JP5892016B2 - Zinc oxide sputtering target and manufacturing method thereof - Google Patents

Zinc oxide sputtering target and manufacturing method thereof Download PDF

Info

Publication number
JP5892016B2
JP5892016B2 JP2012205753A JP2012205753A JP5892016B2 JP 5892016 B2 JP5892016 B2 JP 5892016B2 JP 2012205753 A JP2012205753 A JP 2012205753A JP 2012205753 A JP2012205753 A JP 2012205753A JP 5892016 B2 JP5892016 B2 JP 5892016B2
Authority
JP
Japan
Prior art keywords
zinc oxide
sputtering target
mass
sintering
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012205753A
Other languages
Japanese (ja)
Other versions
JP2014058731A (en
Inventor
敢 橋口
敢 橋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2012205753A priority Critical patent/JP5892016B2/en
Publication of JP2014058731A publication Critical patent/JP2014058731A/en
Application granted granted Critical
Publication of JP5892016B2 publication Critical patent/JP5892016B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、太陽電池等を構成する透明導電膜をスパッタリング法にて形成する際に用いられる酸化亜鉛スパッタリングターゲットに係り、特に、CIGS系太陽電池のバッファ層に用いられる高抵抗膜(酸化物透明半導体膜)をスパッタリング法により効率良く成膜できる酸化亜鉛スパッタリングターゲットの改良に関するものである。   The present invention relates to a zinc oxide sputtering target used when forming a transparent conductive film constituting a solar cell or the like by a sputtering method, and in particular, a high resistance film (transparent oxide) used for a buffer layer of a CIGS solar cell. The present invention relates to an improvement in a zinc oxide sputtering target capable of efficiently forming a semiconductor film by a sputtering method.

酸化物透明導電膜(酸化物透明導体膜若しくは半導体膜)は、導電性と可視光領域での高い透過率を有するため、太陽電池や液晶表示素子、その他各種受光素子の電極等に利用され、更に、近赤外線領域の波長での反射吸収特性を生かして、自動車や建築物の窓ガラス若しくはフィルム等に用いる熱線反射膜や各種の帯電防止膜、冷凍ショーケース等の防曇用の透明発熱体としても利用されている。   An oxide transparent conductive film (oxide transparent conductive film or semiconductor film) has high conductivity in the visible light region, and is used for electrodes of solar cells, liquid crystal display elements, and other various light receiving elements. Furthermore, taking advantage of the reflection and absorption characteristics at wavelengths in the near-infrared region, transparent heating elements for anti-fogging, such as heat ray reflective films, various antistatic films, refrigeration showcases, etc., used for window glass or films of automobiles and buildings, etc. It is also used as.

これ等酸化物透明導電膜(酸化物透明導体膜若しくは半導体膜)が利用される分野の中で、CIGS系太陽電池に用いられる酸化物透明導電膜の中には適度な絶縁抵抗が求められる用途がある。これは、CIGS系太陽電池の発電層から電気を取り出す導電膜層(透明電極層)との間に、電荷の移動(漏れ出し)を妨げる層(バッファ層)を設けることにより発電効率を向上させるためである。当初はCdSやZnSが上記バッファ層に用いられていたが、薄膜太陽電池の表面電極には一般的に酸化亜鉛系の透明電極が用いられており、環境面、積層のし易さ等から、バッファ層においても酸化亜鉛系の透明導電膜(酸化物透明半導体膜)が用いられるようになっている。   Among the fields where these oxide transparent conductive films (oxide transparent conductive films or semiconductor films) are used, the oxide transparent conductive films used for CIGS solar cells are required to have appropriate insulation resistance. There is. This improves power generation efficiency by providing a layer (buffer layer) that prevents the movement (leakage) of charges between the conductive layer (transparent electrode layer) that extracts electricity from the power generation layer of the CIGS solar cell. Because. Initially, CdS and ZnS were used for the buffer layer, but a zinc oxide-based transparent electrode is generally used for the surface electrode of the thin-film solar cell. Also in the buffer layer, a zinc oxide-based transparent conductive film (oxide transparent semiconductor film) is used.

これ等酸化物透明導電膜の形成方法としては、真空中で蒸発源を加熱し、蒸発した原料を基板上に堆積させて形成する真空蒸着法、ターゲットにアルゴンイオンを衝突させてターゲットを構成する物質をたたき出し、対向する基板に堆積させて形成するスパッタリング法、および、透明導電層形成用塗液を塗布して形成する方法等が用いられている。この中で、真空蒸着法やスパッタリング法は、蒸気圧の低い材料を使用する際や精密な膜厚制御を必要とする際に有効な手法であり、かつ、操作が非常に簡便であるため工業的に広く利用されており、特に、スパッタリング法は、短時間に効率良く薄膜を形成できることから最も広く利用されている。   As a method for forming these oxide transparent conductive films, a vacuum evaporation method in which an evaporation source is heated in vacuum and evaporated materials are deposited on a substrate, and a target is formed by colliding argon ions with a target. A sputtering method in which a substance is knocked out and deposited on an opposing substrate, a method in which a transparent conductive layer forming coating solution is applied, and the like are used. Among these, the vacuum deposition method and the sputtering method are effective methods when using a material having a low vapor pressure or when precise film thickness control is required, and the operation is very simple. In particular, the sputtering method is most widely used because a thin film can be efficiently formed in a short time.

このスパッタリングターゲット材(焼結体)には、長時間安定したスパッタリング成膜が行なえるようにするため、相対密度で、少なくとも90%を越える高い密度が求められる。ここで、上記「相対密度」とは、ターゲット材の出発原料である各混合粉末の真密度から求めた計算真密度に対する焼結体(ターゲット材)の密度の比率(%)のことで、(上記焼結体の密度/計算真密度)×100=焼結体の相対密度(%)という式により求められる値である。尚、計算真密度は、AZO(アルミニウムをドーパントとして含む酸化亜鉛系のターゲット材)であれば、計算真密度=100/[(酸化亜鉛の配合比(質量%)/酸化亜鉛の真密度)+(酸化アルミニウムの配合比(質量%)/酸化アルミニウムの真密度)]で計算される。   The sputtering target material (sintered body) is required to have a high relative density of at least 90% so that stable sputtering film formation can be performed for a long time. Here, the “relative density” is a ratio (%) of the density of the sintered body (target material) to the calculated true density obtained from the true density of each mixed powder that is a starting material of the target material. It is a value obtained by the formula: density of the sintered body / calculated true density) × 100 = relative density (%) of the sintered body. If the calculated true density is AZO (a zinc oxide-based target material containing aluminum as a dopant), the calculated true density = 100 / [(compounding ratio of zinc oxide (mass%) / true density of zinc oxide) + (Aluminum oxide mixing ratio (mass%) / true density of aluminum oxide)].

相対密度の高い焼結体を得るためには、ホットプレス法や熱間静水圧プレス法等が試みられているが、生産性の点から常圧焼結法が多く採用されている。常圧焼結を行なうための成形体を得る方法として、原料粉をスラリーにして鋳込む方式と、粉体をプレスして成形を行なう方式が取られるが、平板形状のターゲットを作製するにはプレス成形での生産が適している。   In order to obtain a sintered body having a high relative density, a hot pressing method, a hot isostatic pressing method, and the like have been tried, but an atmospheric pressure sintering method is often employed from the viewpoint of productivity. There are two methods for obtaining compacts for atmospheric pressure sintering: casting the raw material powder into a slurry and pressing the powder for molding. Production by press molding is suitable.

また、スパッタリング方式には様々な駆動方式があるが、最も量産性に優れるのはDCマグネトロンスパッタ方式であり、これに適用可能なスパッタリングターゲットには、一定程度以上の導電性が必要である。しかし、ドーパント量が少ない(例えば、ドーパントの添加量が0.01〜0.1質量%)酸化亜鉛系ターゲットでは、導電性を高めるためにドーパントの添加量を増加するに従い焼結体の密度が低下するという問題があった(特許文献1参照)。   Further, there are various driving methods in the sputtering method, but the DC magnetron sputtering method is most excellent in mass productivity, and a sputtering target applicable to this requires a certain level of conductivity. However, in a zinc oxide target with a small amount of dopant (for example, 0.01 to 0.1% by mass of dopant), the density of the sintered body increases as the amount of dopant added is increased in order to increase conductivity. There has been a problem of reduction (see Patent Document 1).

特開平11−279754号公報(段落0035の表1)JP-A-11-279754 (Table 1 in paragraph 0035)

すなわち、0.1質量%以下の酸化アルミニウムを含有する(すなわち、ドーパント量の少ない)酸化亜鉛系ターゲットでは、特許文献1の表1(段落0035)に記載されているように、上記ドーパント(Al23)の添加量を増加する(0.00質量%〜0.10質量%)に従い、密度が5.30〜5.02g/cm3と低下している。酸化亜鉛の真密度は5.78g/cm3、酸化アルミニウムの真密度は3.99g/cm3であるので、酸化アルミニウムが0.00質量%〜0.10質量%のときの計算真密度は、上述の計算式から約5.78g/cm3となり、相対密度は92%以下のものしか得られていない。 That is, in the zinc oxide target containing 0.1% by mass or less of aluminum oxide (that is, having a small amount of dopant), as described in Table 1 (paragraph 0035) of Patent Document 1, the dopant (Al The density decreases from 5.30 to 5.02 g / cm 3 as the addition amount of ( 2 O 3 ) increases (0.00 mass% to 0.10 mass%). Since the true density of zinc oxide is 5.78 g / cm 3 and the true density of aluminum oxide is 3.99 g / cm 3 , the calculated true density when the aluminum oxide is 0.00 mass% to 0.10 mass% is From the above formula, it is about 5.78 g / cm 3 , and a relative density of only 92% or less is obtained.

他方、透明電極等に広く用いられている2〜5質量%の酸化アルミを含有する(すなわち、ドーパント量の多い)酸化亜鉛系ターゲットでは、特許文献1に引用された特開平7−258836号公報の段落0025と段落0035に記載されているように、酸化アルミニウムの含有量が2質量%で密度が5.61g/cm3以上、すなわち、相対密度が98%以上と高いものが得られ、市販されている。 On the other hand, in a zinc oxide-based target containing 2 to 5% by mass of aluminum oxide (that is, having a large amount of dopant) widely used for transparent electrodes and the like, Japanese Patent Laid-Open No. 7-258836 cited in Patent Document 1 is disclosed. As described in paragraphs 0025 and 0035, the aluminum oxide content is 2% by mass and the density is not less than 5.61 g / cm 3 , that is, the relative density is as high as 98% or more. Has been.

このため、CIGS系太陽電池のバッファ層にドーパント量の少ない酸化亜鉛系ターゲット(相対密度が92%以下)を適用し、かつ、CIGS系太陽電池の導電膜層(透明電極層)にドーパント量の多い酸化亜鉛系ターゲット(相対密度が98%以上)を適用した場合、形成される導電膜層(透明電極層)とバッファ層との間に大きな密度差が生じてしまうため、生産効率を大きく損ねてしまう課題(問題点)が存在した。   For this reason, a zinc oxide type target (relative density is 92% or less) with a small amount of dopant is applied to the buffer layer of the CIGS solar cell, and the amount of dopant is applied to the conductive layer (transparent electrode layer) of the CIGS solar cell. When a large amount of zinc oxide-based target (relative density is 98% or more) is applied, a large density difference occurs between the formed conductive film layer (transparent electrode layer) and the buffer layer. There was a problem (problem) that would occur.

本発明はこのような問題点に着目してなされたもので、その課題とするところは、ドーパントである酸化アルミニウムの添加量が0.10質量%以下と少量にも拘らず、相対密度が95%以上である酸化亜鉛スパッタリングターゲットとその製造方法を提供することにある。   The present invention has been made paying attention to such problems, and the problem is that the relative density is 95 despite the small amount of aluminum oxide as a dopant being 0.10% by mass or less. It is in providing the zinc oxide sputtering target which is% or more, and its manufacturing method.

すなわち、請求項1に係る発明は、
酸化亜鉛スパッタリングターゲットにおいて、
酸化亜鉛を主成分とし、0.05質量%以上0.10質量%以下の酸化アルミニウムを含有する酸化物焼結体で構成され、かつ、酸化物焼結体の相対密度が95%以上であることを特徴とする。
That is, the invention according to claim 1
In zinc oxide sputtering target,
It is composed of an oxide sintered body containing zinc oxide as a main component and containing 0.05% by mass or more and 0.10% by mass or less of aluminum oxide, and the relative density of the oxide sintered body is 95% or more. It is characterized by that.

また、請求項に係る発明は、
請求項1に記載の酸化亜鉛スパッタリングターゲットを製造する方法において、
酸化亜鉛粉末と酸化アルミニウム粉末を、純水、有機バインダー、分散剤と混合してスラリーを調製し、かつ、得られたスラリーを、乾燥、造粒する第一工程と、
第一工程で得られた造粒粉を、加圧成形して成形体を得る第二工程と、
第二工程で得られた成形体を焼成し、酸化物焼結体を得る第三工程と、
を備え、
上記第三工程における焼結温度を900〜1150℃の範囲とし、40〜60時間焼成することを特徴とする。
The invention according to claim 2
In the method of manufacturing the zinc oxide sputtering target according to claim 1 ,
A zinc oxide powder and an aluminum oxide powder are mixed with pure water, an organic binder, a dispersant to prepare a slurry, and the obtained slurry is dried and granulated,
A second step in which the granulated powder obtained in the first step is pressed to obtain a molded body;
A third step of firing the molded body obtained in the second step to obtain an oxide sintered body,
With
The sintering temperature in the third step is set to a range of 900 to 1150 ° C., and firing is performed for 40 to 60 hours.

本発明に係る酸化亜鉛スパッタリングターゲットによれば、ドーパントである酸化アルミニウムの添加量が0.05質量%以上0.10質量%以下と少量であるにも拘らず、酸化アルミニウムの添加量が2〜5質量%と多量である市販の酸化亜鉛スパッタリングターゲットと同様にその相対密度が95%以上の高い値になっている。 According to the zinc oxide sputtering target according to the present invention, although the addition amount of aluminum oxide as a dopant is as small as 0.05% by mass or more and 0.10% by mass or less , the addition amount of aluminum oxide is 2 to 2. Similar to a commercially available zinc oxide sputtering target having a large amount of 5% by mass, the relative density is as high as 95% or more.

このため、本発明に係る酸化亜鉛スパッタリングターゲットを例えばCIGS系太陽電池のバッファ層に適用した場合、酸化アルミニウムの添加量が2〜5質量%と多量である市販の酸化亜鉛スパッタリングターゲットを用いて形成された導電膜層(透明電極層)との間に大きな密度差が生じないことから、積層効率が著しく向上して大幅な生産性の向上が図れる効果を有している。   For this reason, when the zinc oxide sputtering target according to the present invention is applied to, for example, a buffer layer of a CIGS solar cell, it is formed using a commercially available zinc oxide sputtering target in which the amount of aluminum oxide added is as large as 2 to 5% by mass. Since a large density difference does not occur with the conductive film layer (transparent electrode layer) formed, there is an effect that the stacking efficiency is remarkably improved and the productivity is greatly improved.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明に係る酸化亜鉛スパッタリングターゲットは、酸化亜鉛粉末を主とし、0.05質量%以上0.10質量%以下の酸化アルミニウム粉末を含有する金属酸化物粉末に、水と有機バインダーと分散剤とを混合してスラリーを調製し、かつ、得られたスラリーを噴霧し、乾燥させて造粒粉を得る第一工程と、得られた造粒粉を加圧成形して成形体を得る第二工程と、得られた成形体を焼成して焼結体を得る第三工程と、得られた焼結体を機械加工してスパッタリングターゲットを得る工程を経て製造される。 The zinc oxide sputtering target according to the present invention is mainly composed of zinc oxide powder, metal oxide powder containing 0.05% by mass or more and 0.10% by mass or less of aluminum oxide powder, water, an organic binder, and a dispersant. A first step of preparing a slurry by spraying the obtained slurry and drying to obtain a granulated powder, and a second step of obtaining a molded body by press-molding the obtained granulated powder. It is manufactured through a step, a third step of firing the obtained molded body to obtain a sintered body, and a step of machining the obtained sintered body to obtain a sputtering target.

出発原料として、BET比表面積が4m2/gである酸化亜鉛粉末に、BET比表面積が6m2/gである酸化アルミニウム粉末を添加し、分散剤として、分散能力に優れるアクリル酸メタクリル酸共重合体アンモニア中和物を用いると、酸化亜鉛粉末の凝集が効果的に抑えられ、均一なスラリーを得ることができるため好ましい。上記分散剤の添加量は、酸化アルミニウム粉末を含む金属酸化物粉末の合計質量に対して0.3〜3質量%とすることが好ましい。添加量を0.3〜3質量%とすることにより、スラリーの濃度が70質量%程度であっても、スラリーの粘度は100cps未満となり、噴霧、乾燥工程における噴霧が容易となる。また、上記分散剤の添加により、金属酸化粉末の沈降も抑えられるため、噴霧、乾燥工程における効率が著しく向上することとなる。上記分散剤の添加量を0.3質量%未満にすると、分散能力が不十分となる可能性がある。上記分散剤を使用しない場合には、濃度が30〜35質量%程度のスラリーであっても、粘度が100cps以上になってしまい、噴霧、乾燥工程における噴霧が行い難くなる。一方、上記分散剤の添加量が3質量%を越えると、焼結時に揮発分が多くなるため、焼結時に製品が割れる確率が高くなってしまう。 As a starting material, the zinc oxide powder has a BET specific surface area of 4m 2 / g, a BET specific surface area was added to the aluminum oxide powder is 6 m 2 / g, as a dispersant, methacrylic acrylate acid copolycondensation of excellent dispersing ability Use of a combined ammonia neutralized product is preferable because aggregation of zinc oxide powder is effectively suppressed and a uniform slurry can be obtained. The amount of the dispersant added is preferably 0.3 to 3% by mass with respect to the total mass of the metal oxide powder including the aluminum oxide powder. By setting the addition amount to 0.3 to 3% by mass, even if the concentration of the slurry is about 70% by mass, the viscosity of the slurry becomes less than 100 cps, and spraying in the spraying and drying process becomes easy. Moreover, since the precipitation of the metal oxide powder is suppressed by the addition of the dispersant, the efficiency in the spraying and drying process is remarkably improved. If the added amount of the dispersing agent is less than 0.3% by mass, the dispersing ability may be insufficient. When the dispersant is not used, even if the slurry has a concentration of about 30 to 35% by mass, the viscosity becomes 100 cps or more, and spraying in the spraying and drying process becomes difficult. On the other hand, if the added amount of the dispersant exceeds 3% by mass, the volatile content increases during sintering, and the probability that the product breaks during sintering will increase.

分散剤としてアクリル酸メタクリル酸共重合体アンモニア中和物を用いた場合には分散能力が非常に高くなるので、加える有機バインダーはポリビニルアルコール(PVA)で十分であり、成形体は十分な強度が得られる。用いるPVAは、ケン化度90〜97mol%、重合度400〜1000のものが適している。この範囲のケン化度と重合度のPVAを用いることにより、得られる造粒粉は適度に軟質なものとなり、成形時のつぶれ性が向上する。この結果、成形体中の空孔が減少し、成形体強度が向上し、焼成して得られるスパッタリングターゲットの密度が向上する。ケン化度が97mol%を越えるか、重合度が1000を越えるPVAを用いると、成形時の造粒粉のつぶれ性が悪くなり、成形体中の空孔が増加し、成形体強度が減少する。また、焼結後に得られるスパッタリングターゲットの密度も向上しない。一方、ケン化度が90mol%未満であるか、重合度が400未満であるPVAを用いると、成形体が軟質となり過ぎ、作業効率が悪くなる。尚、本発明においては、有機バインダーとしてPVAを用いれば十分であるが、PVAの他、アクリル系バインダー等を用いることも可能である。有機バインダーの量は、通常、1.0質量%以上を加えることにより成形体強度を確保するが、本発明で得ようとする焼結体の厚みが10mm以上であることから、有機バインダーを1.0質量%以下としても成形体強度の低下は顕著に現れず、成形以後の工程で割れる確率が高くなることはない。このため、酸化アルミニウム粉末を含む金属酸化物粉末の合計質量に対して0.5〜1.5質量%とすることが好ましい。また、ジルコニアボールを用いたボールミルまたはビーズミルを行うことにより、金属酸化物粉末を充分に混合しておくことが望ましい。   When an acrylic acid / methacrylic acid copolymer ammonia neutralized product is used as a dispersant, the dispersibility is very high. Therefore, polyvinyl alcohol (PVA) is sufficient as the organic binder to be added, and the molded product has sufficient strength. can get. As the PVA to be used, those having a saponification degree of 90 to 97 mol% and a polymerization degree of 400 to 1000 are suitable. By using PVA having a saponification degree and a polymerization degree within this range, the resulting granulated powder becomes moderately soft and the crushability during molding is improved. As a result, voids in the molded body are reduced, the molded body strength is improved, and the density of the sputtering target obtained by firing is improved. When PVA with a saponification degree exceeding 97 mol% or a polymerization degree exceeding 1000 is used, the collapsibility of the granulated powder at the time of molding deteriorates, voids in the molded body increase, and the molded body strength decreases. . Moreover, the density of the sputtering target obtained after sintering is not improved. On the other hand, when PVA having a saponification degree of less than 90 mol% or a polymerization degree of less than 400 is used, the molded article becomes too soft and the working efficiency is deteriorated. In the present invention, it is sufficient to use PVA as the organic binder, but it is also possible to use an acrylic binder or the like in addition to PVA. The amount of the organic binder is usually 1.0% by mass or more to ensure the strength of the molded body, but since the thickness of the sintered body to be obtained in the present invention is 10 mm or more, the organic binder is 1 Even if the content is less than 0.0% by mass, the reduction in the strength of the molded product does not appear remarkably and the probability of cracking in the steps after molding does not increase. For this reason, it is preferable to set it as 0.5-1.5 mass% with respect to the total mass of the metal oxide powder containing an aluminum oxide powder. Further, it is desirable that the metal oxide powder is sufficiently mixed by performing ball milling or bead milling using zirconia balls.

酸化亜鉛粉末、酸化アルミニウム粉末、アクリル酸メタクリル酸共重合体アンモニア中和物およびPVAを水に加え、充分に混合させて得たスラリーを、噴霧し、乾燥させて造粒粉を作製する場合、乾燥温度を130〜200℃にすることが好ましい。乾燥温度を130℃未満にすると、造粒粉の水分量が多くなり、成形体強度が低くなる。一方、乾燥温度が200℃を越えると、造粒粉が硬質となり、成形時に空孔が生じ易くなり、スパッタリングターゲットの密度が向上し難くなる。   When a slurry obtained by adding zinc oxide powder, aluminum oxide powder, acrylic acid / methacrylic acid copolymer ammonia neutralized product and PVA to water and mixing well, and spraying to dry to produce granulated powder, The drying temperature is preferably 130 to 200 ° C. When the drying temperature is less than 130 ° C., the moisture content of the granulated powder increases, and the strength of the molded body decreases. On the other hand, when the drying temperature exceeds 200 ° C., the granulated powder becomes hard, and voids are likely to occur during molding, and the density of the sputtering target is difficult to improve.

平板状の成形体を得るには、例えば、特開2006−193797号に記載されているような耐久性に優れたアメゴムから成る筒状ゴム型と、成形体が食い込み難く、滑りが良いシリコンゴムから成る2枚の板状ゴム型とで構成される成形型を用い、この成形型内に、造粒粉を充填し、冷間静水圧プレスを行なって、上記成形体を得ることができる。   In order to obtain a flat molded body, for example, a cylindrical rubber mold made of candy rubber having excellent durability as described in JP-A-2006-19397, and a silicon rubber that does not easily bite into the molded body and has good sliding properties. The molded body can be obtained by using a molding die composed of two plate-like rubber dies composed of the above, filling the molding die with granulated powder, and performing cold isostatic pressing.

冷間静水圧プレスの成形圧力は、100〜300MPaとすることが好ましい。成形圧力を100MPa未満にすると、成形体密度および成形体強度が低下し、製品歩留りが悪くなる。一方、成形圧力が300MPaを越えても、成形体密度および成形体強度に対する効果はほとんど変化しない。   The forming pressure of the cold isostatic press is preferably 100 to 300 MPa. When the molding pressure is less than 100 MPa, the density of the molded body and the strength of the molded body are lowered, and the product yield is deteriorated. On the other hand, even if the molding pressure exceeds 300 MPa, the effect on the compact density and the compact strength hardly changes.

上記成形体を焼結する際の焼結温度は、酸化亜鉛粉末の粒成長が期待できる900℃以上とすることが好ましい。しかし、焼結温度が1150℃を越えると、空孔が内部に取り残されるため好ましくない。また、焼結時間が15時間を越えると揮発や表面の反応が進むため好ましくないとされていたが、焼結最高温度を1150℃以下に抑えることにより40時間を越える焼結時間を行うことができる。   The sintering temperature at the time of sintering the molded body is preferably 900 ° C. or higher at which grain growth of the zinc oxide powder can be expected. However, if the sintering temperature exceeds 1150 ° C., voids are left inside, which is not preferable. In addition, if the sintering time exceeds 15 hours, volatilization and surface reaction proceed, which is not preferable. However, by suppressing the maximum sintering temperature to 1150 ° C. or less, the sintering time exceeding 40 hours can be performed. it can.

以下、本発明の実施例について具体的に説明する。   Examples of the present invention will be specifically described below.

[実施例1]
平均粒径が1μm以下の酸化亜鉛粉末と、平均粒径が1μm以下の酸化アルミニウム粉末を、酸化アルミニウム粉末の含有量が0.05質量%となるように混合した原料粉末に、水、1質量%のPVAバインダー、0.5質量%のアクリル酸メタクリル酸共重合体アンモニア中和物から成る分散剤を添加し、ビーズミル(アシザワ・ファインテック株式会社製:LMZ型)にて混合してスラリーを調製した。
[Example 1]
A raw material powder obtained by mixing a zinc oxide powder having an average particle diameter of 1 μm or less and an aluminum oxide powder having an average particle diameter of 1 μm or less so that the content of the aluminum oxide powder is 0.05 mass%, water, 1 mass % Of PVA binder, 0.5% by weight of acrylic acid / methacrylic acid copolymer neutralized ammonia, and a slurry is prepared by mixing with a bead mill (manufactured by Ashizawa Finetech Co., Ltd .: LMZ type). Prepared.

得られたスラリーを、スプレードライヤー(大川原化工機株式会社製:ODL−20型)を用い、供給速度140ml/min、熱風温度140℃、熱風量8Nm/minの条件で乾燥造粒して、酸化アルミニウムの含有量が0.05質量%である酸化亜鉛と酸化アルミニウムから成る造粒粉を得た。 The obtained slurry was dried and granulated using a spray dryer (Okawara Kako Co., Ltd .: ODL-20 type) at a supply rate of 140 ml / min, a hot air temperature of 140 ° C., and a hot air amount of 8 Nm 3 / min. A granulated powder composed of zinc oxide and aluminum oxide having an aluminum oxide content of 0.05% by mass was obtained.

次に、上述した筒状ゴム型と2枚の板状ゴム型とで構成される成形型に上記造粒粉を充填し、冷間静水圧プレス(株式会社神戸製鋼製)にて300MPaで成形し、長さ250mm、幅150mm、厚さ10mmの成形体を得た。   Next, the above-mentioned granulated powder is filled in a molding die composed of the above-described cylindrical rubber die and two plate-like rubber dies, and is molded at 300 MPa with a cold isostatic press (manufactured by Kobe Steel Co., Ltd.). Thus, a molded body having a length of 250 mm, a width of 150 mm, and a thickness of 10 mm was obtained.

得られた成形体を、焼結炉(丸祥電器株式会社製)に入れ、大気中にて0.5℃/分の速度で600℃まで昇温し、0.3℃/分の速度で600〜1000℃の温度範囲を昇温した。その後、1000℃にて40時間、焼結した後、室温まで冷却し、長さ217mm、幅130mm、厚み9mmの焼結体を得た。   The obtained molded body is put into a sintering furnace (manufactured by Marusho Denki Co., Ltd.), heated to 600 ° C. at a rate of 0.5 ° C./min in the atmosphere, and at a rate of 0.3 ° C./min. The temperature range of 600-1000 ° C. was raised. Then, after sintering at 1000 degreeC for 40 hours, it cooled to room temperature and obtained the sintered compact of length 217mm, width 130mm, and thickness 9mm.

そして、焼結体の上下面、側面の加工を行い、210mm×125mm×7mmの酸化亜鉛スパッタリングターゲット材を得た。   Then, the upper and lower surfaces and side surfaces of the sintered body were processed to obtain a 210 mm × 125 mm × 7 mm zinc oxide sputtering target material.

更に、長さ、幅をノギスで測定し、厚みをマイクロメーターで測定し、電子天秤で重量を測定して密度計算を行い、相対密度に換算した。   Further, the length and width were measured with calipers, the thickness was measured with a micrometer, the weight was measured with an electronic balance, the density was calculated, and the relative density was converted.

すなわち、実測値から求めた焼結体の密度は5.56g/cm3、計算真密度は5.78g/cm3であり、相対密度は96.2%であった。 That is, the density of the sintered body determined from the actually measured values was 5.56 g / cm 3 , the calculated true density was 5.78 g / cm 3 , and the relative density was 96.2%.

この結果を表1に示す。   The results are shown in Table 1.

[実施例2〜3]
焼結保持温度が1150℃である点を除き実施例1と同様にして(実施例2)、また、焼結保持温度が900℃かつ焼結保持時間が60時間である点を除き実施例1と同様にして(実施例3)、実施例2〜3に係る酸化亜鉛スパッタリングターゲット材を得た。
[Examples 2-3]
Example 1 except that the sintering holding temperature is 1150 ° C. (Example 2), except that the sintering holding temperature is 900 ° C. and the sintering holding time is 60 hours. In the same manner (Example 3), the zinc oxide sputtering target material according to Examples 2-3 was obtained.

更に、実施例1と同様の方法により実施例2〜3に係る酸化亜鉛スパッタリングターゲット材の相対密度を求めた。   Furthermore, the relative density of the zinc oxide sputtering target material according to Examples 2-3 was determined by the same method as in Example 1.

この結果も表1に示す。   The results are also shown in Table 1.

参考例4〜6]
酸化アルミニウムの配合量(含有量)が0質量%である点を除き実施例1〜3と同様にして参考例4〜6に係る酸化亜鉛スパッタリングターゲット材を得た。
[ Reference Examples 4 to 6]
Zinc oxide sputtering target materials according to Reference Examples 4 to 6 were obtained in the same manner as in Examples 1 to 3 except that the blending amount (content) of aluminum oxide was 0% by mass.

更に、実施例1と同様の方法により参考例4〜6に係る酸化亜鉛スパッタリングターゲット材の相対密度を求めた。 Furthermore, the relative density of the zinc oxide sputtering target materials according to Reference Examples 4 to 6 was determined by the same method as in Example 1.

この結果も表1に示す。   The results are also shown in Table 1.

[実施例7〜9]
酸化アルミニウムの配合量(含有量)が0.10質量%である点を除き実施例1〜3と同様にして実施例7〜9に係る酸化亜鉛スパッタリングターゲット材を得た。
[Examples 7 to 9]
Zinc oxide sputtering target materials according to Examples 7 to 9 were obtained in the same manner as in Examples 1 to 3 except that the blending amount (content) of aluminum oxide was 0.10% by mass.

更に、実施例1と同様の方法により実施例7〜9に係る酸化亜鉛スパッタリングターゲット材の相対密度を求めた。   Furthermore, the relative density of the zinc oxide sputtering target material according to Examples 7 to 9 was determined by the same method as in Example 1.

この結果も表1に示す。   The results are also shown in Table 1.

[比較例1〜3]
焼結保持温度が1200℃である点を除き実施例1と同様にして(比較例1)、また、焼結保持温度が1200℃かつ焼結保持時間が20時間である点を除き実施例1と同様にして(比較例2)、更に、焼結保持温度が800℃かつ焼結保持時間が60時間である点を除き実施例1と同様にして(比較例3)、比較例1〜3に係る酸化亜鉛スパッタリングターゲット材を得た。
[Comparative Examples 1-3]
Example 1 except that the sintering holding temperature is 1200 ° C. (Comparative Example 1), except that the sintering holding temperature is 1200 ° C. and the sintering holding time is 20 hours. (Comparative Example 2) and Comparative Example 1 to Comparative Example 1 except that the sintering holding temperature is 800 ° C. and the sintering holding time is 60 hours (Comparative Example 3). The zinc oxide sputtering target material which concerns on this was obtained.

更に、実施例1と同様の方法により比較例1〜3に係る酸化亜鉛スパッタリングターゲット材の相対密度を求めた。   Furthermore, the relative density of the zinc oxide sputtering target materials according to Comparative Examples 1 to 3 was determined by the same method as in Example 1.

この結果も表1に示す。   The results are also shown in Table 1.

[比較例4〜6]
酸化アルミニウムの配合量(含有量)が0質量%で焼結保持温度が1200℃である点を除き実施例1と同様にして(比較例4)、また、酸化アルミニウムの配合量(含有量)が0質量%で焼結保持温度が1200℃かつ焼結保持時間が20時間である点を除き実施例1と同様にして(比較例5)、更に、酸化アルミニウムの配合量(含有量)が0質量%で焼結保持温度が800℃かつ焼結保持時間が60時間である点を除き実施例1と同様にして(比較例6)、比較例4〜6に係る酸化亜鉛スパッタリングターゲット材を得た。
[Comparative Examples 4 to 6]
Similar to Example 1 (Comparative Example 4) except that the blending amount (content) of aluminum oxide is 0% by mass and the sintering holding temperature is 1200 ° C., and the blending amount (content) of aluminum oxide. In the same manner as in Example 1 except that the sintering holding temperature is 1200 ° C. and the sintering holding time is 20 hours (Comparative Example 5). Further, the blending amount (content) of aluminum oxide is A zinc oxide sputtering target material according to Comparative Examples 4 to 6 was prepared in the same manner as in Example 1 (Comparative Example 6) except that the sintering holding temperature was 0 mass%, the sintering holding temperature was 800 ° C., and the sintering holding time was 60 hours. Obtained.

更に、実施例1と同様の方法により比較例4〜6に係る酸化亜鉛スパッタリングターゲット材の相対密度を求めた。   Furthermore, the relative density of the zinc oxide sputtering target materials according to Comparative Examples 4 to 6 was determined by the same method as in Example 1.

この結果も表1に示す。   The results are also shown in Table 1.

[比較例7〜9]
酸化アルミニウムの配合量(含有量)が0.10質量%で焼結保持温度が1200℃である点を除き実施例1と同様にして(比較例7)、酸化アルミニウムの配合量(含有量)が0.10質量%で焼結保持温度が1200℃かつ焼結保持時間が20時間である点を除き実施例1と同様にして(比較例8)、酸化アルミニウムの配合量(含有量)が0.10質量%で焼結保持温度が800℃かつ焼結保持時間が60時間である点を除き実施例1と同様にして(比較例9)、比較例7〜9に係る酸化亜鉛スパッタリングターゲット材を得た。
[Comparative Examples 7 to 9]
The amount (content) of aluminum oxide was the same as that of Example 1 (Comparative Example 7) except that the amount (content) of aluminum oxide was 0.10% by mass and the sintering retention temperature was 1200 ° C. Is the same as Example 1 (Comparative Example 8) except that the sintering holding temperature is 1200 ° C. and the sintering holding time is 20 hours, and the blending amount (content) of aluminum oxide is Zinc oxide sputtering target according to Comparative Examples 7 to 9 in the same manner as Example 1 (Comparative Example 9) except that the sintering holding temperature is 0.10% by mass, the sintering holding temperature is 800 ° C., and the sintering holding time is 60 hours. The material was obtained.

更に、実施例1と同様の方法により比較例7〜9に係る酸化亜鉛スパッタリングターゲット材の相対密度を求めた。   Furthermore, the relative density of the zinc oxide sputtering target materials according to Comparative Examples 7 to 9 was determined by the same method as in Example 1.

この結果も表1に示す。   The results are also shown in Table 1.

[比較例10]
焼結保持時間が30時間である点を除き実施例8と同様にして、比較例10に係る酸化亜鉛スパッタリングターゲット材を得た。
[Comparative Example 10]
A zinc oxide sputtering target material according to Comparative Example 10 was obtained in the same manner as in Example 8 except that the sintering holding time was 30 hours.

更に、実施例1と同様の方法により比較例10に係る酸化亜鉛スパッタリングターゲット材の相対密度を求めた。   Furthermore, the relative density of the zinc oxide sputtering target material according to Comparative Example 10 was determined by the same method as in Example 1.

この結果も表1に示す。   The results are also shown in Table 1.

Figure 0005892016
Figure 0005892016

「確 認」
(1)酸化亜鉛を主成分とし、0.10質量%以下の酸化アルミニウムを含有する酸化亜鉛スパッタリングターゲット材を製造する際、第三工程の焼結温度(焼結保持温度)が900〜1150℃、焼成時間(保持時間)が40〜60時間の常圧焼結条件を満たすことにより、相対密度95%以上の酸化亜鉛スパッタリングターゲット材を製造できることが実施例1〜3、参考例4〜6、および、実施例7〜9により確認される。
"Confirmation"
(1) When manufacturing a zinc oxide sputtering target material containing zinc oxide as a main component and containing 0.10% by mass or less of aluminum oxide, the sintering temperature (sintering holding temperature) in the third step is 900 to 1150 ° C. Examples 1-3 and Reference Examples 4-6 that a zinc oxide sputtering target material having a relative density of 95% or more can be produced by satisfying the atmospheric pressure sintering condition with a firing time (holding time) of 40-60 hours . And it is confirmed by Examples 7-9 .

(2)他方、上記酸化亜鉛スパッタリングターゲット材を製造する際、第三工程の焼結温度(焼結保持温度)が800℃以下または1200℃以上の場合(すなわち、900〜1150℃の条件を満たさない場合)は、焼成時間(保持時間)が40〜60時間の常圧焼結条件を満たしたとしても、相対密度95%以上の酸化亜鉛スパッタリングターゲット材が得られないことが比較例1〜9により確認される。 (2) On the other hand, when manufacturing the said zinc oxide sputtering target material, when the sintering temperature (sintering holding temperature) of a 3rd process is 800 degrees C or less or 1200 degrees C or more (namely, the conditions of 900-1150 degreeC are satisfy | filled. Comparative Example 1-9 that a zinc oxide sputtering target material having a relative density of 95% or more cannot be obtained even when the sintering time (holding time) satisfies the atmospheric pressure sintering conditions of 40 to 60 hours. Is confirmed.

(3)更に、上記酸化亜鉛スパッタリングターゲット材を製造する際、第三工程における焼結温度(焼結保持温度)の条件(900〜1150℃)を満たしたとしても、焼成時間(保持時間)の条件(40〜60時間)を満たさない場合には、相対密度95%以上の酸化亜鉛スパッタリングターゲット材が得られないことが比較例10により確認される。 (3) Furthermore, when manufacturing the said zinc oxide sputtering target material, even if the conditions (900-1150 degreeC) of the sintering temperature (sintering holding temperature) in a 3rd process are satisfy | filled, baking time (holding time) When the conditions (40 to 60 hours) are not satisfied, it is confirmed by Comparative Example 10 that a zinc oxide sputtering target material having a relative density of 95% or more cannot be obtained.

本発明に係る酸化亜鉛スパッタリングターゲットによれば、ドーパントである酸化アルミニウムの添加量が0.10質量%以下と少量にも拘らず相対密度が95%以上の高い値になっているため、CIGS系太陽電池におけるバッファ層の形成に適用できる産業上の利用可能性を有している。   According to the zinc oxide sputtering target according to the present invention, since the additive amount of aluminum oxide as a dopant is 0.10% by mass or less and the relative density is a high value of 95% or more, the CIGS type is high. It has industrial applicability applicable to the formation of buffer layers in solar cells.

Claims (2)

酸化亜鉛を主成分とし、0.05質量%以上0.10質量%以下の酸化アルミニウムを含有する酸化物焼結体で構成され、かつ、酸化物焼結体の相対密度が95%以上であることを特徴とする酸化亜鉛スパッタリングターゲット。 It is composed of an oxide sintered body containing zinc oxide as a main component and containing 0.05% by mass or more and 0.10% by mass or less of aluminum oxide, and the relative density of the oxide sintered body is 95% or more. A zinc oxide sputtering target characterized by that. 請求項1に記載の酸化亜鉛スパッタリングターゲットを製造する方法において、
酸化亜鉛粉末と酸化アルミニウム粉末を、純水、有機バインダー、分散剤と混合してスラリーを調製し、かつ、得られたスラリーを、乾燥、造粒する第一工程と、
第一工程で得られた造粒粉を、加圧成形して成形体を得る第二工程と、
第二工程で得られた成形体を焼成し、酸化物焼結体を得る第三工程と、
を備え、
上記第三工程における焼結温度を900〜1150℃の範囲とし、40〜60時間焼成することを特徴とする酸化亜鉛スパッタリングターゲットの製造方法。
In the method of manufacturing the zinc oxide sputtering target according to claim 1 ,
A zinc oxide powder and an aluminum oxide powder are mixed with pure water, an organic binder, a dispersant to prepare a slurry, and the obtained slurry is dried and granulated,
A second step in which the granulated powder obtained in the first step is pressed to obtain a molded body;
A third step of firing the molded body obtained in the second step to obtain an oxide sintered body,
With
A method for producing a zinc oxide sputtering target, wherein the sintering temperature in the third step is in the range of 900 to 1150 ° C., and firing is performed for 40 to 60 hours.
JP2012205753A 2012-09-19 2012-09-19 Zinc oxide sputtering target and manufacturing method thereof Expired - Fee Related JP5892016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012205753A JP5892016B2 (en) 2012-09-19 2012-09-19 Zinc oxide sputtering target and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012205753A JP5892016B2 (en) 2012-09-19 2012-09-19 Zinc oxide sputtering target and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014058731A JP2014058731A (en) 2014-04-03
JP5892016B2 true JP5892016B2 (en) 2016-03-23

Family

ID=50615447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012205753A Expired - Fee Related JP5892016B2 (en) 2012-09-19 2012-09-19 Zinc oxide sputtering target and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5892016B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6024545B2 (en) * 2013-03-19 2016-11-16 住友金属鉱山株式会社 Zinc oxide-based sintered body, method for producing the same, and sputtering target
CN113354407A (en) * 2021-07-14 2021-09-07 郑州大学 Variable-temperature fast-sintering process of aluminum-doped zinc oxide target material
CN114230332A (en) * 2022-01-15 2022-03-25 郑州大学 AZO target and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132380A (en) * 1985-12-05 1987-06-15 Toshiba Corp N-type thermoelectric element
JP5348394B2 (en) * 2009-03-13 2013-11-20 三菱マテリアル株式会社 (Zn, Al) O-based transparent electrode layer for solar cell and ZnO-Al2O3-based sputtering target used for forming the same
JP5418105B2 (en) * 2009-09-18 2014-02-19 東ソー株式会社 Composite oxide sintered body, oxide transparent conductive film, and manufacturing method thereof
JP5549918B2 (en) * 2009-11-25 2014-07-16 三菱マテリアル株式会社 Zn sputtering target for DC sputtering and manufacturing method thereof
JP5754093B2 (en) * 2010-07-16 2015-07-22 東ソー株式会社 Zinc oxide sintered body, manufacturing method thereof, sputtering target, and manufacturing method of transparent film
JP2012092003A (en) * 2010-09-29 2012-05-17 Tosoh Corp Sintered composite oxide, manufacturing method therefor and transparent conductive oxide film obtained using the same
JP5887819B2 (en) * 2010-12-06 2016-03-16 東ソー株式会社 Zinc oxide sintered body, sputtering target comprising the same, and zinc oxide thin film
KR20140004147A (en) * 2011-02-10 2014-01-10 미쓰비시 마테리알 가부시키가이샤 Sputtering target for forming transparent film for solar cells, and process for production thereof
JP5888599B2 (en) * 2012-03-13 2016-03-22 三菱マテリアル株式会社 Sputtering target and high resistance transparent film manufacturing method

Also Published As

Publication number Publication date
JP2014058731A (en) 2014-04-03

Similar Documents

Publication Publication Date Title
CN103717779B (en) Zn-Sn-O system oxidate sintered body and manufacture method thereof
JP5376117B2 (en) ZnO sputtering target and manufacturing method thereof
JP3864425B2 (en) Aluminum-doped zinc oxide sintered body, method for producing the same, and use thereof
JP5892016B2 (en) Zinc oxide sputtering target and manufacturing method thereof
JP5418751B2 (en) ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film
JP5888599B2 (en) Sputtering target and high resistance transparent film manufacturing method
JP5472655B2 (en) Vapor deposition tablet and manufacturing method thereof
JP6024545B2 (en) Zinc oxide-based sintered body, method for producing the same, and sputtering target
KR100960222B1 (en) Zinc oxide based sputtering target, method for mamufacturing the same and zinc oxide based thin film manufactured by using the same
JP4508079B2 (en) Manufacturing method of sputtering target
JP5499453B2 (en) ZnO vapor deposition material, method for producing the same, and method for forming the ZnO film
JP6677058B2 (en) Sn-Zn-O-based oxide sintered body and method for producing the same
JP2008214169A (en) ITiO SINTERED COMPACT FOR VACUUM VAPOR DEPOSITION AND ITS PRODUCTION METHOD
JP5979082B2 (en) Vapor deposition tablet and manufacturing method thereof
JP2009096713A (en) Zno vapor deposition material, its production method, and zno film and the like formed therefrom
JP2013533378A (en) Transparent conductive film, target for transparent conductive film, and method for producing target for transparent conductive film
JP5206983B2 (en) ITO sputtering target and manufacturing method thereof
JP5263063B2 (en) Method for producing indium oxide-based or zinc oxide-based sintered tablet for vacuum deposition
JP5018552B2 (en) ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby
JP5613926B2 (en) Sputtering target for transparent conductive film and method for producing the same
WO2021019854A1 (en) Method for manufacturing vacuum deposition tablet, oxide transparent conductive film, and tin-oxide-based sintered body
WO2017086016A1 (en) SINTERED Sn-Zn-O OXIDE AND PROCESS FOR PRODUCING SAME
CN117049870A (en) Indium zinc oxide evaporation target material and preparation method thereof
JP3922178B2 (en) ITO target and manufacturing method thereof
JP4483470B2 (en) Method for producing sputtering target containing indium oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160208

R150 Certificate of patent or registration of utility model

Ref document number: 5892016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees