JP5263063B2 - Method for producing indium oxide-based or zinc oxide-based sintered tablet for vacuum deposition - Google Patents

Method for producing indium oxide-based or zinc oxide-based sintered tablet for vacuum deposition Download PDF

Info

Publication number
JP5263063B2
JP5263063B2 JP2009176758A JP2009176758A JP5263063B2 JP 5263063 B2 JP5263063 B2 JP 5263063B2 JP 2009176758 A JP2009176758 A JP 2009176758A JP 2009176758 A JP2009176758 A JP 2009176758A JP 5263063 B2 JP5263063 B2 JP 5263063B2
Authority
JP
Japan
Prior art keywords
powder
molded body
density
mpa
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009176758A
Other languages
Japanese (ja)
Other versions
JP2011032102A (en
Inventor
久貴 矢田
泰行 前野
健太郎 曽我部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2009176758A priority Critical patent/JP5263063B2/en
Publication of JP2011032102A publication Critical patent/JP2011032102A/en
Application granted granted Critical
Publication of JP5263063B2 publication Critical patent/JP5263063B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、太陽電池や液晶表面素子等に用いられる低抵抗の酸化物透明導電膜を、電子ビーム蒸着法やイオンプレーティング法等の真空蒸着法で製造する際に原料として使用される真空蒸着用タブレットに係り、特に、歩留まりよく安定して量産が可能な酸化インジウム系若しくは酸化亜鉛系焼結体タブレットの製造方法に関するものである。 The present invention is a vacuum deposition used as a raw material when manufacturing a low resistance oxide transparent conductive film used for solar cells, liquid crystal surface elements, etc., by a vacuum deposition method such as an electron beam deposition method or an ion plating method. In particular, the present invention relates to a method for producing an indium oxide-based or zinc oxide-based sintered tablet that can be stably mass-produced with a high yield.

酸化物透明導電膜は、高い導電性と可視光領域での高い透過率を有する。このため、酸化物透明導電膜は、上記太陽電池や液晶表示素子、その他各種受光素子の電極等に利用されているばかりでなく、近赤外線領域の波長での反射吸収特性を生かして、自動車や建築物の窓ガラス等に用いる熱線反射膜や、各種の帯電防止膜、冷凍ショーケース等の防曇用の透明発熱体としても利用されている。   The oxide transparent conductive film has high conductivity and high transmittance in the visible light region. For this reason, the oxide transparent conductive film is used not only for the electrodes of the above-mentioned solar cells, liquid crystal display elements, and other various light receiving elements, but also by utilizing reflection and absorption characteristics at wavelengths in the near infrared region, It is also used as a heat-reflective film for window glass of buildings, various antistatic films, and a transparent heating element for anti-fogging such as a freezer showcase.

そして、この種の酸化物透明導電膜としては、アンチモンやフッ素をドーパントとして含む酸化錫(SnO)、アルミニウムやガリウムをドーパントとして含む酸化亜鉛(ZnO)、錫をドーパントとして含む酸化インジウム(In)等が広範に利用されている。特に、錫をドーパントとして含む酸化インジウム膜すなわちIn−Sn系膜は、ITO(Indium Tin Oxide)膜と称され、特に低抵抗の酸化物透明導電膜が容易に得られることから、これまでよく用いられてきた。 As this kind of oxide transparent conductive film, tin oxide (SnO 2 ) containing antimony or fluorine as a dopant, zinc oxide (ZnO) containing aluminum or gallium as a dopant, indium oxide containing tin as a dopant (In 2) O 3 ) is widely used. In particular, an indium oxide film containing tin as a dopant, that is, an In 2 O 3 —Sn-based film is referred to as an ITO (Indium Tin Oxide) film, and a low-resistance oxide transparent conductive film can be easily obtained. Until now.

ところで、これ等酸化物透明導電膜の製造方法としては、真空蒸着法、スパッタリング法、透明導電層形成用塗液を塗布する方法等がよく用いられており、電子ビーム蒸着法、イオンプレーティング法、高密度プラズマアシスト蒸着法等の各種真空蒸着法によりITOのような酸化物透明導電膜を堆積させる場合には、原料である蒸発源にITOの焼結体(ITOタブレットあるいはITOペレットとも呼ぶ)を用いている。   By the way, as a manufacturing method of these oxide transparent conductive films, a vacuum evaporation method, a sputtering method, a method of applying a coating liquid for forming a transparent conductive layer, and the like are often used. An electron beam evaporation method, an ion plating method, etc. In the case of depositing an oxide transparent conductive film such as ITO by various vacuum deposition methods such as high-density plasma assist deposition method, an ITO sintered body (also referred to as an ITO tablet or ITO pellet) is used as a raw material evaporation source. Is used.

また、上記真空蒸着法に用いら酸化物焼結体から成るタブレット(以下、焼結体タブレットと略称する)は、局所的に加熱されると熱衝撃に伴う熱応力により割れが発生するため、割れ防止のために相対密度を意図的に抑制したものが一般的に使用されており、このような焼結体タブレットの製造方法として、以下に述べる方法が提案されている。尚、上記「相対密度」とは、焼結体タブレットの出発原料である原料粉の真密度から求めた理論密度(計算真密度とも呼ぶ)に対する焼結体タブレットの密度(焼結体密度あるいは焼結密度とも呼ぶ)の比率(%)のことで、(上記焼結体密度/理論密度)×100=焼結体タブレットの相対密度(%)という式により求められる値である。 Further, the vacuum deposition method it used Re tablet made of an oxide sintered body (hereinafter, abbreviated as sintered tablet), since the cracks are once locally heated by the thermal stress caused by thermal shock In order to prevent cracking, those in which the relative density is intentionally suppressed are generally used, and the following method has been proposed as a method for producing such a sintered body tablet. The above-mentioned “relative density” means the density of the sintered body tablet (sintered body density or sintered density) relative to the theoretical density (also called calculated true density) obtained from the true density of the raw material powder that is the starting material of the sintered body tablet. The ratio (%) (also referred to as “consolidation density”), which is a value obtained by the formula (sintered body density / theoretical density) × 100 = relative density (%) of the sintered body tablet.

そして、特許文献1(特開2000−160325号公報)には、7.0g/cm以上の密度に焼結されたITO焼結体を粉砕して原料粉末とし、この原料粉末を加圧成形後に再度焼結させることにより、相対密度(焼結密度)が抑制されたITOタブレットを得る方法が開示されている。 And in patent document 1 (Unexamined-Japanese-Patent No. 2000-160325), the ITO sintered compact sintered to the density of 7.0 g / cm < 3 > or more is grind | pulverized to make raw material powder, and this raw material powder is press-molded. A method for obtaining an ITO tablet in which the relative density (sintered density) is suppressed by sintering again later is disclosed.

また、特許文献2(特開2006−117462号公報)や特許文献3(特開2007−56351号公報)には、仮焼した原料粉末と未仮焼の原料粉末とを混合した混合粉末を用いることにより、相対密度(焼結密度)が抑制されたガリウムドープの酸化亜鉛(GZO)焼結体を製造する方法が開示されている。   Further, in Patent Document 2 (Japanese Patent Laid-Open No. 2006-117462) and Patent Document 3 (Japanese Patent Laid-Open No. 2007-56351), a mixed powder obtained by mixing a calcined raw material powder and an uncalcined raw material powder is used. Thus, a method for producing a gallium-doped zinc oxide (GZO) sintered body with a suppressed relative density (sintered density) is disclosed.

更に、特許文献4(特開2006−347807号公報)には、タングステンをドープした酸化インジウム(IWO)焼結体を製造するに際し、タングステンの添加量を調整した原料粉末を用いることにより、常圧焼結法で相対密度(焼結密度)が抑制されたIWO焼結体を製造する方法が開示されている。   Further, in Patent Document 4 (Japanese Patent Laid-Open No. 2006-347807), when producing a tungsten-doped indium oxide (IWO) sintered body, a raw material powder with an adjusted amount of tungsten added is used, so that atmospheric pressure is used. A method for producing an IWO sintered body in which the relative density (sintering density) is suppressed by a sintering method is disclosed.

特開2000−160325号公報JP 2000-160325 A 特開2006−117462号公報JP 2006-117462 A 特開2007−56351号公報JP 2007-56351 A 特開2006−347807号公報JP 2006-347807 A

ところで、上述した焼結体タブレットの製造方法において、成形体用粉末を機械プレス法等により加圧成形して焼結前の成形体を製造する際、圧力条件が適正でないと成形体にクラックおよびチッピングが生じる問題が存在した。また、成形体の目視観察では合格であっても、成形体に生じていた微小欠陥が原因と思われる焼結後の割れが発生し、焼結体タブレットを歩留まりよく安定して製造できない問題が存在した。   By the way, in the manufacturing method of the sintered compact tablet mentioned above, when manufacturing the molded object before sintering by press-molding the powder for molded objects by a mechanical press method or the like, cracks and There was a problem of chipping. Moreover, even if the visual observation of the molded body is acceptable, cracks after sintering that may be caused by micro defects occurring in the molded body occur, and the sintered body tablet cannot be manufactured stably with high yield. Were present.

本発明はこのような問題点に着目してなされたもので、その課題とするところは、電子ビーム蒸着法、イオンプレーティング法、高密度プラズマアシスト蒸着法等の各種真空蒸着法に用いられる酸化インジウム系若しくは酸化亜鉛系焼結体タブレットを歩留まりよく安定して量産できる、真空蒸着用の酸化インジウム系若しくは酸化亜鉛系焼結体タブレットの製造方法を提供することにある。 The present invention has been made paying attention to such problems, and the problem is that oxidation is used in various vacuum deposition methods such as electron beam deposition, ion plating, and high-density plasma assisted deposition. An object of the present invention is to provide a method for producing an indium oxide-based or zinc oxide-based sintered tablet for vacuum deposition, which can stably mass-produce indium-based or zinc oxide-based sintered tablets with a high yield.

すなわち、請求項1に係る発明は、
原料粉を液体媒体に分散させてスラリーとしかつこのスラリーを噴霧乾燥して造粒粉を製造する第一工程と、得られた造粒粉を加圧して圧粉体を製造する第二工程と、得られた圧粉体を破砕して成形体用粉末を製造する第三工程と、得られた成形体用粉末を金型中で加圧成形して所定形状の成形体を製造する第四工程と、得られた成形体を焼成して相対密度が50%以上80%以下の真空蒸着用酸化インジウム系若しくは酸化亜鉛系焼結体タブレットを製造する方法において、
上記第二工程の造粒粉に対する単位面積当りの加圧条件を50MPa以上200MPa以下に設定して、第三工程で得られる成形体用粉末のタップ密度が理論密度の25%以上45%以下となるように調整し、かつ、第四工程においてタップ密度が理論密度の25%以上45%以下に調整された金型中での上記成形体用粉末に対する単位面積当りの加圧条件を50MPa以上200MPa以下に設定して所定形状の成形体を製造することを特徴とする。
That is, the invention according to claim 1
A first step of dispersing raw material powder in a liquid medium to form a slurry and spray-drying the slurry to produce granulated powder; a second step of pressing the obtained granulated powder to produce a green compact; A fourth step of crushing the obtained green compact to produce a powder for a molded body, and a fourth process for producing a molded body of a predetermined shape by pressure-molding the obtained powder for a molded body in a mold. In the process and the method of producing an indium oxide-based or zinc oxide-based sintered tablet for vacuum deposition having a relative density of 50% or more and 80% or less by firing the obtained molded body,
The pressing condition per unit area for the granulated powder in the second step is set to 50 MPa or more and 200 MPa or less, and the tap density of the powder for the molded body obtained in the third step is 25% or more and 45% or less of the theoretical density. The pressure condition per unit area for the powder for the molded body in the mold in which the tap density was adjusted to 25% to 45% of the theoretical density in the fourth step was adjusted to 50 MPa to 200 MPa. It is set as follows and the molded object of a predetermined shape is manufactured, It is characterized by the above-mentioned.

また、請求項に係る発明は、
請求項に記載の真空蒸着用酸化インジウム系若しくは酸化亜鉛系焼結体タブレットの製造方法において、
上記成形体用粉末の主成分が酸化亜鉛粉末であることを特徴とする
The invention according to claim 2
In the manufacturing method of the indium oxide type or zinc oxide type sintered compact tablet for vacuum evaporation according to claim 1 ,
Wherein the main component of the molded body powder is a zinc oxide powder.

請求項1〜2に係る真空蒸着用酸化インジウム系若しくは酸化亜鉛系焼結体タブレットの製造方法によれば、
第二工程の造粒粉に対する単位面積当りの加圧条件を50MPa以上200MPa以下に設定して第三工程で得られる成形体用粉末のタップ密度が理論密度の25%以上45%以下となるように調整し、かつ、第四工程においてタップ密度が理論密度の25%以上45%以下に調整された金型中での上記成形体用粉末に対する単位面積当りの加圧条件を50MPa以上200MPa以下に設定して所定形状の成形体を製造しているため、得られる成形体に不具合(クラックやチッピングの発生等)が起こり難いことから真空蒸着用酸化インジウム系若しくは酸化亜鉛系焼結体タブレットを歩留まりよく安定して量産することが可能となる。
According to the method for producing an indium oxide-based or zinc oxide-based sintered tablet for vacuum deposition according to claim 1 or 2 ,
The pressure density per unit area for the granulated powder in the second step is set to 50 MPa or more and 200 MPa or less so that the tap density of the powder for the molded body obtained in the third step is 25% or more and 45% or less of the theoretical density. And the pressing condition per unit area for the powder for the molded body in the mold in which the tap density is adjusted to 25% or more and 45% or less of the theoretical density in the fourth step is 50 MPa or more and 200 MPa or less. Since a molded body of a predetermined shape is set and manufactured, defects (cracking, chipping, etc.) are unlikely to occur in the resulting molded body, so the yield of indium oxide or zinc oxide based sintered tablets for vacuum deposition is high. It becomes possible to mass-produce well and stably.

図1(A)と(B)は焼結体タブレットの製造工程を示す説明図。FIGS. 1A and 1B are explanatory views showing a manufacturing process of a sintered body tablet.

以下、本発明の実施の形態について詳細に説明する。まず、図1(A)と(B)はそれぞれ焼結体タブレットの製造工程を示している。 Hereinafter, embodiments of the present invention will be described in detail. First, FIG. 1 (A) and (B) have each shown the manufacturing process of the sintered compact tablet.

すなわち、図1(A)は、原料粉を液体媒体に分散させてスラリーとしかつこのスラリーを噴霧乾燥して造粒粉を製造する第一工程と、得られた造粒粉を加圧して圧粉体を製造する第二工程と、得られた圧粉体を破砕して成形体用粉末を製造する第三工程と、得られた成形体用粉末を金型中で加圧成形して所定形状の成形体を製造する第四工程と、得られた成形体を焼成して焼結体タブレットを製造する工程を示し、また、図1(B)は、原料粉を液体媒体に分散させてスラリーとしかつこのスラリーを噴霧乾燥して造粒粉を製造する第一工程と、得られた造粒粉を仮焼して仮焼粉を製造する第二工程と、得られた仮焼粉と未仮焼の上記原料粉(未仮焼原料粉)を液体媒体に混合分散させてスラリーとしかつこのスラリーを噴霧乾燥して成形体用粉末(造粒粉)を製造する第三工程と、得られた成形体用粉末(造粒粉)を金型中で加圧成形して所定形状の成形体を製造する第四工程と、得られた成形体を焼成して焼結体タブレットを製造する工程を示している。 That is, FIG. 1 (A) shows a first step in which raw material powder is dispersed in a liquid medium to form a slurry and this slurry is spray-dried to produce granulated powder, and the obtained granulated powder is pressurized and pressed. A second step of producing a powder, a third step of crushing the obtained green compact to produce a powder for a molded body, and press molding the obtained powder for a molded body in a mold to give a predetermined FIG. 1 (B) shows a fourth step for producing a shaped molded body and a step for producing a sintered body tablet by firing the obtained molded body, and FIG. 1 (B) disperses raw material powder in a liquid medium. A first step of producing a granulated powder by spray-drying this slurry and spraying the slurry; a second step of calcining the obtained granulated powder to produce a calcined powder; and the obtained calcined powder; The above raw powder (unfired raw powder) is mixed and dispersed in a liquid medium to form a slurry, and this slurry is spray-dried and molded. A third step of producing a powder (granulated powder) for use, and a fourth step of producing a molded product of a predetermined shape by pressure-molding the obtained powder for molded product (granulated powder) in a mold, The process which bakes the obtained molded object and manufactures a sintered compact tablet is shown.

そして、図1(A)と(B)に示された工程により製造され、かつ、電子ビーム蒸着法、イオンプレーティング法、高密度プラズマアシスト蒸着法等の各種真空蒸着法に用いられる上記焼結体タブレットについては、焼結体密度(焼結密度とも呼ぶ)が、理論密度(計算真密度とも呼ぶ)に対し相対密度で50%以上80%以下であることが好ましい。ここで、上記焼結体密度(焼結密度)とは、製造された焼結体タブレットの質量、高さ、直径といった外形寸法の計測から計算された密度をいう。 And the above-mentioned sintering produced by the steps shown in FIGS. 1A and 1B and used for various vacuum deposition methods such as electron beam deposition, ion plating, and high density plasma assisted deposition. For the body tablet, the sintered body density (also referred to as sintered density) is preferably 50% or more and 80% or less relative to the theoretical density (also referred to as calculated true density). Here, the said sintered compact density (sintered density) means the density calculated from measurement of external dimensions, such as the mass of the manufactured sintered compact tablet, height, and a diameter.

そして、電子ビーム蒸着法、イオンプレーティング法、高密度プラズマアシスト蒸着法等の各種真空蒸着法においては、焼結体タブレット表面の一部分に電子ビームが照射され、局所的に加熱されて蒸発物が発生し成膜が行われる。このとき、焼結体タブレットの相対密度が50%未満であると、焼結体自体の強度が劣るため、僅かな局所的熱膨張に対してクラックや割れが起こり易くなる。反対に、焼結体タブレットの相対密度が80%を越えると、電子ビームの投入時に、上記焼結体タブレットの局部に発生した応力や歪みを吸収することができず、クラックが生じ易くなる。従って、焼結体タブレットの相対密度は、上述したように50%以上80%以下であることが好ましい。 In various vacuum deposition methods such as an electron beam deposition method, an ion plating method, and a high density plasma assisted deposition method, an electron beam is irradiated to a part of the sintered tablet surface, and the evaporated material is heated locally. Occurs and film formation occurs. At this time, if the relative density of the sintered body tablet is less than 50%, the strength of the sintered body itself is inferior, so that cracks and cracks are likely to occur against slight local thermal expansion. On the other hand, if the relative density of the sintered tablet exceeds 80%, stress and strain generated at the local portion of the sintered tablet cannot be absorbed when the electron beam is introduced, and cracks are likely to occur. Therefore, the relative density of the sintered body tablet is preferably 50% or more and 80% or less as described above.

そして、相対密度が50%以上80%以下の焼結体タブレットを常圧焼結法で製造する場合、上述した焼結前における成形体の不具合(クラックやチッピングの発生等)を減少させるためには、本発明者等の実験から、適用する成形体用粉末のタップ密度を理論密度に対して25%以上45%以下とし、金型中での上記成形体用粉末に対する単位面積当りの加圧条件を50MPa以上200MPa以下に設定して成形体を製造することが効果的であることを見出した。より具体的に説明すると、この種の焼結体タブレットを製造する場合、相対密度が所望の範囲(50%以上80%以下)に収まっていることに加えて、焼結体タブレットの寸法が規格に収まっている必要がある。このため、金型中での成形体用粉末に対する成形圧が一定となるような制御ではなく、プレス機のストローク制御により成形体を作っている(規格により同一寸法の成形体とするため)。そして、プレス機のストローク制御で成形体を得、この成形体を焼結してタブレットとする製法において、上記ストローク制御に伴う成形圧が50MPa以上200MPa以下にならないと後述する理由から歩留まりの向上が図れないため、金型中での成形体用粉末に対する成形圧が200MPaを超えてしまうようなタップ密度が25%未満の成形体用粉末の適用は好ましくなく(タップ密度が25%未満の成形体用粉末を所定量金型内に充填すると、金型内における成形体用粉末の容積が嵩張るため、ストローク制御で成形体を得る場合に成形圧が200MPaを超えてしまう)、また、金型中での成形体用粉末に対する成形圧が50MPa未満となるようなタップ密度が45%を越える成形体用粉末の適用も好ましくない(タップ密度が45%を越える成形体用粉末を所定量金型内に充填すると、金型内における成形体用粉末の容積が小さいため、ストローク制御で成形体を得る場合に成形圧が50MPa未満となる)ことを見出すに至った。ここで、成形体用粉末の上記タップ密度については、100gの成形体用粉末を150mLのメスシリンダーに入れ、300回タッピングした後、容積を読取り、粉末質量を該容積で除することでタップ密度を得ている。 And when manufacturing the sintered compact tablet whose relative density is 50% or more and 80% or less by the atmospheric pressure sintering method, in order to reduce the above-mentioned defects (such as generation of cracks and chipping) of the molded body before sintering. From the experiments by the present inventors, the tap density of the applied compact powder is 25% to 45% of the theoretical density, and the pressure per unit area of the compact powder in the mold is It has been found that it is effective to produce a molded product by setting the conditions to 50 MPa or more and 200 MPa or less. More specifically, when manufacturing this type of sintered tablet, in addition to the relative density being in the desired range (50% to 80%), the dimensions of the sintered tablet are standard. Need to be within. For this reason, the molded body is made not by controlling the molding pressure for the molded body powder in the mold to be constant, but by controlling the stroke of the press machine (to make the molded body of the same size according to the standard). And in the manufacturing method which obtains a molded object by the stroke control of a press machine, and sinters this molded object to make a tablet, improvement of a yield will be achieved for the reason described later unless the molding pressure accompanying the stroke control is 50 MPa or more and 200 MPa or less. Therefore, it is not preferable to apply a powder for a molded body having a tap density of less than 25% so that a molding pressure on the powder for a molded body in a mold exceeds 200 MPa (a molded body having a tap density of less than 25%). When a predetermined amount of powder is filled in the mold, the volume of the powder for the molded body in the mold becomes bulky, so that when the molded body is obtained by stroke control, the molding pressure exceeds 200 MPa), and in the mold In addition, it is not preferable to apply a powder for a molded body having a tap density exceeding 45% so that a molding pressure for the powder for a molded body is less than 50 MPa (tap density). When a predetermined amount of powder for a molded body exceeding 45% is filled in a mold, the molding pressure is less than 50 MPa when a molded body is obtained by stroke control because the volume of the powder for molded body in the mold is small) I came to find. Here, about the tap density of the powder for moldings, 100 g of powder for moldings is put into a 150 mL measuring cylinder, tapped 300 times, the volume is read, and the tap mass is divided by the volume. Have gained.

そして、図1(A)に示す本発明に係る真空蒸着用酸化インジウム系若しくは酸化亜鉛系焼結体タブレット製造方法の第一態様では、原料粉の主成分となる酸化インジウム粉末若しくは酸化亜鉛粉末に、任意に添加する酸化スズ、酸化タングステン、酸化ガリウム、酸化セリウムといった酸化物粉末とを湿式混合した(すなわち、これ等原料粉を液体媒体に混合分散させてスラリーとした)後、噴霧乾燥して得た造粒粉に対し、単位面積当り50MPa〜200MPa、好ましくは、単位面積当り150MPa前後の圧力を掛けて圧粉体とし、この圧粉体を粉砕し、篩で粒径を調整し、成形体用粉末を得る。 And in the first aspect of the indium oxide-based or zinc oxide-based sintered body tablet manufacturing method for vacuum deposition according to the present invention shown in FIG. 1 (A), indium oxide powder or zinc oxide powder as the main component of the raw material powder is used. , Optionally mixed with oxide powders such as tin oxide, tungsten oxide, gallium oxide, and cerium oxide (that is, these raw material powders are mixed and dispersed in a liquid medium to form a slurry), and then spray-dried. The obtained granulated powder is subjected to a pressure of 50 MPa to 200 MPa per unit area, preferably around 150 MPa per unit area to form a green compact, the green compact is pulverized, the particle size is adjusted with a sieve, and molded. A body powder is obtained.

このとき、50MPa未満の圧力で圧粉体とすると、粉砕を行い成形体用粉末としたとき、タップ密度が理論密度の25%未満となり、金型内における成形体用粉末の容積が嵩張るため、任意の寸法に加圧成形し、成形体を得る際の圧力が200MPaを越える必要となる。そして、200MPaを越える成形圧で成形し、圧力を解除した場合、スプリングバックにより成形体にクラックおよびチッピングが発生し易くなるため、歩留まりの向上が図れない。   At this time, if it is a green compact with a pressure of less than 50 MPa, when pulverized into a compact powder, the tap density is less than 25% of the theoretical density, and the volume of the compact powder in the mold is bulky, It is necessary to perform pressure molding to an arbitrary size, and the pressure when obtaining a molded body exceeds 200 MPa. When molding is performed at a molding pressure exceeding 200 MPa and the pressure is released, cracks and chipping are likely to occur in the molded body due to the spring back, and thus the yield cannot be improved.

他方、200MPaを超える圧力で圧粉体とすると、粉砕を行い成形体用粉末としたとき、タップ密度が理論密度の45%を越えてしまう結果、金型内における成形体用粉末の容積が小さくなるため、任意の寸法に加圧成形し、成形体を得る際の圧力が50MPa未満となる。そして、50MPa未満の成形圧で成形した場合、成形した成形体の強度が低く、ハンドリング中の成形体の破損や焼結中のクラックおよびチッピングが発生し易くなるため、歩留まりの向上が図れない。   On the other hand, when a green compact is used at a pressure exceeding 200 MPa, when pulverized into a compact powder, the tap density exceeds 45% of the theoretical density, resulting in a small volume of the compact powder in the mold. Therefore, the pressure at which the molded body is obtained by pressure molding to an arbitrary size is less than 50 MPa. And when it shape | molds with the shaping | molding pressure of less than 50 Mpa, since the intensity | strength of the shape | molded molded object is low and it becomes easy to generate | occur | produce the damage of the molded object during handling, and the crack and chipping during sintering, a yield cannot be aimed at.

次に、本発明に係る製造方法の第一態様をより具体的に説明すると、上述した原料粉に、純水、有機バインダーとしてポリビニルアルコール、分散剤としてポリカルボン酸アンモニウム塩を、原料粉濃度が70質量%〜80質量%、好ましくは75質量%となるように混合してスラリーを得、かつ、得られた原料粉を含有するスラリーを、例えば、スプレードライヤー等により、噴霧し、乾燥させることにより、造粒粉を得る。   Next, the first aspect of the production method according to the present invention will be described in more detail. Pure water, polyvinyl alcohol as an organic binder, polycarboxylic acid ammonium salt as a dispersant, Mixing so as to be 70% by mass to 80% by mass, preferably 75% by mass to obtain a slurry, and spraying and drying the obtained slurry containing the raw material powder with, for example, a spray dryer To obtain granulated powder.

そして、得られた造粒粉に対し、単位面積当り50MPa〜200MPaの圧力を掛けて圧粉体とし、この圧粉体を粉砕し、篩で粒径を調整して、タップ密度が理論密度に対して25%以上45%以下の成形体用粉末を得る。更に、タップ密度が理論密度の25%以上45%以下に調整された成形体用粉末を金型内に充填し、機械プレス法等により金型中の上記成形体用粉末に対し単位面積当り50MPa以上200MPa以下の圧力で加圧成形して所定形状の成形体を得、得られた成形体を焼成することにより真空蒸着用酸化インジウム系若しくは酸化亜鉛系焼結体タブレットを得ることができる。尚、本発明に係る真空蒸着用酸化インジウム系若しくは酸化亜鉛系焼結体タブレットにおいて、その焼結体密度は、理論密度に対し相対密度で50%以上80%以下であることを要する。かかる焼結体密度を達成するためには、上記成形体を焼成する工程において、焼成温度を1100℃以上とし、焼成時間を5〜20時間とすることが好ましい。 Then, the obtained granulated powder is pressed into a green compact by applying a pressure of 50 MPa to 200 MPa per unit area, the green compact is pulverized, the particle size is adjusted with a sieve, and the tap density becomes the theoretical density. On the other hand, a powder for a molded body of 25% to 45% is obtained. Further, the compact powder having a tap density adjusted to 25% or more and 45% or less of the theoretical density is filled in a mold, and 50 MPa per unit area with respect to the compact powder in the mold by a mechanical press method or the like. An indium oxide-based or zinc oxide-based sintered tablet for vacuum deposition can be obtained by pressure-molding at a pressure of 200 MPa or less to obtain a molded body having a predetermined shape and firing the obtained molded body. In the indium oxide-based or zinc oxide-based sintered tablet for vacuum vapor deposition according to the present invention, the sintered body density needs to be 50% or more and 80% or less as a relative density with respect to the theoretical density . In order to achieve such a sintered body density, it is preferable that the firing temperature is 1100 ° C. or higher and the firing time is 5 to 20 hours in the step of firing the molded body.

一方、図1(B)に示す参考例に係る焼結体タブレット製造方法の第二態様において、成形体用粉末(造粒粉)のタップ密度が理論密度に対し25%以上45%以下とするには、第三工程における仮焼粉と未仮焼原料粉との混合割合を適宜調整することにより達成することができる。すなわち、原料粉末を液体媒体に分散させてスラリーとし(すなわち、湿式混合し)かつこのスラリーをスプレードライヤー等により噴霧乾燥して造粒粉を製造し、得られた造粒粉を仮焼して仮焼粉を製造し、更に、得られた仮焼粉と未仮焼の上記原料粉(未仮焼原料粉)を液体媒体に一定の割合で混合分散させてスラリーとしかつこのスラリーをスプレードライヤー等により噴霧乾燥してタップ密度が理論密度に対し25%以上45%以下に設定された成形体用粉末(造粒粉)とすることができる。 On the other hand, in the second embodiment of the sintered body tablet manufacturing method according to the reference example shown in FIG. 1 (B), the tap density of the powder for molded body (granulated powder) is 25% or more and 45% or less of the theoretical density. This can be achieved by appropriately adjusting the mixing ratio of the calcined powder and the uncalcined raw material powder in the third step. That is, the raw material powder is dispersed in a liquid medium to form a slurry (that is, wet-mixed), and this slurry is spray-dried by a spray dryer or the like to produce granulated powder, and the obtained granulated powder is calcined. The calcined powder is manufactured, and the obtained calcined powder and the uncalcined raw material powder (uncalcined raw material powder) are mixed and dispersed in a liquid medium at a certain ratio to form a slurry, and this slurry is spray-dried The powder for molded bodies (granulated powder) in which the tap density is set to 25% or more and 45% or less with respect to the theoretical density can be obtained by spray drying.

以下、本発明の実施例について具体的に説明する。   Examples of the present invention will be specifically described below.

[実施例1]
平均粒径が1μm以下の酸化インジウム粉末を95質量%、平均粒径が1μm以下の酸化スズ粉末を5質量%となるようにそれぞれ秤量した。すなわち、5質量%の酸化スズが含まれている。
[Example 1]
The indium oxide powder having an average particle size of 1 μm or less was weighed to 95% by mass, and the tin oxide powder having an average particle size of 1 μm or less was measured to be 5% by mass. That is, 5% by mass of tin oxide is contained.

次いで、上記酸化インジウム粉末、上記酸化スズ粉末、純水、ポリビニルアルコール、ポリカルボン酸アンモニウム塩を、原料粉(酸化インジウム粉末と酸化スズ粉末)濃度が75質量%のスラリーとなるように調合し、混合タンクにてスラリーを作製した。   Next, the indium oxide powder, the tin oxide powder, pure water, polyvinyl alcohol, and ammonium polycarboxylate are prepared so that the raw material powder (indium oxide powder and tin oxide powder) has a concentration of 75% by mass, A slurry was prepared in a mixing tank.

そして、得られたスラリーを、スプレードライヤー装置(大川原化工機株式会社製、ODL−20型)にて噴霧および乾燥し、平均粒径が約50μmである造粒粉を得た。   And the obtained slurry was sprayed and dried with the spray dryer apparatus (Okawara Chemical Industries Co., Ltd. product, ODL-20 type | mold), and the granulated powder whose average particle diameter is about 50 micrometers was obtained.

次に、得られた造粒粉を、CIP(冷間静水圧プレス)装置(株式会社神戸製鋼所製)を用いて、常温にて147MPaの圧力で圧粉体を作製し、手粉砕にて粉砕を行い、かつ、目開き300μmの篩いを用いて成形体用粉末を得た。得られた成形体用粉末のタップ密度は、理論密度に対して40%であった。   Next, using the CIP (cold isostatic press) device (manufactured by Kobe Steel Co., Ltd.), the obtained granulated powder was produced into a green compact at a pressure of 147 MPa at room temperature and manually pulverized. The powder for molded bodies was obtained by pulverizing and using a sieve having an opening of 300 μm. The tap density of the obtained powder for a molded body was 40% with respect to the theoretical density.

そして、得られた成形体用粉末を、金型中で加圧成形(三庄インダストリー製、ウエーブ成形プレス機)して、直径30mm、厚み40mmの円柱形状の成形体を50個得た。この成形時の圧力は63〜97MPaであり、クラック、チッピングは確認されなかった。   Then, the obtained powder for a molded body was subjected to pressure molding (manufactured by Sansho Industry Co., Ltd., a wave molding press) in a mold to obtain 50 cylindrical molded bodies having a diameter of 30 mm and a thickness of 40 mm. The pressure at the time of molding was 63 to 97 MPa, and no cracking or chipping was confirmed.

次いで、得られた成形体を、1350℃、20時間焼成し、ITO焼結体タブレットを得た。得られた焼結体タブレットの焼結体密度は4.55g/cmで、相対密度は63.5%であった。 Next, the obtained molded body was fired at 1350 ° C. for 20 hours to obtain an ITO sintered body tablet. The sintered compact density of the obtained sintered compact tablet was 4.55 g / cm 3 and the relative density was 63.5%.

尚、実施例と比較例に係る「構成成分」「仮焼粉混合割合(質量%)」「圧粉体作成時圧力(MPa)」「タップ密度(%)」「成形時圧力(MPa)」「成形の可否」および「成形時割れ不良の有無」については、以下の表1にまとめて示す。   “Constituent components”, “calcined powder mixing ratio (mass%)”, “pressure when creating green compact (MPa)”, “tap density (%)”, “pressure during molding (MPa)” according to Examples and Comparative Examples “Moldability” and “Presence / absence of cracking during molding” are summarized in Table 1 below.

[実施例2]
平均粒径が1μm以下の酸化インジウム粉末を99質量%、平均粒径が1μm以下の酸化タングステン粉末を1質量%となるようにそれぞれ秤量し、1質量%の酸化タングステンが含まれる以外は実施例1と同様に行って成形体用粉末を得た。尚、得られた成形体用粉末のタップ密度は、理論密度に対して41%であった。
[Example 2]
Example in which indium oxide powder having an average particle diameter of 1 μm or less is weighed to be 99 mass% and tungsten oxide powder having an average particle diameter of 1 μm or less is 1 mass%, except that 1 mass% of tungsten oxide is contained. In the same manner as in No. 1, a powder for a molded body was obtained. In addition, the tap density of the obtained powder for molded bodies was 41% with respect to the theoretical density.

そして、得られた成形体用粉末を、実施例1と同様、金型中で加圧成形して、実施例1と同一寸法の成形体を50個得た。この成形時の圧力は70〜87MPaであり、クラック、チッピングは確認されなかった。   Then, the obtained powder for a molded body was pressure-molded in a mold in the same manner as in Example 1 to obtain 50 molded bodies having the same dimensions as in Example 1. The pressure at the time of molding was 70 to 87 MPa, and cracks and chipping were not confirmed.

次いで、得られた成形体を、1300℃、20時間焼成し、IWO焼結体タブレットを得た。得られた焼結体タブレットの焼結体密度は4.50g/cmで、相対密度は62.6%であった。 Subsequently, the obtained molded body was fired at 1300 ° C. for 20 hours to obtain an IWO sintered body tablet. The sintered compact density of the obtained sintered compact tablet was 4.50 g / cm 3 and the relative density was 62.6%.

[実施例3]
平均粒径が1μm以下の酸化インジウム粉末を90質量%、平均粒径が1μm以下の酸化セリウム粉末を10質量%となるようにそれぞれ秤量し、10質量%の酸化セリウムが含まれる以外は実施例1と同様に行って成形体用粉末を得た。尚、得られた成形体用粉末のタップ密度は、理論密度に対して34%であった。
[Example 3]
Example in which indium oxide powder having an average particle diameter of 1 μm or less is weighed so that 90% by mass and cerium oxide powder having an average particle diameter of 1 μm or less is 10% by mass, and 10% by mass of cerium oxide is contained. In the same manner as in No. 1, a powder for a molded body was obtained. In addition, the tap density of the obtained powder for molded bodies was 34% with respect to the theoretical density.

そして、得られた成形体用粉末を、実施例1と同様、金型中で加圧成形して、実施例1と同一寸法の成形体を50個得た。この成形時の圧力は75〜85MPaであり、クラック、チッピングは確認されなかった。   Then, the obtained powder for a molded body was pressure-molded in a mold in the same manner as in Example 1 to obtain 50 molded bodies having the same dimensions as in Example 1. The pressure at the time of molding was 75 to 85 MPa, and no cracking or chipping was confirmed.

次いで、得られた成形体を、1400℃、20時間焼成し、ICO焼結体タブレットを得た。得られた焼結体タブレットの焼結体密度は4.37g/cmで、相対密度は60.8%であった。 Subsequently, the obtained molded body was fired at 1400 ° C. for 20 hours to obtain an ICO sintered body tablet. The sintered compact density of the obtained sintered compact tablet was 4.37 g / cm 3 and the relative density was 60.8%.

[実施例4]
平均粒径が1μm以下の酸化インジウム粉末を90質量%、平均粒径が1μm以下の酸化スズ粉末を10質量%となるようにそれぞれ秤量し、10質量%の酸化スズが含まれる以外は実施例1と同様に行って成形体用粉末を得た。尚、得られた成形体用粉末のタップ密度は、理論密度に対して44%であった。
[Example 4]
Example in which indium oxide powder having an average particle diameter of 1 μm or less is 90% by mass and tin oxide powder having an average particle diameter of 1 μm or less is weighed to 10% by mass, and 10% by mass of tin oxide is contained. In the same manner as in No. 1, a powder for a molded body was obtained. In addition, the tap density of the obtained powder for molded bodies was 44% with respect to the theoretical density.

そして、得られた成形体用粉末を、実施例1と同様、金型中で加圧成形して、実施例1と同一寸法の成形体を50個得た。この成形時の圧力は100〜115MPaであり、クラック、チッピングは確認されなかった。   Then, the obtained powder for a molded body was pressure-molded in a mold in the same manner as in Example 1 to obtain 50 molded bodies having the same dimensions as in Example 1. The pressure at the time of molding was 100 to 115 MPa, and cracks and chipping were not confirmed.

次いで、得られた成形体を、1350℃、20時間焼成し、ITO焼結体タブレットを得た。得られた焼結体タブレットの焼結体密度は4.58g/cmで、相対密度は64.0%であった。 Next, the obtained molded body was fired at 1350 ° C. for 20 hours to obtain an ITO sintered body tablet. The sintered compact density of the obtained sintered compact tablet was 4.58 g / cm 3 , and the relative density was 64.0%.

[実施例5]
平均粒径が1μm以下の酸化亜鉛粉末を97質量%、平均粒径が1μm以下の酸化ガリウム粉末を3質量%となるようにそれぞれ秤量し、3質量%の酸化ガリウムが含まれる以外は実施例1と同様に行って成形体用粉末を得た。尚、得られた成形体用粉末のタップ密度は、理論密度に対して30%であった。
[Example 5]
Example except that zinc oxide powder having an average particle diameter of 1 μm or less is weighed to 97 mass% and gallium oxide powder having an average particle diameter of 1 μm or less to 3 mass%, and 3 mass% of gallium oxide is contained. In the same manner as in No. 1, a powder for a molded body was obtained. In addition, the tap density of the obtained powder for molded bodies was 30% with respect to the theoretical density.

そして、得られた成形体用粉末を、実施例1と同様、金型中で加圧成形して、実施例1と同一寸法の成形体を50個得た。この成形時の圧力は127〜143MPaであり、クラック、チッピングは確認されなかった。   Then, the obtained powder for a molded body was pressure-molded in a mold in the same manner as in Example 1 to obtain 50 molded bodies having the same dimensions as in Example 1. The pressure at the time of molding was 127 to 143 MPa, and no cracking or chipping was confirmed.

次いで、得られた成形体を、1100℃、20時間焼成し、GZO焼結体タブレットを得た。得られた焼結体タブレットの焼結体密度は3.50g/cmで、相対密度は60.4%であった。 Subsequently, the obtained molded body was fired at 1100 ° C. for 20 hours to obtain a GZO sintered body tablet. The sintered compact density of the obtained sintered compact tablet was 3.50 g / cm 3 and the relative density was 60.4%.

参考例1
平均粒径が1μm以下の酸化亜鉛粉末を準備し、質量比で4:6に分割した。その内の60質量%について予め1000℃で仮焼を行い、仮焼粉とした。この仮焼粉と残部の40質量%の未仮焼粉とを湿式混合し、かつ、実施例1と同様にスプレードライヤーを用いて造粒粉を得た。得られた造粒粉のタップ密度は、理論密度に対して28%であった。
[ Reference Example 1 ]
A zinc oxide powder having an average particle size of 1 μm or less was prepared and divided into a mass ratio of 4: 6. Of these, 60% by mass was preliminarily calcined at 1000 ° C. to obtain calcined powder. This calcined powder and the remaining 40% by mass of the non-calcined powder were wet-mixed, and granulated powder was obtained using a spray dryer as in Example 1. The tap density of the obtained granulated powder was 28% with respect to the theoretical density.

そして、得られた造粒粉を成形体用粉末とし、実施例1と同様、金型中で加圧成形して、実施例1と同一寸法の成形体を50個得た。この成形時の圧力は99〜105MPaであり、クラック、チッピングは確認されなかった。   And the obtained granulated powder was made into the powder for molded objects, and it pressure-molded in the metal mold | die like Example 1, and obtained 50 molded objects of the same dimension as Example 1. FIG. The molding pressure was 99 to 105 MPa, and no cracks or chipping were observed.

次いで、得られた成形体を、1100℃、20時間焼成し、ZnO焼結体タブレットを得た。得られた焼結体タブレットの焼結体密度は3.46g/cmで、相対密度は59.8%であった。 Subsequently, the obtained molded body was fired at 1100 ° C. for 20 hours to obtain a ZnO sintered body tablet. The sintered compact density of the obtained sintered compact tablet was 3.46 g / cm 3 , and the relative density was 59.8%.

参考例2
平均粒径が1μm以下の酸化インジウム粉末を95質量%、平均粒径が1μm以下の酸化スズ粉末を5質量%となるようにそれぞれ秤量した。すなわち、5質量%の酸化スズが含まれている。
[ Reference Example 2 ]
The indium oxide powder having an average particle size of 1 μm or less was weighed to 95% by mass, and the tin oxide powder having an average particle size of 1 μm or less was measured to be 5% by mass. That is, 5% by mass of tin oxide is contained.

次いで、上記酸化インジウム粉末、上記酸化スズ粉末、純水、ポリカルボン酸アンモニウム塩を、原料粉(酸化インジウム粉末と酸化スズ粉末)濃度が60質量%のスラリーとなるように調合し、混合タンクにてスラリーを作製した。   Next, the above indium oxide powder, the above tin oxide powder, pure water, and ammonium polycarboxylate are prepared so that the raw material powder (indium oxide powder and tin oxide powder) has a concentration of 60% by mass, and is mixed in a mixing tank. A slurry was prepared.

そして、得られたスラリーを、スプレードライヤー装置(大川原化工機株式会社製、ODL−20型)にて噴霧および乾燥し、平均粒径が約50μmである造粒粉を得た。   And the obtained slurry was sprayed and dried with the spray dryer apparatus (Okawara Chemical Industries Co., Ltd. product, ODL-20 type | mold), and the granulated powder whose average particle diameter is about 50 micrometers was obtained.

次に、得られた造粒粉を1400℃で仮焼を行い、仮焼粉とした。この仮焼粉を60質量%、残部の40質量%を、平均粒径が1μm以下の酸化インジウム粉末を95質量%、平均粒径が1μm以下の酸化スズ粉末を5質量%となるように秤量して湿式混合を行い、かつ、実施例1と同様にスプレードライヤーを用いて造粒粉を得た。得られた造粒粉のタップ密度は、理論密度に対して27%であった。   Next, the obtained granulated powder was calcined at 1400 ° C. to obtain a calcined powder. 60% by mass of the calcined powder, the remaining 40% by mass, 95% by mass of indium oxide powder having an average particle size of 1 μm or less, and 5% by mass of tin oxide powder having an average particle size of 1 μm or less. Then, wet mixing was performed, and granulated powder was obtained using a spray dryer as in Example 1. The tap density of the obtained granulated powder was 27% with respect to the theoretical density.

そして、得られた造粒粉を成形体用粉末とし、実施例1と同様、金型中で加圧成形して、実施例1と同一寸法の成形体を50個得た。この成形時の圧力は150〜160MPaであり、クラック、チッピングは確認されなかった。   And the obtained granulated powder was made into the powder for molded objects, and it pressure-molded in the metal mold | die like Example 1, and obtained 50 molded objects of the same dimension as Example 1. FIG. The pressure at the time of molding was 150 to 160 MPa, and no cracking or chipping was confirmed.

次いで、得られた成形体を、1350℃、20時間焼成し、ITO焼結体タブレットを得た。得られた焼結体タブレットの焼結体密度は4.57g/cmで、相対密度は63.9%であった。 Next, the obtained molded body was fired at 1350 ° C. for 20 hours to obtain an ITO sintered body tablet. The sintered compact density of the obtained sintered compact tablet was 4.57 g / cm 3 and the relative density was 63.9%.

参考例3
平均粒径が1μm以下の酸化インジウム粉末を99質量%、平均粒径が1μm以下の酸化タングステン粉末を1質量%となるようにそれぞれ秤量し、かつ、参考例2と同様に行って造粒粉得た。
[ Reference Example 3 ]
Average particle size 99% below the indium oxide powder 1 [mu] m, average particle diameter were weighed the following tungsten oxide powder 1 [mu] m to be 1 wt%, and granulated powder conducted in the same manner as in Reference Example 2 Obtained.

次に、得られた造粒粉を1300℃で仮焼を行い、仮焼粉とした。この仮焼粉を50質量%、残部の50質量%を、平均粒径が1μm以下の酸化インジウム粉末を99質量%、平均粒径が1μm以下の酸化タングステン粉末を1質量%となるよう秤量して湿式混合を行い、かつ、実施例1と同様にスプレードライヤーを用いて造粒粉を得た。得られた造粒粉のタップ密度は、理論密度に対して35%であった。   Next, the obtained granulated powder was calcined at 1300 ° C. to obtain a calcined powder. 50% by mass of the calcined powder, the remaining 50% by mass, 99% by mass of indium oxide powder having an average particle size of 1 μm or less, and 1% by mass of tungsten oxide powder having an average particle size of 1 μm or less. Wet mixing was performed, and granulated powder was obtained using a spray dryer as in Example 1. The tap density of the obtained granulated powder was 35% with respect to the theoretical density.

そして、得られた造粒粉を成形体用粉末とし、実施例1と同様、金型中で加圧成形して、実施例1と同一寸法の成形体を50個得た。この成形時の圧力は130〜150MPaであり、クラック、チッピングは確認されなかった。   And the obtained granulated powder was made into the powder for molded objects, and it pressure-molded in the metal mold | die like Example 1, and obtained 50 molded objects of the same dimension as Example 1. FIG. The pressure at the time of molding was 130 to 150 MPa, and no cracking or chipping was confirmed.

次いで、得られた成形体を、1350℃、20時間焼成し、IWO焼結体タブレットを得た。得られた焼結体タブレットの焼結体密度は4.60g/cmで、相対密度は64.0%であった。 Subsequently, the obtained molded body was fired at 1350 ° C. for 20 hours to obtain an IWO sintered body tablet. The sintered compact density of the obtained sintered compact tablet was 4.60 g / cm 3 , and the relative density was 64.0%.

参考例4
平均粒径が1μm以下の酸化インジウム粉末を90質量%、平均粒径が1μm以下の酸化セリウム粉末を10質量%となるようにそれぞれ秤量し、かつ、参考例2と同様に行って造粒粉得た。
[ Reference Example 4 ]
Average particle size 90% by weight or less of indium oxide powder 1 [mu] m, average particle diameter were weighed the following cerium oxide powder 1 [mu] m so as to be 10 mass%, and granulated powder conducted in the same manner as in Reference Example 2 Obtained.

次に、得られた造粒粉を1200℃で仮焼を行い、仮焼粉とした。この仮焼粉を80質量%、残部の20質量%を、平均粒径が1μm以下の酸化インジウム粉末を90質量%、平均粒径が1μm以下の酸化セリウム粉末を10質量%となるよう秤量して湿式混合を行い、かつ、実施例1と同様にスプレードライヤーを用いて造粒粉を得た。得られた造粒粉のタップ密度は、理論密度に対して27%であった。   Next, the obtained granulated powder was calcined at 1200 ° C. to obtain a calcined powder. 80% by mass of the calcined powder, the remaining 20% by mass, 90% by mass of indium oxide powder having an average particle size of 1 μm or less, and 10% by mass of cerium oxide powder having an average particle size of 1 μm or less. Wet mixing was performed, and granulated powder was obtained using a spray dryer as in Example 1. The tap density of the obtained granulated powder was 27% with respect to the theoretical density.

そして、得られた造粒粉を成形体用粉末とし、実施例1と同様、金型中で加圧成形して、実施例1と同一寸法の成形体を50個得た。この成形時の圧力は155〜160MPaであり、クラック、チッピングは確認されなかった。   And the obtained granulated powder was made into the powder for molded objects, and it pressure-molded in the metal mold | die like Example 1, and obtained 50 molded objects of the same dimension as Example 1. FIG. The pressure at the time of molding was 155 to 160 MPa, and no cracking or chipping was confirmed.

次いで、得られた成形体を、1400℃、20時間焼成し、IWO焼結体タブレットを得た。得られた焼結体タブレットの焼結体密度は4.35g/cmで、相対密度は60.5%であった。 Subsequently, the obtained molded body was fired at 1400 ° C. for 20 hours to obtain an IWO sintered body tablet. The sintered compact density of the obtained sintered compact tablet was 4.35 g / cm 3 , and the relative density was 60.5%.

参考例5
平均粒径が1μm以下の酸化亜鉛粉末を97質量%、平均粒径が1μm以下の酸化ガリウム粉末を3質量%となるようにそれぞれ秤量し、かつ、参考例2と同様に行って造粒粉得た。
[ Reference Example 5 ]
The zinc oxide powder having an average particle diameter of 1 μm or less is weighed to 97 mass% and the gallium oxide powder having an average particle diameter of 1 μm or less to 3 mass%, and granulated powder as in Reference Example 2 Obtained.

次に、得られた造粒粉を1000℃で仮焼を行い、仮焼粉とした。この仮焼粉を60質量%、残部の40質量%を、平均粒径が1μm以下の酸化亜鉛粉末を97質量%、平均粒径が1μm以下の酸化ガリウム粉末を3質量%となるよう秤量して湿式混合を行い、かつ、実施例1と同様にスプレードライヤーを用いて造粒粉を得た。得られた造粒粉のタップ密度は、理論密度に対して27%であった。   Next, the obtained granulated powder was calcined at 1000 ° C. to obtain a calcined powder. 60% by mass of the calcined powder, 40% by mass of the balance, 97% by mass of zinc oxide powder having an average particle size of 1 μm or less, and 3% by mass of gallium oxide powder having an average particle size of 1 μm or less. Wet mixing was performed, and granulated powder was obtained using a spray dryer as in Example 1. The tap density of the obtained granulated powder was 27% with respect to the theoretical density.

そして、得られた造粒粉を成形体用粉末とし、実施例1と同様、金型中で加圧成形して、実施例1と同一寸法の成形体を50個得た。この成形時の圧力は130〜150MPaであり、クラック、チッピングは確認されなかった。   And the obtained granulated powder was made into the powder for molded objects, and it pressure-molded in the metal mold | die like Example 1, and obtained 50 molded objects of the same dimension as Example 1. FIG. The pressure at the time of molding was 130 to 150 MPa, and no cracking or chipping was confirmed.

次いで、得られた成形体を、1100℃、20時間焼成し、GZO焼結体タブレットを得た。得られた焼結体タブレットの焼結体密度は3.53g/cmで、相対密度は60.9%であった。 Subsequently, the obtained molded body was fired at 1100 ° C. for 20 hours to obtain a GZO sintered body tablet. The sintered compact density of the obtained sintered compact tablet was 3.53 g / cm 3 and the relative density was 60.9%.

[比較例1]
平均粒径が1μm以下の酸化インジウム粉末を95質量%、平均粒径が1μm以下の酸化スズ粉末を5質量%となるようにそれぞれ秤量し、これを実施例1と同様にスプレードライヤーを用いて造粒粉を得た。得られた造粒粉のタップ密度は、理論密度に対して18%であった。
[Comparative Example 1]
The indium oxide powder having an average particle size of 1 μm or less is weighed to 95% by mass and the tin oxide powder having an average particle size of 1 μm or less to 5% by mass. Granulated powder was obtained. The tap density of the obtained granulated powder was 18% with respect to the theoretical density.

そして、この造粒粉を成形体用粉末とし、実施例1と同様、金型中で加圧成形して、実施例1と同一寸法の成形体を50個得た。この成形時の圧力は280〜300MPaであり、クラック、チッピングは50個中45個で発生していた。   Then, this granulated powder was used as a powder for a molded body, and pressure-molded in a mold in the same manner as in Example 1 to obtain 50 molded bodies having the same dimensions as in Example 1. The pressure at the time of molding was 280 to 300 MPa, and cracks and chipping occurred at 45 pieces out of 50 pieces.

[比較例2]
平均粒径が1μm以下の酸化インジウム粉末を90質量%、平均粒径が1μm以下の酸化スズ粉末を10質量%となるようにそれぞれ秤量し、かつ、参考例2と同様に行って造粒粉得た。
[Comparative Example 2]
Average particle size 90% by weight or less of indium oxide powder 1 [mu] m, average particle diameter were weighed the following tin oxide powder 1 [mu] m so as to be 10 mass%, and granulated powder conducted in the same manner as in Reference Example 2 Obtained.

次に、得られた造粒粉を1400℃で仮焼を行い、仮焼粉とした。この仮焼粉を50質量%、残部の50質量%を、平均粒径が1μm以下の酸化インジウム粉末を90質量%、平均粒径が1μm以下の酸化スズ粉末を10質量%となるよう秤量して湿式混合を行い、かつ、実施例1と同様にスプレードライヤーを用いて造粒粉を得た。得られた造粒粉のタップ密度は、理論密度に対して23%であった。   Next, the obtained granulated powder was calcined at 1400 ° C. to obtain a calcined powder. 50% by mass of the calcined powder, the remaining 50% by mass, 90% by mass of indium oxide powder having an average particle size of 1 μm or less, and 10% by mass of tin oxide powder having an average particle size of 1 μm or less. Wet mixing was performed, and granulated powder was obtained using a spray dryer as in Example 1. The tap density of the obtained granulated powder was 23% with respect to the theoretical density.

そして、得られた造粒粉を成形体用粉末とし、実施例1と同様、金型中で加圧成形して、実施例1と同一寸法の成形体を50個得た。この成形時の圧力は500〜540MPaであり、クラック、チッピングが50個中全てで発生していた。   And the obtained granulated powder was made into the powder for molded objects, and it pressure-molded in the metal mold | die like Example 1, and obtained 50 molded objects of the same dimension as Example 1. FIG. The pressure at the time of molding was 500 to 540 MPa, and cracks and chipping occurred in all 50 pieces.

[比較例3]
平均粒径が1μm以下の酸化亜鉛粉末を97質量%、平均粒径が1μm以下の酸化ガリウム粉末を3質量%となるようにそれぞれ秤量し、かつ、実施例1と同様にスプレードライヤーを用いて造粒粉を得た。
[Comparative Example 3]
Zinc oxide powder having an average particle diameter of 1 μm or less was weighed to be 97% by mass, and gallium oxide powder having an average particle diameter of 1 μm or less to be 3% by mass, and using a spray dryer as in Example 1. Granulated powder was obtained.

次に、得られた造粒粉を1000℃で仮焼を行い、仮焼粉とした。この仮焼粉を60質量%、残部の40質量%を、平均粒径が1μm以下の酸化亜鉛粉末を97質量%、平均粒径が1μm以下の酸化ガリウム粉末を3質量%となるように秤量し、再度、実施例1と同様にして湿式混合とスプレードライヤーによる噴霧乾燥を行って造粒粉を得た。得られた造粒粉を実施例1と同様にして圧粉体とした後、粉砕し、成形体用粉末を得た。得られた成形体用粉末のタップ密度は、理論密度に対して55%であった。   Next, the obtained granulated powder was calcined at 1000 ° C. to obtain a calcined powder. 60% by mass of the calcined powder, the remaining 40% by mass, 97% by mass of zinc oxide powder having an average particle size of 1 μm or less, and 3% by mass of gallium oxide powder having an average particle size of 1 μm or less Again, in the same manner as in Example 1, wet mixing and spray drying with a spray dryer were performed to obtain granulated powder. The obtained granulated powder was made into a green compact in the same manner as in Example 1, and then pulverized to obtain a powder for a molded body. The tap density of the obtained powder for a molded body was 55% with respect to the theoretical density.

そして、得られた成形体用粉末を、実施例1と同様、金型中で加圧成形した。この成形時の圧力は30〜40MPaであったが、強度が弱く、成形体は形を保持できなかった。   Then, the obtained powder for a molded body was pressure-molded in a mold in the same manner as in Example 1. The pressure at the time of molding was 30 to 40 MPa, but the strength was weak and the molded body could not keep its shape.

Figure 0005263063
Figure 0005263063

本発明の製造方法によれば、真空蒸着用酸化インジウム系若しくは酸化亜鉛系焼結体タブレットを歩留まりよく安定して量産できるため、太陽電池や液晶表示素子等に用いられる酸化物透明導電膜を真空蒸着法により製造する際の焼結体タブレットとして利用される産業上の利用可能性を有している。 According to the manufacturing method of the present invention, since an indium oxide-based or zinc oxide-based sintered tablet for vacuum deposition can be stably mass-produced with a high yield, an oxide transparent conductive film used for solar cells, liquid crystal display elements, etc. It has industrial applicability for use as a sintered tablet when it is manufactured by vapor deposition.

Claims (2)

原料粉を液体媒体に分散させてスラリーとしかつこのスラリーを噴霧乾燥して造粒粉を製造する第一工程と、得られた造粒粉を加圧して圧粉体を製造する第二工程と、得られた圧粉体を破砕して成形体用粉末を製造する第三工程と、得られた成形体用粉末を金型中で加圧成形して所定形状の成形体を製造する第四工程と、得られた成形体を焼成して相対密度が50%以上80%以下の真空蒸着用酸化インジウム系若しくは酸化亜鉛系焼結体タブレットを製造する方法において、
上記第二工程の造粒粉に対する単位面積当りの加圧条件を50MPa以上200MPa以下に設定して、第三工程で得られる成形体用粉末のタップ密度が理論密度の25%以上45%以下となるように調整し、かつ、第四工程においてタップ密度が理論密度の25%以上45%以下に調整された金型中での上記成形体用粉末に対する単位面積当りの加圧条件を50MPa以上200MPa以下に設定して所定形状の成形体を製造することを特徴とする真空蒸着用酸化インジウム系若しくは酸化亜鉛系焼結体タブレットの製造方法。
A first step of dispersing raw material powder in a liquid medium to form a slurry and spray-drying the slurry to produce granulated powder; a second step of pressing the obtained granulated powder to produce a green compact; A fourth step of crushing the obtained green compact to produce a powder for a molded body, and a fourth process for producing a molded body of a predetermined shape by pressure-molding the obtained powder for a molded body in a mold. In the process and the method of producing an indium oxide-based or zinc oxide-based sintered tablet for vacuum deposition having a relative density of 50% or more and 80% or less by firing the obtained molded body,
The pressing condition per unit area for the granulated powder in the second step is set to 50 MPa or more and 200 MPa or less, and the tap density of the powder for the molded body obtained in the third step is 25% or more and 45% or less of the theoretical density. The pressure condition per unit area for the powder for the molded body in the mold in which the tap density was adjusted to 25% to 45% of the theoretical density in the fourth step was adjusted to 50 MPa to 200 MPa. A method for producing an indium oxide-based or zinc oxide-based sintered tablet for vacuum deposition , characterized in that a molded body having a predetermined shape is produced by setting as follows.
上記成形体用粉末の主成分が酸化亜鉛粉末であることを特徴とする請求項に記載の真空蒸着用酸化インジウム系若しくは酸化亜鉛系焼結体タブレットの製造方法。 2. The method for producing an indium oxide-based or zinc oxide-based sintered tablet for vacuum deposition according to claim 1 , wherein a main component of the powder for a molded body is zinc oxide powder.
JP2009176758A 2009-07-29 2009-07-29 Method for producing indium oxide-based or zinc oxide-based sintered tablet for vacuum deposition Expired - Fee Related JP5263063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009176758A JP5263063B2 (en) 2009-07-29 2009-07-29 Method for producing indium oxide-based or zinc oxide-based sintered tablet for vacuum deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009176758A JP5263063B2 (en) 2009-07-29 2009-07-29 Method for producing indium oxide-based or zinc oxide-based sintered tablet for vacuum deposition

Publications (2)

Publication Number Publication Date
JP2011032102A JP2011032102A (en) 2011-02-17
JP5263063B2 true JP5263063B2 (en) 2013-08-14

Family

ID=43761552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009176758A Expired - Fee Related JP5263063B2 (en) 2009-07-29 2009-07-29 Method for producing indium oxide-based or zinc oxide-based sintered tablet for vacuum deposition

Country Status (1)

Country Link
JP (1) JP5263063B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5993703B2 (en) * 2012-02-17 2016-09-14 住友化学株式会社 Method for producing zinc oxide powder
JP2021510894A (en) * 2018-01-11 2021-04-30 ベンタナ メディカル システムズ, インコーポレイテッド Anti-fog barcode reader

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3409345B2 (en) * 1992-12-21 2003-05-26 東ソー株式会社 Method for producing ceramic target
JP2008260660A (en) * 2007-04-13 2008-10-30 Sumitomo Metal Mining Co Ltd Method for manufacturing high concentration tin oxide ito sintered article

Also Published As

Publication number Publication date
JP2011032102A (en) 2011-02-17

Similar Documents

Publication Publication Date Title
JP5686067B2 (en) Zn-Sn-O-based oxide sintered body and method for producing the same
JP6125689B1 (en) Indium oxide-zinc oxide (IZO) sputtering target
KR20140079384A (en) Zn-Si-O SYSTEM OXIDE SINTERED BODY, METHOD FOR PRODUCING SAME, AND TRANSPARENT CONDUCTIVE FILM
JP5692224B2 (en) Zinc oxide sintered tablet and method for producing the same
TWI491580B (en) Tablet for vapor depositing and method for producing the same
JP5263063B2 (en) Method for producing indium oxide-based or zinc oxide-based sintered tablet for vacuum deposition
JP2015013778A (en) Oxidation sinter body and production method thereof, and oxidation film
JP2001098359A (en) MANUFACTURE OF Mg-CONTAINING ITO SPUTTERING TARGET AND Mg-CONTAINING ITO EVAPORATION MATERIAL
JP6677058B2 (en) Sn-Zn-O-based oxide sintered body and method for producing the same
KR102375637B1 (en) Oxide sintered compact and sputtering target
JP5772667B2 (en) Vapor deposition tablet and manufacturing method thereof
JP5206983B2 (en) ITO sputtering target and manufacturing method thereof
JP5993700B2 (en) Method for producing zinc oxide-based sintered body
JP7203088B2 (en) Oxide sintered body, sputtering target and transparent conductive film
JP6149804B2 (en) Oxide sintered body and manufacturing method thereof
JP6343695B2 (en) Indium oxide-zinc oxide (IZO) sputtering target and method for producing the same
JP5999049B2 (en) Deposition tablet, method for producing the same, and method for producing oxide film
JP2015003846A (en) Oxide sintered body, production method thereof and oxide film
JP5287669B2 (en) Method for producing zinc oxide-based oxide pellets for vacuum deposition
JP6027844B2 (en) Method for producing zinc oxide-based sintered body
JP6014454B2 (en) Method for producing zinc oxide-based sintered body
WO2021019854A1 (en) Method for manufacturing vacuum deposition tablet, oxide transparent conductive film, and tin-oxide-based sintered body
JP5761253B2 (en) Zn-Si-O-based oxide sintered body, method for producing the same, sputtering target, and tablet for vapor deposition
JP6280737B2 (en) Manufacturing method of ZnO target material and transparent conductive film
JP6014451B2 (en) Method for producing zinc oxide-based sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5263063

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees