例えばプラグに、新HDMI対応である旨、および伝送可能なデータ帯域などの情報を記憶したRFタグチップ(LSI)が内蔵されている。また、ソース機器110のレセプタクル111に、RFタグ読出しチップ(LSI)が内蔵される。この場合、セプタクル111のRFタグ読出しチップとプラグのRFタグチップとの間で近距離無線通信が行われ、RFタグチップに記憶されている情報が、RFタグ読出しチップにより読み出される。
制御部113は、RFタグ読出しチップにより読み出される情報に基づいて、ケーブル200が新HDMIに対応しているか否かの判断を行う。すなわち、制御部113は、RFタグ読出しチップによりケーブル200が新HDMI対応である旨などの情報が読み出されるとき、ケーブル200が新HDMIに対応していると判断する。
なお、上述では、ソース機器110のセプタクル111のRFタグ読出しチップとプラグのRFタグチップとの間で近距離無線通信が行われ、RFタグチップに記憶されている情報がソース機器110側で読み出されるように説明した。しかし、例えば、シンク機器120のセプタクル121のRFタグ読出しチップとプラグのRFタグチップとの間で近距離無線通信が行われ、RFタグチップに記憶されている情報がシンク機器120側で読み出され、その情報がその後に、ソース機器110側に提供される構成とすることも考えられる。
「第4の判断方法」
この第4の判断方法の場合、制御部113は、ケーブル200の電気的特性の測定を行うことで、ケーブル200が新HDMIに対応しているか否かを判断する。図18に示すように、ソース機器110の制御部113は、ピン2とピン5に対して測定・検出用のテスト信号(デジタル信号)を発信し、シンク機器120の制御部123がその信号を受信する。なお、現行HDMIケーブルではピン2とピン5に接続される一対の信号線は差動信号の送信路を構成していないが、新HDMIケーブルではピン2とピン5に接続される一対の信号線は差動信号の送信路を構成している(図6(a),(b)参照)。
シンク機器120の制御部123は、受信したデジタル信号を、他の経路(例えば、SCL/SDAで示されるHDMIのDDCライン、あるいはCECラインやユーティリティラインなど)を通じて、ソース機器110側に通知する。ソース機器110の制御部113は、シンク機器120から通知されたデジタル信号が、自身が送信したデジタル信号との一致を確認することで、ケーブル200が新HDMIに対応しているか否かを判断する。すなわち、制御部113は、受信デジタル信号が送信デジタル信号と一致するとき、ケーブル200は新HDMIに対応していると判断する。
図19(a)に示すように、ケーブル200が現行HDMIケーブルである場合、ピン2とピン5に接続される一対の信号線は、シールドツイストペア線となっていない。そのため、ケーブル200が現行HDMIに対応しているとの判断には、“高速のテスト信号は伝達することができない”ということが利用される。この際、ピン2と関連するピン1またはピン3に、ピン2とは関係ない信号を印加することにより、その干渉を利用することも可能である。この干渉により、高速のテスト信号はより伝達しがたくなる。
一方、図19(b)に示すように、ケーブル200が新HDMIケーブルである場合、ピン2とピン5に接続される一対の信号線は、シールドツイストペア線となる。そのため、ケーブル200が新HDMIケーブルに対応しているとの判断には、“高速のテスト信号は伝達することができる”ということが利用される。この際、ピン1またはピン3に、ピン2とは関係ない信号が印加されていたとしても、それらは独立してシールド処理が施されており、印加された信号とピン2が干渉することはなく、テスト信号の伝達に影響することはない。
ここで、テスト信号は、例えば、ソース機器110が出力可能な最速のデータ、かつビットエラーレートとしてHDMIが保障する10−9を評価できるだけの十分長いランダムなデータとされる。なお、シンク機器120には通常ビデオ再生のためのフレームバッファメモリが内蔵されているので、この伝送テスト専用のメモリは必要ではないかもしれない。
なお、上述の説明では、制御部113は、受信デジタル信号が送信デジタル信号と一致するときだけケーブル200が新HDMIに対応していると判断するとした。制御部113は、データの転送速度を遅くして同様のテストを行い、一致するまで上述の判断プロセスを繰り返すことにより、ケーブルの性能を確定し、新HDMIに対応していると判断するが、その伝送スピード内で実行可能なだけの伝送を行うようにしてもよい。この場合には、現行HDMIケーブルも、新HDMIに対応していると判断される可能性がある。
また、上述の説明では、ピン2とピン5を用いている。しかし、これらのピンの代わりに、現行HDMIケーブルと新HDMIケーブルと間でこれらのピンと同様の関係にあるピン8とピン11を用いてもよい。すなわち、現行HDMIケーブルではピン8とピン11に接続される一対の信号線は差動信号の送信路を構成していないが、新HDMIケーブルではピン8とピン11に接続される一対の信号線は差動信号の送信路を構成している(図6(a),(b)参照)。
また、上述の説明では、ソース機器110がシンク機器に送ったデジタル信号(テスト信号)を、それを受信したシンク機器120がソース機器110に通知し、その正否をソース機器110側で判断するものを示した。しかし、デジタル信号(テスト信号)として予め決まったパターンを伝送することにより、シンク機器120が、受信デジタル信号の正否の判定を行って、その結果のみCECなどのラインを通じてソース機器110に通知してもよいし、自身のE−EDIDにその情報を追記してもよい。
上述したように、図1に示すAVシステム100においては、ソース機器110のデータ送信部112は現行HDMIの動作モードの他に、新HDMIモードの動作モードを有するものとされている。ここで、ビデオデータ等のデジタル信号を伝送するための差動信号チャネルは、現行HDMIにおいては3チャネルであるが、新HDMIにおいては6チャネルである。そのため、新HDMIが用いられることで、高いデータレートでの信号伝送が可能となる。また、シンク機器120、ケーブル200が新HDMIに対応していないとき、現行HDMI(従来HDMI)が用いられることで、後方互換性が確保される。
<2.変形例>
なお、上述実施の形態においては、新HDMIケーブルのプラグの形状が、現行HDMIケーブル(従来HDMIケーブル)のプラグの形状と同じであるものを示した。しかし、新HDMIケーブルのプラグの形状を、現行HDMIケーブルのプラグの形状を異ならせ、ソース機器およびシンク機器の一方が新HDMIに対応していないとき、これらが新HDMIケーブルで接続されないようにすることもできる。
図20(a)は現行HDMIケーブルのプラグの形状を示し、図20(b)は現行HDMIのみに対応したソース機器やシンク機器のレセプタクルの形状を示している。これに対して、図20(c)は新HDMIケーブルのプラグの形状を示し、図20(d)は新HDMIに対応したソース機器やシンク機器のレセプタクルの形状の一例を示している。なお、図21(a)は現行HDMIケーブルのプラグの斜視図であり、図21(b)は新HDMIケーブルのプラグの斜視図を示している。
新HDMIケーブルのプラグには凸部(矢印Pで指し示している)が設けられている。そして、新HDMIに対応したソース機器やシンク機器のレセプタクルには、プラグの凸部に対応した凹部(矢印Qで指し示している)が設けられている。この場合、新HDMIに対応したソース機器やシンク機器のレセプタクルの形状は、新HDMIケーブルのプラグの形状に合致し、現行HDMIケーブルのプラグの形状を包含するようにされている。
新HDMIケーブルのプラグの形状および新HDMIに対応したソース機器やシンク機器のレセプタクルの形状を上述のように設定することで、新HDMIケーブルは、新HDMIに対応したソース機器やシンク機器のレセプタクルに接続できる。しかし、新HDMIケーブルは、現行HDMIにのみ対応したソース機器やシンク機器のレセプタクルには接続できなくなる。これにより、ソース機器およびシンク機器の一方が新HDMIに対応していないとき、これらが新HDMIケーブルで接続されるということはなくなる。つまり、ソース機器およびシンク機器の双方が新HDMIに対応しているときのみ、新HDMIケーブルにより、これらの接続が可能となる。
上述したように、新HDMIにも対応したソース機器やシンク機器のレセプタクルの形状は、新HDMIケーブルのプラグの形状に合致し、現行HDMIケーブルのプラグの形状を包含するようにされている。そのため、現行HDMIケーブルは、現行HDMIにのみ対応したソース機器やシンク機器のレセプタクルだけでなく、新HDMIに対応したソース機器やシンク機器のレセプタクルにも接続できる。
また、上述実施の形態において、現行HDMIにおけるビデオデータ等のデジタル信号を伝送するための差動信号チャネルが3チャネルであるのに対して、新HDMIとしてその差動信号チャネルが6チャネルであるものを示した。しかし、ビデオデータ等のデジタル信号を伝送するための差動信号チャネルの数は6チャネルに限定されるものではなく、4チャネル、5チャネル、さらには7チャネル等も考えられる。例えば、ビデオデータ等のデジタル信号を伝送するための差動信号チャネルを5チャネルとし、クロック周波数を1.2倍程度に高速化することで、6チャネルにした場合と同等のデータ転送速度を得ることが可能となる。
また、上述実施の形態において、この発明をソース機器およびシンク機器がHDMI規格のデジタルインタフェースで接続されるAVシステムに適用したものである。この発明は、その他の同様のデジタルインタフェースで接続されるAVシステムにも同様に適用できる。
この発明は、例えば、ソース機器およびシンク機器を、デジタルインタフェースを介して接続してなるAVシステム等に適用できる。
81・・・HDMIトランスミッタ
82・・・HDMIレシーバ
100・・・AVシステム
110・・・ソース機器
111・・・レセプタクル
112・・・データ送信部
113・・・制御部
120・・・シンク機器
121・・・レセプタクル
122・・・データ受信部
123・・・制御部
200・・・ケーブル
201,202・・・プラグ

Claims (1)

  1. 送信装置から受信装置に第1の数のチャネル数の差動信号によりデジタル信号を送信することおよび上記送信装置から上記受信装置に上記第1の数よりも大きな第2の数のチャネル数の差動信号によりデジタル信号を送信することが可能な信号伝送能力を持つケーブルであって、
    上記送信装置が上記ケーブルを介して上記受信装置から読み出す能力情報の一部を書き換え、上記信号伝送能力を持つケーブルであることを示す信号伝送能力情報として上記送信装置に提供する情報提供機能部を有する
    ケーブル。
JP2014162651A 2014-08-08 2014-08-08 ケーブル Expired - Fee Related JP5900552B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014162651A JP5900552B2 (ja) 2014-08-08 2014-08-08 ケーブル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014162651A JP5900552B2 (ja) 2014-08-08 2014-08-08 ケーブル

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010220328A Division JP5598220B2 (ja) 2010-09-30 2010-09-30 送信装置、送信方法、受信装置、受信方法および送受信システム

Publications (2)

Publication Number Publication Date
JP2015053265A JP2015053265A (ja) 2015-03-19
JP5900552B2 true JP5900552B2 (ja) 2016-04-06

Family

ID=52702125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014162651A Expired - Fee Related JP5900552B2 (ja) 2014-08-08 2014-08-08 ケーブル

Country Status (1)

Country Link
JP (1) JP5900552B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10931915B2 (en) 2016-06-01 2021-02-23 Panasonic Intellectual Property Management Co., Ltd. Transmission device, reception device, cable, transmission method, and reception method
CN111937406B (zh) 2018-02-01 2023-01-13 索尼公司 缆线、缆线的控制信息发送方法、连接装置、电子设备及电子设备的输出数据控制方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7269673B2 (en) * 2004-02-18 2007-09-11 Silicon Image, Inc. Cable with circuitry for asserting stored cable data or other information to an external device or user
US7526582B2 (en) * 2006-11-30 2009-04-28 International Business Machines Corporation Identifying a cable with a connection location

Also Published As

Publication number Publication date
JP2015053265A (ja) 2015-03-19

Similar Documents

Publication Publication Date Title
JP5598220B2 (ja) 送信装置、送信方法、受信装置、受信方法および送受信システム
JP5655562B2 (ja) 電子機器、電子機器の制御方法、送信装置および受信装置
JP6031745B2 (ja) 送信装置、送信方法および受信装置
JP5707913B2 (ja) 送信装置および受信装置
JP5895936B2 (ja) 電子機器、伝送ケーブルのカテゴリ判別方法および伝送ケーブル
JP5771986B2 (ja) 電子機器、電子機器の制御方法および電子機器システム
JP6947231B2 (ja) 送信装置および送信方法
JP5892227B2 (ja) ケーブル
JP5987955B2 (ja) 電子機器および電子機器の制御方法
JP5900552B2 (ja) ケーブル
WO2015118908A1 (ja) 送信装置、受信装置、通信処理方法およびケーブル
JP6187651B2 (ja) 電子機器および電子機器の制御方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151228

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160222

R151 Written notification of patent or utility model registration

Ref document number: 5900552

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees