JP2011089079A - Heat conductive silicone composition and cured product of the same - Google Patents

Heat conductive silicone composition and cured product of the same Download PDF

Info

Publication number
JP2011089079A
JP2011089079A JP2009245382A JP2009245382A JP2011089079A JP 2011089079 A JP2011089079 A JP 2011089079A JP 2009245382 A JP2009245382 A JP 2009245382A JP 2009245382 A JP2009245382 A JP 2009245382A JP 2011089079 A JP2011089079 A JP 2011089079A
Authority
JP
Japan
Prior art keywords
group
component
mass
conductive silicone
silicone composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009245382A
Other languages
Japanese (ja)
Other versions
JP5304588B2 (en
Inventor
Yasuhisa Ishihara
靖久 石原
Suketaka Sakurai
祐貴 櫻井
Akihiro Endo
晃洋 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2009245382A priority Critical patent/JP5304588B2/en
Publication of JP2011089079A publication Critical patent/JP2011089079A/en
Application granted granted Critical
Publication of JP5304588B2 publication Critical patent/JP5304588B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Silicon Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat conductive silicone composition and a cured product of the same achieving heat conductivity of 1.5 W/mK or more and reducing wear of a reactor and a stirring blade in production and sedimentation of a heat conductive filler, preferably by skillfully combining aluminum hydroxides varying in particle size. <P>SOLUTION: The heat conductive silicone composition comprises: (A) 100 pts.mass of an organopolysiloxane having at least two alkenyl groups in the molecule; (B) an organohydrogen polysiloxane having at least two hydrogen atoms directly bonded to a silicon atom; (C) 200-2,500 pts.mass of a heat conductive filler wherein 70 mass% or more is occupied by an aluminum hydroxide; and (D) a platinum group metal curing catalyst. The content of the component (B) is set so that the number of moles of the hydrogen atoms directly bonded to the silicon atom is 0.1-5.0 times that of the alkenyl groups originated from the component (A). The content of the component (D) is 0.1-1,000 ppm in the mass terms of platinum group metal elements with respect to the component (A). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、特に熱伝導による電子部品の冷却のために、発熱性電子部品の熱境界面とヒートシンク又は回路基板などの放熱部材との界面に介在させる熱伝達材料として有用な熱伝導性シリコーン組成物及びその硬化物に関する。   The present invention relates to a heat conductive silicone composition useful as a heat transfer material interposed at the interface between a heat boundary surface of a heat generating electronic component and a heat radiating member such as a heat sink or a circuit board, particularly for cooling the electronic component by heat conduction. Product and its cured product.

パーソナルコンピューター、デジタルビデオディスク、携帯電話等の電子機器に使用されるCPU、ドライバICやメモリー等のLSIチップは、高性能化・高速化・小型化・高集積化に伴い、それ自身が大量の熱を発生するようになり、その熱によるチップの温度上昇はチップの動作不良、破壊を引き起こす。そのため、動作中のチップの温度上昇を抑制するための多くの熱放散方法及びそれに使用する熱放散部材が提案されている。   LSI chips such as CPUs, driver ICs, and memories used in electronic devices such as personal computers, digital video disks, and mobile phones are becoming more and more themselves as performance, speed, size, and integration increase. Heat is generated, and the temperature rise of the chip due to the heat causes malfunction and destruction of the chip. Therefore, many heat dissipating methods for suppressing the temperature rise of the chip during operation and heat dissipating members used therefor have been proposed.

従来、電子機器等においては、動作中のチップの温度上昇を抑えるために、アルミニウムや銅等の熱伝導率の高い金属板を用いたヒートシンクが使用されている。このヒートシンクは、そのチップが発生する熱を伝導し、その熱を外気との温度差によって表面から放出する。
チップから発生する熱をヒートシンクに効率よく伝えるために、ヒートシンクをチップに密着させる必要があるが、各チップの高さの違いや組み付け加工による公差があるため、柔軟性を有するシートや、グリースをチップとヒートシンクとの間に介装させ、このシート又はグリースを介してチップからヒートシンクへの熱伝導を実現している。
シートはグリースに比べ、取り扱い性に優れており、熱伝導性シリコーンゴム等で形成された熱伝導シート(熱伝導性シリコーンゴムシート)は様々な分野に用いられている。
Conventionally, in an electronic device or the like, a heat sink using a metal plate having a high thermal conductivity such as aluminum or copper is used in order to suppress a temperature rise of a chip during operation. The heat sink conducts heat generated by the chip and releases the heat from the surface due to a temperature difference from the outside air.
In order to efficiently transfer the heat generated from the chip to the heat sink, it is necessary to closely attach the heat sink to the chip.However, because there is a difference in the height of each chip and tolerance due to assembly processing, a flexible sheet or grease is used. It is interposed between the chip and the heat sink, and heat conduction from the chip to the heat sink is realized through this sheet or grease.
Sheets are superior in handling properties compared to grease, and heat conductive sheets (heat conductive silicone rubber sheets) formed of heat conductive silicone rubber or the like are used in various fields.

特開昭47−32400号公報(特許文献1)には、シリコーンゴム等の合成ゴム100質量部に酸化ベリリウム、酸化アルミニウム、水和酸化アルミニウム、酸化マグネシウム、酸化亜鉛から選ばれる少なくとも1種以上の金属酸化物を100〜800質量部配合した絶縁性組成物が開示されている。
また、絶縁性を必要としない場所に用いられる放熱材料として、特開昭56−100849号公報(特許文献2)には、付加硬化型シリコーンゴム組成物にシリカ及び銀、金、ケイ素等の熱伝導性粉末を60〜500質量部配合した組成物が開示されている。
In JP-A-47-32400 (Patent Document 1), at least one selected from beryllium oxide, aluminum oxide, hydrated aluminum oxide, magnesium oxide, and zinc oxide is added to 100 parts by mass of a synthetic rubber such as silicone rubber. An insulating composition containing 100 to 800 parts by mass of a metal oxide is disclosed.
Japanese Patent Application Laid-Open No. 56-1009009 (Patent Document 2) discloses a heat-dissipating material used in a place that does not require insulation, and includes addition-curable silicone rubber compositions such as silica, silver, gold, and silicon. A composition containing 60 to 500 parts by mass of conductive powder is disclosed.

しかし、これらの熱伝導性材料は、いずれも熱伝導率が低く、また、熱伝導性を向上させるために熱伝導性充填材を多量に高充填すると、液状シリコーンゴム組成物の場合は流動性が低下し、ミラブルタイプのシリコーンゴム組成物の場合は可塑度が増加して、いずれも成形加工性が非常に悪くなるという問題があった。   However, all of these thermally conductive materials have low thermal conductivity, and when a large amount of thermally conductive filler is filled to improve thermal conductivity, liquid silicone rubber compositions have fluidity. In the case of a millable type silicone rubber composition, the plasticity increased, and there was a problem that all of the moldability became very poor.

そこで、これを解決する方法として、特開平1−69661号公報(特許文献3)には、平均粒径5μm以下のアルミナ粒子10〜30質量%と、残部が単一粒子の平均粒径10μm以上であり、かつカッティングエッジを有しない形状である球状コランダム粒子からなるアルミナを充填する高熱伝導性ゴム・プラスチック組成物が開示されている。また、特開平4−328163号公報(特許文献4)には、平均重合度6,000〜12,000のガム状のオルガノポリシロキサンと平均重合度200〜2,000のオイル状のオルガノポリシロキサンを併用したベースと球状酸化アルミニウム粉末500〜1,200質量部からなる熱伝導性シリコーンゴム組成物が開示されている。   Therefore, as a method for solving this, Japanese Patent Laid-Open No. 1-66961 (Patent Document 3) discloses that 10 to 30% by mass of alumina particles having an average particle size of 5 μm or less and the average particle size of 10 μm or more of the remaining single particles. And a highly thermally conductive rubber / plastic composition filled with alumina composed of spherical corundum particles having a shape having no cutting edge. JP-A-4-328163 (Patent Document 4) discloses a gum-like organopolysiloxane having an average degree of polymerization of 6,000 to 12,000 and an oil-like organopolysiloxane having an average degree of polymerization of 200 to 2,000. A thermally conductive silicone rubber composition comprising a base combined with 500 and 1,200 parts by mass of spherical aluminum oxide powder is disclosed.

しかし、これらの方法を用いても、例えば酸化アルミニウム粉末を1,000質量部以上(酸化アルミニウムを70体積%以上)高充填化した場合、粒子の組み合わせ及びシリコーンベースの粘度調整だけでは成形加工性の向上に限界があった。   However, even when these methods are used, for example, when aluminum oxide powder is highly filled with 1,000 parts by mass or more (aluminum oxide is 70% by volume or more), molding processability can be achieved only by combining particles and adjusting the viscosity of the silicone base. There was a limit to improvement.

一方、パーソナルコンピューター、ワードプロセッサ、CD−ROMドライブ等の電子機器の高集積化が進み、装置内のLSI,CPU等の集積回路素子の発熱量が増加したため、従来の冷却方法では不十分な場合がある。特に、携帯用のノート型のパーソナルコンピューターの場合、機器内部の空間が狭いため大きなヒートシンクや冷却ファンを取り付けることができない。更に、これらの機器では、プリント基板上に集積回路素子が搭載されており、基板の材質に熱伝導性の悪いガラス補強エポキシ樹脂やポリイミド樹脂が用いられるので、従来のように放熱絶縁シートを介して基板に熱を逃がすことができない。   On the other hand, as electronic devices such as personal computers, word processors, and CD-ROM drives have become highly integrated, the amount of heat generated by integrated circuit elements such as LSIs and CPUs in the apparatus has increased, so conventional cooling methods may not be sufficient. is there. In particular, in the case of a portable laptop personal computer, a large heat sink or cooling fan cannot be attached because the space inside the device is narrow. Furthermore, in these devices, an integrated circuit element is mounted on a printed circuit board, and glass reinforced epoxy resin or polyimide resin having poor thermal conductivity is used as the material of the circuit board. Heat cannot escape to the substrate.

そこで、集積回路素子の近傍に自然冷却タイプあるいは強制冷却タイプの放熱部品を設置し、素子で発生した熱を放熱部品に伝える方式が用いられる。この方式で素子と放熱部品を直接接触させると、表面の凹凸のため熱の伝わりが悪くなり、更に放熱絶縁シートを介して取り付けても放熱絶縁シートの柔軟性がやや劣るため、熱膨張により素子と基板との間に応力がかかり、破損するおそれがある。
また、各回路素子に放熱部品を取り付けようとすると余分なスペースが必要となり、機器の小型化が難しくなるので、いくつかの素子をひとつの放熱部品に組み合わせて冷却する方式が採られることもある。
特にノート型のパーソナルコンピューターで用いられているBGAタイプのCPUは、高さが他の素子に比べて低く発熱量が大きいため、冷却方式を十分考慮する必要がある。
Therefore, a system is used in which a natural cooling type or forced cooling type heat dissipating part is installed in the vicinity of the integrated circuit element and the heat generated in the element is transmitted to the heat dissipating part. If the element and the heat dissipation component are brought into direct contact with this method, the heat transfer will be worse due to the unevenness of the surface, and the heat dissipation insulation sheet will be slightly less flexible even if it is attached via a heat dissipation insulation sheet. There is a risk of stress being applied between the substrate and the substrate.
In addition, if a heat dissipation component is attached to each circuit element, an extra space is required, which makes it difficult to reduce the size of the device. Therefore, a cooling method may be adopted in which several elements are combined into one heat dissipation component. .
In particular, a BGA type CPU used in a notebook personal computer has a low height and a large amount of heat generation compared to other elements, and thus a cooling method must be sufficiently considered.

そこで、素子ごとに高さが異なることにより生じる種々の隙間を埋めることができる低硬度の高熱伝導性材が必要になる。このような課題に対して、熱伝導性に優れ、柔軟性があり、種々の隙間に対応できる熱伝導性シートが要望される。また、年々駆動周波数の高周波化に伴い、CPUの性能が向上して発熱量が増大するため、より高熱伝導性の材料が求められている。   Therefore, a low-hardness and high-heat conductive material that can fill various gaps caused by different heights for each element is required. There is a need for a thermal conductive sheet that is excellent in thermal conductivity, flexible, and can cope with various gaps. In addition, as the driving frequency is increased year by year, the CPU performance is improved and the amount of heat generation is increased. Therefore, a material having higher thermal conductivity is demanded.

この場合、特開平2−196453号公報(特許文献5)には、シリコーン樹脂に金属酸化物等の熱伝導性材料を混入したものを成形したシートで、取り扱いに必要な強度を持たせたシリコーン樹脂層の上に柔らかく変形し易いシリコーン層が積層されたシートが開示されている。また、特開平7−266356号公報(特許文献6)には、熱伝導性充填材を含有し、アスカーC硬度が5〜50であるシリコーンゴム層と直径0.3mm以上の孔を有する多孔性補強材層を組み合わせた熱伝導性複合シートが開示されている。特開平8−238707号公報(特許文献7)には、可とう性の三次元網状体又はフォーム体の骨格格子表面を熱伝導性シリコーンゴムで被覆したシートが開示されている。特開平9−1738号公報(特許文献8)には、補強性を有したシートあるいはクロスを内蔵し、少なくとも一方の面が粘着性を有してアスカーC硬度が5〜50である厚さ0.4mm以下の熱伝導性複合シリコーンシートが開示されている。特開平9−296114号公報(特許文献9)には、付加反応型液状シリコーンゴムと熱伝導性絶縁性セラミック粉末を含有し、その硬化物のアスカーC硬度が25以下で熱抵抗が3.0℃/W以下である放熱スペーサーが開示されている。   In this case, in Japanese Patent Laid-Open No. 2-196453 (Patent Document 5), a silicone sheet in which a heat conductive material such as a metal oxide is mixed with a silicone resin, which has a strength necessary for handling. A sheet in which a soft and easily deformable silicone layer is laminated on a resin layer is disclosed. Japanese Patent Application Laid-Open No. 7-266356 (Patent Document 6) discloses a porous material containing a heat conductive filler and having a silicone rubber layer having an Asker C hardness of 5 to 50 and pores having a diameter of 0.3 mm or more. A thermally conductive composite sheet combining a reinforcing material layer is disclosed. Japanese Patent Application Laid-Open No. 8-238707 (Patent Document 7) discloses a sheet in which a skeleton lattice surface of a flexible three-dimensional network or foam is coated with a heat conductive silicone rubber. Japanese Patent Application Laid-Open No. 9-1738 (Patent Document 8) has a thickness 0 in which a reinforcing sheet or cloth is incorporated, at least one surface is adhesive, and Asker C hardness is 5 to 50. A thermally conductive composite silicone sheet of 4 mm or less is disclosed. Japanese Patent Application Laid-Open No. 9-296114 (Patent Document 9) contains an addition reaction type liquid silicone rubber and a heat conductive insulating ceramic powder. The cured product has an Asker C hardness of 25 or less and a thermal resistance of 3.0. A heat dissipating spacer having a temperature of ℃ / W or less is disclosed.

これら熱伝導性シリコーン硬化物で熱伝導率が0.5〜3W/m・Kの範囲では、熱伝導性充填材として酸化アルミニウム(アルミナ)が主に用いられることが多い。しかし、アルミナは研磨剤に用いられるようにモース硬度が9と、非常に硬い。そのために熱伝導性シリコーン組成物の製造時にシェアがかかると、反応釜の内壁や撹拌羽を削ってしまうという問題があった。すると、熱伝導性シリコーン組成物に反応釜や撹拌羽の成分が混入する。また、反応釜と撹拌羽のクリアランスが広がり、撹拌効率が落ちてしまい、同条件で製造しても一定の品質を得られなくなる。またそれを防ぐためには部品を頻繁に交換する必要がある、というような問題があった。   In these thermally conductive silicone cured products, when the thermal conductivity is in the range of 0.5 to 3 W / m · K, aluminum oxide (alumina) is often mainly used as the thermally conductive filler. However, alumina has a very high Mohs hardness of 9 as used in abrasives. For this reason, when a share is applied during the production of the thermally conductive silicone composition, there is a problem that the inner wall of the reaction kettle and the stirring blades are scraped off. Then, the components of the reaction kettle and the stirring blade are mixed into the thermally conductive silicone composition. In addition, the clearance between the reaction kettle and the stirring blade is widened, the stirring efficiency is lowered, and even if it is manufactured under the same conditions, a certain quality cannot be obtained. In addition, in order to prevent this, there is a problem that parts must be frequently replaced.

更に、アルミナは比重が3.98と非常に重いので、熱伝導率が1.5W/m・K以上で熱伝導性充填材のうち、70質量%以上がアルミナで占められている熱伝導性シリコーン組成物を静置しておくと、熱伝導性充填材の沈降が起きる。沈降が起きると組成物の成形性に違いが出て、安定的に製品を生産できない。熱伝導性シリコーン組成物を用いる前に再度、撹拌混合を行えば沈降を解消することができるが、コストも時間も掛かってしまう。   Furthermore, since alumina has a very high specific gravity of 3.98, thermal conductivity is 1.5 W / m · K or more, and among the thermally conductive fillers, more than 70% by mass is occupied by alumina. If the silicone composition is allowed to stand, sedimentation of the thermally conductive filler occurs. If sedimentation occurs, the composition will have a different moldability and the product cannot be produced stably. If the stirring and mixing is performed again before using the thermally conductive silicone composition, the sedimentation can be eliminated, but the cost and time are also increased.

また近年、機器の小型化、軽量化が進んでいる。機器全体の軽量化のためには部材単位で見るとグラム又はミリグラム単位で、性能を維持しながらより軽量なものが求められている。熱伝導率が1.5W/m・K以上で熱伝導性充填材のうち70質量%がアルミナで占められている熱伝導性シリコーン組成物は、比重が大きいために軽量化の観点からも不利である。   In recent years, devices have been reduced in size and weight. In order to reduce the weight of the entire device, there is a demand for lighter weight while maintaining performance in units of grams or milligrams in terms of members. Thermally conductive silicone compositions having a thermal conductivity of 1.5 W / m · K or more and 70% by mass of the thermally conductive filler with alumina are disadvantageous from the viewpoint of weight reduction because of their large specific gravity. It is.

アルミナ以外の熱伝導性充填材としてアルミニウム、銅、銀、窒化ホウ素、窒化アルミニウムなどが挙げられるが、それらはアルミナに比べて非常に高価で熱伝導率が0.5〜3.0W/m・Kの熱伝導性樹脂コンパウンドに用いるのはコスト面から考えて難しい。更にアルミニウムや銅、銀などを用いると、熱伝導性シリコーン組成物及び硬化物の絶縁性が低下してしまう。   Examples of thermally conductive fillers other than alumina include aluminum, copper, silver, boron nitride, and aluminum nitride, but they are very expensive compared to alumina and have a thermal conductivity of 0.5 to 3.0 W / m ·. It is difficult to use for K heat conductive resin compound from the viewpoint of cost. Furthermore, when aluminum, copper, silver, or the like is used, the insulating properties of the heat conductive silicone composition and the cured product are lowered.

安価で比重が2.42とアルミナに比べてかなり小さく、シリコーン組成物の熱伝導性充填材の沈降を抑えられ、また機器の軽量化にも貢献し、更にモース硬度が3でアルミナに比べて非常に軟らかく、反応釜や撹拌羽根の磨耗が抑えられ、難燃効果、絶縁効果のある熱伝導性充填材として、水酸化アルミニウムが挙げられる。しかし、水酸化アルミニウムはアルミナに比べて熱伝導率が低いので、水酸化アルミニウムを用いてシリコーン熱伝導性組成物及び硬化物の熱伝導率を上げるためには水酸化アルミニウムを高充填しなればならないのにも拘わらず、形状が破砕状しかなく、高充填が非常に難しい。それ故に、これまで熱伝導性充填材の総質量部の70質量%以上が水酸化アルミニウムで占められている熱伝導性シリコーン硬化物で熱伝導率1.5W/m・K以上を達成するのは困難とされてきた。   It is inexpensive and has a specific gravity of 2.42, which is considerably smaller than that of alumina, can suppress sedimentation of the thermally conductive filler of the silicone composition, contributes to weight reduction of the equipment, and has a Mohs hardness of 3 compared to alumina. Aluminum hydroxide is an example of a heat conductive filler that is very soft and that suppresses the wear of the reaction kettle and stirring blades and has a flame-retardant and insulating effect. However, since aluminum hydroxide has a lower thermal conductivity than alumina, in order to increase the thermal conductivity of the silicone thermal conductive composition and the cured product using aluminum hydroxide, it is necessary to fill aluminum hydroxide at a high level. Despite the fact that it does not become, the shape is only crushed and high filling is very difficult. Therefore, a thermal conductivity of 1.5 W / m · K or more is achieved with a thermally conductive silicone cured product in which 70% by mass or more of the total mass part of the thermally conductive filler has been occupied by aluminum hydroxide. Has been considered difficult.

特開昭47−32400号公報JP 47-32400 A 特開昭56−100849号公報JP-A-56-100849 特開平1−69661号公報JP-A-1-69661 特開平4−328163号公報JP-A-4-328163 特開平2−196453号公報Japanese Patent Laid-Open No. 2-196453 特開平7−266356号公報JP-A-7-266356 特開平8−238707号公報JP-A-8-238707 特開平9−1738号公報Japanese Patent Laid-Open No. 9-1738 特開平9−296114号公報JP-A-9-296114

本発明は、上記事情に鑑みなされたもので、熱伝導性充填材の総質量部の70質量%以上が水酸化アルミニウムで占められ、例えば電子機器内の発熱部品と放熱部品の間に設置されて放熱に用いられる熱伝導性樹脂成形体として好適に用いられる熱伝導性シリコーン組成物及びその硬化物を提供することを目的とする。   The present invention has been made in view of the above circumstances, and 70% by mass or more of the total mass part of the heat conductive filler is occupied by aluminum hydroxide, and is installed, for example, between a heat generating component and a heat dissipation component in an electronic device. It is an object of the present invention to provide a thermally conductive silicone composition suitably used as a thermally conductive resin molding used for heat dissipation and a cured product thereof.

本発明者らは、上記目的を達成するため鋭意検討を行った結果、水酸化アルミニウムの種々の特徴に注目し、熱伝導性充填材の総質量部の70質量%以上が水酸化アルミニウムで占められている熱伝導性充填材を用い、好ましくは平均粒径0.1μm以上5μm未満の小粒径水酸化アルミニウムと5μm以上40μm未満の中粒径水酸化アルミニウムと40μm以上100μm以下の大粒径水酸化アルミニウムの配合比率を巧みに組み合わせることによって、熱伝導率1.5W/m・K以上の熱伝導性シリコーン硬化物を得ることができることを知見し、本発明をなすに至った。   As a result of intensive studies to achieve the above object, the present inventors have paid attention to various characteristics of aluminum hydroxide, and 70% by mass or more of the total mass part of the thermally conductive filler is occupied by aluminum hydroxide. Preferably used, a small particle size aluminum hydroxide having an average particle size of 0.1 μm or more and less than 5 μm, a medium particle size aluminum hydroxide of 5 μm or more and less than 40 μm, and a large particle size of 40 μm or more and 100 μm or less. It has been found that a heat conductive silicone cured product having a heat conductivity of 1.5 W / m · K or more can be obtained by skillfully combining the mixing ratio of aluminum hydroxide, and the present invention has been made.

従って、本発明は、下記の熱伝導性シリコーン組成物及びその硬化物を提供する。
請求項1:
(A)分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン:100質量部、
(B)ケイ素原子に直接結合した水素原子を少なくとも2個有するオルガノハイドロジェンポリシロキサン:ケイ素原子に直接結合した水素原子のモル数が(A)成分由来のアルケニル基のモル数の0.1〜5.0倍量となる量、
(C)70質量%以上が水酸化アルミニウムで占められている熱伝導性充填材:200〜2,500質量部、
(D)白金族金属系硬化触媒:(A)成分に対して白金族金属元素の質量換算で0.1〜1,000ppm
を含有することを特徴とする熱伝導性シリコーン組成物。
請求項2:
前記(C)成分に含まれる水酸化アルミニウムが、
(C−1)平均粒径0.1μm以上5μm未満の水酸化アルミニウムを15〜25質量%
(C−2)平均粒径5μm以上40μm未満の水酸化アルミニウムを35〜45質量%
(C−3)平均粒径40μm以上100μm以下の水酸化アルミニウムを35〜45質量%
の割合の混合物であることを特徴する熱伝導性シリコーン組成物。
請求項3:
更に、(F)成分として、
(F−1)成分:下記一般式(1)
1 a2 bSi(OR34-a-b (1)
(式中、R1は独立に炭素原子数6〜15のアルキル基であり、R2は独立に非置換又は置換の炭素原子数1〜10の1価炭化水素基であり、R3は独立に炭素原子数1〜6のアルキル基であり、aは1〜3の整数、bは0〜2の整数であり、但しa+bは1〜3の整数である。)
で表されるアルコキシシラン化合物、及び
(F−2)成分:下記一般式(2)

Figure 2011089079

(式中、R4は独立に炭素原子数1〜6のアルキル基であり、cは5〜100の整数である。)
で表される分子鎖片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサンからなる群から選ばれる少なくとも1種:0.01〜50質量部
を含有することを特徴とする請求項1又は2に記載の熱伝導性シリコーン組成物。
請求項4:
更に、(G)成分:下記一般式(3)
Figure 2011089079

(式中、R5は独立に炭素原子数1〜10の脂肪族不飽和結合を含まない1価炭化水素基、dは5〜2,000の整数である。)
で表される25℃における動粘度が10〜100,000mm2/sのオルガノポリシロキサンを含有することを特徴とする請求項1〜3のいずれか1項に記載の熱伝導性シリコーン組成物。
請求項5:
絶対粘度が800Pa・s以下である請求項1〜4のいずれか1項に記載の熱伝導性シリコーン組成物。
請求項6:
請求項1〜5のいずれか1項に記載の熱伝導性シリコーン組成物を硬化させてなる熱伝導性シリコーン硬化物。 Therefore, this invention provides the following heat conductive silicone composition and its hardened | cured material.
Claim 1:
(A) Organopolysiloxane having at least two alkenyl groups in the molecule: 100 parts by mass
(B) Organohydrogenpolysiloxane having at least two hydrogen atoms directly bonded to silicon atoms: The number of moles of hydrogen atoms directly bonded to silicon atoms is 0.1 to the number of moles of alkenyl groups derived from component (A). 5.0 times the amount,
(C) Thermally conductive filler in which 70% by mass or more is occupied by aluminum hydroxide: 200 to 2,500 parts by mass,
(D) Platinum group metal-based curing catalyst: 0.1 to 1,000 ppm in terms of mass of platinum group metal element with respect to component (A)
A thermally conductive silicone composition comprising:
Claim 2:
Aluminum hydroxide contained in the component (C)
(C-1) 15 to 25% by mass of aluminum hydroxide having an average particle size of 0.1 μm or more and less than 5 μm
(C-2) 35 to 45% by mass of aluminum hydroxide having an average particle size of 5 μm or more and less than 40 μm
(C-3) 35 to 45% by mass of aluminum hydroxide having an average particle size of 40 μm or more and 100 μm or less
A thermally conductive silicone composition characterized by being a mixture of
Claim 3:
Furthermore, as component (F),
(F-1) Component: The following general formula (1)
R 1 a R 2 b Si (OR 3 ) 4-ab (1)
Wherein R 1 is independently an alkyl group having 6 to 15 carbon atoms, R 2 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and R 3 is independently And an alkyl group having 1 to 6 carbon atoms, a is an integer of 1 to 3, b is an integer of 0 to 2, provided that a + b is an integer of 1 to 3.)
And (F-2) component: the following general formula (2)
Figure 2011089079

(In the formula, R 4 is independently an alkyl group having 1 to 6 carbon atoms, and c is an integer of 5 to 100.)
The molecular chain fragment terminal represented by the above formula contains at least one selected from the group consisting of dimethylpolysiloxane blocked with a trialkoxysilyl group: 0.01 to 50 parts by mass. The heat conductive silicone composition as described in 2. above.
Claim 4:
Furthermore, component (G): the following general formula (3)
Figure 2011089079

(In the formula, R 5 is a monovalent hydrocarbon group that does not contain an aliphatic unsaturated bond having 1 to 10 carbon atoms, and d is an integer of 5 to 2,000.)
The heat conductive silicone composition according to any one of claims 1 to 3, further comprising an organopolysiloxane having a kinematic viscosity at 25 ° C represented by 10 to 100,000 mm 2 / s.
Claim 5:
The heat conductive silicone composition according to any one of claims 1 to 4, wherein the absolute viscosity is 800 Pa · s or less.
Claim 6:
The heat conductive silicone hardened | cured material formed by hardening | curing the heat conductive silicone composition of any one of Claims 1-5.

本発明の熱伝導性シリコーン組成物及び硬化物は、特に好ましくは粒径の異なる水酸化アルミニウムを巧みに組み合わせることによって、1.5W/m・K以上の熱伝導率を実現し、製造時の反応釜や撹拌羽の磨耗や熱伝導性充填材の沈降を抑えることができ、更に体積当りの材料の重量が軽い、熱伝導性シリコーン組成物及び硬化物を提供することができる。   The heat conductive silicone composition and the cured product of the present invention particularly preferably have a heat conductivity of 1.5 W / m · K or more by skillfully combining aluminum hydroxides having different particle sizes, It is possible to provide a thermally conductive silicone composition and a cured product that can suppress the abrasion of the reaction kettle and the stirring blades and settling of the thermally conductive filler, and further reduce the weight of the material per volume.

本発明の熱伝導性シリコーン組成物は、
(A)アルケニル基含有オルガノポリシロキサン、
(B)オルガノハイドロジェンポリシロキサン、
(C)熱伝導性充填材、
(D)白金族金属系硬化触媒
を必須成分として含有する。
The thermally conductive silicone composition of the present invention is
(A) an alkenyl group-containing organopolysiloxane,
(B) organohydrogenpolysiloxane,
(C) a thermally conductive filler,
(D) A platinum group metal-based curing catalyst is contained as an essential component.

[オルガノポリシロキサン]
(A)成分であるアルケニル基含有オルガノポリシロキサンは、ケイ素原子に結合したアルケニル基を1分子中に2個以上有するオルガノポリシロキサンであり、本発明の硬化物の主剤となるものである。通常は主鎖部分が基本的にジオルガノシロキサン単位の繰り返しからなるのが一般的であるが、これは分子構造の一部に分枝状の構造を含んだものであってもよく、また環状体であってもよいが、硬化物の機械的強度等、物性の点から直鎖状のジオルガノポリシロキサンが好ましい。
[Organopolysiloxane]
The alkenyl group-containing organopolysiloxane as component (A) is an organopolysiloxane having two or more alkenyl groups bonded to silicon atoms in one molecule, and serves as a main component of the cured product of the present invention. Usually, the main chain part is generally composed of repeating diorganosiloxane units, but this may be a part of the molecular structure containing a branched structure or cyclic. However, linear diorganopolysiloxane is preferred from the viewpoint of physical properties such as mechanical strength of the cured product.

ケイ素原子に結合するアルケニル基以外の官能基としては、非置換又は置換の1価炭化水素基であり、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基などのアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基、並びにこれらの基に炭素原子が結合している水素原子の一部又は全部が、フッ素、塩素、臭素等のハロゲン原子、シアノ基などで置換された基、例えば、クロロメチル基、2−ブロモエチル基、3−クロロプロピル基、3,3,3−トリフルオロプロピル基、クロロフェニル基、フルオロフェニル基、シアノエチル基、3,3,4,4,5,5,6,6,6−ノナフルオロヘキシル基等が挙げられ、代表的なものは炭素原子数が1〜10、特に代表的なものは炭素原子数が1〜6のものであり、好ましくはメチル基、エチル基、プロピル基、クロロメチル基、ブロモエチル基、3,3,3−トリフルオロプロピル基、シアノエチル基等の炭素原子数1〜3の非置換又は置換のアルキル基及びフェニル基、クロロフェニル基、フルオロフェニル基等の非置換又は置換のフェニル基である。また、ケイ素原子に結合したアルケニル基以外の官能基は全てが同一であることを限定するものではない。   The functional group other than the alkenyl group bonded to the silicon atom is an unsubstituted or substituted monovalent hydrocarbon group, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl. Group, pentyl group, neopentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group and other alkyl groups, cyclopentyl group, cyclohexyl group, cycloheptyl group and other cycloalkyl groups, phenyl group, tolyl group Aryl groups such as xylyl group, naphthyl group, biphenylyl group, aralkyl groups such as benzyl group, phenylethyl group, phenylpropyl group, methylbenzyl group, and part of hydrogen atoms having carbon atoms bonded to these groups Or a group in which all of them are substituted with a halogen atom such as fluorine, chlorine or bromine, a cyano group or the like For example, chloromethyl group, 2-bromoethyl group, 3-chloropropyl group, 3,3,3-trifluoropropyl group, chlorophenyl group, fluorophenyl group, cyanoethyl group, 3,3,4,4,5,5, 6,6,6-nonafluorohexyl group and the like are mentioned, typical ones having 1 to 10 carbon atoms, particularly typical ones having 1 to 6 carbon atoms, preferably methyl group An unsubstituted or substituted alkyl group having 1 to 3 carbon atoms such as ethyl group, propyl group, chloromethyl group, bromoethyl group, 3,3,3-trifluoropropyl group, cyanoethyl group, and phenyl group, chlorophenyl group, An unsubstituted or substituted phenyl group such as a fluorophenyl group. Moreover, it is not limited that all functional groups other than the alkenyl group bonded to the silicon atom are the same.

また、アルケニル基としては、例えば、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基等の通常炭素原子数2〜8程度のものが挙げられ、中でもビニル基、アリル基等の低級アルケニル基が好ましく、特に好ましくはビニル基である。なお、アルケニル基は、分子中に2個以上存在することが好ましいが、得られる硬化物の柔軟性がよいものとするため、分子鎖末端のケイ素原子にのみ結合して存在することが好ましい。   Examples of the alkenyl group include those having usually about 2 to 8 carbon atoms such as vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group, hexenyl group and cyclohexenyl group. And a lower alkenyl group such as an allyl group is preferable, and a vinyl group is particularly preferable. In addition, although it is preferable that two or more alkenyl groups exist in the molecule, it is preferable that the alkenyl group is bonded only to the silicon atom at the end of the molecular chain in order to make the obtained cured product flexible.

このオルガノポリシロキサンの25℃における動粘度は、通常、10〜100,000mm2/s、特に好ましくは500〜50,000mm2/sの範囲である。前記粘度が低すぎると、得られる組成物の保存安定性が悪くなり、また高すぎると得られる組成物の伸展性が悪くなる場合がある。なお、動粘度はオストワルド粘度計を用いた場合の値である。 Kinematic viscosity at 25 ° C. This organopolysiloxane is usually, 10~100,000mm 2 / s, particularly preferably from 500~50,000mm 2 / s. If the viscosity is too low, the storage stability of the resulting composition will be poor, and if it is too high, the extensibility of the resulting composition may be poor. The kinematic viscosity is a value when using an Ostwald viscometer.

この(A)成分のオルガノポリシロキサンは、1種単独でも、粘度が異なる2種以上を組み合わせて用いてもよい。   This organopolysiloxane of component (A) may be used alone or in combination of two or more having different viscosities.

[オルガノハイドロジェンポリシロキサン]
(B)成分のオルガノハイドロジェンポリシロキサンは、1分子中に平均で2個以上、好ましくは2〜100個のケイ素原子に直接結合する水素原子(Si−H基)を有するオルガノハイドロジェンポリシロキサンであり、(A)成分の架橋剤として作用する成分である。即ち、(B)成分中のSi−H基と(A)成分中のアルケニル基と後述の(D)成分の白金族金属系硬化触媒により促進されるヒドロシリル化反応により付加して、架橋構造を有する3次元網目構造を与える。なお、Si−H基の数が1個未満の場合、硬化しないおそれがある。
[Organohydrogenpolysiloxane]
The organohydrogenpolysiloxane of component (B) is an organohydrogenpolysiloxane having a hydrogen atom (Si-H group) directly bonded to 2 or more, preferably 2 to 100 silicon atoms on average in one molecule. It is a component that acts as a crosslinking agent for component (A). That is, the Si—H group in the component (B), the alkenyl group in the component (A) and the hydrosilylation reaction promoted by the platinum group metal-based curing catalyst of the component (D) described later are added to form a crosslinked structure. A three-dimensional network structure is provided. In addition, when the number of Si-H groups is less than one, there exists a possibility that it may not harden | cure.

オルガノハイドロジェンポリシロキサンとしては、下記平均構造式(4)で示されるものが用いられるが、これに限定されるものではない。

Figure 2011089079

(式中、R6は独立に脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基あるいは水素原子であるが、少なくとも2個は水素原子であり、nは1以上の整数である。) As the organohydrogenpolysiloxane, one represented by the following average structural formula (4) is used, but is not limited thereto.
Figure 2011089079

(In the formula, R 6 independently represents an unsubstituted or substituted monovalent hydrocarbon group or hydrogen atom that does not contain an aliphatic unsaturated bond, but at least two are hydrogen atoms, and n is an integer of 1 or more. is there.)

式(4)中、R6の水素以外の脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基などのアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基、並びにこれらの基に炭素原子が結合している水素原子の一部又は全部が、フッ素、塩素、臭素等のハロゲン原子、シアノ基などで置換された基、例えば、クロロメチル基、2−ブロモエチル基、3−クロロプロピル基、3,3,3−トリフルオロプロピル基、クロロフェニル基、フルオロフェニル基、シアノエチル基、3,3,4,4,5,5,6,6,6−ノナフルオロヘキシル基等が挙げられ、代表的なものは炭素原子数が1〜10、特に代表的なものは炭素原子数が1〜6のものであり、好ましくはメチル基、エチル基、プロピル基、クロロメチル基、ブロモエチル基、3,3,3−トリフルオロプロピル基、シアノエチル基等の炭素原子数1〜3の非置換又は置換のアルキル基及びフェニル基、クロロフェニル基、フルオロフェニル基等の非置換又は置換のフェニル基である。また、R6は全てが同一であることを限定するものではない。 In the formula (4), examples of the unsubstituted or substituted monovalent hydrocarbon group not containing an aliphatic unsaturated bond other than hydrogen of R 6 include, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl Group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, alkyl group such as dodecyl group, cycloalkyl group such as cyclopentyl group, cyclohexyl group, cycloheptyl group, Carbon groups are bonded to aryl groups such as phenyl, tolyl, xylyl, naphthyl, and biphenylyl, aralkyl groups such as benzyl, phenylethyl, phenylpropyl, and methylbenzyl, and these groups. Some or all of the hydrogen atoms are substituted with halogen atoms such as fluorine, chlorine and bromine, cyano groups, etc. For example, chloromethyl group, 2-bromoethyl group, 3-chloropropyl group, 3,3,3-trifluoropropyl group, chlorophenyl group, fluorophenyl group, cyanoethyl group, 3,3,4,4,5,5 , 6,6,6-nonafluorohexyl group, etc., typical ones having 1 to 10 carbon atoms, particularly typical ones having 1 to 6 carbon atoms, preferably methyl Groups, ethyl groups, propyl groups, chloromethyl groups, bromoethyl groups, 3,3,3-trifluoropropyl groups, cyanoethyl groups, etc., unsubstituted or substituted alkyl groups having 1 to 3 carbon atoms and phenyl groups, chlorophenyl groups , An unsubstituted or substituted phenyl group such as a fluorophenyl group. Further, R 6 is not limited to being all the same.

(B)成分の添加量は、(B)成分由来のSi−H基が(A)成分由来のアルケニル基1モルに対して0.1〜5.0モルとなる量、望ましくは0.3〜2.0モル、更に好ましくは0.5〜1.0モルとなる量である。(B)成分由来のSi−H基の量が(A)成分由来のアルケニル基1モルに対して0.1モル未満であると硬化しない、又は硬化物の強度が不十分で成形体としての形状を保持できず取り扱えない場合がある。また5モルを超えると硬化物の柔軟性がなくなり、硬化物が脆くなるおそれがある。   Component (B) is added in an amount such that the Si-H group derived from component (B) is 0.1 to 5.0 moles per mole of alkenyl group derived from component (A), preferably 0.3. -2.0 mol, more preferably 0.5-1.0 mol. When the amount of the Si-H group derived from the component (B) is less than 0.1 mol relative to 1 mol of the alkenyl group derived from the component (A), the cured product does not have sufficient strength or the molded product has insufficient strength. The shape may not be retained and may not be handled. Moreover, when it exceeds 5 mol, the flexibility of the cured product is lost, and the cured product may become brittle.

[熱伝導性充填材]
(C)成分である熱伝導性充填材は、水酸化アルミニウム又は水酸化アルミニウムと他の熱伝導性充填材である。この場合、水酸化アルミニウムは、熱伝導性充填材総量の70質量%以上を占めることが必要であり、好ましくは75質量%以上、更に好ましくは80質量%以上であり、100質量%でもよい。
[Thermal conductive filler]
(C) The heat conductive filler which is a component is aluminum hydroxide or aluminum hydroxide and another heat conductive filler. In this case, the aluminum hydroxide needs to occupy 70% by mass or more of the total amount of the thermally conductive filler, preferably 75% by mass or more, more preferably 80% by mass or more, and may be 100% by mass.

また、水酸化アルミニウムは、
(C−1)平均粒径0.1μm以上5μm未満の水酸化アルミニウムを15〜25質量%
(C−2)平均粒径5μm以上40μm未満の水酸化アルミニウムを35〜45質量%
(C−3)平均粒径40μm以上100μm以下の水酸化アルミニウムを35〜45質量%
の割合の混合物であることが好ましい。
なお、上記平均粒径は、日機装(株)製の粒度分析計であるマイクロトラックMT3300EXにより測定した体積基準の累積平均粒径(メディアン径)の値である。
Aluminum hydroxide is
(C-1) 15 to 25% by mass of aluminum hydroxide having an average particle size of 0.1 μm or more and less than 5 μm
(C-2) 35 to 45% by mass of aluminum hydroxide having an average particle size of 5 μm or more and less than 40 μm
(C-3) 35 to 45% by mass of aluminum hydroxide having an average particle size of 40 μm or more and 100 μm or less
It is preferable that it is a mixture of the ratio.
The average particle diameter is a volume-based cumulative average particle diameter (median diameter) measured by Microtrac MT3300EX, a particle size analyzer manufactured by Nikkiso Co., Ltd.

一方、その他の熱伝導性充填材としては、例えば、非磁性の銅やアルミニウム等の金属、アルミナ、シリカ、マグネシア、ベンガラ、ベリリア、チタニア、ジルコニア等の金属酸化物、窒化アルミニウム、窒化ケイ素、窒化硼素等の金属窒化物、水酸化マグネシウム等の金属水酸化物、人工ダイヤモンドあるいは炭化ケイ素等の一般に熱伝導性充填材とされる物質を用いることができる。また、粒径は0.1〜200μmを用いることができ、1種又は2種以上を複合して用いてもよい。   On the other hand, other heat conductive fillers include, for example, non-magnetic metals such as copper and aluminum, metal oxides such as alumina, silica, magnesia, bengara, beryllia, titania, zirconia, aluminum nitride, silicon nitride, and nitride. A material generally used as a heat conductive filler such as a metal nitride such as boron, a metal hydroxide such as magnesium hydroxide, artificial diamond, or silicon carbide can be used. Moreover, 0.1-200 micrometers can be used for a particle size, You may use 1 type or in combination of 2 or more types.

(C)成分の配合量は、(A)成分100質量部に対して200〜2,500質量部であることが必要であり、好ましくは300〜1,500質量部である。この配合量が200質量部未満の場合には、得られる組成物の熱伝導率が悪い上、保存安定性の乏しいものとなることがあり、2,500質量部を超える場合には、組成物の伸展性が乏しく、また強度が弱い成形物となることがある。   (C) The compounding quantity of a component needs to be 200-2500 mass parts with respect to 100 mass parts of (A) component, Preferably it is 300-1,500 mass parts. When the blending amount is less than 200 parts by mass, the resulting composition has poor thermal conductivity and may have poor storage stability. When it exceeds 2,500 parts by mass, the composition The extensibility of the resin may be poor and the molded product may be weak.

[白金族金属系硬化触媒]
(D)成分の白金族金属系硬化触媒は、(A)成分由来のアルケニル基と、(B)成分由来のSi−H基の付加反応を促進するための触媒であり、ヒドロシリル化反応に用いられる触媒として周知の触媒が挙げられる。その具体例としては、例えば、白金(白金黒を含む)、ロジウム、パラジウム等の白金族金属単体、H2PtCl4・nH2O、H2PtCl6・nH2O、NaHPtCl6・nH2O、KaHPtCl6・nH2O、Na2PtCl6・nH2O、K2PtCl4・nH2O、PtCl4・nH2O、PtCl2、Na2HPtCl4・nH2O(但し、式中、nは0〜6の整数であり、好ましくは0又は6である。)等の塩化白金、塩化白金酸及び塩化白金酸塩、アルコール変性塩化白金酸(米国特許第3,220,972号明細書参照)、塩化白金酸とオレフィンとのコンプレックス(米国特許第3,159,601号明細書、同第3,159,662号明細書、同第3,775,452号明細書参照)、白金黒、パラジウム等の白金族金属をアルミナ、シリカ、カーボン等の担体に担持させたもの、ロジウム−オレフィンコンプレックス、クロロトリス(トリフェニルフォスフィン)ロジウム(ウィルキンソン触媒)、塩化白金、塩化白金酸又は塩化白金酸塩とビニル基含有シロキサン、特にビニル基含有環状シロキサンとのコンプレックスなどが挙げられる。
[Platinum group metal curing catalyst]
The (D) component platinum group metal-based curing catalyst is a catalyst for accelerating the addition reaction of the (A) component-derived alkenyl group and the (B) component-derived Si—H group, and is used for the hydrosilylation reaction. Well-known catalysts are mentioned as the catalyst to be used. Specific examples thereof include platinum group metals such as platinum (including platinum black), rhodium and palladium, H 2 PtCl 4 · nH 2 O, H 2 PtCl 6 · nH 2 O, NaHPtCl 6 · nH 2 O. , KaHPtCl 6 · nH 2 O, Na 2 PtCl 6 · nH 2 O, K 2 PtCl 4 · nH 2 O, PtCl 4 · nH 2 O, PtCl 2 , Na 2 HPtCl 4 · nH 2 O (where, n is an integer of 0 to 6, preferably 0 or 6.) Chlorine chloroplatinic acid and chloroplatinic acid salt, alcohol-modified chloroplatinic acid (US Pat. No. 3,220,972) ), Complex of chloroplatinic acid and olefin (see US Pat. Nos. 3,159,601, 3,159,662, and 3,775,452), platinum black Platinum group gold such as palladium Genus supported on a support such as alumina, silica, carbon, rhodium-olefin complex, chlorotris (triphenylphosphine) rhodium (Wilkinson catalyst), platinum chloride, chloroplatinic acid or chloroplatinate and vinyl group-containing siloxane In particular, a complex with a vinyl group-containing cyclic siloxane may be mentioned.

(D)成分の使用量は、所謂触媒量でよく、通常、(A)成分に対する白金族金属元素の質量換算で0.1〜1,000ppm程度がよい。   The amount of component (D) used may be a so-called catalytic amount, and usually about 0.1 to 1,000 ppm in terms of the mass of the platinum group metal element relative to component (A).

[反応制御剤]
(E)成分として付加反応制御剤を使用することができる。付加反応制御剤は、通常の付加反応硬化型シリコーン組成物に用いられる公知の付加反応制御剤を全て用いることができる。例えば、1−エチニル−1−ヘキサノール、3−ブチン−1−オールなどのアセチレン化合物や各種窒素化合物、有機リン化合物、オキシム化合物、有機クロロ化合物等が挙げられる。使用量としては、(A)成分100質量部に対して0.01〜1質量部程度が望ましい。
[Reaction control agent]
As the component (E), an addition reaction control agent can be used. As the addition reaction control agent, all known addition reaction control agents used in ordinary addition reaction curable silicone compositions can be used. Examples thereof include acetylene compounds such as 1-ethynyl-1-hexanol and 3-butyn-1-ol, various nitrogen compounds, organic phosphorus compounds, oxime compounds, and organic chloro compounds. As a usage-amount, about 0.01-1 mass part is desirable with respect to 100 mass parts of (A) component.

[表面処理剤]
本発明の組成物には、組成物調製時に(C)成分である熱伝導性充填材を疎水化処理し、(A)成分であるオルガノポリシロキサンとの濡れ性を向上させ、(C)成分である熱伝導性充填材を(A)成分からなるマトリックス中に均一に分散させることを目的として、(F)成分の表面処理剤を配合することができる。該(F)成分としては、特に下記に示す(F−1)成分及び(F−2)成分が好ましい。
[Surface treatment agent]
In the composition of the present invention, the thermally conductive filler as component (C) is hydrophobized during preparation of the composition to improve the wettability with the organopolysiloxane as component (A). In order to uniformly disperse the thermally conductive filler as described above in the matrix composed of the component (A), a surface treating agent of the component (F) can be blended. As the component (F), the following components (F-1) and (F-2) are particularly preferable.

(F−1)成分:下記一般式(1)
1 a2 bSi(OR34-a-b (1)
(式中、R1は独立に炭素原子数6〜15のアルキル基であり、R2は独立に非置換又は置換の炭素原子数1〜10の1価炭化水素基であり、R3は独立に炭素原子数1〜6のアルキル基であり、aは1〜3の整数、bは0〜2の整数であり、但しa+bは1〜3の整数である。)
で表されるアルコキシシラン化合物である。
(F-1) Component: The following general formula (1)
R 1 a R 2 b Si (OR 3 ) 4-ab (1)
Wherein R 1 is independently an alkyl group having 6 to 15 carbon atoms, R 2 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and R 3 is independently And an alkyl group having 1 to 6 carbon atoms, a is an integer of 1 to 3, b is an integer of 0 to 2, provided that a + b is an integer of 1 to 3.)
It is the alkoxysilane compound represented by these.

上記一般式(1)において、R1で表されるアルキル基としては、例えば、ヘキシル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基等が挙げられる。このR1で表されるアルキル基の炭素原子数が6〜15の範囲を満たすと(A)成分の濡れ性が十分に向上し、取り扱い性がよく、組成物の低温特性が良好なものとなる。
2で表される非置換又は置換の1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基などのアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基、並びにこれらの基に炭素原子が結合している水素原子の一部又は全部が、フッ素、塩素、臭素等のハロゲン原子、シアノ基などで置換された基、例えば、クロロメチル基、2−ブロモエチル基、3−クロロプロピル基、3,3,3−トリフルオロプロピル基、クロロフェニル基、フルオロフェニル基、シアノエチル基、3,3,4,4,5,5,6,6,6−ノナフルオロヘキシル基等が挙げられ、代表的なものは炭素原子数が1〜10、特に代表的なものは炭素原子数が1〜6のものであり、好ましくはメチル基、エチル基、プロピル基、クロロメチル基、ブロモエチル基、3,3,3−トリフルオロプロピル基、シアノエチル基等の炭素原子数1〜3の非置換又は置換のアルキル基及びフェニル基、クロロフェニル基、フルオロフェニル基等の非置換又は置換のフェニル基が挙げられる。
In the general formula (1), examples of the alkyl group represented by R 1 include a hexyl group, an octyl group, a nonyl group, a decyl group, a dodecyl group, and a tetradecyl group. When the number of carbon atoms of the alkyl group represented by R 1 satisfies the range of 6 to 15, the wettability of the component (A) is sufficiently improved, the handleability is good, and the low temperature characteristics of the composition are good. Become.
Examples of the unsubstituted or substituted monovalent hydrocarbon group represented by R 2 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a pentyl group, a neopentyl group, Hexyl, heptyl, octyl, nonyl, decyl, dodecyl and other alkyl groups, cyclopentyl, cyclohexyl, cycloheptyl and other cycloalkyl groups, phenyl, tolyl, xylyl, naphthyl, biphenylyl An aryl group such as a group, an aralkyl group such as a benzyl group, a phenylethyl group, a phenylpropyl group, and a methylbenzyl group, and a part or all of the hydrogen atoms having a carbon atom bonded to these groups are fluorine, chlorine, Groups substituted with halogen atoms such as bromine, cyano groups, etc., such as chloromethyl group, 2-bromoe Group, 3-chloropropyl group, 3,3,3-trifluoropropyl group, chlorophenyl group, fluorophenyl group, cyanoethyl group, 3,3,4,4,5,5,6,6,6-nonafluoro A hexyl group, etc., typical ones having 1 to 10 carbon atoms, particularly typical ones having 1 to 6 carbon atoms, preferably methyl, ethyl, propyl, chloro Unsubstituted or substituted alkyl group having 1 to 3 carbon atoms such as methyl group, bromoethyl group, 3,3,3-trifluoropropyl group, and cyanoethyl group, and unsubstituted or substituted phenyl group, chlorophenyl group, fluorophenyl group, etc. A substituted phenyl group may be mentioned.

(F−2)成分:下記一般式(2)

Figure 2011089079

(式中、R4は独立に炭素原子数1〜6のアルキル基であり、cは5〜100、好ましくは5〜70、特に10〜50の整数である。)
で表される分子鎖片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサンである。
上記一般式(2)において、R4で表されるアルキル基は、上記一般式(1)中のR3で表されるアルキル基と同種のものである。 (F-2) Component: The following general formula (2)
Figure 2011089079

(In the formula, R 4 is independently an alkyl group having 1 to 6 carbon atoms, and c is an integer of 5 to 100, preferably 5 to 70, particularly 10 to 50.)
Is a dimethylpolysiloxane in which one end of a molecular chain represented by is blocked with a trialkoxysilyl group.
In the general formula (2), the alkyl group represented by R 4 is the same type as the alkyl group represented by R 3 in the general formula (1).

(A)成分の表面処理剤として、(F−1)成分と(F−2)成分のいずれか一方でも両者を組み合わせて配合しても差し支えない。この場合、(F)成分としては、(A)成分100質量部に対して0.01〜50質量部、特に0.1〜30質量部であることが好ましい。本成分の割合が多くなるとオイル分離を誘発する可能性がある。   As the surface treating agent for the component (A), any one of the component (F-1) and the component (F-2) may be combined. In this case, the component (F) is preferably 0.01 to 50 parts by mass, particularly 0.1 to 30 parts by mass with respect to 100 parts by mass of the component (A). Increasing the proportion of this component can induce oil separation.

[オルガノポリシロキサン]
(G)成分として、下記一般式(3)

Figure 2011089079

(式中、R5は独立に炭素原子数1〜10の脂肪族不飽和結合を含まない1価炭化水素基、dは5〜2,000の整数である。)
で表される25℃における動粘度が10〜100,000mm2/sのオルガノポリシロキサンを添加することができる。(G)成分は、熱伝導性シリコーン組成物の粘度調整剤等の特性付与を目的として適宜用いられるが、限定されるものではない。1種単独で用いても、2種以上を併用してもよい。 [Organopolysiloxane]
As the component (G), the following general formula (3)
Figure 2011089079

(In the formula, R 5 is a monovalent hydrocarbon group that does not contain an aliphatic unsaturated bond having 1 to 10 carbon atoms, and d is an integer of 5 to 2,000.)
An organopolysiloxane having a kinematic viscosity of 10 to 100,000 mm 2 / s at 25 ° C. represented by The component (G) is appropriately used for the purpose of imparting properties such as a viscosity modifier of the heat conductive silicone composition, but is not limited thereto. One type may be used alone, or two or more types may be used in combination.

上記R5は独立に非置換又は置換の炭素原子数1〜10の1価炭化水素基である。R5としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基などのアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基、並びにこれらの基に炭素原子が結合している水素原子の一部又は全部が、フッ素、塩素、臭素等のハロゲン原子、シアノ基などで置換された基、例えば、クロロメチル基、2−ブロモエチル基、3−クロロプロピル基、3,3,3−トリフルオロプロピル基、クロロフェニル基、フルオロフェニル基、シアノエチル基、3,3,4,4,5,5,6,6,6−ノナフルオロヘキシル基等が挙げられ、代表的なものは炭素原子数が1〜10、特に代表的なものは炭素原子数が1〜6のものであり、好ましくはメチル基、エチル基、プロピル基、クロロメチル基、ブロモエチル基、3,3,3−トリフルオロプロピル基、シアノエチル基等の炭素原子数1〜3の非置換又は置換のアルキル基及びフェニル基、クロロフェニル基、フルオロフェニル基等の非置換又は置換のフェニル基が挙げられるが、特にメチル基、フェニル基が好ましい。
上記dは要求される粘度の観点から、好ましくは5〜2,000の整数で、特に好ましくは10〜1,000の整数である。
R 5 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms. Examples of R 5 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group. Alkyl groups such as dodecyl group, cycloalkyl groups such as cyclopentyl group, cyclohexyl group and cycloheptyl group, aryl groups such as phenyl group, tolyl group, xylyl group, naphthyl group and biphenylyl group, benzyl group, phenylethyl group, phenylpropyl group Groups in which some or all of the hydrogen atoms bonded to carbon atoms are substituted with halogen atoms such as fluorine, chlorine or bromine, cyano groups, etc. For example, chloromethyl group, 2-bromoethyl group, 3-chloropropyl group, 3, 3, 3 Examples include trifluoropropyl group, chlorophenyl group, fluorophenyl group, cyanoethyl group, 3,3,4,4,5,5,6,6,6-nonafluorohexyl group, etc. 1-10, particularly typical ones having 1-6 carbon atoms, preferably methyl, ethyl, propyl, chloromethyl, bromoethyl, 3,3,3-trifluoropropyl Group, an unsubstituted or substituted alkyl group having 1 to 3 carbon atoms such as a cyanoethyl group, and an unsubstituted or substituted phenyl group such as a phenyl group, a chlorophenyl group, and a fluorophenyl group, particularly a methyl group and a phenyl group Is preferred.
From the viewpoint of the required viscosity, d is preferably an integer of 5 to 2,000, and particularly preferably an integer of 10 to 1,000.

また、25℃における動粘度は、好ましくは10〜100,000mm2/sであり、特に100〜10,000mm2/sであることが好ましい。該動粘度が10mm2/sより低いと、得られる組成物の硬化物がオイルブリードを発生し易くなる。該動粘度が100,000mm2/sよりも大きいと、得られる熱伝導性シリコーン組成物の柔軟性が乏しくなり易い。 Further, the kinematic viscosity at 25 ° C., preferably 10~100,000mm 2 / s, it is preferable in particular 100~10,000mm 2 / s. When the kinematic viscosity is lower than 10 mm 2 / s, the cured product of the resulting composition tends to generate oil bleeding. If the kinematic viscosity is greater than 100,000 mm 2 / s, the flexibility of the resulting heat conductive silicone composition tends to be poor.

(G)成分を本発明の熱伝導性シリコーン組成物に添加するときは、その添加量は限定されず、所望の効果が得られる量であればよいが、(A)成分100質量部に対して、好ましくは0.1〜100質量部、より好ましくは1〜50質量部である。該添加量がこの範囲にあると、硬化前の熱伝導性シリコーン組成物に良好な流動性、作業性を維持し易く、また(C)成分の熱伝導性充填材を該組成物に充填するのが容易である。   (G) When adding a component to the heat conductive silicone composition of this invention, the addition amount is not limited, What is necessary is just the quantity from which a desired effect is acquired, (A) With respect to 100 mass parts of component The amount is preferably 0.1 to 100 parts by mass, more preferably 1 to 50 parts by mass. When the addition amount is within this range, it is easy to maintain good fluidity and workability in the thermally conductive silicone composition before curing, and the composition is filled with the thermally conductive filler of component (C). Easy to do.

[組成物の粘度]
熱伝導性シリコーン組成物の粘度は、25℃において800Pa・s以下、好ましくは400Pa・s以下、更に好ましくは200Pa・s以下、特に好ましくは100Pa・s以下である。なお、この粘度はB型粘度計による測定に基づく。
[Viscosity of composition]
The viscosity of the thermally conductive silicone composition at 25 ° C. is 800 Pa · s or less, preferably 400 Pa · s or less, more preferably 200 Pa · s or less, and particularly preferably 100 Pa · s or less. This viscosity is based on measurement with a B-type viscometer.

[熱伝導性シリコーン硬化物の製造方法]
熱伝導性シリコーン組成物を成形する硬化条件としては、公知の付加反応硬化型シリコーンゴム組成物と同様でよく、例えば、常温でも十分硬化するが、必要に応じて加熱してもよい。好ましくは100〜120℃で8〜12分で付加硬化させるのがよい。このような本発明の成形物は熱伝導性に優れる。
[Method for producing thermally conductive silicone cured product]
The curing conditions for molding the thermally conductive silicone composition may be the same as those of a known addition reaction curable silicone rubber composition. For example, it is sufficiently cured at room temperature, but may be heated as necessary. Preferably, the addition curing is performed at 100 to 120 ° C. for 8 to 12 minutes. Such a molded product of the present invention is excellent in thermal conductivity.

[成形体の熱伝導率]
本発明における成形体の熱伝導率は、ホットディスク法により測定した25℃における測定値が1.5W/m・K以上であることが望ましい。熱伝導率が1.5W/m・K未満であると、発熱量の大きい発熱体への適用が不可となる。なお、このような熱伝導率は、熱伝導性充填材の種類や粒径の組み合わせを調整することにより、調整することができる。
[Thermal conductivity of molded body]
As for the thermal conductivity of the molded product in the present invention, the measured value at 25 ° C. measured by the hot disk method is preferably 1.5 W / m · K or more. When the thermal conductivity is less than 1.5 W / m · K, application to a heating element having a large calorific value becomes impossible. Note that such thermal conductivity can be adjusted by adjusting the combination of the type and particle size of the thermally conductive filler.

[成形体の硬度]
本発明における成形体の硬度は、アスカーC硬度計で測定した25℃における測定値が60以下、好ましくは30以下、より好ましくは20以下、更には10以下であることが好ましい。硬度が60を超える場合、被放熱体の形状に沿うように変形し、被放熱体に応力をかけることなく良好な放熱特性を示すことが困難になる場合がある。なお、このような硬度は、(A)成分と(B)成分の比率を変えて、架橋密度を調整することにより、調整することができる。
[Hardness of molded body]
The hardness of the molded product in the present invention is preferably 60 or less, preferably 30 or less, more preferably 20 or less, and further 10 or less as measured at 25 ° C. measured with an Asker C hardness meter. When the hardness exceeds 60, it may be difficult to exhibit good heat dissipation characteristics without applying stress to the heat radiating body due to deformation along the shape of the heat radiating body. Such hardness can be adjusted by changing the ratio of the component (A) and the component (B) to adjust the crosslinking density.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、動粘度は25℃においてオストワルド粘度計により測定した。また、平均粒径は日機装(株)製の粒度分析計であるマイクロトラックMT3300EXにより測定した体積基準の累積平均粒径(メディアン径)の値である。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example. The kinematic viscosity was measured with an Ostwald viscometer at 25 ° C. The average particle diameter is a volume-based cumulative average particle diameter (median diameter) measured by Microtrac MT3300EX, a particle size analyzer manufactured by Nikkiso Co., Ltd.

[組成物の調製]
下記実施例及び比較例に用いられている(A)〜(F)成分を下記に示す。
(A)成分:
下記式(5)で示されるオルガノポリシロキサン。

Figure 2011089079
(Xはビニル基であり、nは下記粘度を与える数である。)
(A−1)動粘度:600mm2/s
(A−2)動粘度:30,000mm2/s [Preparation of composition]
The components (A) to (F) used in the following examples and comparative examples are shown below.
(A) component:
Organopolysiloxane represented by the following formula (5).
Figure 2011089079
(X is a vinyl group, and n is a number giving the following viscosity.)
(A-1) Kinematic viscosity: 600 mm 2 / s
(A-2) Kinematic viscosity: 30,000 mm 2 / s

(B)成分:
下記式(6)で示される両末端が水素で封鎖されたハイドロジェンポリシロキサン。

Figure 2011089079
(平均重合度:o=28、p=2) (B) component:
Hydrogen polysiloxane in which both ends represented by the following formula (6) are blocked with hydrogen.
Figure 2011089079
(Average polymerization degree: o = 28, p = 2)

(C)成分:
平均粒径が下記の通りである水酸化アルミニウム及び球状アルミナ。
(C−1)平均粒径が1μmの水酸化アルミニウム
(C−2)平均粒径が10μmの水酸化アルミニウム
(C−3)平均粒径が50μmの水酸化アルミニウム
(C−4)平均粒径が70μmの球状アルミナ
(D)成分:
5質量%塩化白金酸2−エチルヘキサノール溶液
(E)成分:
付加反応制御剤として、エチニルメチリデンカルビノール。
Component (C):
Aluminum hydroxide and spherical alumina whose average particle size is as follows.
(C-1) Aluminum hydroxide having an average particle diameter of 1 μm (C-2) Aluminum hydroxide having an average particle diameter of 10 μm (C-3) Aluminum hydroxide having an average particle diameter of 50 μm (C-4) Average particle diameter Is a spherical alumina (D) component having a diameter of 70 μm:
5 mass% chloroplatinic acid 2-ethylhexanol solution (E) component:
Ethynylmethylidenecarbinol as an addition reaction control agent.

(F)成分:(F−2)成分
下記式(7)で示される平均重合度が30の片末端がトリメトキシシリル基で封鎖されたジメチルポリシロキサン。

Figure 2011089079
(F) component: (F-2) component The dimethylpolysiloxane by which the one terminal of the average polymerization degree 30 shown by following formula (7) was blocked with the trimethoxysilyl group.
Figure 2011089079

(G)成分
可塑剤として、下記式(8)で示されるジメチルポリシロキサン。
(G) Component Dimethylpolysiloxane represented by the following formula (8) as a plasticizer.

Figure 2011089079
(r=80)
Figure 2011089079
(R = 80)

(A)、(C)、(F)、(G)成分を下記実施例1〜7及び比較例1〜5に示す所定の量で加え、プラネタリーミキサーで60分間混練した。
そこに(D)成分、(E)成分を下記実施例1〜7及び比較例1〜5に示す所定の量で加え、更にセパレータとの離型を促す内添離型剤を有効量加え、30分間混練した。
そこに更に(B)成分を下記実施例1〜7及び比較例1〜5に示す所定の量で加え、30分間混練し、組成物を得た。
Components (A), (C), (F), and (G) were added in predetermined amounts shown in Examples 1 to 7 and Comparative Examples 1 to 5 below, and kneaded for 60 minutes with a planetary mixer.
(D) component and (E) component are added in predetermined amounts shown in Examples 1 to 7 and Comparative Examples 1 to 5 below, and an effective amount of an internal release agent that further promotes release from the separator is added. Kneaded for 30 minutes.
The component (B) was further added in a predetermined amount shown in Examples 1 to 7 and Comparative Examples 1 to 5 below, and kneaded for 30 minutes to obtain a composition.

[成形方法]
得られた組成物を60mm×60mm×6mmの金型に流し込み、プレス成形機を用い、120℃,10分間で成形した。
[評価方法]
熱伝導率:
下記実施例1〜7及び比較例1〜5で得られた組成物を120℃,10分間の条件で6mm厚のシート状に硬化させ、そのシートを2枚用いて、熱伝導率計(商品名:TPA−501、京都電子工業(株)製)により該シートの熱伝導率を測定した。
硬度:
下記実施例1〜7及び比較例1〜5で得られた組成物を上記と同様に6mm厚のシート状に硬化させ、そのシートを2枚重ねてアスカーC硬度計で測定した。
比重(密度):
水中置換法を用いて測定した。
熱伝導性充填材の沈降:
上記調製法に従って組成物を調製する段階で、(A)、(C)、(F)、(G)、(D)、(E)成分を加えた時点、つまり(B)成分以外を加えた時点での組成物を容器に静置させ、室温で1ヶ月置いた時に熱伝導性充填材の沈降が観察されれば「有り」、観察されなければ「無し」とした。
[Molding method]
The obtained composition was poured into a 60 mm × 60 mm × 6 mm mold and molded using a press molding machine at 120 ° C. for 10 minutes.
[Evaluation methods]
Thermal conductivity:
The compositions obtained in Examples 1 to 7 and Comparative Examples 1 to 5 below were cured into a 6 mm thick sheet at 120 ° C. for 10 minutes, and two sheets were used to produce a thermal conductivity meter (product Name: TPA-501, manufactured by Kyoto Electronics Co., Ltd.), the thermal conductivity of the sheet was measured.
hardness:
The compositions obtained in the following Examples 1 to 7 and Comparative Examples 1 to 5 were cured into a 6 mm thick sheet in the same manner as described above, and the two sheets were stacked and measured with an Asker C hardness meter.
Specific gravity (density):
Measurements were made using the underwater displacement method.
Settling of thermally conductive filler:
At the stage of preparing the composition according to the above preparation method, when the components (A), (C), (F), (G), (D), and (E) were added, that is, components other than the component (B) were added. The composition at that time was allowed to stand in a container, and when it was allowed to stand at room temperature for 1 month, it was judged as “Yes” if sedimentation of the thermally conductive filler was observed, and “No” if not observed.

[実施例1〜7及び比較例1〜5]
表1に示すように、実施例1〜7及び比較例1〜5において(A)〜(G)成分を所定の量を用いて組成物を調製し、硬化させ、上記方法に従って熱伝導率、硬度、比重(密度)、熱伝導性充填材の沈降を、測定又は観察を行った。
[Examples 1-7 and Comparative Examples 1-5]
As shown in Table 1, in Examples 1-7 and Comparative Examples 1-5, compositions (A) to (G) were prepared using predetermined amounts and cured, and the thermal conductivity according to the above method, The hardness, specific gravity (density), and sedimentation of the thermally conductive filler were measured or observed.

比較例1,2のように熱伝導性充填材の総質量部が100質量部だと、組成物の密度は低く、熱伝導性充填材の沈降は観察されなかったものの、熱伝導率が0.6W/m・Kと非常に低くなってしまう。比較例3のように水酸化アルミニウムを用いずに、アルミナのみで熱伝導性シリコーン組成物を調製すると、密度が2.6と高くなってしまい、熱伝導性充填材の沈降が観察された。また比較例4のように熱伝導性充填材の総質量部のうち水酸化アルミニウムの質量%が70質量%より少なくなると、熱伝導率は高くなるものの密度が2.4と高くなってしまい、熱伝導性充填材の沈降が見られた。実施例のように、熱伝導性充填材のうち水酸化アルミニウムが総質量部の70質量%を占める場合、熱伝導性充填材の総質量部に拘わらず沈降は観察されなかった。   When the total mass part of the thermally conductive filler was 100 parts by mass as in Comparative Examples 1 and 2, the density of the composition was low, and no precipitation of the thermally conductive filler was observed, but the thermal conductivity was 0. .6 W / m · K, which is very low. When a thermally conductive silicone composition was prepared using only alumina without using aluminum hydroxide as in Comparative Example 3, the density increased to 2.6, and sedimentation of the thermally conductive filler was observed. Moreover, when the mass% of aluminum hydroxide is less than 70 mass% in the total mass part of the thermally conductive filler as in Comparative Example 4, the thermal conductivity is increased, but the density is increased to 2.4, Sedimentation of the thermally conductive filler was observed. As in the examples, when aluminum hydroxide accounted for 70% by mass of the total mass part of the thermally conductive filler, no sedimentation was observed regardless of the total mass part of the thermally conductive filler.

Figure 2011089079
Figure 2011089079

Claims (6)

(A)分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン:100質量部、
(B)ケイ素原子に直接結合した水素原子を少なくとも2個有するオルガノハイドロジェンポリシロキサン:ケイ素原子に直接結合した水素原子のモル数が(A)成分由来のアルケニル基のモル数の0.1〜5.0倍量となる量、
(C)70質量%以上が水酸化アルミニウムで占められている熱伝導性充填材:200〜2,500質量部、
(D)白金族金属系硬化触媒:(A)成分に対して白金族金属元素の質量換算で0.1〜1,000ppm
を含有することを特徴とする熱伝導性シリコーン組成物。
(A) Organopolysiloxane having at least two alkenyl groups in the molecule: 100 parts by mass
(B) Organohydrogenpolysiloxane having at least two hydrogen atoms directly bonded to silicon atoms: The number of moles of hydrogen atoms directly bonded to silicon atoms is 0.1 to the number of moles of alkenyl groups derived from component (A). 5.0 times the amount,
(C) Thermally conductive filler in which 70% by mass or more is occupied by aluminum hydroxide: 200 to 2,500 parts by mass,
(D) Platinum group metal-based curing catalyst: 0.1 to 1,000 ppm in terms of mass of platinum group metal element with respect to component (A)
A thermally conductive silicone composition comprising:
前記(C)成分に含まれる水酸化アルミニウムが、
(C−1)平均粒径0.1μm以上5μm未満の水酸化アルミニウムを15〜25質量%
(C−2)平均粒径5μm以上40μm未満の水酸化アルミニウムを35〜45質量%
(C−3)平均粒径40μm以上100μm以下の水酸化アルミニウムを35〜45質量%
の割合の混合物であることを特徴する熱伝導性シリコーン組成物。
Aluminum hydroxide contained in the component (C)
(C-1) 15 to 25% by mass of aluminum hydroxide having an average particle size of 0.1 μm or more and less than 5 μm
(C-2) 35 to 45% by mass of aluminum hydroxide having an average particle size of 5 μm or more and less than 40 μm
(C-3) 35 to 45% by mass of aluminum hydroxide having an average particle size of 40 μm or more and 100 μm or less
A thermally conductive silicone composition characterized by being a mixture of
更に、(F)成分として、
(F−1)成分:下記一般式(1)
1 a2 bSi(OR34-a-b (1)
(式中、R1は独立に炭素原子数6〜15のアルキル基であり、R2は独立に非置換又は置換の炭素原子数1〜10の1価炭化水素基であり、R3は独立に炭素原子数1〜6のアルキル基であり、aは1〜3の整数、bは0〜2の整数であり、但しa+bは1〜3の整数である。)
で表されるアルコキシシラン化合物、及び
(F−2)成分:下記一般式(2)
Figure 2011089079

(式中、R4は独立に炭素原子数1〜6のアルキル基であり、cは5〜100の整数である。)
で表される分子鎖片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサンからなる群から選ばれる少なくとも1種:0.01〜50質量部
を含有することを特徴とする請求項1又は2に記載の熱伝導性シリコーン組成物。
Furthermore, as component (F),
(F-1) Component: The following general formula (1)
R 1 a R 2 b Si (OR 3 ) 4-ab (1)
Wherein R 1 is independently an alkyl group having 6 to 15 carbon atoms, R 2 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and R 3 is independently And an alkyl group having 1 to 6 carbon atoms, a is an integer of 1 to 3, b is an integer of 0 to 2, provided that a + b is an integer of 1 to 3.)
And (F-2) component: the following general formula (2)
Figure 2011089079

(In the formula, R 4 is independently an alkyl group having 1 to 6 carbon atoms, and c is an integer of 5 to 100.)
The molecular chain fragment terminal represented by the above formula contains at least one selected from the group consisting of dimethylpolysiloxane blocked with a trialkoxysilyl group: 0.01 to 50 parts by mass. The heat conductive silicone composition as described in 2. above.
更に、(G)成分:下記一般式(3)
Figure 2011089079

(式中、R5は独立に炭素原子数1〜10の脂肪族不飽和結合を含まない1価炭化水素基、dは5〜2,000の整数である。)
で表される25℃における動粘度が10〜100,000mm2/sのオルガノポリシロキサンを含有することを特徴とする請求項1〜3のいずれか1項に記載の熱伝導性シリコーン組成物。
Furthermore, component (G): the following general formula (3)
Figure 2011089079

(In the formula, R 5 is a monovalent hydrocarbon group that does not contain an aliphatic unsaturated bond having 1 to 10 carbon atoms, and d is an integer of 5 to 2,000.)
The thermally conductive silicone composition according to any one of claims 1 to 3, kinematic viscosity, characterized in that it contains an organopolysiloxane 10~100,000mm 2 / s in the represented 25 ° C..
絶対粘度が800Pa・s以下である請求項1〜4のいずれか1項に記載の熱伝導性シリコーン組成物。   The heat conductive silicone composition according to any one of claims 1 to 4, wherein the absolute viscosity is 800 Pa · s or less. 請求項1〜5のいずれか1項に記載の熱伝導性シリコーン組成物を硬化させてなる熱伝導性シリコーン硬化物。   The heat conductive silicone hardened | cured material formed by hardening | curing the heat conductive silicone composition of any one of Claims 1-5.
JP2009245382A 2009-10-26 2009-10-26 Thermally conductive silicone composition and cured product thereof Active JP5304588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009245382A JP5304588B2 (en) 2009-10-26 2009-10-26 Thermally conductive silicone composition and cured product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009245382A JP5304588B2 (en) 2009-10-26 2009-10-26 Thermally conductive silicone composition and cured product thereof

Publications (2)

Publication Number Publication Date
JP2011089079A true JP2011089079A (en) 2011-05-06
JP5304588B2 JP5304588B2 (en) 2013-10-02

Family

ID=44107606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009245382A Active JP5304588B2 (en) 2009-10-26 2009-10-26 Thermally conductive silicone composition and cured product thereof

Country Status (1)

Country Link
JP (1) JP5304588B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011178821A (en) * 2010-02-26 2011-09-15 Shin-Etsu Chemical Co Ltd Heat conductive silicone composition and cured product of the same
WO2013137423A1 (en) 2012-03-12 2013-09-19 Dow Corning Toray Co., Ltd. Thermally conductive silicone composition
JP5897184B1 (en) * 2015-05-12 2016-03-30 サンユレック株式会社 Polyurethane resin composition
WO2016121563A1 (en) * 2015-01-29 2016-08-04 ポリマテック・ジャパン株式会社 Thermally conductive composition
WO2016190188A1 (en) * 2015-05-22 2016-12-01 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Thermally conductive composition
JPWO2016190189A1 (en) * 2015-05-22 2017-06-15 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Thermally conductive composition
EP3404060A1 (en) * 2017-05-19 2018-11-21 ABB Schweiz AG Silicone rubber with ath filler
WO2019111852A1 (en) 2017-12-04 2019-06-13 積水ポリマテック株式会社 Thermally conductive composition
JP2020002236A (en) * 2018-06-27 2020-01-09 信越化学工業株式会社 Heat-conductive silicone composition, heat-conductive silicone sheet, and method of manufacturing the same
WO2020084860A1 (en) 2018-10-26 2020-04-30 信越化学工業株式会社 Thermally conductive silicone composition and cured product thereof
JPWO2019031082A1 (en) * 2017-08-10 2020-07-16 信越化学工業株式会社 Organosilicon compound and curable heat conductive silicone composition
JP2021001239A (en) * 2019-06-19 2021-01-07 信越化学工業株式会社 Thermosetting heat-conductive silicone rubber composition
CN112236482A (en) * 2018-06-08 2021-01-15 信越化学工业株式会社 Heat-conductive silicone composition and method for producing same
WO2021095507A1 (en) 2019-11-14 2021-05-20 信越化学工業株式会社 Thermally conductive silicone composition, and thermally conductive silicone sheet
WO2021131681A1 (en) 2019-12-26 2021-07-01 信越化学工業株式会社 Thermally conductive silicone resin composition
WO2021184149A1 (en) * 2020-03-16 2021-09-23 Dow Silicones Corporation Thermal conductive silicone composition
CN113692427A (en) * 2019-04-15 2021-11-23 积水保力马科技株式会社 Heat conductive composition, heat conductive member, and battery module
CN114292521A (en) * 2022-01-17 2022-04-08 深圳先进电子材料国际创新研究院 Heat-conducting gel and preparation method thereof
JP2022543963A (en) * 2019-06-21 2022-10-17 ダウ シリコーンズ コーポレーション Thermally conductive silicone composition
CN115885014A (en) * 2020-09-29 2023-03-31 株式会社 Lg新能源 Curable composition and two-component curable composition
WO2023188491A1 (en) * 2022-03-31 2023-10-05 富士高分子工業株式会社 Thermally conductive silicone composition, thermally conductive silicone sheet, and method for manufacturing said sheet
US11845869B2 (en) 2019-06-21 2023-12-19 Dow Silicones Corporation Method for producing thixotropic curable silicone composition
WO2023242193A1 (en) 2022-06-15 2023-12-21 Wacker Chemie Ag Thermally conductive silicone composition and method for producing thermally conductive member using the composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3988617B1 (en) * 2020-09-03 2023-08-30 Fuji Polymer Industries Co., Ltd. Thermally conductive silicone gel composition, thermally conductive silicone sheet, and production methods therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235797A (en) * 1985-04-11 1986-10-21 東レ・ダウコーニング・シリコーン株式会社 Organopolysiloxane composition for shielding neutron
JP2002138205A (en) * 2000-11-02 2002-05-14 Polymatech Co Ltd Thermal conductive molded article
JP2005112961A (en) * 2003-10-07 2005-04-28 Shin Etsu Chem Co Ltd Curable organopolysiloxane composition and semiconductor apparatus
JP2008239719A (en) * 2007-03-26 2008-10-09 Dow Corning Toray Co Ltd Silicone elastomer composition and silicone elastomer
JP2010120979A (en) * 2008-11-17 2010-06-03 Taika:Kk Thermally conductive silicone gel cured product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235797A (en) * 1985-04-11 1986-10-21 東レ・ダウコーニング・シリコーン株式会社 Organopolysiloxane composition for shielding neutron
JP2002138205A (en) * 2000-11-02 2002-05-14 Polymatech Co Ltd Thermal conductive molded article
JP2005112961A (en) * 2003-10-07 2005-04-28 Shin Etsu Chem Co Ltd Curable organopolysiloxane composition and semiconductor apparatus
JP2008239719A (en) * 2007-03-26 2008-10-09 Dow Corning Toray Co Ltd Silicone elastomer composition and silicone elastomer
JP2010120979A (en) * 2008-11-17 2010-06-03 Taika:Kk Thermally conductive silicone gel cured product

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011178821A (en) * 2010-02-26 2011-09-15 Shin-Etsu Chemical Co Ltd Heat conductive silicone composition and cured product of the same
WO2013137423A1 (en) 2012-03-12 2013-09-19 Dow Corning Toray Co., Ltd. Thermally conductive silicone composition
JPWO2016121563A1 (en) * 2015-01-29 2017-11-09 ポリマテック・ジャパン株式会社 Thermally conductive composition
WO2016121563A1 (en) * 2015-01-29 2016-08-04 ポリマテック・ジャパン株式会社 Thermally conductive composition
JP7025612B2 (en) 2015-01-29 2022-02-25 積水ポリマテック株式会社 Thermally conductive composition
JP5897184B1 (en) * 2015-05-12 2016-03-30 サンユレック株式会社 Polyurethane resin composition
JP2016210932A (en) * 2015-05-12 2016-12-15 サンユレック株式会社 Polyurethane resin composition
JPWO2016190188A1 (en) * 2015-05-22 2017-06-15 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Thermally conductive composition
JPWO2016190189A1 (en) * 2015-05-22 2017-06-15 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Thermally conductive composition
KR20180011080A (en) * 2015-05-22 2018-01-31 모멘티브 파포만스 마테리아루즈 쟈판 고도가이샤 Thermally conductive composition
KR102544343B1 (en) * 2015-05-22 2023-06-19 모멘티브 파포만스 마테리아루즈 쟈판 고도가이샤 thermally conductive composition
US10683444B2 (en) 2015-05-22 2020-06-16 Momentive Performance Materials Japan Llc Thermally conductive composition
WO2016190188A1 (en) * 2015-05-22 2016-12-01 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Thermally conductive composition
US11037697B2 (en) 2017-05-19 2021-06-15 Abb Power Grids Switzerland Ag Silicone rubber with ATH filler
EP3404060A1 (en) * 2017-05-19 2018-11-21 ABB Schweiz AG Silicone rubber with ath filler
WO2018210687A1 (en) * 2017-05-19 2018-11-22 Abb Schweiz Ag Silicone rubber with ath filler
JPWO2019031082A1 (en) * 2017-08-10 2020-07-16 信越化学工業株式会社 Organosilicon compound and curable heat conductive silicone composition
WO2019111852A1 (en) 2017-12-04 2019-06-13 積水ポリマテック株式会社 Thermally conductive composition
US11236259B2 (en) 2017-12-04 2022-02-01 Sekisui Polymatech Co., Ltd. Thermally conductive composition
CN112236482B (en) * 2018-06-08 2022-12-27 信越化学工业株式会社 Heat-conductive silicone composition and method for producing same
CN112236482A (en) * 2018-06-08 2021-01-15 信越化学工业株式会社 Heat-conductive silicone composition and method for producing same
JP2020002236A (en) * 2018-06-27 2020-01-09 信越化学工業株式会社 Heat-conductive silicone composition, heat-conductive silicone sheet, and method of manufacturing the same
JP7033047B2 (en) 2018-10-26 2022-03-09 信越化学工業株式会社 Thermally conductive silicone composition and its cured product
US20210355363A1 (en) * 2018-10-26 2021-11-18 Shin-Etsu Chemical Co., Ltd. Thermal conductive silicone composition and cured product thereof
CN112867765A (en) * 2018-10-26 2021-05-28 信越化学工业株式会社 Heat-conductive silicone composition and cured product thereof
KR20210080376A (en) 2018-10-26 2021-06-30 신에쓰 가가꾸 고교 가부시끼가이샤 Thermally conductive silicone composition and cured product thereof
WO2020084860A1 (en) 2018-10-26 2020-04-30 信越化学工業株式会社 Thermally conductive silicone composition and cured product thereof
JP2020066713A (en) * 2018-10-26 2020-04-30 信越化学工業株式会社 Thermally conductive silicone composition and cured product of the same
CN112867765B (en) * 2018-10-26 2023-04-14 信越化学工业株式会社 Heat-conductive silicone composition and cured product thereof
CN113692427B (en) * 2019-04-15 2024-01-02 积水保力马科技株式会社 Thermally conductive composition, thermally conductive member, and battery module
CN113692427A (en) * 2019-04-15 2021-11-23 积水保力马科技株式会社 Heat conductive composition, heat conductive member, and battery module
JP2021001239A (en) * 2019-06-19 2021-01-07 信越化学工業株式会社 Thermosetting heat-conductive silicone rubber composition
JP2022543963A (en) * 2019-06-21 2022-10-17 ダウ シリコーンズ コーポレーション Thermally conductive silicone composition
JP7495434B2 (en) 2019-06-21 2024-06-04 ダウ シリコーンズ コーポレーション Thermally conductive silicone composition
US11845869B2 (en) 2019-06-21 2023-12-19 Dow Silicones Corporation Method for producing thixotropic curable silicone composition
WO2021095507A1 (en) 2019-11-14 2021-05-20 信越化学工業株式会社 Thermally conductive silicone composition, and thermally conductive silicone sheet
KR20220101651A (en) 2019-11-14 2022-07-19 신에쓰 가가꾸 고교 가부시끼가이샤 Thermally conductive silicone composition and thermally conductive silicone sheet
CN114729193A (en) * 2019-11-14 2022-07-08 信越化学工业株式会社 Thermally conductive silicone composition and thermally conductive silicone sheet
CN114729193B (en) * 2019-11-14 2023-08-22 信越化学工业株式会社 Thermally conductive silicone composition and thermally conductive silicone sheet
KR20220123385A (en) 2019-12-26 2022-09-06 신에쓰 가가꾸 고교 가부시끼가이샤 Thermally conductive silicone resin composition
WO2021131681A1 (en) 2019-12-26 2021-07-01 信越化学工業株式会社 Thermally conductive silicone resin composition
CN115210321A (en) * 2020-03-16 2022-10-18 美国陶氏有机硅公司 Thermally conductive silicone composition
WO2021184149A1 (en) * 2020-03-16 2021-09-23 Dow Silicones Corporation Thermal conductive silicone composition
CN115885014A (en) * 2020-09-29 2023-03-31 株式会社 Lg新能源 Curable composition and two-component curable composition
CN114292521A (en) * 2022-01-17 2022-04-08 深圳先进电子材料国际创新研究院 Heat-conducting gel and preparation method thereof
WO2023188491A1 (en) * 2022-03-31 2023-10-05 富士高分子工業株式会社 Thermally conductive silicone composition, thermally conductive silicone sheet, and method for manufacturing said sheet
WO2023242193A1 (en) 2022-06-15 2023-12-21 Wacker Chemie Ag Thermally conductive silicone composition and method for producing thermally conductive member using the composition

Also Published As

Publication number Publication date
JP5304588B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
JP5304588B2 (en) Thermally conductive silicone composition and cured product thereof
JP5418298B2 (en) Thermally conductive silicone composition and cured product thereof
JP5664563B2 (en) Thermally conductive silicone composition and cured product thereof
JP6075261B2 (en) Thermally conductive silicone composition and cured product thereof
TWI822954B (en) Thermal conductive silicone composition and manufacturing method thereof, and thermally conductive silicone hardened material
JP6202475B2 (en) Thermally conductive composite silicone rubber sheet
JP7285231B2 (en) Thermally conductive silicone composition and cured product thereof
JP7033047B2 (en) Thermally conductive silicone composition and its cured product
JP5131648B2 (en) Thermally conductive silicone composition and thermally conductive silicone molding using the same
WO2019198424A1 (en) Heat-conductive silicone composition and cured product thereof
TWI813738B (en) Thermally conductive silicon oxide composition and its hardened product
WO2021131681A1 (en) Thermally conductive silicone resin composition
JP7485634B2 (en) Thermally conductive silicone composition and cured product thereof
JP7496800B2 (en) Thermally conductive silicone composition and cured product thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130610

R150 Certificate of patent or registration of utility model

Ref document number: 5304588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150