JPS62132380A - N-type thermoelectric element - Google Patents

N-type thermoelectric element

Info

Publication number
JPS62132380A
JPS62132380A JP60272419A JP27241985A JPS62132380A JP S62132380 A JPS62132380 A JP S62132380A JP 60272419 A JP60272419 A JP 60272419A JP 27241985 A JP27241985 A JP 27241985A JP S62132380 A JPS62132380 A JP S62132380A
Authority
JP
Japan
Prior art keywords
aluminum oxide
zinc oxide
content
thermoelectric
output power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60272419A
Other languages
Japanese (ja)
Inventor
Keizo Shimamura
慶三 島村
Hiromitsu Takeda
博光 竹田
Kagetaka Amano
天野 景隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60272419A priority Critical patent/JPS62132380A/en
Publication of JPS62132380A publication Critical patent/JPS62132380A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To form a N-type thermoelectic element having excellent thermal resistance inexpensively by adding specific amount of aluminum oxide to zinc oxide. CONSTITUTION:Aluminum oxide is added to zinc oxide powder, the mixture is sufficiently mixed, pressure molded, and sintered in vacuum or reduced atmosphere to form a sintered material. The aluminum oxide content for the zinc oxide must be 0.02-2.0mol%. If the content is 0.02mol% or less, its specific resistance becomes excessively high so that the highest output power is remarkably reduced not to be practical. If the content is 2.0mol% or more, it specific resistance does not decrease as much as thermoelectric capacity decreases so that the highest output power is remarkably reduced. The thus obtained sintered material exhibits stable performance at 1,000 deg.C in oxidative atmosphere, and can be advantageously used for waste heat utilizing generator by combining a plurality parts consisting the materials and suitable P-type thermoelectric elements.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はきわめて安価な原料とプロセスで得られる耐熱
性に優れたN型熱電素子に関するものであって、廃熱利
用発電、地熱発電、太陽熱発電等に利用される。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an N-type thermoelectric element with excellent heat resistance that can be obtained using extremely inexpensive raw materials and processes, and is useful for power generation using waste heat, geothermal power generation, and solar thermal power generation. It is used for etc.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来から知られている熱電素子にはDi2Te3゜Sb
、Te、、 PbTa、 GeTeなどの金属間化合物
を主体とするものが殆どで、これらはいずれも希少元素
を多用し、高い純度が要求され、製造プロセスを複雑で
あり、きわめてコストが高い。さらにそれらは高温では
不安定になりやすく、300℃以下で使用されるのが通
例となっており、発電用としてよりも電子冷却用として
用いられてきた。
Conventionally known thermoelectric elements include Di2Te3°Sb.
Most of them are mainly composed of intermetallic compounds such as , Te, , PbTa, and GeTe, which all use rare elements frequently, require high purity, have complicated manufacturing processes, and are extremely expensive. Furthermore, they tend to become unstable at high temperatures, and are generally used at temperatures below 300° C., and have been used for electronic cooling rather than for power generation.

熱電素子が廃熱利用発電等に実際に使用されるためには
、500℃付近までの耐熱性に加えて、低コストである
ことが重要な条件である。
In order for a thermoelectric element to be actually used for power generation using waste heat, etc., in addition to being heat resistant up to around 500° C., it is important that it be low cost.

〔発明の目的〕[Purpose of the invention]

本発明は上記問題点を解決するためになされたもので、
安価で耐熱性にすぐれたN型熱電素子を提供するもので
ある。
The present invention has been made to solve the above problems,
An object of the present invention is to provide an N-type thermoelectric element that is inexpensive and has excellent heat resistance.

〔発明の概要〕[Summary of the invention]

一般に熱電材料の特性は性能指数2なる次式で表わされ
る。
Generally, the characteristics of thermoelectric materials are expressed by the following equation with a figure of merit of 2.

ρに ここにαは熱電能(ゼーベック係数)、ρは比抵抗、に
は熱伝導率である。
where ρ is the thermoelectric power (Seebeck coefficient), ρ is the specific resistance, and is the thermal conductivity.

また熱電素子の発電における実用特性としては、開放端
電圧V、内部抵抗R1最大出力電力Pmaxが重要であ
り、それぞれ ■=α・ΔT ・・・・・・・・・・■悲 R=ρ ・−・ ・ ・ ・ ・ ・ ・ ・ ・ ・
0Pmax=□・−・・・・・・―e−〈;1() R と表わされる。ここにΔTは高温側温度Thと低温側温
度Tcとの温度差(Δ丁= Th−Tc)、Qは素子の
長さ、Sは素子の断面積である。これらの式から。
In addition, as for the practical characteristics of thermoelectric elements in power generation, the open circuit voltage V and internal resistance R1 maximum output power Pmax are important, and respectively ■=α・ΔT ・・・・・・・・・・・・■R=ρ・−・ ・ ・ ・ ・ ・ ・ ・ ・ ・
It is expressed as 0Pmax=□・−・・・e−〈;1() R . Here, ΔT is the temperature difference between the high temperature Th and the low temperature Tc (ΔT=Th−Tc), Q is the length of the element, and S is the cross-sectional area of the element. From these formulas.

大きな電力をとり出すためには、開放端電圧を大きくし
、内部抵抗を小さくすることが重要であることがわかる
。材料物性としては熱電能が大きく比抵抗が小さいこと
が重要であることがわかる。
It can be seen that in order to extract a large amount of power, it is important to increase the open circuit voltage and reduce the internal resistance. It can be seen that the important physical properties of the material are high thermoelectric capacity and low specific resistance.

酸化物は一般に耐熱性に優れ高い熱雷能をもつことが知
られているが、それらの比抵抗は高く、絶縁体として使
用されるものが多く、また導電性酸化物は熱電能が低く
、いずれも熱電素子として使用することはできなかった
Oxides are generally known to have excellent heat resistance and high thermal lightning ability, but their specific resistance is high and many are used as insulators, and conductive oxides have low thermoelectric power. None of them could be used as thermoelectric elements.

発明者らは酸化物の高い熱電能を保持しつつ比抵抗を著
しく低減させるべく、種々の酸化物に対し種々の添加物
を検討した結果、酸化亜鉛に酸化アルミニウムを添加す
るときわめて優れたN型熱電素子となることを見いだし
た。
The inventors investigated various additives for various oxides in order to significantly reduce the resistivity while maintaining the high thermoelectric power of the oxide. As a result, the addition of aluminum oxide to zinc oxide resulted in an extremely excellent N-type It was discovered that it can be used as a thermoelectric element.

本発明における酸化亜鉛中の酸化アルミニウム含有量は
0.02〜2.0モル%であることを必要とし、酸化ア
ルミニウム含有量が0.02モル%以下では比抵抗が高
すぎ最大出力電力が著しく小さくなり実用に供し得ない
。また2、0モルぶ以上では熱電能が低下する割に比抵
抗は低下せずやはり最大出力電力が著しく小さくなって
しまう。
The aluminum oxide content in zinc oxide in the present invention needs to be 0.02 to 2.0 mol%, and if the aluminum oxide content is less than 0.02 mol%, the specific resistance is too high and the maximum output power is significantly reduced. It becomes small and cannot be put to practical use. Further, if the temperature exceeds 2.0 moles, although the thermoelectric power decreases, the specific resistance does not decrease, and the maximum output power becomes extremely small.

本発明では素子を形成するのに粉末焼結法を用いるのが
適当である。酸化亜粉末に酸化アルミニウム粉末を加え
、充分混合したのち加圧成形し、真空中または還元性雰
囲気中で焼成して焼結体を得るわけであるが、焼成温度
は1000〜1350℃の範囲が好ましい、 1000
℃以下では比抵抗が大きくなり最大出力電力が小さくな
ってしまう。1350℃以上では酸化亜鉛が昇華しはじ
める。焼成時間は30分以上であれば充分である。この
ようにして得られた焼結体は酸化性雰囲気中1000℃
においても安定した性能を示し、すぐれた電力特性をも
つN型熱電素子である。
In the present invention, it is appropriate to use a powder sintering method to form the device. Aluminum oxide powder is added to suboxide powder, mixed thoroughly, and then pressure molded and fired in a vacuum or in a reducing atmosphere to obtain a sintered body.The firing temperature ranges from 1000 to 1350°C. preferred, 1000
Below ℃, the specific resistance increases and the maximum output power decreases. At temperatures above 1350°C, zinc oxide begins to sublimate. A firing time of 30 minutes or more is sufficient. The sintered body thus obtained was heated to 1000°C in an oxidizing atmosphere.
It is an N-type thermoelectric element that exhibits stable performance even in 2008, and has excellent power characteristics.

本発明は熱電素子は、原料として単価のきわめて安い普
通純度の酸化亜鉛を主体とするため、希少元素を多用す
る従来の素子にくらべて安価であり、さらに粉末焼成プ
ロセスで容易に製造できるので、著しくコストを下げる
ことが可能である。
The thermoelectric element of the present invention is mainly made of ordinary purity zinc oxide, which is extremely cheap as a raw material, so it is cheaper than conventional elements that use many rare elements, and it can be easily manufactured by a powder firing process. It is possible to significantly reduce costs.

〔発明の実施例〕[Embodiments of the invention]

次に本発明を実施例によって具体的に説明する。 Next, the present invention will be specifically explained using examples.

(実施例1) 酸化亜鉛粉末に酸化アルミニウム粉末を0.1モル%加
えボットミルで1時間混合したのちl ton/dで加
圧成形し、この圧粉体を10”” Torrの真空中1
260℃にて30分焼成して焼結体を得た。この焼結体
の密度は5.38g/ccであった。この結焼体を断面
積1d、長さ1mの素子としたのち高温側を450℃、
低温側を50℃とし400℃の温度差を与え、開放端電
圧Vと内部抵抗Rを測定した。開放端電圧は126.8
mV、内部抵抗は3.7mΩ、最大出力電力は1.09
Wとなった。熱電能は317μV/K、比抵抗は37m
ΩGと計算される。
(Example 1) 0.1 mol% of aluminum oxide powder was added to zinc oxide powder, mixed for 1 hour in a bot mill, and then pressure-molded at 1 ton/d.
A sintered body was obtained by firing at 260°C for 30 minutes. The density of this sintered body was 5.38 g/cc. This sintered body was made into an element with a cross-sectional area of 1 d and a length of 1 m, and the high temperature side was heated to 450°C.
The open circuit voltage V and internal resistance R were measured with a temperature difference of 400°C with the low temperature side set at 50°C. Open end voltage is 126.8
mV, internal resistance is 3.7mΩ, maximum output power is 1.09
It became W. Thermoelectric power is 317μV/K, specific resistance is 37m
It is calculated as ΩG.

また高温側を750℃に、低温側を50℃にして。Also, set the high temperature side to 750℃ and the low temperature side to 50℃.

700℃の温度差を与えたところ開放端電圧は225.
4mV、内部抵抗は3.8mΩ、最大出力電力は3.3
4Wが得られた。熱電能は322μV/K、比抵抗は3
.8mΩ口となる。
When a temperature difference of 700°C was applied, the open circuit voltage was 225.
4mV, internal resistance is 3.8mΩ, maximum output power is 3.3
4W was obtained. Thermoelectric power is 322μV/K, specific resistance is 3
.. It becomes 8mΩ mouth.

この素子を大気中850℃において1週間加熱したのち
同様の測定を行なったが、熱電特性の変化は認められず
耐熱性に優れていることがあきらかとなった。
Similar measurements were performed after this element was heated in the atmosphere at 850°C for one week, but no change in thermoelectric properties was observed, indicating that it had excellent heat resistance.

(実施例2) 酸化亜鉛粉末に酸化アルミニウム粉末を0.8モル%加
え、乳鉢で30分混合し、0.5ton/−で加圧成形
して得た圧粉体をto−3Torrの真空中1100℃
にて1時間焼成して焼結体を得た。この焼結体を断面積
1d、長さ1+m+の素子としたのち高温側を450℃
、低温側を50℃とし400℃の温度差を与えたところ
開放端電圧99.2a+V、内部抵抗2.6+++Ω、
最大出力電力0.95Wが得られた。熱電能は248μ
V/K、比抵抗は26mΩ■であった。
(Example 2) 0.8 mol% of aluminum oxide powder was added to zinc oxide powder, mixed in a mortar for 30 minutes, and the resulting green compact was molded under pressure at 0.5 ton/- in a vacuum of to-3 Torr. 1100℃
A sintered body was obtained by firing for 1 hour. This sintered body was made into an element with a cross-sectional area of 1 d and a length of 1+ m+, and the high temperature side was heated to 450°C.
, when the low temperature side is set to 50℃ and a temperature difference of 400℃ is applied, the open circuit voltage is 99.2a+V, the internal resistance is 2.6+++Ω,
A maximum output power of 0.95W was obtained. Thermoelectric power is 248μ
V/K and specific resistance were 26 mΩ■.

(比較例1) 酸化亜鉛粉末に酸化アルミニウムを0.01モル石加え
、ポットミルで1時間混合し、1 ton/cJで加圧
成形したのち10−’Torrの真空中1200℃にて
1時間焼成した。得られた焼結体を断面filaJ、長
さ1mの素子としたのち高温側を450℃、低温側を5
0℃として400℃の温度差を与えたところ、開放端電
圧168.4mV、内部抵抗138mΩ、最大出力電力
0.0511が得られた。熱電能は421μV/にと高
いが。
(Comparative Example 1) Add 0.01 mole of aluminum oxide to zinc oxide powder, mix in a pot mill for 1 hour, pressurize at 1 ton/cJ, and then sinter at 1200°C in a vacuum of 10-' Torr for 1 hour. did. The obtained sintered body was made into an element with a cross section of fila J and a length of 1 m, and then heated to 450°C on the high temperature side and 5°C on the low temperature side.
When a temperature difference of 400° C. was applied, assuming that the temperature was 0° C., an open circuit voltage of 168.4 mV, an internal resistance of 138 mΩ, and a maximum output power of 0.0511 were obtained. The thermoelectric power is as high as 421μV/.

比抵抗が1,38Ωlと大きなっており、とり出せる電
力が著しく小さくなっている。
It has a large specific resistance of 1.38 Ωl, and the power that can be taken out is significantly small.

〔発明の効果〕〔Effect of the invention〕

以上詳述したとおり本発明のN型熱電素子は原料、製造
プロセスともにきわめて安価であり、耐熱性にも優れて
いるため適岩なP型熱電素子と対にし、複数個組合せる
ことにより、とくに廃熱利用発電などに適用すると安価
なエネルギーを供給することが可能となり、工業的価値
はきbめで大きい。
As detailed above, the N-type thermoelectric element of the present invention is extremely inexpensive in terms of raw materials and manufacturing process, and has excellent heat resistance. When applied to power generation using waste heat, it becomes possible to supply inexpensive energy, and the industrial value is significant.

代理人 弁理士 則 近 憲 佑 同    竹 花 喜久男Agent: Patent Attorney Noriyuki Chika Same Bamboo Flower Kikuo

Claims (1)

【特許請求の範囲】[Claims] 酸化亜塩(ZnO)に対し、酸化アルミニウム(Al_
2O_3)を0.02〜2.0モル%含有してなるN型
熱電素子。
Aluminum oxide (Al_
An N-type thermoelectric element containing 0.02 to 2.0 mol% of 2O_3).
JP60272419A 1985-12-05 1985-12-05 N-type thermoelectric element Pending JPS62132380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60272419A JPS62132380A (en) 1985-12-05 1985-12-05 N-type thermoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60272419A JPS62132380A (en) 1985-12-05 1985-12-05 N-type thermoelectric element

Publications (1)

Publication Number Publication Date
JPS62132380A true JPS62132380A (en) 1987-06-15

Family

ID=17513646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60272419A Pending JPS62132380A (en) 1985-12-05 1985-12-05 N-type thermoelectric element

Country Status (1)

Country Link
JP (1) JPS62132380A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010079841A1 (en) * 2009-01-06 2010-07-15 Toto株式会社 Thermoelectric conversion material and thermoelectric conversion element
US8454860B2 (en) 2008-06-19 2013-06-04 Japan Science And Technology Agency Aluminum-containing zinc oxide-based n-type thermoelectric conversion material
JP2014058731A (en) * 2012-09-19 2014-04-03 Sumitomo Metal Mining Co Ltd Zinc oxide sputtering target, and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825195A (en) * 1971-08-06 1973-04-02
JPS5519896A (en) * 1978-07-21 1980-02-12 Stout Glenn M Capsule filled hall effect device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825195A (en) * 1971-08-06 1973-04-02
JPS5519896A (en) * 1978-07-21 1980-02-12 Stout Glenn M Capsule filled hall effect device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8454860B2 (en) 2008-06-19 2013-06-04 Japan Science And Technology Agency Aluminum-containing zinc oxide-based n-type thermoelectric conversion material
WO2010079841A1 (en) * 2009-01-06 2010-07-15 Toto株式会社 Thermoelectric conversion material and thermoelectric conversion element
US9079781B2 (en) 2009-01-06 2015-07-14 Toto Ltd. Thermoelectric conversion material and thermoelectric conversion element
JP2014058731A (en) * 2012-09-19 2014-04-03 Sumitomo Metal Mining Co Ltd Zinc oxide sputtering target, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
CN102964119B (en) Low-temperature-sintered BiFeO3-based high-performance negative-temperature-coefficient thermosensitive ceramic material and preparation method thereof
JPS62132380A (en) N-type thermoelectric element
JP3565503B2 (en) Oxide thermoelectric conversion material
CN110423110B (en) Ultrahigh nonlinear ZnO-Bi2O3Base pressure sensitive ceramic and preparation method thereof
Parkash et al. Preparation and characterization of lanthanum lead cobalt titanium oxide, La1− xPbxCo1− xTixO3 (0< x< 1)
JPS62179781A (en) N-type thermoelectric element
JPS62132379A (en) P-type thermoelectric element
JPH08186293A (en) Material for thermal power generation
JPS63115388A (en) N-type thermoelement
JPH06252451A (en) Thermoelectric material of doped semiconductor base and thermoelectric device or thermoelectric element couple
JP2002368292A (en) Thermoelectric conversion module for high temperature
JP3051922B1 (en) Oxide members for thermoelectric conversion elements
JPH0196055A (en) Superconductive ceramic composition
US3506596A (en) Semiconducting ceramic compositions with positive temperature coefficient of resistance
JP4338956B2 (en) Oxide sintered body, n-type thermoelectric conversion material, and thermoelectric conversion element using the same
JP2001127350A (en) Thermoelectric conversion material and photoelectric conversion element
JP2000012914A (en) Thermoelectric conversion material and thermoelectric conversion element
JPS62296401A (en) Barium titanate system semiconductor and manufacture of the same
Borisova et al. Thermoelectric Properties of Lead Telluride With Bismuth Impurities
JP2001274465A (en) Thermoelectric conversion semiconductor material and manufacturing method thereof
JPH03215354A (en) Barium titanate-based semiconductor ceramic composition
JPH0365559A (en) Production of barium titanate porcelain semiconductor
JP2911959B2 (en) Lead titanate-based semiconductor porcelain
JPH05218511A (en) Thermoelectric semiconductor element
JPS6018087B2 (en) dielectric porcelain composition