JP4380606B2 - N-type thermoelectric conversion material and thermoelectric conversion element - Google Patents

N-type thermoelectric conversion material and thermoelectric conversion element Download PDF

Info

Publication number
JP4380606B2
JP4380606B2 JP2005240442A JP2005240442A JP4380606B2 JP 4380606 B2 JP4380606 B2 JP 4380606B2 JP 2005240442 A JP2005240442 A JP 2005240442A JP 2005240442 A JP2005240442 A JP 2005240442A JP 4380606 B2 JP4380606 B2 JP 4380606B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
type semiconductor
temperature
thermal conductivity
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005240442A
Other languages
Japanese (ja)
Other versions
JP2007059491A (en
Inventor
幸子 藤井
孝則 中村
陽 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2005240442A priority Critical patent/JP4380606B2/en
Publication of JP2007059491A publication Critical patent/JP2007059491A/en
Application granted granted Critical
Publication of JP4380606B2 publication Critical patent/JP4380606B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は、排熱を利用した熱発電デバイスに使用される熱電変換材料および熱電変換素子に関し、特にn型半導体に用いられる熱電変換材料および熱電変換素子に関する。   The present invention relates to a thermoelectric conversion material and a thermoelectric conversion element used for a thermoelectric power generation device using exhaust heat, and more particularly to a thermoelectric conversion material and a thermoelectric conversion element used for an n-type semiconductor.

現在、工場や自動車などから発生する膨大な熱エネルギーはその一部のみしか利用されず、多くの部分が排熱として捨てられている。環境問題の高まりに応じ、各種エネルギーを効率的に利用する様々な手段が検討されているが、その1つに排熱の効率的な利用が挙げられる。   Currently, only a part of the enormous amount of heat energy generated from factories and automobiles is used, and most of it is discarded as waste heat. In response to growing environmental problems, various means for efficiently using various types of energy have been studied. One of them is the efficient use of exhaust heat.

従来大規模な設備からの排熱の利用が行われてきたが、近年小規模でも効率的に排熱の利用ができる熱電発電が注目を集めている。熱電発電はゼーベック効果、すなわち相異なる2種の金属や、p型半導体とn型半導体等の相異なる熱電発電材料を熱的に並列に置き、電気的に直列に接続して、接合部間に温度差を与えると、両端に熱起電力が発生するという熱電効果を利用して、熱エネルギーを直接電力に変換する技術である。こうした熱電発電に用いられる熱電変換素子に負荷を接続して閉回路を構成することにより、回路に電流が流れて電力を取り出すことができる。このような熱電変換素子の高性能化にあたって従来からさまざまな構成材料が検討されていた。   Conventionally, exhaust heat from large-scale facilities has been used, but in recent years, thermoelectric power generation that can efficiently use exhaust heat even on a small scale has attracted attention. Thermoelectric power generation is the Seebeck effect, that is, two different types of metals and different thermoelectric power generation materials such as p-type semiconductor and n-type semiconductor are placed in parallel and electrically connected in series, This is a technology that directly converts thermal energy into electric power by utilizing the thermoelectric effect that thermoelectromotive force is generated at both ends when a temperature difference is given. By connecting a load to a thermoelectric conversion element used for such thermoelectric power generation to form a closed circuit, a current flows through the circuit and electric power can be taken out. Conventionally, various constituent materials have been studied for improving the performance of such thermoelectric conversion elements.

特許文献1では、酸化亜鉛とアルミナの複合酸化物からなる熱発電材料酸化亜鉛の亜鉛の一部をアルミニウムで置換した酸化亜鉛系複合酸化物(Zn1-xAlx)O1±δ(但し、アルミニウムの置換量xは1>x>0で、δは微小な値)が開示されている。酸化亜鉛の一部をアルミニウムで置換することにより、0〜1000℃の広い温度範囲で、1000S/cmの高い導電率、100〜200μV/℃の高い絶対値のゼーベック係数(n型半導体熱電変換材料ではゼーベック係数はマイナス表示になる)を示す熱発電材料が得られるとされている。 In Patent Document 1, a zinc oxide-based composite oxide (Zn 1-x Al x ) O 1 ± δ (provided that a part of zinc oxide zinc is replaced with aluminum is a thermoelectric power generation material composed of a composite oxide of zinc oxide and alumina. The aluminum substitution amount x is 1>x> 0, and δ is a minute value). By replacing a part of zinc oxide with aluminum, in a wide temperature range of 0 to 1000 ° C., a high conductivity of 1000 S / cm, a high Seebeck coefficient of 100 to 200 μV / ° C. (n-type semiconductor thermoelectric conversion material) In this case, it is said that a thermoelectric power generation material showing the Seebeck coefficient becomes negative) is obtained.

特許文献2では、熱発電に使用する熱電素子を作製するための半導体セラミック組成物に関し、酸化亜鉛超微粒子を母材とした高温用n型熱電素子組成物Zn1-X-YXYO(但し、Aは13族の典型金属、Bはランタンまたはニッケル、Xは0.005≦X<0.05、Yは0.005≦Y<0.03)が開示されている。ゼーベック効果を利用した発電に利用する熱電素子の性能は、無次元性能指数が大きいほど高くなるので、ゼーベック係数と電気伝導率が大きく、熱伝導率が小さいものほど優れていると言える。これら無次元性能指数の因子のうち熱伝導率を下げるため、母材に高温での使用が可能な平均粒径が200nm以下の酸化亜鉛超微粒子を用いている。不純物として13族典型金属化合物を加えた系に、さらに副添加物としてランタン化合物またはニッケル化合物を添加することで、大きな出力因子を持つ高温用n型熱電素子組成物が得られるとされている。 Patent Document 2 relates to a semiconductor ceramic composition for producing a thermoelectric element for use in thermoelectric power generation, a high-temperature n-type thermoelectric element composition Zn 1-XY A X B Y O (based on ultrafine zinc oxide particles). However, A is a typical group 13 metal, B is lanthanum or nickel, X is 0.005 ≦ X <0.05, and Y is 0.005 ≦ Y <0.03). The performance of a thermoelectric element used for power generation using the Seebeck effect increases as the dimensionless figure of merit increases, so it can be said that the higher the Seebeck coefficient and electrical conductivity, the lower the thermal conductivity, the better. Among these dimensionless figure of merit factors, zinc oxide ultrafine particles having an average particle size of 200 nm or less that can be used at high temperatures are used for the base material in order to lower the thermal conductivity. It is said that a high-temperature n-type thermoelectric element composition having a large output factor can be obtained by adding a lanthanum compound or a nickel compound as a secondary additive to a system in which a group 13 typical metal compound is added as an impurity.

また、母材として微粒子を用いる以外に、粒界に異相を析出させることによってフォノン散乱を増加させる方法もある。
特開平8−186293号公報 特開2001−284661号公報
In addition to using fine particles as a base material, there is a method of increasing phonon scattering by precipitating a heterogeneous phase at the grain boundary.
JP-A-8-186293 JP 2001-284661 A

そもそも酸化亜鉛系複合酸化物からなる熱電変換材料は、熱伝導率が高く、熱電半導体の無次元性能指数が小さくなるという問題があった。   In the first place, a thermoelectric conversion material made of a zinc oxide-based composite oxide has a problem that the thermal conductivity is high and the dimensionless figure of merit of the thermoelectric semiconductor is small.

特許文献1に記載の熱発電材料では、ゼーベック係数および導電率を向上させて出力因子を高めることが述べられているが、熱伝導率を低減させるものではなかった。   In the thermoelectric power generation material described in Patent Document 1, it is described that the Seebeck coefficient and the electrical conductivity are improved to increase the output factor, but the thermal conductivity is not reduced.

他方、特許文献2に記載の高温用n型熱電素子組成物は、酸化亜鉛の超微粒子を用いて、結晶粒界面を増加させることにより、フォノン散乱を増加させて熱伝導率を下げることが述べられている。しかしながら、特許文献2では熱伝導率の測定結果が示されておらず、他の因子を参照してもゼーベック係数の絶対値がせいぜい100〜150μV/Kであり、無次元性能指数が十分向上しているとは言えない。   On the other hand, the high-temperature n-type thermoelectric element composition described in Patent Document 2 uses an ultrafine zinc oxide particle to increase the crystal grain interface, thereby increasing phonon scattering and reducing thermal conductivity. It has been. However, Patent Document 2 does not show the measurement result of thermal conductivity, and even if other factors are referred to, the absolute value of the Seebeck coefficient is 100 to 150 μV / K at most, and the dimensionless figure of merit is sufficiently improved. I can't say that.

本発明の目的は、上記の従来技術の欠点を解消し、抵抗率(導電率の逆数)を十分低下させた状態を維持したまま、熱伝導率を低減することにより無次元性能指数の高い熱電変換材料を提供することにある。   The object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and reduce the thermal conductivity while maintaining a sufficiently reduced resistivity (reciprocal of conductivity), thereby reducing the thermoelectricity having a high dimensionless figure of merit. It is to provide a conversion material.

本発明に係るn型熱電変換材料は、組成式(Zn 1-x-y Al x Fe y )Oで表される熱電変換材料であって、x=0.020〜0.040、y=0.005〜0.015であり、890℃での無次元性能指数が0.09以上であることを特徴とする。 The n-type thermoelectric conversion material according to the present invention is a thermoelectric conversion material represented by a composition formula (Zn 1 -xy Al x Fe y ) O, where x = 0.020 to 0.040, y = 0.005. The dimensionless figure of merit at 890 ° C. is 0.09 or more.

本発明に係る熱電変換素子は、上記n型熱電変換材料を含むn型半導体素子と、p型半導体素子と、n型半導体素子の一端およびp型半導体の一端が接続される共通電極と、n型半導体の他端およびp型半導体の他端にそれぞれ独立して接続される電極とを含むことを特徴とする。   A thermoelectric conversion element according to the present invention includes an n-type semiconductor element containing the n-type thermoelectric conversion material, a p-type semiconductor element, a common electrode to which one end of the n-type semiconductor element and one end of the p-type semiconductor are connected, and n And an electrode independently connected to the other end of the p-type semiconductor and the other end of the p-type semiconductor.

本発明の熱電変換材料は、ZnOのZnサイトにAlを固溶させ抵抗率を低減し、ZnサイトにさらにFeを固溶させることによりフォノン散乱を増加させ、格子熱伝導率を低減できる。これにより無次元性能指数を向上させることができる。   In the thermoelectric conversion material of the present invention, Al is dissolved in Zn sites of ZnO to reduce resistivity, and Fe is further dissolved in Zn sites to increase phonon scattering, thereby reducing lattice thermal conductivity. Thereby, the dimensionless figure of merit can be improved.

またこの熱電変換材料を用いてn型半導体素子を構成することにより、効率的に熱電発電を行える熱電変換素子が得られる。   Moreover, the thermoelectric conversion element which can perform a thermoelectric power generation efficiently is obtained by comprising an n-type semiconductor element using this thermoelectric conversion material.

以下、実施例に基づき本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described based on examples.

まず、(Zn1-x-yAlxFey)Oの出発原料として、平均粒径280nmのZnO粉末、α−Fe23粉末、及びコロイド状のγ−Al23を準備し、表1に示すZn,AlおよびFeの含有量が得られるように各出発原料を秤量、調合し調合材料を得た。 First, ZnO powder having an average particle size of 280 nm, α-Fe 2 O 3 powder, and colloidal γ-Al 2 O 3 were prepared as starting materials for (Zn 1 -xy Al x Fe y ) O. Each starting material was weighed and prepared so that the contents of Zn, Al, and Fe shown in FIG.

調合材料を純水溶媒に投入し、16時間ボールミルで粉砕、湿式混合を行い、蒸発乾燥させ混合粉末を得た。混合粉末をプレス機で予備成形を行い、更に250MPaの等方静水圧プレスで成形を行い成形体を得た。成形体を大気中1400℃で1時間焼成し、n型半導体素子の焼結体を得た。   The blended material was put into a pure water solvent, pulverized with a ball mill for 16 hours, wet mixed, and evaporated to dryness to obtain a mixed powder. The mixed powder was preformed with a press and further molded with an isostatic hydrostatic press of 250 MPa to obtain a molded body. The molded body was fired at 1400 ° C. for 1 hour in the air to obtain a sintered body of an n-type semiconductor element.

熱電変換素子は、このn型半導体素子をp型半導体素子に組み合わせて構成される。n型半導体素子の一端に、p型半導体素子の一端に共通電極が接続される。一方、n型半導体素子の他端、p型半導体素子の他端にはそれぞれ独立した電極が接続される。このような熱電変換素子は共通電極を加熱するか、n型半導体素子およびp型半導体素子の他端の独立した電極を冷却すると、電極間で、熱励起されたキャリアによってp型半導体素子がn型半導体素子よりも高電位になる。そしてn型半導体素子の他端の電極と、p型半導体素子の他端の電極間に負荷が接続されていると、p型半導体素子からn型半導体素子に電流が流れる。   The thermoelectric conversion element is configured by combining this n-type semiconductor element with a p-type semiconductor element. A common electrode is connected to one end of the n-type semiconductor element and one end of the p-type semiconductor element. On the other hand, independent electrodes are connected to the other end of the n-type semiconductor element and the other end of the p-type semiconductor element, respectively. In such a thermoelectric conversion element, when the common electrode is heated or the independent electrode at the other end of the n-type semiconductor element and the p-type semiconductor element is cooled, the p-type semiconductor element becomes n by the thermally excited carriers between the electrodes. The potential is higher than that of the type semiconductor element. When a load is connected between the electrode at the other end of the n-type semiconductor element and the electrode at the other end of the p-type semiconductor element, a current flows from the p-type semiconductor element to the n-type semiconductor element.

[評価方法]
上記(Zn1-x-yAlxFey)Oの熱電材料からなるn型半導体素子について抵抗率、ゼーベック係数、熱伝導率を所定の温度で測定した。
[Evaluation methods]
The resistivity, Seebeck coefficient, and thermal conductivity of the n-type semiconductor element made of the thermoelectric material (Zn 1-xy Al x Fe y ) O were measured at a predetermined temperature.

試料寸法を縦3mm×横3mm×長さ12mmとし、試料の両端部からそれぞれ2.5mmのところに(温度、電圧測定の端子間距離は7mm)、温度測定のためのR熱電対を配置し、そのR熱電対のうちのマイナス側(Pt線)を電圧の測定に利用し、R熱電対を温度、電圧測定に共用した。そして試料の両端部には通電のためのPt電極を配置した。試料を100℃〜890℃に設定した温度槽内に設置し、オザワ科学株式会社の熱電特性測定装置RZ2001i−DMで各測定温度にて直流四端子法により定電流を−5.0A〜+5.0Aまで2.5Aのステップで流し、電圧を測定し、次式に従い抵抗率を算出した。ρ=(V/I)×(ab/c)(ρ:抵抗率、V:電圧、I:電流、a:縦、b:横、c:端子間距離)。   The sample size is 3mm in length x 3mm in width x 12mm in length, and R thermocouple for temperature measurement is placed at 2.5mm from both ends of the sample (distance between terminals for temperature and voltage measurement is 7mm). The negative side (Pt line) of the R thermocouple was used for voltage measurement, and the R thermocouple was shared for temperature and voltage measurement. And the Pt electrode for electricity supply was arrange | positioned at the both ends of the sample. The sample was placed in a temperature bath set at 100 ° C. to 890 ° C., and a constant current of −5.0 A to +5. By the direct current four-terminal method at each measurement temperature with a thermoelectric property measuring apparatus RZ2001i-DM of Ozawa Scientific Co., Ltd. The voltage was measured in steps of 2.5 A up to 0 A, and the resistivity was calculated according to the following formula. ρ = (V / I) × (ab / c) (ρ: resistivity, V: voltage, I: current, a: length, b: width, c: distance between terminals).

上記と同じ試料を同じ測定装置にてゼーベック係数を測定した。試料を100℃〜890℃に設定した温度槽内に設置し、試料に高温部と低温部に0〜5℃の差が得られるよう、試料一部を冷却した。高温部と低温部の温度をR熱電対(Pt−Rh)で測定し、その間の起電力をR熱電対のPt線で測定した。S=V/(Th−Tl)よりゼーベック係数を算出した(S:ゼーベック係数、V:電圧、Th:高温部温度、Tl:低温部温度)。   The Seebeck coefficient of the same sample as above was measured with the same measuring device. The sample was placed in a temperature bath set to 100 ° C. to 890 ° C., and a part of the sample was cooled so that a difference of 0 to 5 ° C. was obtained between the high temperature part and the low temperature part. The temperature of the high temperature part and the low temperature part was measured with an R thermocouple (Pt-Rh), and the electromotive force therebetween was measured with the Pt line of the R thermocouple. The Seebeck coefficient was calculated from S = V / (Th−Tl) (S: Seebeck coefficient, V: voltage, Th: high temperature part temperature, Tl: low temperature part temperature).

熱伝導率は、アルバック理工株式会社のレーザフラッシュ法熱定数測定装置TC7000でNdガラスレーザ、R熱電対(Pt−PtRh)を使用し測定した。直径φ8mm×厚み2mmの試料を100℃〜890℃に設定した温度槽内に設置し、比熱、熱拡散率を測定した。κ=α・Cp・dより熱伝導率を算出した(κ:熱伝導率、α:熱拡散率、Cp:比熱、d:密度)。   The thermal conductivity was measured using an Nd glass laser and an R thermocouple (Pt-PtRh) with a laser flash method thermal constant measuring device TC7000 manufactured by ULVAC-RIKO. A sample having a diameter of 8 mm and a thickness of 2 mm was placed in a temperature bath set at 100 ° C. to 890 ° C., and specific heat and thermal diffusivity were measured. Thermal conductivity was calculated from κ = α · Cp · d (κ: thermal conductivity, α: thermal diffusivity, Cp: specific heat, d: density).

出力因子は、測定したゼーベック係数、抵抗率からP=S2/ρより求めた(P:出力因子、S:ゼーベック係数、ρ:抵抗率)。 The output factor was calculated from the measured Seebeck coefficient and resistivity by P = S 2 / ρ (P: output factor, S: Seebeck coefficient, ρ: resistivity).

無次元性能指数は測定したゼーベック係数、抵抗率、熱伝導率、温度からZT=(S2T)/(ρκ)より求めた(ZT:無次元性能指数、S:ゼーベック係数、T:絶対温度、ρ:抵抗率、κ:熱伝導率)。 The dimensionless figure of merit was calculated from the measured Seebeck coefficient, resistivity, thermal conductivity and temperature from ZT = (S 2 T) / (ρκ) (ZT: dimensionless figure of merit, S: Seebeck coefficient, T: absolute temperature) , Ρ: resistivity, κ: thermal conductivity).

[結果]
作製した試料の抵抗率、ゼーベック係数、熱伝導率、出力因子、無次元性能指数の温度特性をそれぞれ表1及び図1〜5に示す。表1は作製試料の890℃での熱電特性を示している。
[result]
Table 1 and FIGS. 1 to 5 show the temperature characteristics of the resistivity, Seebeck coefficient, thermal conductivity, output factor, and dimensionless figure of merit of the prepared samples, respectively. Table 1 shows the thermoelectric characteristics of the manufactured sample at 890 ° C.

表1より比較例の試料番号9、16は(Zn 1-x-y Al x Fe y )Oの熱電変換素子でFeを含まない。熱伝導率は7W/Kmより大きく、無次元性能指数は0.08より小さい。これに対してZnサイトをFeで置換した試料番号12、13、18は熱伝導率が7W/Km以下と低下しており、無次元性能指数0.09以上と大きくなっている。これらの試料番号12,13,18はFeを添加していない試料番号9,16と比べ、熱伝導率が低下し、抵抗率が低く抑えられていることにより、無次元性能指数が大きくなっている。

From Table 1, the sample numbers 9 and 16 of the comparative examples are (Zn 1 -xy Al x Fe y ) O thermoelectric conversion elements and do not contain Fe. The thermal conductivity is greater than 7 W / Km and the dimensionless figure of merit is less than 0.08. In contrast, Sample Nos. 12, 13, and 18 in which the Zn sites were replaced with Fe had a thermal conductivity of 7 W / Km or less, and a dimensionless figure of merit of 0.09 or more. These sample numbers 12, 13, and 18 have a lower dimensionless figure of merit due to lower thermal conductivity and lower resistivity compared to sample numbers 9 and 16 to which no Fe is added. Yes.

図1はZnOのZnサイトにAlを0.020mol置換し、Feを添加しない試料と、Feを0.005mol〜0.015mol置換した試料の温度と抵抗率の関係を示す。ZnサイトにAlのみを置換した試料は低温側においては抵抗率が低いが、高温になるにつれて抵抗率が上がる。これに対して、ZnサイトにAlおよびFeを置換した試料は、温度が上がるにつれて、抵抗率が下がる傾向を示している。   FIG. 1 shows the relationship between the temperature and resistivity of a sample in which 0.020 mol of Al is substituted at the Zn site of ZnO and Fe is not added, and a sample in which Fe is substituted by 0.005 mol to 0.015 mol. A sample in which only Al is substituted at the Zn site has a low resistivity on the low temperature side, but the resistivity increases as the temperature increases. On the other hand, the sample in which Al and Fe are substituted at the Zn site shows a tendency that the resistivity decreases as the temperature increases.

また、図6は図1と同じ試料についての粉末X線回折図(XRD分析)を示す。ZnOと(Zn、Fe)Al24のピークが確認できた。(Zn、Fe)Al24のピークはFeの置換量が増加するにつれてFeAl24のピークに近づき、異相の強度が弱くなった。Feで置換した試料の抵抗率が下がる傾向と、Feの置換により回折ピークがFeAl24へシフトする傾向よりZnサイトに一部Feが固溶し、ドナーとして作用していると推定される。 FIG. 6 shows a powder X-ray diffraction diagram (XRD analysis) of the same sample as FIG. The peaks of ZnO and (Zn, Fe) Al 2 O 4 were confirmed. The peak of (Zn, Fe) Al 2 O 4 approached the peak of FeAl 2 O 4 as the amount of substitution of Fe increased, and the strength of the different phase became weaker. From the tendency of the resistivity of the sample substituted with Fe to decrease and the tendency of the diffraction peak to shift to FeAl 2 O 4 due to the substitution of Fe, it is estimated that a part of Fe is dissolved in Zn sites and acts as a donor .

図2は図1と同じ試料について温度とゼーベック係数の関係を示す。   FIG. 2 shows the relationship between temperature and Seebeck coefficient for the same sample as FIG.

ZnサイトにAlのみを置換した試料は低温側から高温側に渡ってゼーベック係数は余り変化せず、低い値にとどまっている。これに対して、ZnサイトにAlおよびFeを置換した試料は、低温側から高温側に渡ってゼーベック係数が高い値を示し、Feの置換によりゼーベック係数が大きくなっていることが窺える。   In the sample in which only the Al is substituted at the Zn site, the Seebeck coefficient does not change much from the low temperature side to the high temperature side, and remains at a low value. On the other hand, the sample in which Al and Fe are substituted at the Zn site shows a high Seebeck coefficient from the low temperature side to the high temperature side, and it can be seen that the Seebeck coefficient is increased by the substitution of Fe.

図3は図1と同じ試料について絶対温度の逆数と、熱伝導率との関係を示す。   FIG. 3 shows the relationship between the reciprocal absolute temperature and the thermal conductivity for the same sample as FIG.

ZnサイトにAlおよびFeを置換した試料は、ZnサイトにAlのみを置換した試料に比べて熱電伝導率が低温側から高温側に渡り低くなっている。   The sample in which Al and Fe are substituted at the Zn site has a lower thermal conductivity from the low temperature side to the high temperature side than the sample in which only Al is substituted at the Zn site.

図4は図1と同じ試料について温度と出力因子の関係を示す。   FIG. 4 shows the relationship between temperature and output factor for the same sample as FIG.

ZnサイトにAlおよびFeを置換した試料は、ZnサイトにAlのみを置換した試料と比べ、必ずしも出力因子が大きくなっているとは言えないが、高温側ではFeで置換した試料が高い出力因子を示す傾向にある。   The sample in which Al and Fe are substituted at the Zn site does not necessarily have a larger output factor than the sample in which only Al is substituted at the Zn site. Tend to show.

図5は図1と同じ試料について温度と無次元性能指数の関係を示す。   FIG. 5 shows the relationship between temperature and dimensionless figure of merit for the same sample as FIG.

ZnサイトにAlおよびFeを置換した試料は、全温度域に渡って、ZnサイトにAlのみを置換した試料と比べて無次元性能指数が大きくなっている。無次元性能指数は、ゼーベック係数、抵抗率、熱伝導率から算出される値だが、上記図1〜図3より、Feの添加によりゼーベック係数が大きくなり、抵抗率が低く抑えられ、熱伝導率が低くなっていることから無次元性能指数が大きくなっていることが分かる。   A sample in which Al and Fe are substituted at the Zn site has a dimensionless figure of merit over the entire temperature range as compared with a sample in which only Al is substituted at the Zn site. The dimensionless figure of merit is a value calculated from the Seebeck coefficient, resistivity, and thermal conductivity. From FIGS. 1 to 3, the addition of Fe increases the Seebeck coefficient and keeps the resistivity low. It can be seen that the dimensionless figure of merit has increased because of the lower.

この結果が得られたことについて考察する。熱伝導率κは電子熱伝導率κel、格子熱伝導率κphとすると、κ=κel+κphで表され、電子熱伝導率はキャリア濃度の低下により低減することができるが、キャリア濃度の低下により抵抗率が増加するため望ましくない。一方、格子熱伝導率はキャリア濃度への依存が少ないため、格子熱伝導率の低減させることが望ましい。   Consider that this result was obtained. The thermal conductivity κ is expressed as κ = κel + κph where the electronic thermal conductivity κel and the lattice thermal conductivity κph, and the electronic thermal conductivity can be reduced by decreasing the carrier concentration, but the resistivity is reduced by decreasing the carrier concentration. Is undesirable because of an increase in On the other hand, since the lattice thermal conductivity is less dependent on the carrier concentration, it is desirable to reduce the lattice thermal conductivity.

異相(Zn,Fe)Al24が結晶粒界面に析出していることは、フォノン散乱を増加させ格子熱伝導率を低減させることに寄与していると思われる。しかしながら、実験結果からFeがZnサイトへ固溶していることは明らかであり、Feの固溶がもたらす結晶のひずみによるフォノン散乱の増加が格子熱伝導率の低減の主要因であると考えられる。Feの固溶は異相の析出と異なり、ゼーベック係数にも影響し、Feが適量固溶した場合に無次元性能指数が大きくなるのは熱伝導率の低下だけでなく複数の要因によるものである。 Precipitation of heterogeneous phase (Zn, Fe) Al 2 O 4 at the crystal grain interface seems to contribute to increase phonon scattering and decrease lattice thermal conductivity. However, it is clear from the experimental results that Fe is dissolved in the Zn site, and it is considered that the increase in phonon scattering due to crystal distortion caused by the solid solution of Fe is the main factor for reducing the lattice thermal conductivity. . Unlike solid phase precipitation, Fe solid solution also affects the Seebeck coefficient, and when a proper amount of Fe is dissolved, the dimensionless figure of merit increases due to multiple factors as well as a decrease in thermal conductivity. .

本発明のn型熱電変換材料の抵抗率の温度特性を示す図である。It is a figure which shows the temperature characteristic of the resistivity of the n-type thermoelectric conversion material of this invention. 本発明のn型熱電変換材料のゼーベック係数の温度特性を示す図である。It is a figure which shows the temperature characteristic of the Seebeck coefficient of the n-type thermoelectric conversion material of this invention. 縦軸を熱伝導率とし、横軸を絶対温度の逆数として、本発明のn型熱電変換材料の熱伝導率の温度特性を示す図である。It is a figure which shows the temperature characteristic of the thermal conductivity of the n-type thermoelectric conversion material of this invention by making a vertical axis | shaft into thermal conductivity and making a horizontal axis into the reciprocal number of absolute temperature. 本発明のn型熱電変換材料の出力因子の温度特性を示す図である。It is a figure which shows the temperature characteristic of the output factor of the n-type thermoelectric conversion material of this invention. 本発明のn型熱電変換材料の無次元性能指数の温度特性を示す図である。It is a figure which shows the temperature characteristic of the dimensionless figure of merit of the n-type thermoelectric conversion material of the present invention. 本発明のn型熱電変換材料の粉末X線回折図である。It is a powder X-ray diffraction pattern of the n-type thermoelectric conversion material of the present invention.

Claims (2)

組成式(ZnComposition formula (Zn 1-x-y1-x-y AlAl xx FeFe yy )Oで表される熱電変換材料であって、) A thermoelectric conversion material represented by O,
x=0.020〜0.040、y=0.005〜0.015であり、x = 0.020-0.040, y = 0.005-0.015,
890℃での無次元性能指数が0.09以上であることを特徴とするn型熱電変換材料。An n-type thermoelectric conversion material having a dimensionless figure of merit at 890 ° C. of 0.09 or more.
請求項1に記載のn型熱電変換材料を含むn型半導体素子と、
p型半導体素子と、
前記n型半導体素子の一端および前記p型半導体の一端が接続される共通電極と、
前記n型半導体の他端および前記p型半導体の他端にそれぞれ独立して接続される電極と、
を含むことを特徴とする熱電変換素子。
An n-type semiconductor element comprising the n-type thermoelectric conversion material according to claim 1 ;
a p-type semiconductor element;
A common electrode to which one end of the n-type semiconductor element and one end of the p-type semiconductor are connected;
An electrode independently connected to the other end of the n-type semiconductor and the other end of the p-type semiconductor;
The thermoelectric conversion element characterized by including.
JP2005240442A 2005-08-22 2005-08-22 N-type thermoelectric conversion material and thermoelectric conversion element Expired - Fee Related JP4380606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005240442A JP4380606B2 (en) 2005-08-22 2005-08-22 N-type thermoelectric conversion material and thermoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005240442A JP4380606B2 (en) 2005-08-22 2005-08-22 N-type thermoelectric conversion material and thermoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2007059491A JP2007059491A (en) 2007-03-08
JP4380606B2 true JP4380606B2 (en) 2009-12-09

Family

ID=37922739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005240442A Expired - Fee Related JP4380606B2 (en) 2005-08-22 2005-08-22 N-type thermoelectric conversion material and thermoelectric conversion element

Country Status (1)

Country Link
JP (1) JP4380606B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5095517B2 (en) * 2008-06-19 2012-12-12 独立行政法人科学技術振興機構 Aluminum-containing zinc oxide n-type thermoelectric conversion material
JP4661948B2 (en) * 2008-11-20 2011-03-30 ソニー株式会社 Zinc oxide-based sputtering target and method for producing the same, zinc oxide-based transparent conductive film, method for producing the same and electronic equipment
JP2014225655A (en) * 2013-04-25 2014-12-04 中部電力株式会社 Thermoelectric conversion material

Also Published As

Publication number Publication date
JP2007059491A (en) 2007-03-08

Similar Documents

Publication Publication Date Title
Lin et al. Thermoelectric power generation from lanthanum strontium titanium oxide at room temperature through the addition of graphene
JP2005116746A (en) Thermoelectric conversion material and thermoelectric convertor
JP2004356607A (en) Thermoelectric conversion material and thermoelectric transducer
JP4762083B2 (en) Thermoelectric conversion material and thermoelectric conversion module using the same
He et al. Thermoelectric properties of La1− xAxCoO3 (A= Pb, Na)
EP4099411A1 (en) Thermoelectric conversion module
Yasukawa et al. Thermoelectric properties and figure of merit of perovskite-type Ba1− xLaxSnO3 with x= 0.002–0.008
JP3727945B2 (en) Thermoelectric conversion material and production method thereof
Mohammed et al. A review of thermoelectric ZnO nanostructured ceramics for energy recovery
JP4380606B2 (en) N-type thermoelectric conversion material and thermoelectric conversion element
Park et al. Influence of SnO2 addition on the thermoelectric properties of Zn1− xSnxO (0.01≤ x≤ 0.05)
JP2003197985A (en) Thermoelectric conversion material and thermoelectric conversion element using the same
EP2894681B1 (en) METAL MATERIAL HAVING n-TYPE THERMOELECTRIC CONVERSION PERFORMANCE
JP6617840B2 (en) P-type thermoelectric conversion material, thermoelectric conversion module, and method for producing p-type thermoelectric conversion material
Singsoog et al. Effecting the thermoelectric properties of p-MnSi1. 75 and n-Mg1. 98Ag0. 02Si module on power generation
KR102269404B1 (en) Selenium content increased thermal element
JP2007173799A (en) Thermoelectric conversion material and thermoelectric conversion element
JP2004186572A (en) Thermoelectric transduction material and thermoelectric transducer
Zheng et al. Improving the thermoelectric properties of Sr 0.9 La 0.1 TiO 3 by Ag addition
JP5877274B2 (en) Thermoelectric conversion material
JP2002118296A (en) N-type thermoelectric conversion element for high temperature having high electric conductivity, and thermoelectric conversion module using it
JP2008227321A (en) Thermoelectric conversion material and thermoelectric conversion module using the same
Gharleghi et al. Enhanced thermoelectric properties of hydrothermally synthesized Bi 0.88− x Zn x Sb 0.12 nanoalloys below the semiconductor–semimetal transition temperature
JP3544922B2 (en) N-type thermoelectric conversion material and thermoelectric conversion device using the same
Wu et al. Preparation and Transport Properties of Li‐Doped NiO and (Li+ Ca)‐Doped NiO Oxides

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4380606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees