JP2000012914A - Thermoelectric conversion material and thermoelectric conversion element - Google Patents

Thermoelectric conversion material and thermoelectric conversion element

Info

Publication number
JP2000012914A
JP2000012914A JP10191051A JP19105198A JP2000012914A JP 2000012914 A JP2000012914 A JP 2000012914A JP 10191051 A JP10191051 A JP 10191051A JP 19105198 A JP19105198 A JP 19105198A JP 2000012914 A JP2000012914 A JP 2000012914A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
cuo
doped
composite oxide
conversion material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10191051A
Other languages
Japanese (ja)
Inventor
Kenjiro Fujita
顕二郎 藤田
Kazuo Nakamura
和郎 中村
Hiroshi Kikuchi
啓 菊地
Hisataka Yakabe
久孝 矢加部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP10191051A priority Critical patent/JP2000012914A/en
Publication of JP2000012914A publication Critical patent/JP2000012914A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric conversion material and a thermoelectric conversion element, having improved characteristics by doping a compound oxide represented by a specific element composition formula with respect to Zr. SOLUTION: This thermoelectric conversion material is one kind of compound oxide and it has a composition formula of Nd2CuO4, and furthermore it is a thermoelectric conversion material doped with Zr and its general formula is (Nd1-xMx)2CuO4 (M=Zr, 0<x<=1). The compound oxide doped with Zr can be produced in the same manner as those for various kinds of compound oxide. Namely, it can be obtained by mixing element sources necessary for the compound oxide doped with the element and baking the mixture. The Seebeck factor of a sample doped with Zr is about -160 μV/K at around a doping amount of 5% (x=0.05) and although it becomes slightly higher at the doping amount of 10% (x=0.10) than that of (Nd1-xMx)2CuO4 (x=0), an improvement over the basic composition of Nd2CuO4 is made.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱電変換材料及び
熱電変換素子に関し、より具体的には元素組成式Nd2
CuO4で表わされる複合酸化物に対してZr又はPr
をドープすることによりその特性を改善してなる熱電変
換材料及び熱電変換素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric conversion material and a thermoelectric conversion element, and more specifically, to an element composition formula Nd 2.
Zr or Pr with respect to the composite oxide represented by CuO 4
TECHNICAL FIELD The present invention relates to a thermoelectric conversion material and a thermoelectric conversion element whose characteristics are improved by doping.

【0002】[0002]

【従来の技術】熱電発電(熱電気発電)は、ゼーベック
効果すなわち相異なる二種の金属やp型半導体とn型半
導体等の相異なる熱電変換材料を熱的に並列に置き、電
気的に直列に接続して接合部間に温度差を与えると両端
に熱起電力が発生する熱電効果を利用して熱エネルギー
を直接電力に変換する技術であり、この技術は僻地用電
源、宇宙用電源、軍事用電源等として一部で実用化され
ている。
2. Description of the Related Art Thermoelectric power generation (thermoelectric power generation) is based on the Seebeck effect, that is, two different metals or different thermoelectric conversion materials such as a p-type semiconductor and an n-type semiconductor are thermally placed in parallel and electrically connected in series. Is a technology that directly converts heat energy into electric power using the thermoelectric effect that generates a thermoelectromotive force at both ends when a temperature difference is applied between the junctions, and this technology is used for power supplies for remote areas, power supplies for space, It has been put to practical use as a military power supply.

【0003】図1は、その熱電変換素子の一態様を原理
的に説明する模式図であり、熱電変換材料としてn型半
導体とp型半導体とを組み合わせたものである。図1
中、1はp型半導体、2はn型半導体、3は高温側接合
部、4は低温側接合部である。Qは高温熱源、Thは高
温側温度、Tcは低温側温度を示し、またSは絶縁空間
である。図示のとおり高温側接合部には高温側電極5を
共通に設け、低温側接合部には低温側電極6、7が別個
に設けられている。この態様の熱電変換素子において、
高温側接合部3と低温側接合部4との間に温度差ΔT=
Th−Tcを与えると、両電極間(5と6及び7との
間)に電圧が発生する。それ故低温側の両電極6と7と
の間に負荷(R)を接続すると電流(I)が流れ電力
(W)として取り出すことができる。
[0003] FIG. 1 is a schematic diagram for explaining in principle one embodiment of the thermoelectric conversion element, in which an n-type semiconductor and a p-type semiconductor are combined as a thermoelectric conversion material. FIG.
Among them, 1 is a p-type semiconductor, 2 is an n-type semiconductor, 3 is a high temperature side junction, and 4 is a low temperature side junction. Q indicates a high-temperature heat source, Th indicates a high-temperature side temperature, Tc indicates a low-temperature side temperature, and S indicates an insulating space. As shown in the drawing, the high-temperature side electrode 5 is commonly provided at the high-temperature side joint, and the low-temperature side electrodes 6 and 7 are separately provided at the low-temperature side joint. In the thermoelectric conversion element of this aspect,
The temperature difference ΔT between the high-temperature side junction 3 and the low-temperature side junction 4
When Th-Tc is applied, a voltage is generated between both electrodes (between 5 and 6 and 7). Therefore, when a load (R) is connected between both electrodes 6 and 7 on the low temperature side, a current (I) flows and can be taken out as electric power (W).

【0004】ところで、上記のような熱電変換素子に用
いられる材料自体については、これまでPbTe系、B
2Te3系、CoSb3系、SiーGe系、FeSi2
など多くの報告がある。最近、複合酸化物系の熱電変換
素子材料についても研究、検討されつつあるが、その一
つとして、Nd2-XCeXCuO4(x=0〜0.1)焼結
体についての報告がある〔安川外1名「粉体および粉末
冶金」第44巻第1号(1997年1月)50〜53
頁〕。
[0004] By the way, the materials themselves used for the above-mentioned thermoelectric conversion elements have been PbTe-based, B-
There are many reports such as i 2 Te 3 system, CoSb 3 system, Si—Ge system, and FeSi 2 system. Recently, research and studies have been made on composite oxide-based thermoelectric conversion element materials. One of them is a report on a sintered body of Nd 2 -x Ce x CuO 4 (x = 0 to 0.1). Yasukawa Gaito (1) "Powder and Powder Metallurgy," Vol. 44, No. 1, January 1997, 50-53
page〕.

【0005】Nd2CuO4系材料は銅系酸化物高温超伝
導体の一種として知られているが、これにCeをドープ
すると、電子のキャリアが導入され、ドープ量の増加に
より絶縁体から半導体、さらには金属へと変化する。上
記報告においては、CeをドープしたNd2CuO4の熱
電性能は測定されているが、ドープ量の増加によるゼー
ベック係数の低下が大きい欠点がある。
[0005] Nd 2 CuO 4 -based materials are known as a kind of high-temperature copper-based superconductor, but when doped with Ce, electron carriers are introduced, and the doping amount increases to change the insulator to the semiconductor. , And even metal. In the above report, the thermoelectric performance of Ce-doped Nd 2 CuO 4 is measured, but there is a drawback that the Seebeck coefficient is greatly reduced due to an increase in the doping amount.

【0006】[0006]

【発明が解決しようとする課題】本発明者等は、Nd2
CuO4系の複合酸化物について実験、検討したとこ
ろ、Nd2CuO4にジルニウム(Zr)又はプラセオジ
ム(Pr)をドープすることにより、Ceをドープした
ものに比べて高いゼーベック係数を有し、他の特性につ
いても熱電変換材料及び熱電変換素子として有用な性質
を有することを見い出した。すなわち、本発明は、Nd
2CuO4系の複合酸化物に対してZr又はPrをドープ
してなることを特徴とする熱電変換材料及びこれら熱電
変換材料を用いてなる熱電変換素子を提供することを目
的とする。
SUMMARY OF THE INVENTION The present inventors have found that Nd 2
Experiments and investigations on CuO 4 -based composite oxide revealed that Nd 2 CuO 4 doped with zirnium (Zr) or praseodymium (Pr) has a higher Seebeck coefficient than that doped with Ce. It has also been found that the material has useful properties as a thermoelectric conversion material and a thermoelectric conversion element. That is, the present invention provides Nd
It is an object of the present invention to provide a thermoelectric conversion material obtained by doping Zr or Pr into a 2 CuO 4 -based composite oxide, and a thermoelectric conversion element using the thermoelectric conversion material.

【0007】[0007]

【課題を解決するための手段】本発明は(1)元素組成
式Nd2CuO4で表わされる複合酸化物に対してZrを
ドープしてなることを特徴とする熱電変換材料を提供
し、また本発明は(2)元素組成式Nd2CuO4で表わ
される複合酸化物に対してPrをドープしてなることを
特徴とする熱電変換材料を提供し、さらに本発明は
(3)上記(1)〜(2)の熱電変換材料を用いてなる
ことを特徴とする熱電変換素子を提供する。
The present invention provides (1) a thermoelectric conversion material characterized in that a composite oxide represented by the elemental compositional formula Nd 2 CuO 4 is doped with Zr. The present invention provides (2) a thermoelectric conversion material obtained by doping a composite oxide represented by the elemental composition formula Nd 2 CuO 4 with Pr, and the present invention further provides (3) the above (1) And (2) to provide a thermoelectric conversion element characterized by using the thermoelectric conversion material.

【0008】[0008]

【発明の実施の形態】本発明の熱電変換材料は1種の複
合酸化物であり、基本式Nd2CuO4で示される組成を
有し、これにZr又はPrをドープしてなる熱電変換材
料であり、一般式(Nd1-XX2CuO4(M=Zr又
はPr、0<x≦1)として示される。本発明における
Zr又はPrをドープした複合酸化物は、各種複合酸化
物を製造する場合と同様にして製造することができる。
BEST MODE FOR CARRYING OUT THE INVENTION The thermoelectric conversion material of the present invention is one kind of composite oxide, has a composition represented by the basic formula Nd 2 CuO 4 , and is doped with Zr or Pr. , and the represented as the general formula (Nd 1-X M X) 2 CuO 4 (M = Zr or Pr, 0 <x ≦ 1) . The composite oxide doped with Zr or Pr in the present invention can be produced in the same manner as when producing various composite oxides.

【0009】すなわち、それら元素をドープした複合酸
化物に必要な元素源を含む原料を粉末等として均一に混
合し、焼成することにより得られる。焼成温度は、約8
50〜1150℃の範囲、好ましくは1100〜115
0℃の範囲である。なお、このように焼成することか
ら、この工程を経て得られた本発明の元素ドープ複合酸
化物はセラミックスの一種と云える。また、それら元素
をドープした複合酸化物を緻密な焼結体として構成する
場合には、例えば数百気圧の一軸加圧下で加熱するホッ
トプレス法により合成することができる。さらに、それ
ら元素をドープした複合酸化物を単結晶として構成する
場合には、その原料混合物を溶融し、その溶融物を徐冷
しながら成長させることにより製造することができる。
That is, it is obtained by uniformly mixing raw materials containing an element source necessary for a composite oxide doped with these elements as powders and the like, followed by firing. The firing temperature is about 8
50 to 1150 ° C., preferably 1100 to 115
It is in the range of 0 ° C. It should be noted that since the sintering is performed in this manner, the element-doped composite oxide of the present invention obtained through this step can be said to be a type of ceramic. When the composite oxide doped with these elements is formed as a dense sintered body, it can be synthesized by, for example, a hot press method of heating under a uniaxial pressure of several hundred atmospheres. Further, when the composite oxide doped with these elements is constituted as a single crystal, the composite oxide can be produced by melting the raw material mixture and growing the melt while cooling it gradually.

【0010】本発明に係る特定元素をドープした複合酸
化物を製造するに際して用いられる原料としては、各成
分元素、各成分元素の酸化物又はその焼成時に酸化物と
なる原料が使用される。Nd源としては、例えば金属
(Nd)、酸化物(Nd23)、水酸化物〔Nd(OH)
3等〕、酸素酸塩〔Nd2(CO3)3、Nd(NO3)3等〕、
ハロゲン化物(NdCl3、NdBr3、NdI3等)、
硫化物(Nd23等)、有機塩Nd2(C24)3等〕等が
用いられる。Cu源としては、例えば金属(Cu)、酸化
物(Cu2O、CuO等)、水酸化物〔Cu(OH)
2等〕、酸素酸塩(Cu2CO3、CuCO3、CuSO4
等)、ハロゲン化物(CuCl2、CuCl、CuI
等)、硫化物(Cu2S、CuS等)、有機酸塩〔Cu
(CH3CO22・H2O等〕等が用いられる。
As the raw material used for producing the composite oxide doped with the specific element according to the present invention, each constituent element, an oxide of each constituent element, or a raw material which becomes an oxide when fired is used. As the Nd source, for example, metal
(Nd), oxide (Nd 2 O 3 ), hydroxide [Nd (OH)
3 etc.), oxyacid salts [Nd 2 (CO 3 ) 3 , Nd (NO 3 ) 3 etc.],
Halides (NdCl 3 , NdBr 3 , NdI 3 etc.),
Sulfide (Nd 2 S 3, etc.), organic salt Nd 2 (C 2 O 4 ) 3, etc.] are used. As the Cu source, for example, metal (Cu), oxide (Cu 2 O, CuO, etc.), hydroxide [Cu (OH)
2 etc.), oxyacid salts (Cu 2 CO 3 , CuCO 3 , CuSO 4
Etc.), halides (CuCl 2 , CuCl, CuI)
Sulfides (Cu 2 S, CuS, etc.), organic acid salts [Cu
(CH 3 CO 2 ) 2 .H 2 O etc.].

【0011】Zr源としては、例えば金属(Zr)、酸化
物(ZrO2等)、有機酸塩〔Zr(CH3CO24〕、
ハロゲン化物(ZrCl3、ZrCl4)、オキシハロゲ
ン化物(ZrOCl2・8H2O等)等が用いられる。P
r源としては、例えば金属(Pr)、酸化物(Pr
23)、水酸化物〔Pr(OH)3等〕、酸素酸塩〔P
2(CO33、Pr2(NO33等〕、ハロゲン化物
(PrCl3、PrBr3、PrI3等)、硫化物(Pr2
3等)、有機塩〔Pr2(C24)3等〕等が用いられる。
Examples of the Zr source include metals (Zr), oxides (ZrO 2, etc.), organic acid salts [Zr (CH 3 CO 2 ) 4 ],
Halides (ZrCl 3, ZrCl 4), such as oxyhalides (ZrOCl 2 · 8H 2 O, etc.) are used. P
Examples of the r source include metal (Pr) and oxide (Pr).
2 O 3 ), hydroxide [Pr (OH) 3 etc.], oxyacid salt [P
r 2 (CO 3 ) 3 , Pr 2 (NO 3 ) 3 etc.], halides (PrCl 3 , PrBr 3 , PrI 3 etc.), sulfides (Pr 2 S
3 ) and organic salts [Pr 2 (C 2 O 4 ) 3 etc.].

【0012】本発明に係るZr又はPrドープの複合酸
化物のゼーベック係数は大きく、Ceドープの複合酸化
物に比べても非常に大きい。また本発明に係るZr又は
Prドープの複合酸化物すなわち熱電変換材料のパワー
ファクター(Power Factor)は、Ceドープ
の複合酸化物に比べて同等かそれ以上である。また本発
明の複合酸化物では、Zr又はPrドープにより電気伝
導率が改善される。
The Seebeck coefficient of the Zr- or Pr-doped composite oxide according to the present invention is large, and is much larger than that of the Ce-doped composite oxide. The Zr- or Pr-doped composite oxide according to the present invention, that is, the power factor of the thermoelectric conversion material is equal to or higher than the Ce-doped composite oxide. Further, in the composite oxide of the present invention, the electrical conductivity is improved by doping Zr or Pr.

【0013】熱電変換材料としては、ゼーベック係数
が大きい方がよく、電気抵抗率が小さい方がよく、
パワーファクターは大きい方がよいが、本発明の複合酸
化物は、基本組成Nd2CuO4に対してZr又はPrを
ドープすることにより、これら〜の特性が改善され
る。本発明の熱電変換材料は、ドープ元素の種類によ
り、該基本複合酸化物Nd2CuO4(それ自体優れた熱
電変換材料である)に比べてこれら〜の各特性にお
いて改善される。
As the thermoelectric conversion material, the larger the Seebeck coefficient is, the better the electric resistivity is.
Although the power factor is preferably large, the composite oxide of the present invention improves these characteristics by doping Zd or Pr with respect to the basic composition Nd 2 CuO 4 . The thermoelectric conversion material of the present invention is improved in each of these properties as compared with the basic composite oxide Nd 2 CuO 4 (which is itself an excellent thermoelectric conversion material) depending on the type of the doping element.

【0014】本発明においては、ZrドープのNd2
uO4、PrドープのNd2CuO4からなる熱電変換材
料を使用して、温度差から起電力を取り出したり、逆に
電力を加えてヒートポンプとして冷却又は加熱に用いる
熱電変換素子を構成する。その熱電変換素子の構成の仕
方としては、熱電変換材料を用いて熱電変換素子を構成
する従来における態様と同様に構成することができる。
本発明の熱電変換材料はn型半導体であるため、例えば
図1に示すような熱電変換素子におけるn型半導体とし
て使用される。特にZrは希土類ではなく、材料費も比
較的安価で、供給面及びコスト面でも有利であり、実用
上も優れた利点が得られる。Prについても産出状況等
の如何により有効に適用できることはもちろんである。
In the present invention, Zr-doped Nd 2 C
Using a thermoelectric conversion material composed of uO 4 and Pr-doped Nd 2 CuO 4, an electromotive force is extracted from the temperature difference, or conversely, power is applied to constitute a thermoelectric conversion element used for cooling or heating as a heat pump. The thermoelectric conversion element can be configured in the same manner as a conventional mode in which a thermoelectric conversion element is formed using a thermoelectric conversion material.
Since the thermoelectric conversion material of the present invention is an n-type semiconductor, it is used, for example, as an n-type semiconductor in a thermoelectric conversion element as shown in FIG. In particular, Zr is not a rare earth, the material cost is relatively inexpensive, it is advantageous in terms of supply and cost, and an excellent practical advantage is obtained. It goes without saying that Pr can be effectively applied depending on the production situation and the like.

【0015】[0015]

【実施例】以下、実施例に基づき本発明をさらに詳しく
説明するが、本発明がこれら実施例に限定されないこと
はもちろんである。本実施例ではまず各種元素をドープ
した複合酸化物を製造し、各種性能試験を実施した。な
お、ここではZr又はPrのドープ量x=0〜0.1の
範囲で示しているが、0.1以上でも同様である。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but it goes without saying that the present invention is not limited to these Examples. In this example, first, composite oxides doped with various elements were manufactured, and various performance tests were performed. Here, the doping amount x of Zr or Pr is shown in the range of 0 to 0.1, but the same applies to the case of 0.1 or more.

【0016】《製造例》基本組成Nd2CuO4における
Ndに対してZrを各種量で添加したZrドープの複合
酸化物:(Nd1-XZrX2CuO4(x=0〜0.1)を
次のようにして製造した。原料として純度99.9%以
上のNd23、CuO及びZrO2の各粉末を使用し
た。これら3種の原料粉を組成式(Nd1-XZrX)2Cu
4で、且つ、式中x=0〜0.10となるようにZr
を添加した組成となるように秤量し、溶媒としてエタノ
ールを添加し乳鉢で均一に湿式混合した。
<< Production Example >> Zr-doped composite oxide in which Zr is added in various amounts to Nd in the basic composition Nd 2 CuO 4 : (Nd 1 -X Zr x ) 2 CuO 4 (x = 0. 1) was produced as follows. Nd 2 O 3 , CuO and ZrO 2 powders having a purity of 99.9% or more were used as raw materials. These three kinds of raw material powders are represented by a composition formula (Nd 1 -X Zr X ) 2 Cu
Zr such that O 4 and x = 0 to 0.10.
Was weighed so as to have a composition to which was added, ethanol was added as a solvent, and the mixture was uniformly wet-mixed in a mortar.

【0017】得られた混合粉末をアルミナ製ルツボに入
れて空気雰囲気中、温度800℃で10時間仮焼した。
昇温速度は5℃/minとした。仮焼した試料を再び粉
砕混合した後、得られた粉末にバインダーとしてパラフ
ィンを仮焼粉体の3wt%添加して混合し、1軸プレス
により7×25×約2mmの短冊形に成形した。1軸プ
レス時のプレス圧は750kg/cm2 とした。その後
アルミナルツボに入れて温度1100℃で10時間(大
気雰囲気中)焼成して各試料を得た。
The obtained mixed powder was placed in an alumina crucible and calcined in an air atmosphere at a temperature of 800 ° C. for 10 hours.
The heating rate was 5 ° C./min. After the calcined sample was pulverized and mixed again, 3 wt% of the calcined powder was added as a binder to the obtained powder, mixed, and formed into a 7 × 25 × about 2 mm strip by a uniaxial press. The pressing pressure at the time of uniaxial pressing was 750 kg / cm 2 . Thereafter, each sample was placed in an alumina crucible and fired at a temperature of 1100 ° C. for 10 hours (in the atmosphere) to obtain each sample.

【0018】以上と同様にして基本組成Nd2CuO4
おけるNdに対してPrを添加したPrドープの複合酸
化物:(Nd1-XPrX2CuO4(x=0〜0.1)を次
のようにして製造した。原料として純度99.9%以上
のNd23、CuO及びPr23の各粉末を使用した。
これら3種の原料粉を組成式(Nd1-XPrX2CuO4
で、式中x=0〜0.10となるようにPrを添加し
た組成となるように秤量し、エタノールを添加し乳鉢で
均一に混合した。得られた混合粉末について上記と同様
に仮焼、焼成して組成(Nd1-XPrX2CuO4(x=
0〜0.10)の各試料を得た。
A Pr-doped composite oxide obtained by adding Pr to Nd in the basic composition Nd 2 CuO 4 in the same manner as described above: (Nd 1 -X Pr x ) 2 CuO 4 (x = 0 to 0.1) Was produced as follows. Nd 2 O 3 , CuO and Pr 2 O 3 powders having a purity of 99.9% or more were used as raw materials.
These three kinds of raw material powders are represented by the composition formula (Nd 1 -X Pr x ) 2 CuO 4
Then, the composition was weighed so as to have a composition to which Pr was added so that x = 0 to 0.10 in the formula, ethanol was added, and the mixture was uniformly mixed in a mortar. The obtained mixed powder is calcined and fired in the same manner as described above to obtain a composition (Nd 1 -X Pr x ) 2 CuO 4 (x =
0 to 0.10) were obtained.

【0019】以上と同様にして組成Nd2CuO4におけ
るNdに対してCeを添加したCeドープの複合酸化
物:(Nd1-XCeX2CuO4(x=0〜0.1)を次
のようにして製造した。原料として純度99.9%以上
のNd23、CuO及びCeO2 の各粉末を使用した。
これら3種の原料粉を組成式(Nd1-XCeX2CuO4
で且つ式中x=0〜0.10となるようにCeを添加し
た組成となるように秤量し、エタノールを添加し乳鉢で
均一に混合した。得られた混合粉末について上記と同様
に仮焼、焼成して組成(Nd1-XCeX2CuO4(x=
0〜0.10)の各試料を得た。
In the same manner as above, a Ce-doped composite oxide in which Ce is added to Nd in the composition Nd 2 CuO 4 : (Nd 1 -x Ce x ) 2 CuO 4 (x = 0 to 0.1) It was manufactured as follows. Nd 2 O 3 , CuO and CeO 2 powders having a purity of 99.9% or more were used as raw materials.
These three kinds of raw material powders are represented by a composition formula (Nd 1 -X Ce X ) 2 CuO 4
And Ce was added so that x = 0 to 0.10 in the formula, and ethanol was added, and the mixture was uniformly mixed in a mortar. The obtained mixed powder is calcined and fired in the same manner as described above to obtain a composition (Nd 1 -X Ce x ) 2 CuO 4 (x =
0 to 0.10).

【0020】《評価試験》上記製造例で得た各試料につ
いて評価試験を実施した。各試料について、それぞれX
線回折法により一般式(Nd1-XX2CuO4(M=Z
r、Pr又はCe、0<x≦0.10)で示される物質
が得られていることを確認し、次いでゼーベック係数、
電気抵抗率及び性能指数を測定した。
<< Evaluation Test >> An evaluation test was performed on each of the samples obtained in the above Production Examples. X for each sample
Formula by a line diffraction (Nd 1-X M X) 2 CuO 4 (M = Z
r, Pr or Ce, 0 <x ≦ 0.10) was confirmed to be obtained, and then Seebeck coefficient,
The electrical resistivity and figure of merit were measured.

【0021】〈ドープによるゼーベック係数の変化〉ゼ
ーベック係数の測定は以下のようにして行った。前記の
ように短冊状に焼成した試料を電気炉内に入れて所定の
温度に加熱しながら、試料の下端のみを別に加熱した。
これによって試料の上端と下端との間には約5℃の温度
差がつき、熱起電力が発生する。この起電力を電圧計で
測定し、その値を温度差で割ることによってゼーベック
係数が求められる。
<Change in Seebeck coefficient due to dope> The measurement of the Seebeck coefficient was performed as follows. While the sample fired in the shape of a strip as described above was placed in an electric furnace and heated to a predetermined temperature, only the lower end of the sample was separately heated.
This causes a temperature difference of about 5 ° C. between the upper end and the lower end of the sample, and a thermoelectromotive force is generated. The Seebeck coefficient is determined by measuring the electromotive force with a voltmeter and dividing the value by the temperature difference.

【0022】図2は、上記のようにしてZr、Pr、C
eをそれぞれドープした各試料のゼーベック係数の変化
を測定したものである。図2には基準として上記製造例
と同様にして得たNd2CuO4(図2中、x=0.00
のとき)のデータも示しているが、当該基本複合酸化物
Nd2CuO4自体熱電変換特性を有する材料である。図
2中ゼーベック係数の単位を−μV/Kとして示してい
るとおり、(Nd1-XX2CuO4(x=0〜0.1
0、M=Ce、Pr又はZr)はn型伝導性を示す複合
酸化物である(その絶対値がより高ければ、例えばこれ
を用いて熱電発電したときに出力電圧がより高くなるこ
とを意味する)。
FIG. 2 shows Zr, Pr, C
The change in the Seebeck coefficient of each sample doped with e was measured. FIG. 2 shows, as a reference, Nd 2 CuO 4 (x = 0.00 in FIG. 2) obtained in the same manner as in the above production example.
) Is also shown, but the basic composite oxide Nd 2 CuO 4 itself is a material having thermoelectric conversion characteristics. As shows the unit of Figure 2 in the Seebeck coefficient as -μV / K, (Nd 1- X M X) 2 CuO 4 (x = 0~0.1
0, M = Ce, Pr or Zr) is a composite oxide exhibiting n-type conductivity (a higher absolute value means, for example, that the output voltage becomes higher when thermoelectric power generation is performed using the composite oxide). Do).

【0023】図2のとおり、基本組成Nd2CuO4に対
してCeをドープした試料のゼーベック係数はCeドー
プ量の増加に伴い低下してしまい、Ceのドープ量が7
%以上(x≧0.07)では測定した熱起電力に再現性が
なく、ゼーベック係数の測定ができなかった。これに対
して、Prをドープした試料のゼーベック係数は、基本
組成Nd2CuO4(図2中x=0.00)の場合に比べ
て、ドープ量の増加に伴い幾分小さくなるだけである。
As shown in FIG. 2, the Seebeck coefficient of a sample obtained by doping Ce with respect to the basic composition Nd 2 CuO 4 decreases as the Ce doping amount increases.
% Or more (x ≧ 0.07), the measured thermoelectromotive force was not reproducible, and the Seebeck coefficient could not be measured. On the other hand, the Seebeck coefficient of the sample doped with Pr only slightly decreases with an increase in the doping amount as compared with the case of the basic composition Nd 2 CuO 4 (x = 0.00 in FIG. 2). .

【0024】また、Zrをドープした試料のゼーベック
係数は、ドープ量5%(x=0.05)近辺で−160
μV/K程度であるが、それ以降徐々に向上しドープ量
10%(x=0.10)では(Nd1-XX2CuO
4(x=0)より僅かではあるが上回り、基本組成Nd2
CuO4に対しても改善されていることが分かる。この
ように、Zr、Prのドープによるゼーベック係数の低
下は小さく、Ceドープに比べて、より良好な特性を示
している。
The Seebeck coefficient of the Zr-doped sample is -160 near the doping amount of 5% (x = 0.05).
It is about μV / K, but it is gradually improved thereafter, and when the doping amount is 10% (x = 0.10), (Nd 1−X M X ) 2 CuO
4 (x = 0) but slightly higher than the basic composition Nd 2
It can be seen that CuO 4 is also improved. As described above, the decrease in the Seebeck coefficient due to the doping of Zr and Pr is small, and shows better characteristics as compared with the Ce doping.

【0025】図3は、試料複合酸化物についての温度依
存性の代表例として、(Nd0.95Zr0.052CuO4
試料複合酸化物についてのゼーベック係数の温度依存性
を示す図である。図示のとおり、常温域では−160μ
V/K程度であり、以降徐々に低下はするが、例えば温
度440℃という高温域でも−70μV/Kという値を
有し、有効であることを示している。
FIG. 3 is a graph showing the temperature dependence of the Seebeck coefficient of a sample composite oxide of (Nd 0.95 Zr 0.05 ) 2 CuO 4 as a representative example of the temperature dependence of the sample composite oxide. As shown, -160μ at room temperature
V / K, which gradually decreases thereafter, but has a value of -70 μV / K even in a high temperature range of, for example, 440 ° C., which indicates that it is effective.

【0026】〈ドープによる電気抵抗率の変化〉電気抵
抗率の測定は、短冊状に焼成した試料について直流四探
針法によった。四探針法は直流4端子法と同じ原理を用
いるもので、短冊状試料に4本の針を等間隔に当接・配
置し、外側の2本の針に定電流を流し、内側の2本の針
間の電位差を測定する。試料の抵抗率ρは、測定された
電流Iと電圧Vとから、ρ=C(V/I)で与えられる
(ここで、Cは補正因子と呼ばれ、試料の形状によって
定まる定数である)。図4はその結果を示す図である。
<Change in Electric Resistivity Due to Doping> The electric resistivity was measured by a DC four-probe method on a sample fired in a strip shape. The four-probe method uses the same principle as the DC four-terminal method, in which four needles are abutted and arranged at equal intervals on a strip-shaped sample, a constant current is applied to the two outer needles, and the inner two The potential difference between the needles is measured. The resistivity ρ of the sample is given by ρ = C (V / I) from the measured current I and voltage V (where C is a correction factor and is a constant determined by the shape of the sample). . FIG. 4 shows the result.

【0027】図4のとおり、基本組成Nd2CuO4に対
してZrをドープした試料の電気抵抗率は、ドープ量の
増加に伴い低下し、x=0.05では約50mΩ・cm
にまで低下し、以降x=0.10までほぼ同じ値を示し
ており、このように優れた改善効果が認められる。ま
た、基本組成Nd2CuO4に対してPrをドープした試
料の電気抵抗率は、x=0.05程度までは基本組成N
2CuO4に比べてほぼ同等であるが、それ以上x=
0.10までの間で大幅に改善されている。
As shown in FIG. 4, the electrical resistivity of a sample obtained by doping Zr with the basic composition Nd 2 CuO 4 decreases as the doping amount increases, and when x = 0.05, the resistivity becomes about 50 mΩ · cm.
, And thereafter shows almost the same value until x = 0.10, and thus such an excellent improvement effect is recognized. The electrical resistivity of a sample obtained by doping Pr with respect to the basic composition Nd 2 CuO 4 is that of the basic composition Nd up to about x = 0.05.
It is almost equivalent to d 2 CuO 4 , but x =
It is greatly improved up to 0.10.

【0028】〈ドープによるパワーファクターの変化〉
図5は各試料についてのパワーファクター〔PF=S2/
ρ(S=ゼーベック係数、ρ=電気抵抗率)〕の変化を
測定したものである。基本複合酸化物Nd2CuO4では
0.5×10-8W/mK2程度であるのに対して、Zr
をドープすると徐々に改善され、5%添加では10-4
/mK2もの値を示し、以降ほぼ同等の値を示している。
またPrをドープした場合にも、ドープ量とともに上昇
する。
<Change in power factor due to doping>
FIG. 5 shows the power factor [PF = S 2 /
ρ (S = Seebeck coefficient, ρ = electrical resistivity)]. In the case of the basic composite oxide Nd 2 CuO 4 , which is about 0.5 × 10 −8 W / mK 2 , Zr
Is gradually improved by doping, and 10 -4 W is added by adding 5%.
/ mK 2 , and almost the same value thereafter.
Also, when Pr is doped, it increases with the doping amount.

【0029】以上の各測定結果からも分かるとおり、本
発明において基本組成Nd2CuO4に対してZr又はP
rをドープしてなる複合酸化物は、ゼーベック係数の
低下は少なく、電気抵抗率は低下するため、パワー
ファクターが向上する。それ故、ドープ元素の種類によ
り差はあるが、何れも熱電変換材料として有効な材料で
あることは明らかである。
As can be seen from the above measurement results, in the present invention, the basic composition Nd 2 CuO 4 is compared with Zr or Pd.
In the composite oxide doped with r, the decrease in the Seebeck coefficient is small and the electric resistivity is reduced, so that the power factor is improved. Therefore, although there is a difference depending on the type of the doping element, it is clear that all are effective materials as thermoelectric conversion materials.

【0030】[0030]

【発明の効果】本発明に係る、基本組成Nd2CuO4
対してZr又はPrをドープしてなる複合酸化物は、熱
電変換材料として優れた特性を有しており、熱電変換素
子用として適用できる。また、本発明の熱電変換材料
は、毒性がないか少なく、安全であり、特にZrの場合
は材料費も比較的安価であり、供給面及び実用上も有利
である。このため民生用の熱電変換素子としても適用で
きるなど、各種利点が得られる。
The composite oxide according to the present invention obtained by doping Zd or Pr with the basic composition Nd 2 CuO 4 has excellent properties as a thermoelectric conversion material and is suitable for use in thermoelectric conversion elements. Applicable. Further, the thermoelectric conversion material of the present invention has no or low toxicity, is safe, and particularly in the case of Zr, the material cost is relatively low, and it is advantageous in terms of supply and practical use. For this reason, various advantages are obtained, such as being applicable as a thermoelectric conversion element for consumer use.

【図面の簡単な説明】[Brief description of the drawings]

【図1】熱電変換素子の一態様を原理的に説明する模式
図。
FIG. 1 is a schematic diagram for explaining in principle one embodiment of a thermoelectric conversion element.

【図2】試料複合酸化物について、各元素のドープによ
るゼーベック係数の変化を示す図。
FIG. 2 is a diagram showing a change in Seebeck coefficient of a sample composite oxide due to doping of each element.

【図3】(Nd0.95Zr0.052CuO4の試料複合酸化
物についてのゼーベック係数の温度依存性を示す図。
FIG. 3 is a diagram showing the temperature dependence of the Seebeck coefficient of a sample composite oxide of (Nd 0.95 Zr 0.05 ) 2 CuO 4 .

【図4】試料複合酸化物について、各元素のドープによ
る電気抵抗率の変化を示す図。
FIG. 4 is a diagram showing a change in electric resistivity of a sample composite oxide due to doping of each element.

【図5】試料複合酸化物について、各元素のドープによ
るパワーファクターの変化を示す図。
FIG. 5 is a diagram showing a change in power factor due to doping of each element in a sample composite oxide.

【符号の説明】[Explanation of symbols]

1 p型半導体 2 n型半導体 3 高温側接合部 4 低温側接合部 5 高温側電極 6、7 低温側電極 S 絶縁空間 Reference Signs List 1 p-type semiconductor 2 n-type semiconductor 3 high-temperature side junction 4 low-temperature side junction 5 high-temperature side electrode 6, 7 low-temperature side electrode S insulating space

フロントページの続き (72)発明者 矢加部 久孝 東京都墨田区緑2ー13ー7 アーバンハイ ツ両国911号Continued on the front page (72) Inventor Hisakataka Yakabe 2-17-1 Midori, Sumida-ku, Tokyo Urban Heights Ryogoku No.911

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】元素組成式Nd2CuO4で表わされる複合
酸化物に対してZrをドープしてなることを特徴とする
熱電変換材料。
1. A thermoelectric conversion material characterized in that a composite oxide represented by an elemental composition formula Nd 2 CuO 4 is doped with Zr.
【請求項2】元素組成式Nd2CuO4で表わされる複合
酸化物に対してPrをドープしてなることを特徴とする
熱電変換材料。
2. A thermoelectric conversion material characterized in that a composite oxide represented by the elemental composition formula Nd 2 CuO 4 is doped with Pr.
【請求項3】請求項1又は請求項2に記載の熱電変換材
料を用いてなることを特徴とする熱電変換素子。
3. A thermoelectric conversion element comprising the thermoelectric conversion material according to claim 1 or 2.
JP10191051A 1998-06-22 1998-06-22 Thermoelectric conversion material and thermoelectric conversion element Pending JP2000012914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10191051A JP2000012914A (en) 1998-06-22 1998-06-22 Thermoelectric conversion material and thermoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10191051A JP2000012914A (en) 1998-06-22 1998-06-22 Thermoelectric conversion material and thermoelectric conversion element

Publications (1)

Publication Number Publication Date
JP2000012914A true JP2000012914A (en) 2000-01-14

Family

ID=16268085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10191051A Pending JP2000012914A (en) 1998-06-22 1998-06-22 Thermoelectric conversion material and thermoelectric conversion element

Country Status (1)

Country Link
JP (1) JP2000012914A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005223307A (en) * 2004-01-08 2005-08-18 Univ Nagoya Oxide-based thermoelectric conversion film and method of forming oxide thermoelectric conversion film
WO2008038519A1 (en) * 2006-09-28 2008-04-03 Murata Manufacturing Co., Ltd. Thermoelectric conversion element, thermoelectric conversion module, and method for production of thermoelectric conversion element
WO2009001691A1 (en) * 2007-06-22 2008-12-31 Murata Manufacturing Co., Ltd. Thermoelectric conversion element, thermoelectric conversion module, and process for producing thermoelectric conversion element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005223307A (en) * 2004-01-08 2005-08-18 Univ Nagoya Oxide-based thermoelectric conversion film and method of forming oxide thermoelectric conversion film
WO2008038519A1 (en) * 2006-09-28 2008-04-03 Murata Manufacturing Co., Ltd. Thermoelectric conversion element, thermoelectric conversion module, and method for production of thermoelectric conversion element
WO2009001691A1 (en) * 2007-06-22 2008-12-31 Murata Manufacturing Co., Ltd. Thermoelectric conversion element, thermoelectric conversion module, and process for producing thermoelectric conversion element
JPWO2009001691A1 (en) * 2007-06-22 2010-08-26 株式会社村田製作所 Thermoelectric conversion element, thermoelectric conversion module, and method of manufacturing thermoelectric conversion element
US9065011B2 (en) 2007-06-22 2015-06-23 Murata Manufacturing Co., Ltd. Thermoelectric conversion element, thermoelectric conversion module, method for producing thermoelectric conversion element

Similar Documents

Publication Publication Date Title
Moon et al. Influence of ionic size of rare-earth site on the thermoelectric properties of RCoO3-type perovskite cobalt oxides
Lim et al. A power-generation test for oxide-based thermoelectric modules using p-type Ca 3 Co 4 O 9 and n-type Ca 0.9 Nd 0.1 MnO 3 legs
JP2001223393A (en) Composite oxide with high seebeck factor and electric conductivity
JP3596643B2 (en) Thermoelectric conversion material and thermoelectric conversion element
JP3727945B2 (en) Thermoelectric conversion material and production method thereof
Zhou et al. Influence of Mn-site doped with Ru on the high-temperature thermoelectric performance of CaMnO3− δ
JP3069701B1 (en) Composite oxide with high Seebeck coefficient and high electrical conductivity
JP2000012914A (en) Thermoelectric conversion material and thermoelectric conversion element
JP2006347861A (en) Manufacturing method of zinc-based oxide and zinc-based oxide manufactured by the method
JP2000012915A (en) Thermoelectric conversion material
JP2004186572A (en) Thermoelectric transduction material and thermoelectric transducer
JP4380606B2 (en) N-type thermoelectric conversion material and thermoelectric conversion element
JP2003008086A (en) Composite oxide and thermoelectric converter using the same
JPH0617225B2 (en) Thermoelectric conversion material
JP3585696B2 (en) Thermoelectric conversion material and thermoelectric conversion element
NISHIYAMA et al. Electrical Conductivity and Thermoelectricity of ZnSb2O6 and (Zn1-xMx) Sb2O6 (M= Co, Ni, Cu) Ceramics
JP3571240B2 (en) Thermoelectric conversion material and thermoelectric conversion element
JP2002118296A (en) N-type thermoelectric conversion element for high temperature having high electric conductivity, and thermoelectric conversion module using it
JP4338956B2 (en) Oxide sintered body, n-type thermoelectric conversion material, and thermoelectric conversion element using the same
JP3088039B2 (en) Thermoelectric semiconductor element
JP3051922B1 (en) Oxide members for thermoelectric conversion elements
JP4257633B2 (en) Thermoelectric conversion material and thermoelectric conversion element
JP2004217499A (en) Complex oxide, n-type thermoelectric conversion material, and thermoelectric conversion element using it
JP2001127350A (en) Thermoelectric conversion material and photoelectric conversion element
JP2006032624A (en) Thermoelectric transformation material consisting of rhodium oxide