JP5895690B2 - Method for producing organic modified inorganic filler, organic modified inorganic filler, and thermally conductive silicone composition - Google Patents

Method for producing organic modified inorganic filler, organic modified inorganic filler, and thermally conductive silicone composition Download PDF

Info

Publication number
JP5895690B2
JP5895690B2 JP2012106448A JP2012106448A JP5895690B2 JP 5895690 B2 JP5895690 B2 JP 5895690B2 JP 2012106448 A JP2012106448 A JP 2012106448A JP 2012106448 A JP2012106448 A JP 2012106448A JP 5895690 B2 JP5895690 B2 JP 5895690B2
Authority
JP
Japan
Prior art keywords
inorganic filler
modified inorganic
group
organic modified
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012106448A
Other languages
Japanese (ja)
Other versions
JP2013234237A (en
Inventor
啓太 北沢
啓太 北沢
晃洋 遠藤
晃洋 遠藤
謙一 辻
謙一 辻
靖久 石原
靖久 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2012106448A priority Critical patent/JP5895690B2/en
Publication of JP2013234237A publication Critical patent/JP2013234237A/en
Application granted granted Critical
Publication of JP5895690B2 publication Critical patent/JP5895690B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、各種樹脂に充填して樹脂組成物とした際、その流動性を向上させることが可能な有機修飾無機充填材の製造方法、該製造方法により製造される有機修飾無機充填材、並びに該有機修飾無機充填材を用いた熱伝導性シリコーン組成物に関する。   The present invention relates to a method for producing an organically modified inorganic filler capable of improving fluidity when filled into various resins to obtain a resin composition, an organically modified inorganic filler produced by the production method, and The present invention relates to a heat conductive silicone composition using the organically modified inorganic filler.

電子部品の多くは使用中に発熱し、そのために電子部品の性能が低下することがある。そのため、電子部品にはヒートシンクのような放熱体が取り付けられるが、放熱体は金属であることが多いため、電子部品と放熱体は密着がよくない。これを解消するために、電子部品と放熱体との間に熱伝導性樹脂組成物を介在させることで密着性を向上させ、熱を効率的に逃がす方法が提案されている。しかしながら、近年の電子部品の性能向上は目覚しく、それに伴って発熱量も増大の一途をたどっているため、熱伝導性樹脂組成物の高熱伝導化が一層求められている。   Many electronic components generate heat during use, which may reduce the performance of the electronic components. For this reason, a heat radiator such as a heat sink is attached to the electronic component. However, since the heat radiator is often a metal, the electronic component and the heat radiator are not closely adhered. In order to solve this problem, a method has been proposed in which a heat conductive resin composition is interposed between an electronic component and a heat dissipator to improve adhesion and efficiently release heat. However, in recent years, the performance of electronic components has been remarkably improved, and the amount of heat generation has been steadily increasing. Accordingly, there has been a further demand for higher thermal conductivity of the thermally conductive resin composition.

熱伝導性樹脂組成物の熱伝導率を向上させるためには、熱伝導性無機充填材を大量に充填することが必要となる。熱伝導性無機充填材を大量に充填するためには、熱伝導性無機充填材と樹脂の親和性を高めることが必須となり、例えば熱伝導性無機充填材の表面を有機ケイ素化合物で修飾することで分散性を向上させる方法が提案されている。具体的には、アルコキシ基含有シロキサンで修飾をする提案(特開2004−262972号公報(特許文献1))、アルキルアルコキシシランで修飾をする提案(特開平11−209618号公報(特許文献2)、特許第4514164号公報(特許文献3))などがある。しかしながら、特許文献1では無機充填材の表面修飾用に特定の2種類のオルガノポリシロキサンを用いる必要があり、組成物の流動性改善も十分なものではなかった。また、特許文献2、3ではヘキシルトリメトキシシラン等を用いており、組成物の流動性改善に限界があった。   In order to improve the thermal conductivity of the thermally conductive resin composition, it is necessary to fill a large amount of the thermally conductive inorganic filler. In order to fill a large amount of the thermally conductive inorganic filler, it is essential to increase the affinity between the thermally conductive inorganic filler and the resin. For example, the surface of the thermally conductive inorganic filler is modified with an organosilicon compound. A method for improving the dispersibility is proposed. Specifically, a proposal for modifying with an alkoxy group-containing siloxane (Japanese Patent Laid-Open No. 2004-262972 (Patent Document 1)), a proposal for modifying with an alkylalkoxysilane (Japanese Patent Laid-Open No. 11-209618 (Patent Document 2)) Patent No. 4514164 (Patent Document 3)). However, in Patent Document 1, it is necessary to use two specific organopolysiloxanes for surface modification of the inorganic filler, and the fluidity of the composition is not sufficiently improved. In Patent Documents 2 and 3, hexyltrimethoxysilane or the like is used, and there is a limit to improving the fluidity of the composition.

また、有機ケイ素化合物を用いずに、超臨界状態又は亜臨界状態にある水を反応場として、カルボキシル基、アミノ基、水酸基といった官能基を有する有機修飾剤で無機充填材の表面を修飾する方法が提案されている(特開2011−122030号公報(特許文献4))。この特許文献4に示されるように、超臨界状態又は亜臨界状態にある水を反応場として無機充填材の表面を修飾する手法が無機充填材と樹脂の親和性を飛躍的に向上させる技術として近年注目されている。しかしながら、特許文献4では、そのために用いられる有機修飾剤がシラノール基又は加水分解してシラノール基を生じる官能基を有すると、シラノール基同士が縮合反応することで効果が小さくなる傾向があることから、有機修飾剤はシラノール基又は加水分解してシラノール基を生じる官能基を有しないものと限定されている。   In addition, a method of modifying the surface of an inorganic filler with an organic modifier having a functional group such as a carboxyl group, an amino group, or a hydroxyl group using water in a supercritical state or a subcritical state as a reaction field without using an organosilicon compound Has been proposed (Japanese Patent Laid-Open No. 2011-122030 (Patent Document 4)). As shown in Patent Document 4, a technique for modifying the surface of an inorganic filler using water in a supercritical state or a subcritical state as a reaction field dramatically improves the affinity between the inorganic filler and the resin. It has attracted attention in recent years. However, in Patent Document 4, if the organic modifier used for this purpose has a silanol group or a functional group that hydrolyzes to generate a silanol group, the effect tends to decrease due to the condensation reaction between the silanol groups. Organic modifiers are limited to those having no silanol groups or functional groups that hydrolyze to form silanol groups.

特開2004−262972号公報JP 2004-262972 A 特開平11−209618号公報Japanese Patent Laid-Open No. 11-209618 特許第4514164号公報Japanese Patent No. 4514164 特開2011−122030号公報JP 2011-122030 A

本発明は、上記事情に鑑みなされたもので、無機充填材とシラノール基又は加水分解してシラノール基を生じる官能基を有する有機化合物を用いた場合においても、樹脂、例えばオルガノポリシロキサン組成物に充填した際に組成物の流動性を効率的に向上させることが可能な有機修飾無機充填材の製造方法、該製造方法により製造される有機修飾無機充填材並びに該有機修飾無機充填材を用いた熱伝導性シリコーン組成物を提供することを目的とする。   The present invention has been made in view of the above circumstances. Even when an inorganic filler and an organic compound having a silanol group or a functional group that hydrolyzes to generate a silanol group are used, the resin, for example, an organopolysiloxane composition is used. Method for producing organic modified inorganic filler capable of efficiently improving fluidity of composition when filled, organic modified inorganic filler produced by the production method, and organic modified inorganic filler It aims at providing a heat conductive silicone composition.

本発明は、上記目的を達成するため、下記の有機修飾無機充填材の製造方法、有機修飾無機充填材並びに熱伝導性シリコーン組成物を提供する。
〔1〕 温度200〜450℃、圧力10〜40MPaの超臨界状態又は亜臨界状態にある水を反応場として、無機充填材と、CH3−(CH2n−Si(CH32−OH(nは9の整数)、CH3−(CH2n−Si(CH32−OCH3(nは9の整数)、CH3−(CH2n−Si(CH32−NH−Si(CH32−(CH2n−CH3(nは9の整数)からなる群より選ばれる少なくとも1種以上の有機化合物とを混合し、反応させることを特徴とする有機修飾無機充填材の製造方法。
〔2〕 前記無機充填材が金属、金属酸化物、金属窒化物、金属炭化物、炭素の同素体からなる群より選ばれる少なくとも1種以上の材料からなる、〔1〕に記載の有機修飾無機充填材の製造方法。
〔3〕 前記無機充填材がアルミニウム、銀、銅、金属ケイ素、アルミナ、酸化亜鉛、酸化マグネシウム、二酸化ケイ素、水酸化アルミニウム、窒化アルミニウム、窒化ホウ素、炭化ケイ素、ダイヤモンド、グラファイト、及びカーボンナノチューブより選ばれる少なくとも1種以上の材料からなる、〔2〕に記載の有機修飾無機充填材の製造方法。
〔4〕 前記無機充填材がアルミナからなる、〔3〕に記載の有機修飾無機充填材の製造方法。

〔1〕〜〔4〕のいずれかに記載の製造方法で有機修飾無機充填材を製造し、得られた有機修飾無機充填材をオルガノポリシロキサンと混合する工程を含む熱伝導性シリコーン組成物の製造方法
In order to achieve the above object, the present invention provides the following method for producing an organically modified inorganic filler, an organically modified inorganic filler, and a thermally conductive silicone composition.
[1] Using water in a supercritical state or subcritical state at a temperature of 200 to 450 ° C. and a pressure of 10 to 40 MPa as a reaction field, an inorganic filler, CH 3 — (CH 2 ) n —Si (CH 3 ) 2 — OH (n is an integer of 9), CH 3 — (CH 2 ) n —Si (CH 3 ) 2 —OCH 3 (n is an integer of 9), CH 3 — (CH 2 ) n —Si (CH 3 ) 2 It is characterized by mixing and reacting with at least one organic compound selected from the group consisting of —NH—Si (CH 3 ) 2 — (CH 2 ) n —CH 3 (n is an integer of 9). Manufacturing method of organic modified inorganic filler.
[2] The organically modified inorganic filler according to [1], wherein the inorganic filler is made of at least one material selected from the group consisting of metals, metal oxides, metal nitrides, metal carbides, and carbon allotropes. Manufacturing method.
[3] The inorganic filler is selected from aluminum, silver, copper, metallic silicon, alumina, zinc oxide, magnesium oxide, silicon dioxide, aluminum hydroxide, aluminum nitride, boron nitride, silicon carbide, diamond, graphite, and carbon nanotube. The manufacturing method of the organic modified inorganic filler as described in [2] which consists of at least 1 or more types of materials.
[4] The method for producing an organically modified inorganic filler according to [3], wherein the inorganic filler is made of alumina.

[ 5 ] A thermally conductive silicone comprising a step of producing an organic modified inorganic filler by the production method according to any one of [1] to [4], and mixing the obtained organic modified inorganic filler with an organopolysiloxane. A method for producing the composition.

本発明によれば、所定の温度及び圧力の超臨界状態又は亜臨界状態にある水を反応場として、熱伝導性無機充填材と、シラノール基又は加水分解してシラノール基を生じる官能基を有する所定の有機化合物を効率的に反応させることにより、樹脂に充填した際に組成物の流動性を向上させることが可能な有機修飾無機充填材を製造でき、更にその有機修飾無機充填材を用いて流動性に優れた熱伝導性シリコーン組成物を提供できる。   According to the present invention, water in a supercritical or subcritical state at a predetermined temperature and pressure is used as a reaction field, and has a thermally conductive inorganic filler and a functional group that generates a silanol group by hydrolysis or silanol group. By efficiently reacting a predetermined organic compound, it is possible to produce an organic modified inorganic filler capable of improving the fluidity of the composition when filled into a resin, and further using the organic modified inorganic filler. A thermally conductive silicone composition having excellent fluidity can be provided.

実施例1のFT−IRによる測定結果を示す図である。It is a figure which shows the measurement result by FT-IR of Example 1. FIG. 実施例1のTG−DTAによる測定結果を示す図である。It is a figure which shows the measurement result by TG-DTA of Example 1. FIG. 実施例2のFT−IRによる測定結果を示す図である。It is a figure which shows the measurement result by FT-IR of Example 2. FIG. 実施例2のTG−DTAによる測定結果を示す図である。It is a figure which shows the measurement result by TG-DTA of Example 2. 実施例3のFT−IRによる測定結果を示す図である。It is a figure which shows the measurement result by FT-IR of Example 3. 実施例3のTG−DTAによる測定結果を示す図である。It is a figure which shows the measurement result by TG-DTA of Example 3.

以下に、本発明の実施の形態について説明する。
[有機修飾無機充填材]
本発明に係る有機修飾無機充填材は、温度が200〜450℃、圧力が10〜40MPaの超臨界状態又は亜臨界状態にある水を反応場として、無機充填材と、シラノール基又は加水分解してシラノール基を生じる官能基を有する所定の有機化合物を混合し、反応させてなるものである。
Embodiments of the present invention will be described below.
[Organic modified inorganic filler]
The organically modified inorganic filler according to the present invention is obtained by using water in a supercritical state or subcritical state at a temperature of 200 to 450 ° C. and a pressure of 10 to 40 MPa as a reaction field, and with an inorganic filler and a silanol group or hydrolyzing. A predetermined organic compound having a functional group that generates a silanol group is mixed and reacted.

ここで、無機充填材の表面を修飾するために用いる所定の有機化合物としては、R3−Si−OR′及びR3−Si−NH−Si−R3(Rは互いに同一又は異種の脂肪族、脂環族又は芳香族一価炭化水素基であり、該一価炭化水素基中にヘテロ原子を含んでもよい。R′は水素原子又は炭素数1〜4のアルキル基である。)からなる群より選ばれる少なくとも1種以上の有機化合物である。 Here, as the predetermined organic compound used for modifying the surface of the inorganic filler, R 3 —Si—OR ′ and R 3 —Si—NH—Si—R 3 (R are the same or different aliphatic groups) An alicyclic or aromatic monovalent hydrocarbon group, and the monovalent hydrocarbon group may contain a hetero atom, and R 'is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms). It is at least one organic compound selected from the group.

この場合、上記一価炭化水素基としては、炭素数1〜20、好ましくは1〜12のものが好ましく、直鎖状、分岐状のアルキル基、シクロアルキル基、アルケニル基、アリール基、アラルキル基や、これらの基の水素原子の一部又は全部がハロゲン原子、シアノ基等で置換された基を挙げることができる。そのような有機化合物としては、CH3−(CH2n−Si(CH32−OH(nは0〜9の整数)、CH3−(CH2n−Si(CH32−OCH3(nは0〜9の整数)、CH3−(CH2n−Si(CH32−NH−Si(CH32−(CH2n−CH3(nは0〜9の整数)からなる群より選ばれる少なくとも1種以上の有機化合物であることが特に好ましい。 In this case, the monovalent hydrocarbon group is preferably a group having 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms, a linear or branched alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, an aralkyl group. And a group in which some or all of the hydrogen atoms of these groups are substituted with a halogen atom, a cyano group, or the like. Examples of such an organic compound include CH 3 — (CH 2 ) n —Si (CH 3 ) 2 —OH (n is an integer of 0 to 9), CH 3 — (CH 2 ) n —Si (CH 3 ) 2. -OCH 3 (n is an integer from 0 to 9), CH 3 - (CH 2 ) n -Si (CH 3) 2 -NH-Si (CH 3) 2 - (CH 2) n -CH 3 (n is 0 It is particularly preferable that the organic compound is at least one organic compound selected from the group consisting of an integer of ˜9.

本発明では、有機化合物として、例えば分子中にシラノール基を1つのみ有するシラン化合物や、加水分解により分子中にシラノール基を1つのみ生じるシラン化合物、シラザン化合物を用いることにより、シラン化合物のシラノール基同士が縮合反応することを抑制し、超臨界水又は亜臨界水を反応場とすることにより、効率的に熱伝導性無機充填材の表面を修飾することを実現している。   In the present invention, as the organic compound, for example, a silane compound having only one silanol group in the molecule, a silane compound in which only one silanol group is generated in the molecule by hydrolysis, or a silazane compound is used. By suppressing the condensation reaction between groups and using supercritical water or subcritical water as a reaction field, the surface of the thermally conductive inorganic filler is efficiently modified.

また、本発明で用いる熱伝導性無機充填材としては、金属、金属酸化物、金属窒化物、金属炭化物、炭素の同素体からなる群より選ばれる少なくとも1種以上の材料からなるものが好ましく、例えば、アルミニウム、銀、銅、金属ケイ素、アルミナ、酸化亜鉛、酸化マグネシウム、二酸化ケイ素、水酸化アルミニウム、窒化アルミニウム、窒化ホウ素、炭化ケイ素、ダイヤモンド、グラファイト、カーボンナノチューブなどが挙げられ、特にアルミナ又は酸化亜鉛が好ましい。   The thermally conductive inorganic filler used in the present invention is preferably made of at least one material selected from the group consisting of metals, metal oxides, metal nitrides, metal carbides, and allotropes of carbon. , Aluminum, silver, copper, metal silicon, alumina, zinc oxide, magnesium oxide, silicon dioxide, aluminum hydroxide, aluminum nitride, boron nitride, silicon carbide, diamond, graphite, carbon nanotube, etc., especially alumina or zinc oxide Is preferred.

熱伝導性無機充填材の平均粒径は、0.1μmより小さいと熱伝導性シリコーン組成物としての粘度が高くなり伸展性に乏しいものになる場合があり、300μmより大きいと熱伝導性シリコーン組成物の均一性が乏しくなる場合があるため、0.1〜300μmの範囲が好ましく、より好ましくは0.1〜200μmの範囲がよい。無機充填材の形状は、不定形でも球形でも如何なる形状でも構わない。なお、平均粒径は、例えば、レーザー光回折法による粒度分布測定における質量平均値(又はメジアン径)として求めることができる。   If the average particle size of the thermally conductive inorganic filler is less than 0.1 μm, the viscosity as the thermally conductive silicone composition may be high and the extensibility may be poor, and if it is greater than 300 μm, the thermally conductive silicone composition Since the uniformity of the object may be poor, the range of 0.1 to 300 μm is preferable, and the range of 0.1 to 200 μm is more preferable. The shape of the inorganic filler may be indefinite, spherical or any shape. In addition, an average particle diameter can be calculated | required as a mass average value (or median diameter) in the particle size distribution measurement by a laser beam diffraction method, for example.

[有機修飾無機充填材の製造方法]
本発明に係る有機修飾無機充填材の製造方法は、超臨界状態又は亜臨界状態にある水を反応場として、前述した熱伝導性無機充填材と、シラノール基又は加水分解してシラノール基を生じる官能基を有する所定の有機化合物とを混合し、反応させることを特徴とする。
[Method for producing organically modified inorganic filler]
The method for producing an organically modified inorganic filler according to the present invention uses the water in a supercritical state or subcritical state as a reaction field, and generates the silanol group by hydrolysis with the above-described thermally conductive inorganic filler. A predetermined organic compound having a functional group is mixed and reacted.

ここで、水を超臨界状態又は亜臨界状態とする高温高圧条件は、具体的には、温度は200〜450℃であり、好ましくは250〜450℃、より好ましくは300〜400℃である。温度が200℃未満では本発明の反応に必要な超臨界状態又は亜臨界状態とならず、450℃超ではシラノール基同士の縮合反応が促進されるために不適である。また、圧力は10〜40MPaであり、好ましくは25〜40MPa、より好ましくは30〜35MPaである。圧力が10MPa未満では本発明の反応に必要な超臨界状態又は亜臨界状態とならず、40MPa超ではシラノール基同士の縮合反応が促進されるために不適である。   Here, the high temperature and high pressure conditions for bringing water into a supercritical state or a subcritical state are specifically 200 to 450 ° C, preferably 250 to 450 ° C, more preferably 300 to 400 ° C. If the temperature is less than 200 ° C., the supercritical state or subcritical state necessary for the reaction of the present invention is not achieved, and if it exceeds 450 ° C., the condensation reaction between silanol groups is promoted, which is not suitable. Moreover, a pressure is 10-40 Mpa, Preferably it is 25-40 Mpa, More preferably, it is 30-35 Mpa. If the pressure is less than 10 MPa, the supercritical state or subcritical state necessary for the reaction of the present invention is not achieved, and if it exceeds 40 MPa, the condensation reaction between silanol groups is promoted, which is not suitable.

また、反応場を実現する装置としては、水を超臨界状態又は亜臨界状態とする高温高圧の条件を達成できる装置であれば特に限定されず、当該分野で当業者に広く知られている装置から選択して使用できるが、例えば、回分式装置、流通式装置のいずれをも使用できる。   Further, the apparatus for realizing the reaction field is not particularly limited as long as it is an apparatus that can achieve high-temperature and high-pressure conditions for bringing water into a supercritical state or a subcritical state, and is a device that is widely known to those skilled in the art. For example, either a batch type apparatus or a flow type apparatus can be used.

本発明の製造方法の例としては、例えば、所定の温度圧力で超臨界状態又は亜臨界状態にある純水が流通する反応路内へ、無機充填材を純水に任意の濃度で分散させたスラリーと、前記シラノール基又は加水分解してシラノール基を生じる官能基を有する有機化合物をそれぞれ添加・混合し、混合液を冷却後に回収するようにする。このときの有機化合物の添加量は無機充填材表面全面を該有機化合物由来の有機物で修飾するのに必要な量である。またこの際、反応系のpHを調節するための酸及び塩基を添加しても構わない。
次に、回収した混合液は高速冷却遠心機を用いて固液分離を行ない、分けとった固形分にエタノールを加えて高速冷却遠心機で再度固液分離を行なうことで未反応の有機化合物を除去し、固形分を高温乾燥することで、目的の有機修飾無機充填材を得ることができる。
As an example of the production method of the present invention, for example, an inorganic filler is dispersed in pure water at an arbitrary concentration into a reaction path through which pure water in a supercritical state or a subcritical state flows at a predetermined temperature and pressure. The slurry and the organic compound having a silanol group or a functional group that hydrolyzes to generate a silanol group are added and mixed, respectively, and the mixture is recovered after cooling. The amount of the organic compound added at this time is an amount necessary for modifying the entire surface of the inorganic filler with an organic substance derived from the organic compound. At this time, an acid and a base for adjusting the pH of the reaction system may be added.
Next, the collected liquid mixture is subjected to solid-liquid separation using a high-speed cooling centrifuge, ethanol is added to the separated solid content, and solid-liquid separation is performed again using a high-speed cooling centrifuge to remove unreacted organic compounds. The target organic modified inorganic filler can be obtained by removing and drying the solid content at a high temperature.

本発明の製造方法によれば、超臨界状態又は亜臨界状態にある水を反応場とすることにより、前述したシラノール基を有する有機化合物又は加水分解してシラノール基を生じる官能基を有する有機化合物が加水分解したものが無機充填材表面に存在する水酸基などの官能基と反応することで、該有機化合物と無機充填材とを化学的に結合させ、無機充填材の表面を有機化合物で効率的に修飾することが可能となる。   According to the production method of the present invention, by using water in a supercritical state or a subcritical state as a reaction field, the above-described organic compound having a silanol group or an organic compound having a functional group that is hydrolyzed to generate a silanol group The hydrolyzed product reacts with a functional group such as a hydroxyl group present on the surface of the inorganic filler, thereby chemically bonding the organic compound and the inorganic filler, so that the surface of the inorganic filler is efficiently made of the organic compound. Can be modified.

このようにして製造した有機修飾無機充填材について、FT−IR(フーリエ変換型赤外分光分析)の測定を行なうと、波数2900cm-1付近にアルキル基の存在を示唆するピークが観察される。また、TG−DTA(Thermogravimetry−Differential Thermal Analysis)の測定を行なうと、測定温度300℃付近までは重量減少がほとんど観察されないのに対し、300℃以上の温度領域ではゆるやかな重量減少が観察される。これらの結果から、作製した有機修飾無機充填材の表面には有機化合物が一定量存在しており、なおかつそれらは無機充填材の表面と化学的に結合していると推察される。また、このようにして作製した有機修飾無機充填材をオルガノポリシロキサン組成物中へ充填すると、有機修飾を施していない無機充填材を同量充填した場合と比較して流動性を向上させることが可能である。 When the FT-IR (Fourier transform infrared spectroscopic analysis) is measured for the organically modified inorganic filler thus produced, a peak suggesting the presence of an alkyl group is observed in the vicinity of a wave number of 2900 cm −1 . In addition, when TG-DTA (Thermogravimetry-Differential Thermal Analysis) is measured, a weight loss is hardly observed up to a measurement temperature of about 300 ° C., but a gradual weight loss is observed in a temperature region of 300 ° C. or higher. . From these results, it is inferred that a certain amount of organic compounds are present on the surface of the produced organic modified inorganic filler, and that they are chemically bonded to the surface of the inorganic filler. Moreover, when the organic modified inorganic filler thus prepared is filled into the organopolysiloxane composition, the fluidity can be improved as compared with the case where the same amount of the inorganic filler not subjected to organic modification is filled. Is possible.

[熱伝導性シリコーン組成物]
本発明の熱伝導性シリコーン組成物は、(A)オルガノポリシロキサンと、(B)本発明の有機修飾無機充填材とを含むものである。
[Heat conductive silicone composition]
The heat conductive silicone composition of this invention contains (A) organopolysiloxane and (B) the organic modification inorganic filler of this invention.

ここで、本発明の熱伝導性シリコーン組成物は、目的に応じて成分が調整され、熱伝導性グリース組成物、付加硬化型熱伝導性シリコーン組成物として用いられる。   Here, components of the heat conductive silicone composition of the present invention are adjusted according to the purpose, and are used as a heat conductive grease composition and an addition-curing type heat conductive silicone composition.

(熱伝導性グリース組成物)
本発明の熱伝導性シリコーン組成物のうち、熱伝導性グリース組成物としては、ジメチルポリシロキサン、メチルフェニルポリシロキサン等のシリコーンオイルと、本発明の有機修飾無機充填材とを少なくとも含有するものであり、例えばシリコーンオイル100質量部に対し、有機修飾無機充填材100〜1,000質量部を配合する。
(Thermal conductive grease composition)
Among the thermally conductive silicone compositions of the present invention, the thermally conductive grease composition includes at least a silicone oil such as dimethylpolysiloxane and methylphenylpolysiloxane and the organic modified inorganic filler of the present invention. Yes, for example, 100 to 1,000 parts by mass of an organically modified inorganic filler is blended with 100 parts by mass of silicone oil.

(付加硬化型熱伝導性シリコーン組成物)
本発明の熱伝導性シリコーン組成物のうち、付加硬化型熱伝導性シリコーン組成物は無機充填材を除き、他は従来公知の成分からなり、例えばその組成例は次の通りである。
(a)分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン:100質量部、
(b)本発明の有機修飾無機充填材:200〜3,000質量部、
(c)ケイ素原子に直接結合した水素原子を少なくとも2個有するオルガノハイドロジェンポリシロキサン:ケイ素原子に直接結合した水素原子のモル数が(a)成分由来のアルケニル基のモル数の0.1〜5.0倍量となる量、
(d)白金族金属系硬化触媒:(a)成分に対して白金族元素換算で0.1〜500ppm。
(Addition-curable thermal conductive silicone composition)
Among the thermally conductive silicone compositions of the present invention, the addition-curable thermal conductive silicone composition is composed of conventionally known components except for the inorganic filler. Examples of the composition are as follows.
(A) Organopolysiloxane having at least two alkenyl groups in the molecule: 100 parts by mass
(B) Organically modified inorganic filler of the present invention: 200 to 3,000 parts by mass,
(C) Organohydrogenpolysiloxane having at least two hydrogen atoms directly bonded to a silicon atom: 0.1 to 0.1 mol of the number of moles of the alkenyl group derived from the component (a). 5.0 times the amount,
(D) Platinum group metal-based curing catalyst: 0.1 to 500 ppm in terms of platinum group element with respect to component (a).

本組成例において、(a)成分のアルケニル基含有オルガノポリシロキサンは、通常は主鎖部分が基本的にジオルガノシロキサン単位の繰り返しからなるのが一般的であるが、これは分子構造の一部に分枝状の構造を含んだものであってもよく、また環状体であってもよいが、硬化物の機械的強度等、物性の点から直鎖状のジオルガノポリシロキサンが好ましい。また、このオルガノポリシロキサンの25℃における動粘度は、通常、10〜100,000mm2/s、特に好ましくは500〜50,000mm2/sの範囲である。前記粘度が低すぎると、得られる組成物の保存安定性が悪くなり、また高すぎると得られる組成物の伸展性が悪くなる場合がある。なお、動粘度はオストワルド粘度計を用いた場合の値である。 In this compositional example, the alkenyl group-containing organopolysiloxane of component (a) is generally composed of a repeating main part of the diorganosiloxane unit, but this is a part of the molecular structure. In addition, a branched structure may be included, and a cyclic structure may be used, but a linear diorganopolysiloxane is preferable from the viewpoint of physical properties such as mechanical strength of a cured product. Moreover, kinematic viscosity at 25 ° C. This organopolysiloxane is usually, 10~100,000mm 2 / s, particularly preferably from 500~50,000mm 2 / s. If the viscosity is too low, the storage stability of the resulting composition will be poor, and if it is too high, the extensibility of the resulting composition may be poor. The kinematic viscosity is a value when using an Ostwald viscometer.

(c)成分のオルガノハイドロジェンポリシロキサンは、1分子中に平均で2個以上、好ましくは2〜100個のケイ素原子に直接結合する水素原子(Si−H基)を有するオルガノハイドロジェンポリシロキサンであり、(a)成分の架橋剤として作用する成分である。即ち、(c)成分中のSi−H基と(a)成分中のアルケニル基と(d)成分の白金族金属系硬化触媒により促進されるヒドロシリル化反応により付加して、架橋構造を有する3次元網目構造を与える。   The organohydrogenpolysiloxane of component (c) is an organohydrogenpolysiloxane having a hydrogen atom (Si—H group) directly bonded to 2 or more, preferably 2 to 100 silicon atoms on average in one molecule. It is a component that acts as a crosslinking agent for component (a). That is, it is added by a hydrosilylation reaction promoted by a platinum group metal-based curing catalyst of component (d) and an alkenyl group in component (a) and an alkenyl group in component (c). Gives a dimensional network structure.

(d)成分の白金族金属系硬化触媒は、(a)成分由来のアルケニル基と、(c)成分由来のSi−H基の付加反応を促進するための触媒であり、ヒドロシリル化反応に用いられる触媒として周知の触媒が挙げられる。その具体例としては、例えば、白金(白金黒を含む)、ロジウム、パラジウム等の白金族金属単体、H2PtCl4・mH2O、H2PtCl6・mH2O、NaHPtCl6・mH2O、KaHPtCl6・mH2O、Na2PtCl6・mH2O、K2PtCl4・mH2O、PtCl4・mH2O、PtCl2、Na2HPtCl4・mH2O(但し、式中、mは0〜6の整数であり、好ましくは0又は6である。)等の塩化白金、塩化白金酸及び塩化白金酸塩、アルコール変性塩化白金酸(米国特許第3,220,972号明細書参照)、塩化白金酸とオレフィンとのコンプレックス(米国特許第3,159,601号明細書、同第3,159,662号明細書、同第3,775,452号明細書参照)、白金黒、パラジウム等の白金族金属をアルミナ、シリカ、カーボン等の担体に担持させたもの、ロジウム−オレフィンコンプレックス、クロロトリス(トリフェニルフォスフィン)ロジウム(ウィルキンソン触媒)、塩化白金、塩化白金酸又は塩化白金酸塩とビニル基含有シロキサン、特にビニル基含有環状シロキサンとのコンプレックスなどが挙げられる。
前記成分以外に、反応制御剤、粘度調整剤等を添加してもよい。
The platinum group metal-based curing catalyst of component (d) is a catalyst for promoting the addition reaction of the alkenyl group derived from component (a) and the Si—H group derived from component (c), and is used for the hydrosilylation reaction. Well-known catalysts are mentioned as the catalyst to be used. Specific examples thereof include platinum group metals such as platinum (including platinum black), rhodium and palladium, H 2 PtCl 4 · mH 2 O, H 2 PtCl 6 · mH 2 O, NaHPtCl 6 · mH 2 O. , KaHPtCl 6 · mH 2 O, Na 2 PtCl 6 · mH 2 O, K 2 PtCl 4 · mH 2 O, PtCl 4 · mH 2 O, PtCl 2 , Na 2 HPtCl 4 · mH 2 O (where, m is an integer of 0 to 6, preferably 0 or 6.) Chloroplatinic acid, chloroplatinic acid and chloroplatinate, alcohol-modified chloroplatinic acid (US Pat. No. 3,220,972) ), Complex of chloroplatinic acid and olefin (see US Pat. Nos. 3,159,601, 3,159,662, and 3,775,452), platinum black Platinum group gold such as palladium Genus supported on a support such as alumina, silica, carbon, rhodium-olefin complex, chlorotris (triphenylphosphine) rhodium (Wilkinson catalyst), platinum chloride, chloroplatinic acid or chloroplatinate and vinyl group-containing siloxane In particular, a complex with a vinyl group-containing cyclic siloxane may be mentioned.
In addition to the above components, reaction control agents, viscosity modifiers, and the like may be added.

以下、実施例及び比較例を挙げて本発明を説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated, this invention is not limited to these Examples.

無機充填材としてアルミナAL−47−1(製品名、昭和電工株式会社製、中心粒径0.9μm)、有機化合物としてデシルジメチルメトキシシラン(CH3−(CH29−Si(CH32−OCH3)を用いて、以下の条件で有機修飾無機充填材を作製した(実施例1〜3)。 Alumina AL-47-1 (product name, Showa Denko KK, center particle size 0.9 μm) as inorganic filler, decyldimethylmethoxysilane (CH 3 — (CH 2 ) 9 —Si (CH 3 ) as organic compound 2- OCH 3 ) was used to produce organic modified inorganic fillers under the following conditions (Examples 1 to 3).

[実施例1]
380℃、31MPaの超臨界状態にある純水が9ml/minで流通する反応装置(株式会社アイテック製、MOMI超mini)内にて、30質量%のアルミナを純水に分散させたスラリーを3ml/min、デシルジメチルメトキシシランを0.5ml/minの流量で混合・反応させ、冷却後に有機修飾アルミナスラリーを回収した。これを高速冷却遠心機(日立工機株式会社製、himacCR22GIII)を用い、10,000rpm、10℃、10分間の条件で固液分離を行ない、分けとった固形分にエタノールを加えて洗浄し再度固液分離を行なうことで未反応の有機化合物を除去し、固形分を150℃で4時間乾燥することで、有機修飾アルミナを得た。
[Example 1]
3 ml of a slurry in which 30% by mass of alumina is dispersed in pure water in a reaction apparatus (manufactured by ITEC Co., Ltd., MOMI ultra mini) in which pure water in a supercritical state of 380 ° C. and 31 MPa flows at 9 ml / min. / Min and decyldimethylmethoxysilane were mixed and reacted at a flow rate of 0.5 ml / min, and the organically modified alumina slurry was recovered after cooling. Using a high-speed cooling centrifuge (HimacCR22GIII, manufactured by Hitachi Koki Co., Ltd.), solid-liquid separation is performed under conditions of 10,000 rpm, 10 ° C., and 10 minutes, and ethanol is added to the separated solids and washed again. Solid-liquid separation was performed to remove unreacted organic compounds, and the solid content was dried at 150 ° C. for 4 hours to obtain organically modified alumina.

得られた有機修飾アルミナのFT−IRの測定結果を図1に、TG−DTAの測定結果を図2に示す。図1では2,900cm-1付近にアルキル基の存在を示唆するピークが観察されたことから、アルミナの表面がデシルジメチルメトキシシランの加水分解物で修飾されていると考えられる。また、図2では300℃付近まで重量減少がほとんど観察されず、300℃以上の温度領域で重量減少が観察されたことから、有機修飾アルミナではアルミナの表面にデシルジメチルメトキシシランの加水分解物が化学的に結合していると考えられる。 The measurement result of FT-IR of the obtained organic modified alumina is shown in FIG. 1, and the measurement result of TG-DTA is shown in FIG. In FIG. 1, since a peak suggesting the presence of an alkyl group was observed in the vicinity of 2,900 cm −1 , it is considered that the surface of alumina was modified with a hydrolyzate of decyldimethylmethoxysilane. Further, in FIG. 2, almost no weight reduction was observed up to about 300 ° C., and weight reduction was observed in the temperature range of 300 ° C. or higher. Therefore, in organically modified alumina, a hydrolyzate of decyldimethylmethoxysilane was present on the alumina surface. It is thought to be chemically bonded.

[実施例2]
340℃、31MPaの亜臨界状態にある純水が9ml/minで流通する反応装置(株式会社アイテック製、MOMI超mini)内にて、30質量%のアルミナを純水に分散させたスラリーを3ml/min、デシルジメチルメトキシシランを0.5ml/minの流量で混合・反応させ、冷却後に有機修飾アルミナスラリーを回収した。これを実施例1と同様の方法で処理することで、有機修飾アルミナを得た。
[Example 2]
3 ml of a slurry in which 30% by mass of alumina is dispersed in pure water in a reaction apparatus (manufactured by ITEC Co., Ltd., MOMI ultra-mini) in which pure water in a subcritical state of 340 ° C. and 31 MPa flows at 9 ml / min. / Min and decyldimethylmethoxysilane were mixed and reacted at a flow rate of 0.5 ml / min, and the organically modified alumina slurry was recovered after cooling. By treating this in the same manner as in Example 1, organically modified alumina was obtained.

得られた有機修飾アルミナのFT−IRの測定結果を図3に、TG−DTAの測定結果を図4に示す。図3では2,900cm-1付近にアルキル基の存在を示唆するピークが観察されたことから、アルミナの表面がデシルジメチルメトキシシランの加水分解物で修飾されていると考えられる。また、図4では300℃付近まで重量減少がほとんど観察されず、300℃以上の温度領域で重量減少が観察されたことから、有機修飾アルミナではアルミナの表面にデシルジメチルメトキシシランの加水分解物が化学的に結合していると考えられる。 The measurement result of FT-IR of the obtained organic modified alumina is shown in FIG. 3, and the measurement result of TG-DTA is shown in FIG. In FIG. 3, since a peak suggesting the presence of an alkyl group was observed in the vicinity of 2,900 cm −1 , it is considered that the surface of alumina was modified with a hydrolyzate of decyldimethylmethoxysilane. Further, in FIG. 4, almost no weight reduction was observed up to about 300 ° C., and weight reduction was observed in the temperature region of 300 ° C. or higher. Therefore, in organically modified alumina, a hydrolyzate of decyldimethylmethoxysilane was present on the alumina surface. It is thought to be chemically bonded.

[実施例3]
200℃、31MPaの亜臨界状態にある純水が9ml/minで流通する反応装置(株式会社アイテック製、MOMI超mini)内にて、30質量%のアルミナを純水に分散させたスラリーを3ml/min、デシルジメチルメトキシシランを0.5ml/minの流量で混合・反応させ、冷却後に有機修飾アルミナスラリーを回収した。これを実施例1と同様の方法で処理することで、有機修飾アルミナを得た。
[Example 3]
3 ml of slurry in which 30% by mass of alumina is dispersed in pure water in a reactor (made by ITEC Co., Ltd., MOMI ultra-mini) in which pure water in a subcritical state of 200 ° C. and 31 MPa flows at 9 ml / min. / Min and decyldimethylmethoxysilane were mixed and reacted at a flow rate of 0.5 ml / min, and the organically modified alumina slurry was recovered after cooling. By treating this in the same manner as in Example 1, organically modified alumina was obtained.

得られた有機修飾アルミナのFT−IRの測定結果を図5に、TG−DTAの測定結果を図6に示す。図5では、図1及び図3と比べて強度は弱いものの、2,900cm-1付近にアルキル基の存在を示唆するピークが観察されたことから、アルミナの表面がデシルジメチルメトキシシランの加水分解物で修飾されていると考えられる。また、図6では300℃付近まで重量減少がほとんど観察されず、300℃以上の温度領域で重量減少が観察されたことから、有機修飾アルミナではアルミナの表面にデシルジメチルメトキシシランの加水分解物が化学的に結合していると考えられる。 The measurement result of FT-IR of the obtained organic modified alumina is shown in FIG. 5, and the measurement result of TG-DTA is shown in FIG. In FIG. 5, although the intensity was weaker than that in FIGS. 1 and 3, a peak suggesting the presence of an alkyl group was observed in the vicinity of 2,900 cm.sup.- 1 , so that the surface of alumina was hydrolyzed by decyldimethylmethoxysilane. It is thought that it is modified with a thing. Further, in FIG. 6, almost no weight reduction was observed up to about 300 ° C., and weight reduction was observed in a temperature region of 300 ° C. or higher. Therefore, in organically modified alumina, a hydrolyzate of decyldimethylmethoxysilane was present on the alumina surface. It is thought to be chemically bonded.

次に、以上のようにして得られた実施例1〜3の有機修飾アルミナ50質量部と、ジメチルシリコーンオイルKF96−30,000cs(製品名、信越化学工業株式会社製)10質量部を、自転・公転ミキサー(製品名あわとり練太郎、株式会社シンキー製)を用いて常温混合し、熱伝導性グリースを調製した。また、比較例1として、前記アルミナを有機修飾を行なわずにそのまま用い、それ以外は実施例1〜3と同じ条件で熱伝導性グリースを調製したNext, 50 parts by mass of the organic modified alumina of Examples 1 to 3 obtained as described above and 10 parts by mass of dimethyl silicone oil KF96-30,000 cs (product name, manufactured by Shin-Etsu Chemical Co., Ltd.) were rotated. -Mixing at room temperature using a revolutionary mixer (product name: Awatori Nertaro, manufactured by Shinky Co., Ltd.), a heat conductive grease was prepared. Further, as Comparative Example 1, the alumina was used as it was without organic modification, and a heat conductive grease was prepared under the same conditions as in Examples 1 to 3 except that .

得られた熱伝導性グリースについて、回転式粘度計(サーモフィッシャーサイエンティフィック株式会社製、HAAKE RotoVisco1)を使用して、せん断速度1s-1での粘度(25℃)を測定することで、有機修飾無機充填材のシリコーンオイルへの充填性を評価した。また、熱伝導率計(京都電子工業株式会社製、TPA−501)を使用して、熱伝導性グリースの熱伝導率を測定した。 About the obtained heat conductive grease, using a rotary viscometer (manufactured by Thermo Fisher Scientific Co., Ltd., HAAKE RotoVisco 1), the viscosity (25 ° C.) at a shear rate of 1 s −1 is measured, and thereby organic The filling property of the modified inorganic filler into silicone oil was evaluated. Moreover, the thermal conductivity of the thermally conductive grease was measured using a thermal conductivity meter (manufactured by Kyoto Electronics Industry Co., Ltd., TPA-501).

無機充填材としてアルミナを用いた結果を表1に示す。
比較例1と比べて実施例1〜3の熱伝導性グリースの粘度が低下しており、即ち実施例1〜3においてシリコーンオイルへの無機充填材の充填性が向上しているといえる。特に実施例1、2で充填性向上の効果が顕著であった。
Table 1 shows the results of using alumina as the inorganic filler.
Compared to Comparative Example 1, the viscosity of the thermally conductive greases of Examples 1 to 3 is reduced, that is, it can be said that the filling properties of the inorganic filler into the silicone oil are improved in Examples 1 to 3. In particular, in Examples 1 and 2, the effect of improving the filling property was remarkable.

Figure 0005895690
Figure 0005895690

Claims (5)

温度200〜450℃、圧力10〜40MPaの超臨界状態又は亜臨界状態にある水を反応場として、無機充填材と、CH3−(CH2n−Si(CH32−OH(nは9の整数)、CH3−(CH2n−Si(CH32−OCH3(nは9の整数)、CH3−(CH2n−Si(CH32−NH−Si(CH32−(CH2n−CH3(nは9の整数)からなる群より選ばれる少なくとも1種以上の有機化合物とを混合し、反応させることを特徴とする有機修飾無機充填材の製造方法。 Using water in a supercritical or subcritical state at a temperature of 200 to 450 ° C. and a pressure of 10 to 40 MPa as a reaction field, an inorganic filler and CH 3 — (CH 2 ) n —Si (CH 3 ) 2 —OH (n is an integer of 9), CH 3 - (CH 2) n -Si (CH 3) 2 -OCH 3 (n is 9 integer), CH 3 - (CH 2 ) n -Si (CH 3) 2 -NH- Organic modified inorganic, characterized by mixing and reacting with at least one organic compound selected from the group consisting of Si (CH 3 ) 2 — (CH 2 ) n —CH 3 (n is an integer of 9) A method for producing a filler. 前記無機充填材が金属、金属酸化物、金属窒化物、金属炭化物、炭素の同素体からなる群より選ばれる少なくとも1種以上の材料からなる、請求項1に記載の有機修飾無機充填材の製造方法。   The method for producing an organically modified inorganic filler according to claim 1, wherein the inorganic filler is made of at least one material selected from the group consisting of an allotrope of metal, metal oxide, metal nitride, metal carbide, and carbon. . 前記無機充填材がアルミニウム、銀、銅、金属ケイ素、アルミナ、酸化亜鉛、酸化マグネシウム、二酸化ケイ素、水酸化アルミニウム、窒化アルミニウム、窒化ホウ素、炭化ケイ素、ダイヤモンド、グラファイト、及びカーボンナノチューブより選ばれる少なくとも1種以上の材料からなる、請求項2に記載の有機修飾無機充填材の製造方法。   The inorganic filler is at least one selected from aluminum, silver, copper, metallic silicon, alumina, zinc oxide, magnesium oxide, silicon dioxide, aluminum hydroxide, aluminum nitride, boron nitride, silicon carbide, diamond, graphite, and carbon nanotube. The manufacturing method of the organic modified inorganic filler of Claim 2 which consists of a material more than a seed | species. 前記無機充填材がアルミナからなる、請求項3に記載の有機修飾無機充填材の製造方法。   The method for producing an organically modified inorganic filler according to claim 3, wherein the inorganic filler is made of alumina. 請求項1〜4のいずれか1項に記載の製造方法で有機修飾無機充填材を製造し、得られた有機修飾無機充填材をオルガノポリシロキサンと混合する工程を含む熱伝導性シリコーン組成物の製造方法A thermally conductive silicone composition comprising a step of producing an organic modified inorganic filler by the production method according to any one of claims 1 to 4 and mixing the obtained organic modified inorganic filler with an organopolysiloxane . Manufacturing method .
JP2012106448A 2012-05-08 2012-05-08 Method for producing organic modified inorganic filler, organic modified inorganic filler, and thermally conductive silicone composition Active JP5895690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012106448A JP5895690B2 (en) 2012-05-08 2012-05-08 Method for producing organic modified inorganic filler, organic modified inorganic filler, and thermally conductive silicone composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012106448A JP5895690B2 (en) 2012-05-08 2012-05-08 Method for producing organic modified inorganic filler, organic modified inorganic filler, and thermally conductive silicone composition

Publications (2)

Publication Number Publication Date
JP2013234237A JP2013234237A (en) 2013-11-21
JP5895690B2 true JP5895690B2 (en) 2016-03-30

Family

ID=49760602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012106448A Active JP5895690B2 (en) 2012-05-08 2012-05-08 Method for producing organic modified inorganic filler, organic modified inorganic filler, and thermally conductive silicone composition

Country Status (1)

Country Link
JP (1) JP5895690B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6060871B2 (en) * 2013-10-29 2017-01-18 信越化学工業株式会社 Method for producing surface-treated aluminum oxide powder and thermally conductive material
US11254849B2 (en) 2015-11-05 2022-02-22 Momentive Performance Materials Japan Llc Method for producing a thermally conductive polysiloxane composition
JP6166488B1 (en) * 2015-11-05 2017-07-19 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Method for producing thermally conductive polysiloxane composition
EP3489280B1 (en) 2016-07-22 2022-02-16 Momentive Performance Materials Japan LLC Surface treatment agent for thermally conductive polyorganosiloxane composition
WO2018016566A1 (en) 2016-07-22 2018-01-25 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Thermally conductive polysiloxane composition
JP6431248B1 (en) 2017-05-31 2018-11-28 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Thermally conductive polysiloxane composition
CN114206806A (en) * 2019-07-18 2022-03-18 住友电气工业株式会社 Cubic boron nitride sintered body and cutting tool
EP4000776A4 (en) * 2019-07-18 2022-08-24 Sumitomo Electric Industries, Ltd. Cubic boron nitride sintered compact, and cutting tool
WO2021010474A1 (en) 2019-07-18 2021-01-21 住友電気工業株式会社 Cubic boron nitride sintered compact
CN114096502B (en) 2019-07-18 2023-03-21 住友电气工业株式会社 Cubic boron nitride sintered body and method for producing same
JP7064207B1 (en) 2021-03-30 2022-05-10 国立大学法人東北大学 Organically modified boron nitride particles and their continuous production method
CN113801467A (en) * 2021-09-01 2021-12-17 可为科技(南通)有限公司 Manufacturing method of heat conduction material, heat conduction material and heat conduction bracket

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2886037B2 (en) * 1993-06-23 1999-04-26 株式会社トクヤマ Hydrophobic fine silica and method for producing the same
JP3746915B2 (en) * 1999-06-21 2006-02-22 富士通株式会社 High thermal conductive composition
JP4193052B2 (en) * 2003-08-25 2008-12-10 信越化学工業株式会社 High thermal conductive silicone rubber composition, fixing roll and fixing belt
JP2007119310A (en) * 2005-10-28 2007-05-17 Fujifilm Corp Inorganic particulate, liquid dispersion using this, coating composition, optical film, polarizing plate, and image display device
JP5277457B2 (en) * 2006-11-29 2013-08-28 コニカミノルタ株式会社 Method for producing composite metal oxide fine particle-containing resin material, and optical element using the same
JP5372388B2 (en) * 2008-01-30 2013-12-18 東レ・ダウコーニング株式会社 Thermally conductive silicone grease composition
JP2010084070A (en) * 2008-10-01 2010-04-15 Grandex Co Ltd Hollow particle-containing master batch
JP5507984B2 (en) * 2009-12-09 2014-05-28 住友ベークライト株式会社 Epoxy resin composition for semiconductor encapsulation, semiconductor device using this epoxy resin composition, and method for producing this epoxy resin composition
JP5670716B2 (en) * 2010-06-25 2015-02-18 ビジョン開発株式会社 Method for producing polyester resin composition containing diamond fine particles
JP5284332B2 (en) * 2010-10-22 2013-09-11 ビジョン開発株式会社 Thermally conductive rubber composition and pneumatic tire
JP5862150B2 (en) * 2011-09-20 2016-02-16 富士ゼロックス株式会社 Method for producing silica particles

Also Published As

Publication number Publication date
JP2013234237A (en) 2013-11-21

Similar Documents

Publication Publication Date Title
JP5895690B2 (en) Method for producing organic modified inorganic filler, organic modified inorganic filler, and thermally conductive silicone composition
JP5553006B2 (en) Thermally conductive silicone grease composition
CN105400207B (en) Silicon-ketone composition
JP2938429B1 (en) Thermal conductive silicone composition
JP3142800B2 (en) Thermal conductive silicone composition, thermal conductive material, and thermal conductive silicone grease
JP5943071B2 (en) Thermally conductive silicone grease composition
JP5898139B2 (en) Thermally conductive silicone composition
KR102132243B1 (en) Thermal conductive silicone composition and cured product, and composite sheet
JP5388329B2 (en) Silicone grease composition for heat dissipation
JP6183319B2 (en) Thermally conductive silicone composition and thermally conductive sheet
TW201000559A (en) Thermally conductive silicone composition and electronic device
JP5843364B2 (en) Thermally conductive composition
JP6339761B2 (en) Thermally conductive silicone composition and thermally conductive member
JP5947267B2 (en) Silicone composition and method for producing thermally conductive silicone composition
JP2011089079A (en) Heat conductive silicone composition and cured product of the same
JP2011178821A (en) Heat conductive silicone composition and cured product of the same
TW201905096A (en) Oxygen composition and method of producing the same
CN106833510A (en) New energy high heat conduction low-gravity organic silicon potting adhesive
JP6264307B2 (en) Addition-curing silicone composition
JP2022060340A (en) Thermally conductive silicone composition
JP6240593B2 (en) Thermally conductive silicone composition and cured product thereof
TWI824104B (en) High thermal conductivity polysiloxane composition and manufacturing method thereof
WO2021206064A1 (en) Resin composition, heat-radiating member, and electronic apparatus
TWI794781B (en) Thermally conductive addition-hardening silicon oxide composition and manufacturing method thereof
JP5388409B2 (en) Curable silicone composition and cured product thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160215

R150 Certificate of patent or registration of utility model

Ref document number: 5895690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150