JP5890767B2 - Semiconductor wafer thickness measuring method and semiconductor wafer processing apparatus - Google Patents

Semiconductor wafer thickness measuring method and semiconductor wafer processing apparatus Download PDF

Info

Publication number
JP5890767B2
JP5890767B2 JP2012253456A JP2012253456A JP5890767B2 JP 5890767 B2 JP5890767 B2 JP 5890767B2 JP 2012253456 A JP2012253456 A JP 2012253456A JP 2012253456 A JP2012253456 A JP 2012253456A JP 5890767 B2 JP5890767 B2 JP 5890767B2
Authority
JP
Japan
Prior art keywords
semiconductor wafer
wafer
thickness
processing apparatus
irradiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012253456A
Other languages
Japanese (ja)
Other versions
JP2014103213A (en
Inventor
智彦 牧野
智彦 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2012253456A priority Critical patent/JP5890767B2/en
Publication of JP2014103213A publication Critical patent/JP2014103213A/en
Application granted granted Critical
Publication of JP5890767B2 publication Critical patent/JP5890767B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は半導体ウエハの厚み測定方法及び半導体ウエハ加工装置に関するものである。   The present invention relates to a semiconductor wafer thickness measuring method and a semiconductor wafer processing apparatus.

半導体デバイスの製造プロセスでは、デバイスの目的厚さを得るために、多数のデバイスの集合体である半導体ウエハ(以下、単に「ウエハ」という)の段階において、裏面を研削して薄型化することが行われている。また、研削加工後は、ウエハの裏面を更に研磨(ポリシング)することより歪みを取り除くことも行われている。   In the manufacturing process of a semiconductor device, in order to obtain a target thickness of the device, the back surface is ground and thinned at a stage of a semiconductor wafer (hereinafter simply referred to as “wafer”) which is an assembly of a large number of devices. Has been done. Further, after the grinding process, distortion is also removed by further polishing (polishing) the back surface of the wafer.

この研削加工及び研磨加工では、回路パターンが形成されたウエハの表面に保護テープを貼り付けて保護し、その表面側をエアでターンテーブル上にチャックし、また厚さを測定しながら加工が進められる。   In this grinding process and polishing process, a protective tape is applied to the surface of the wafer on which the circuit pattern is formed for protection, the surface side is chucked on the turntable with air, and the process proceeds while measuring the thickness. It is done.

また、そのような加工形態においては、加工中のウエハの厚みをリアルタイムに知ることが重要であり、従来、各種の測定方法が提案されている。さらに、測定形式では、測定用のプローブを被加工面であるウエハの裏面に接触させて測定する接触式の厚み測定方法(例えば、特許文献1参照)、あるいはウエハの上面(裏面)にレーザ光を照射し、ウエハの表裏面からの反射光を受光して、その干渉波の波形を分析することにより測定する非接触式の厚み測定方法(例えば、特許文献2参照)などが知られている。   In such processing forms, it is important to know the thickness of the wafer being processed in real time, and various measurement methods have been proposed. Further, in the measurement format, a contact-type thickness measurement method (for example, refer to Patent Document 1) in which a measurement probe is brought into contact with the back surface of the wafer, which is a processing surface, or laser light is applied to the top surface (back surface) of the wafer. , A non-contact type thickness measurement method (for example, refer to Patent Document 2) and the like are known, in which reflected light from the front and back surfaces of the wafer is received and the waveform of the interference wave is analyzed. .

しかし、特許文献1のように、測定用のプローブを使った接触式の厚み測定方法では、接触するプローブによって被加工面に傷がつき、その傷がウエハの強度を低下させるという問題や、保護テープの厚みを除いてウエハの厚みを検出することができないなどの問題があった。   However, as disclosed in Patent Document 1, in the contact-type thickness measurement method using a measurement probe, the surface to be processed is scratched by the contacting probe, and the scratch reduces the strength of the wafer. There is a problem that the thickness of the wafer cannot be detected except for the thickness of the tape.

一方、特許文献2のように、非接触式の厚み測定方法では、ウエハに接触することがないので、被加工面に傷をつけたりすることがなく、また保護テープの厚みを除いてウエハの厚みを検出することができるというメリットがある。しかしながら、非接触式の厚み測定方法では、ウエハの厚みを検出できる検出範囲(例えば、100μm以下)が制限される場合がある。このため、非接触式の厚み検出手段の検出範囲を超える厚みのウエハを加工する場合においては、接触式の厚さ測定方法を併用する必要がある。   On the other hand, in the non-contact type thickness measuring method as in Patent Document 2, the wafer is not touched, so that the surface to be processed is not damaged, and the thickness of the wafer is excluded except for the thickness of the protective tape. There is an advantage that can be detected. However, in the non-contact type thickness measurement method, the detection range (for example, 100 μm or less) in which the wafer thickness can be detected may be limited. For this reason, when processing a wafer having a thickness exceeding the detection range of the non-contact type thickness detecting means, it is necessary to use a contact type thickness measuring method in combination.

そこで、接触式の厚さ測定方法と非接触式の厚み検測定方法を併用して、研削加工の途中で、接触式の厚さ測定方法から非接触式の厚み検測定方法に切り替えるようにした厚み測定方法も知られている(例えば、特許文献3参照)。   Therefore, the contact-type thickness measurement method and the non-contact type thickness measurement method were used in combination, and during the grinding process, the contact-type thickness measurement method was switched to the non-contact type thickness measurement method. A thickness measurement method is also known (see, for example, Patent Document 3).

特開2001−9716号公報。Japanese Patent Application Laid-Open No. 2001-9716. 特開2009−50944号公報。JP2009-50944A. 特開2011−224678号公報。JP2011-224678A.

ところで、ウエハの研削加工では、研削ユニットに取り付けられた研削砥石とチャックテーブルに固定保持されたウエハとを対向配置し、その研削砥石とチャックテーブルを相対回転させながら、ウエハに研削砥石を接触させて研削を行っている。また、研削加工中、加工部分の潤滑、冷却及び洗浄化などを目的として、ウエハの上面(裏面)に研削水(以下、「加工水」という)を供給している。さらに、ドーピング処理されているウエハにレーザ光などを照射してウエハの厚みを非接触式で測定するような場合、ウエハの上面が全くの乾燥状態で測定を行うと、上面及び下面からの反射光の干渉強度が弱く、測定が困難なウエハもある。そのようなウエハに対しては、ウエハの上面に一定厚の水膜を形成すると、上面と下面からの反射光の干渉強度が強くなり、測定ができるようになることから、上記目的以外にも研削加工中に加工水を供給しながら測定を行うこともある。   By the way, in wafer grinding, a grinding wheel mounted on a grinding unit and a wafer fixedly held on a chuck table are arranged opposite to each other, and the grinding wheel is brought into contact with the wafer while the grinding wheel and the chuck table are rotated relative to each other. Grinding. In addition, during the grinding process, grinding water (hereinafter referred to as “processing water”) is supplied to the upper surface (back surface) of the wafer for the purpose of lubrication, cooling and cleaning of the processed part. Furthermore, when measuring the thickness of the wafer in a non-contact manner by irradiating the wafer being doped with laser light or the like, if the measurement is performed with the top surface of the wafer completely dry, the reflection from the top and bottom surfaces will occur. Some wafers have low light interference intensity and are difficult to measure. For such wafers, if a water film with a certain thickness is formed on the upper surface of the wafer, the interference intensity of the reflected light from the upper and lower surfaces becomes stronger and measurement is possible. Measurement may be performed while supplying processing water during grinding.

しかし、研削加工部分に供給された加工水は、加工で生じた研削屑を含んで、またチャックテーブルの回転する遠心力で被加工面(上面)を流動して排水される。また、一部は回転する工具によって飛沫となり、飛沫の状態で流動して排水されるものもある。   However, the processing water supplied to the grinding portion includes grinding waste generated by the processing, and is drained by flowing on the processing surface (upper surface) by the centrifugal force rotating the chuck table. In addition, some are sprayed by a rotating tool and flow and drain in a sprayed state.

このような環境下にあるウエハに対して、厚さ測定用のレーザ光を照射すると、ウエハ上を流動する加工水の膜厚が変動したり、飛沫がレーザ光を通過したりする。このため、レーザ光の屈折率の変動やレーザ光が透過しにくいという状況が生じて干渉波が安定せず、結果として厚さの測定値が安定しないという問題点があった。   When a laser beam for thickness measurement is irradiated to a wafer in such an environment, the film thickness of the processing water flowing on the wafer varies, or splashes pass through the laser beam. For this reason, fluctuations in the refractive index of the laser beam and situations in which the laser beam is difficult to transmit occur and the interference wave is not stable, resulting in a problem that the measured thickness value is not stable.

そこで、レーザ光の干渉波を利用して半導体ウエハの厚さを測定するに当たり、加工水の影響を受けることなく、安定した測定値を得ることができる半導体ウエハの測定方法と、その方法を実施可能とする半導体ウエハ加工装置を提供するために解決すべき技術的課題が生じてくるのであり、本発明はこの課題を解決することを目的とする。   Therefore, when measuring the thickness of a semiconductor wafer using an interference wave of a laser beam, a semiconductor wafer measurement method capable of obtaining a stable measurement value without being affected by processing water and the method are implemented. The technical problem which should be solved arises in order to provide the semiconductor wafer processing apparatus which enables it, and this invention aims at solving this problem.

本発明は上記目的を達成するために提案されたものであり、請求項1記載の発明は、半導体ウエハの下面を保持手段により保持し、上面を研削砥石で加工水を供給しながら研削加工するとともに、研削加工中の前記半導体ウエハの上面にレーザ光を照射し、ウエハの上面で反射されたレーザ光と下面で反射されたレーザ光との干渉波を受光して該半導体ウエハの厚みを非接触で測定する半導体ウエハ加工装置における半導体ウエハの厚み測定方法であって、前記レーザ光を照射する前記半導体ウエハの照射部位にエアを前記ウエハの上面に対して垂直に吹き付け、該照射部位に前記加工水による一定厚みの薄膜を形成し、前記レーザ光を前記半導体ウエハに前記薄膜を通して照射する半導体ウエハの厚み測定方法を提供する。 The present invention has been proposed to achieve the above object, and the invention according to claim 1 is characterized in that the lower surface of the semiconductor wafer is held by holding means, and the upper surface is ground while supplying processing water with a grinding stone. At the same time, the upper surface of the semiconductor wafer being ground is irradiated with laser light, and the interference wave between the laser light reflected on the upper surface of the wafer and the laser light reflected on the lower surface is received to reduce the thickness of the semiconductor wafer. A method for measuring a thickness of a semiconductor wafer in a semiconductor wafer processing apparatus for measuring by contact, wherein air is blown perpendicularly to an upper surface of the wafer to be irradiated with the laser light, and the irradiated portion is irradiated with the air. Provided is a method for measuring a thickness of a semiconductor wafer, in which a thin film having a constant thickness is formed by processing water and the laser beam is irradiated to the semiconductor wafer through the thin film.

この方法によれば、半導体ウエハの被加工面(上面)で、かつレーザ光を照射する部位にエアを吹き付けて薄膜を形成するが、その際、エアの吹き付けにより照射部位における加工水の一部と共に、研削屑も同時に吹き払われる。また、加工水の飛沫が照射部位に向かって来たときには、その飛沫もエアで吹き払われて照射部位に侵入するのを防ぐことができる。これにより、照射部位には、常に、切削屑及び飛沫を無くした加工水だけによる一定厚みの薄膜が作られる。そして、その薄膜が形成されている被加工面に対してレーザ光を照射し、その半導体ウエハの上面で反射されたレーザ光と下面で反射されたレーザ光との干渉波を受光し、その干渉波に基づいて半導体ウエハの厚みを非接触で安定的に導き出すことができる。なお、本発明で言う研削は、研磨をも含む。   According to this method, a thin film is formed by blowing air onto a surface to be processed (upper surface) of a semiconductor wafer and a portion to be irradiated with laser light. At the same time, grinding waste is blown away. Moreover, when the splash of processed water comes toward the irradiation site, the splash can be prevented from being blown off by air and entering the irradiation site. As a result, a thin film having a constant thickness is always made only at the irradiated portion by the machining water from which cutting waste and splashes are eliminated. The surface to be processed on which the thin film is formed is irradiated with laser light, and an interference wave between the laser light reflected on the upper surface of the semiconductor wafer and the laser light reflected on the lower surface is received, and the interference is received. Based on the wave, the thickness of the semiconductor wafer can be stably derived without contact. The grinding referred to in the present invention includes polishing.

請求項2記載の発明は、半導体ウエハの下面を保持手段により保持し、上面を研削砥石で加工水を供給しながら研削加工する半導体ウエハ加工装置において、研削加工中の前記半導体ウエハにレーザ光を照射し、該半導体ウエハの上面で反射されたレーザ光と下面で反射されたレーザ光との干渉波を受光して該半導体ウエハの厚みを非接触で測定する半導体ウエハの厚み測定手段と、前記レーザ光を照射する前記半導体ウエハの照射部位にエアを前記ウエハの上面に対して垂直に吹き付け、該照射部位に前記加工水による一定厚みの薄膜を形成するエア吹き付け手段と、を備える半導体ウエハ加工装置を提供する。 According to a second aspect of the present invention, in a semiconductor wafer processing apparatus for holding a lower surface of a semiconductor wafer by a holding means and grinding the upper surface while supplying processing water with a grinding wheel, laser light is applied to the semiconductor wafer being ground. A semiconductor wafer thickness measuring means for irradiating and receiving an interference wave between the laser beam reflected on the upper surface of the semiconductor wafer and the laser beam reflected on the lower surface and measuring the thickness of the semiconductor wafer in a non-contact manner; comprising spraying vertically air to the irradiation region of the semiconductor wafer is irradiated with a laser beam to the upper surface of the wafer, and air blowing means for forming a thin film single Teiatsumi that by the processing water to the irradiation site, the A semiconductor wafer processing apparatus is provided.

この構成によれば、エア吹き付け手段により、半導体ウエハの被加工面(上面)で、かつレーザ光を照射する部位にエアを吹き付けて薄膜を形成する際、その照射部位における加工水の一部と共に、研削屑が同時に吹き払われる。また、加工水の飛沫が照射部位に向かって来たときには、その飛沫もエアで吹き払われて照射部位に侵入するのを防ぐことができる。これにより、照射部位には、常に、切削屑及び飛沫を無くした加工水だけによる一定厚みの薄膜が常に作られる。そして、その薄膜が形成されている被加工面に対して、半導体ウエハの厚み測定手段によりレーザ光を照射し、その半導体ウエハの上面で反射されたレーザ光と下面で反射されたレーザ光との干渉波を受光し、その干渉波に基づいて半導体ウエハの厚みを非接触で安定的に導き出すことができる。なお、本発明で言う研削は、研磨をも含む。   According to this configuration, when forming a thin film by blowing air onto a surface to be processed (upper surface) of a semiconductor wafer and a portion irradiated with laser light by the air blowing means, together with a part of the processing water at the irradiated portion. The grinding waste is blown off at the same time. Moreover, when the splash of processed water comes toward the irradiation site, the splash can be prevented from being blown off by air and entering the irradiation site. As a result, a thin film having a constant thickness is always made only at the irradiated portion by only the processing water from which cutting waste and splashes are eliminated. Then, the processing surface on which the thin film is formed is irradiated with a laser beam by means of a semiconductor wafer thickness measuring means, and the laser beam reflected on the upper surface of the semiconductor wafer and the laser beam reflected on the lower surface The interference wave is received, and the thickness of the semiconductor wafer can be stably derived without contact based on the interference wave. The grinding referred to in the present invention includes polishing.

請求項3記載の発明は、請求項2記載の構成において、上記半導体ウエハの厚み測定手段によるレーザ光を照射するレーザ照射部と前記半導体ウエハの表裏面で反射されたレーザ光を受ける受光部を、前記エア吹き付け手段のエア吹出口の真上に設けてなる半導体ウエハ加工装置を提供する。 According to a third aspect of the present invention, in the configuration of the second aspect, a laser irradiation unit that irradiates a laser beam by the thickness measuring unit of the semiconductor wafer and a light receiving unit that receives the laser beam reflected by the front and back surfaces of the semiconductor wafer. , a semiconductor wafer processing device formed by providing a true on the air outlet of said air blowing means.

この構成によれば、レーザ光の干渉を利用して半導体ウエハの厚さを測定するにあたり、薄膜が形成された照射部位のほぼ中心にレーザ光を当てることが可能になる。   According to this configuration, when measuring the thickness of the semiconductor wafer using the interference of the laser beam, it is possible to apply the laser beam to substantially the center of the irradiation site where the thin film is formed.

請求項4記載の発明は、請求項2または3記載の構成において、上記薄膜の厚みを10μmに設定してなる半導体ウエハ加工装置を提供する。 According to a fourth aspect of the present invention, there is provided a semiconductor wafer processing apparatus according to the second or third aspect, wherein the thickness of the thin film is set to 10 μm.

この構成によれば、薄膜の厚みをほぼ10μmに設定することにより、安定した厚さ測定値を得ることができる。   According to this configuration, a stable thickness measurement value can be obtained by setting the thickness of the thin film to approximately 10 μm.

請求項1記載の発明は、レーザ光の干渉波を利用して半導体ウエハの厚さを測定するにあたり、被加工面(上面)で、かつレーザ光を当てる照射部位に切削屑及び飛沫を無くした加工水だけによる一定厚みの薄膜を作り、その薄膜を設けた被加工面に対してレーザ光を照射し、かつ反射波を受光して、その干渉波から厚みを測定するので、加工水の飛沫や研削屑の影響などを受けることなく安定した測定値を得ることができ、測定精度が向上するという効果が期待される。   According to the first aspect of the present invention, when measuring the thickness of the semiconductor wafer using the interference wave of the laser beam, the cutting waste and the splash are eliminated on the processing surface (upper surface) and the irradiated portion to which the laser beam is applied. A thin film of a certain thickness is made only from the processed water, and the surface to be processed is irradiated with laser light, and the reflected wave is received and the thickness is measured from the interference wave. Stable measurement values can be obtained without being affected by grinding scraps and the like, and the effect of improving measurement accuracy is expected.

請求項2記載の発明は、レーザ光の干渉波を利用して半導体ウエハの厚さを測定するにあたり、エア吹き付け手段により、被加工面(上面)で、かつレーザ光を当てる照射部位に切削屑及び飛沫を無くした加工水だけによる一定厚みの薄膜を作り、その薄膜を設けた被加工面に対して、半導体ウエハの厚み測定手段によりレーザ光を照射し、かつ受光して、その干渉波から厚みを測定するので、加工水の飛沫や研削屑の影響を受けることなく安定した測定値を得ることができ、測定精度が向上するという効果が期待される。   According to the second aspect of the present invention, when measuring the thickness of the semiconductor wafer by using the interference wave of the laser beam, the cutting dust is applied to the surface to be processed (upper surface) and the irradiated portion to which the laser beam is applied by the air blowing means. Then, a thin film having a constant thickness is made only from the processing water from which splashes have been eliminated, and the processing surface provided with the thin film is irradiated with a laser beam by means of a semiconductor wafer thickness measuring device, and received from the interference wave. Since the thickness is measured, it is possible to obtain a stable measurement value without being affected by splashes of processing water or grinding scraps, and an effect of improving measurement accuracy is expected.

請求項3記載の発明は、レーザ光の干渉を利用して半導体ウエハの厚さを測定するにあたり、薄膜が形成された照射部位のほぼ中心にレーザ光を当てて測定をすることができるので、請求項2に記載の発明の効果に加えて、さらに測定精度が向上するという効果が期待される。   In the invention according to claim 3, when measuring the thickness of the semiconductor wafer using the interference of the laser beam, the measurement can be performed by irradiating the laser beam to substantially the center of the irradiation site where the thin film is formed. In addition to the effect of the invention described in claim 2, it is expected that the measurement accuracy is further improved.

請求項4記載の発明は、薄膜の厚みをほぼ10μmに設定して測定をすることにより、安定した厚さ測定値を得ることができ、請求項2または3に記載の発明の効果に加えて、さらに測定精度が向上するという効果が期待される。   In the invention described in claim 4, a stable thickness measurement value can be obtained by setting the thickness of the thin film to about 10 μm, and in addition to the effects of the invention described in claim 2 or 3, Moreover, the effect of further improving the measurement accuracy is expected.

本発明の一実施形態に係る半導体ウエハ加工装置で裏面研削される半導体ウエハの一例を示し、(a)は斜視図、(b)は側面図。An example of the semiconductor wafer ground back by the semiconductor wafer processing apparatus which concerns on one Embodiment of this invention is shown, (a) is a perspective view, (b) is a side view. 本発明の一実施形態に係る半導体ウエハ加工装置の概略構成配置図。1 is a schematic configuration layout diagram of a semiconductor wafer processing apparatus according to an embodiment of the present invention. 図2に示した半導体ウエハ加工装置の研削砥石部、チャックテーブル、加工水を供給する水用ノズル及び厚さ測定器の概略構成配置図。FIG. 3 is a schematic configuration layout diagram of a grinding wheel unit, a chuck table, a water nozzle for supplying processing water, and a thickness measuring instrument of the semiconductor wafer processing apparatus shown in FIG. 2. 被接触式厚さ測定器及びエア吹き付け手段の構成を説明する断面図。Sectional drawing explaining the structure of a to-be-contacted type thickness measuring device and an air spraying means. 本発明の一実施形態に係る半導体ウエハ加工装置におけるエア吹き付け手段の作用を説明する図。The figure explaining the effect | action of the air spraying means in the semiconductor wafer processing apparatus which concerns on one Embodiment of this invention.

本発明は、レーザ光の干渉波を利用して半導体ウエハの厚さを測定するに当たり、加工水の影響を受けることなく、安定した測定値を得ることができる半導体ウエハの測定方法と、その方法を実施可能とする半導体ウエハ加工装置を提供するという目的を達成するために、半導体ウエハの下面を保持手段により保持し、上面を砥石で加工水を供給しながら研削加工する半導体ウエハ加工装置において、研削加工中の前記半導体ウエハにレーザ光を照射し、該半導体ウエハの上面で反射されたレーザ光と下面で反射されたレーザ光との干渉波を受光して該半導体ウエハの厚みを非接触で測定する半導体ウエハの厚み測定手段と、前記レーザ光を照射する前記半導体ウエハの照射部位にエアを吹き付け、該照射部位に前記加工水による一定厚みの薄膜を形成するエア吹き付け手段と、を備える構成としたことにより実現した。 The present invention relates to a semiconductor wafer measurement method capable of obtaining a stable measurement value without being affected by processing water in measuring the thickness of a semiconductor wafer using an interference wave of a laser beam, and the method In order to achieve the object of providing a semiconductor wafer processing apparatus capable of implementing the above, in a semiconductor wafer processing apparatus for holding a lower surface of a semiconductor wafer by a holding means and grinding the upper surface while supplying processing water with a grindstone, The semiconductor wafer being ground is irradiated with laser light, and an interference wave between the laser light reflected on the upper surface of the semiconductor wafer and the laser light reflected on the lower surface is received so that the thickness of the semiconductor wafer is contactless. the thickness measuring means of the semiconductor wafer to be measured, the blowing air to the irradiation site of the semiconductor wafer, one Teiatsumi that by the processing water to the irradiation site that irradiates the laser beam And air blowing means for forming a film was achieved with the construction comprising a.

以下、本発明の一実施形態に係る半導体ウエハ加工装置の実施例を、図面を参照して詳細に説明する。   Hereinafter, an example of a semiconductor wafer processing apparatus according to an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、本発明の半導体ウエハ加工装置で裏面研削される半導体ウエハの一例を示す。同図において、半導体ウエハ11(以下、単に「ウエハ11」という)は、シリコンウエハ等であって、裏面研削されて薄化される円盤状のウエハである。そのウエハ11は、加工前の厚さは例えば700μm程度で均一とされている。   FIG. 1 shows an example of a semiconductor wafer that is back-ground by the semiconductor wafer processing apparatus of the present invention. In the figure, a semiconductor wafer 11 (hereinafter, simply referred to as “wafer 11”) is a silicon wafer or the like, and is a disk-shaped wafer that is thinned by grinding the back surface. The wafer 11 has a uniform thickness of, for example, about 700 μm before processing.

図1の(a)に示しているように、前記ウエハ11の表面11aには、格子状の分割予定ライン12によって複数の矩形状をした半導体チップ13が区画されている。これら半導体チップ13の表面には、ICやLSI等の図示せぬ電子回路が形成されている。また、ウエハ11の周面の所定の箇所には、半導体の結晶方位を示すV字状の切り欠き(ノッチ)14が形成されている。   As shown in FIG. 1A, a plurality of rectangular semiconductor chips 13 are partitioned on the surface 11 a of the wafer 11 by lattice-shaped scheduled division lines 12. An electronic circuit (not shown) such as an IC or an LSI is formed on the surface of the semiconductor chip 13. A V-shaped notch 14 indicating the crystal orientation of the semiconductor is formed at a predetermined location on the peripheral surface of the wafer 11.

前記ウエハ11は、前記分割予定ライン12に沿って切断されることにより多数の半導体チップ13に個片化されるが、その前に、裏面(研削時には、この面が上面となる)11bが研削されて、得るべき半導体チップ13の目的厚さ(例えば10〜100μm)に全体が薄化される。そのウエハ11の裏面研削は、図2及び図3に一実施形態として示している半導体ウエハ加工装置21によってなされる。   The wafer 11 is cut into a plurality of semiconductor chips 13 by being cut along the planned dividing line 12, but before that, the back surface (this surface becomes the top surface during grinding) 11b is ground. Then, the whole is thinned to the target thickness (for example, 10 to 100 μm) of the semiconductor chip 13 to be obtained. The back surface grinding of the wafer 11 is performed by a semiconductor wafer processing apparatus 21 shown as an embodiment in FIGS. 2 and 3.

その裏面11bの研削のために半導体ウエハ加工装置21に供されるウエハ11の表面11aには、図1(b)に示しているように予め保護テープ15が貼り付けられる。保護テープ5としては、例えば、厚さ100〜200μm程度のポリエチレン等の基材の片面に、厚さ10〜20μm程度のアクリル系等の粘着剤を塗布したテープなどが用いられる。保護テープ15を貼着する目的は、裏面11bを研削する際に、半導体チップ13の表面に形成された電子回路がダメージを受けることを防止するためである。   As shown in FIG. 1B, a protective tape 15 is attached in advance to the front surface 11a of the wafer 11 provided to the semiconductor wafer processing apparatus 21 for grinding the back surface 11b. As the protective tape 5, for example, a tape obtained by applying an acrylic adhesive or the like having a thickness of about 10 to 20 μm to one side of a base material such as polyethylene having a thickness of about 100 to 200 μm is used. The purpose of sticking the protective tape 15 is to prevent the electronic circuit formed on the surface of the semiconductor chip 13 from being damaged when the back surface 11b is ground.

次に、前記ウエハ11の裏面11bを研削する半導体加工装置21の構成を図2及び図3を用いて説明する。同図において、半導体ウエハ加工装置21は、ウエハ11を保持する保持手段としてのチャックテーブル22と、ウエハ11の裏面11bを研削加工する研削砥石部23と、ウエハ11の切削加工面(裏面11b)に加工水42を供給する水用ノズル24と、研削加工途中のウエハ11の厚みをそれぞれリアルタイムに測定する接触式厚み測定器25及び非接触式厚み測定器26と、エア供給源27と、記憶部28と、制御部29などを備えたものである。   Next, the configuration of the semiconductor processing apparatus 21 for grinding the back surface 11b of the wafer 11 will be described with reference to FIGS. In the figure, a semiconductor wafer processing apparatus 21 includes a chuck table 22 as holding means for holding the wafer 11, a grinding wheel portion 23 for grinding the back surface 11b of the wafer 11, and a cutting surface (back surface 11b) of the wafer 11. A water nozzle 24 for supplying processing water 42 to the contact, a contact-type thickness measuring device 25 and a non-contact-type thickness measuring device 26 for measuring the thickness of the wafer 11 in the middle of grinding in real time, an air supply source 27, and a memory. A unit 28 and a control unit 29 are provided.

前記チャックテーブル22は、図示しないモータにより図3中に示している矢印R方向に回転駆動される回転するテーブルである。そのチャックテーブル22の上面には、表面11aを下向きにして載せられたウエハ11を真空吸引して一体回転可能に固定保持する図示しない真空チャック部が設けられている。   The chuck table 22 is a rotating table that is rotationally driven in the direction of arrow R shown in FIG. 3 by a motor (not shown). On the upper surface of the chuck table 22, there is provided a vacuum chuck portion (not shown) for vacuum-sucking and holding the wafer 11 placed with the surface 11a facing downward so as to be integrally rotatable.

前記研削砥石部23は、図示しない装置本体に取り付けられたモータ30における出力軸31の先端に取付けられており、ウエハ11と対向する面には研削砥石23aが設けられている。該研削砥石23及び研削砥石23aは、モータ30の駆動力により図3中に示している矢印R方向に回転される。   The grinding wheel portion 23 is attached to the tip of an output shaft 31 of a motor 30 attached to an apparatus main body (not shown), and a grinding wheel 23 a is provided on the surface facing the wafer 11. The grinding wheel 23 and the grinding wheel 23 a are rotated in the direction of arrow R shown in FIG. 3 by the driving force of the motor 30.

前記研削砥石23aは、チャックテーブル22上に吸着保持されたウエハ11の裏面(上面)11bを研削加工する砥石であり、例えば、液体ボンドを結合材とするダイヤモンド砥石が用いられる。結合材を液体ボンドにすることで、砥石が弾性を持ち、研削砥石23aとウエハ11の接触時の衝撃力が緩和され、ウエハ裏面11bを高精度に加工することができる。そして、この研削砥石部23は、チャックテーブル22で吸着保持されたウエハ11の裏面11bに対向させて、研削砥石23aを配置している。   The grinding wheel 23 a is a grinding wheel for grinding the back surface (upper surface) 11 b of the wafer 11 held by suction on the chuck table 22, and for example, a diamond grinding stone using a liquid bond as a binder is used. By making the bonding material a liquid bond, the grindstone has elasticity, the impact force at the time of contact between the grinding grindstone 23a and the wafer 11 is reduced, and the wafer back surface 11b can be processed with high accuracy. The grinding wheel portion 23 is arranged with the grinding wheel 23 a facing the back surface 11 b of the wafer 11 sucked and held by the chuck table 22.

図3に示しているように、前記水ノズル24は、チャックテーブル22で吸着固定保持されて研削加工されるウエハ11に対し、そのウエハ11の裏面11bの回転中心Oに加工水42が吐出するようにして、吐出口24cをウエハ11の回転中心Oに向けて配置された第1の水用ノズル24aと、ウエハ11の外周近傍に向けて加工水42を吐出するようにして、吐出口24cをチャックテーブル22の回転方向Lに対して、第1の水用ノズル24aよりも下流側で、かつ研削砥石部32の上流側に向けて配置されている第2の水用ノズル24bとを備えてなる。そして、第1の水用ノズル24a及び第2の水用ノズル24bからは、それぞれ研削途中のウエハ11と研削砥石23aとの間に潤滑、冷却及び洗浄化などによる加工水42を供給する。   As shown in FIG. 3, the water nozzle 24 discharges the processing water 42 to the rotation center O of the back surface 11 b of the wafer 11 with respect to the wafer 11 to be ground, fixed and held by the chuck table 22. In this way, the discharge port 24 c is discharged toward the first water nozzle 24 a disposed toward the rotation center O of the wafer 11 and the vicinity of the outer periphery of the wafer 11. And a second water nozzle 24b disposed downstream of the first water nozzle 24a and upstream of the grinding wheel portion 32 with respect to the rotation direction L of the chuck table 22. It becomes. Then, from the first water nozzle 24a and the second water nozzle 24b, the processing water 42 is supplied between the wafer 11 being ground and the grinding wheel 23a by lubrication, cooling, cleaning, and the like.

そして、前記第1の水用ノズル24aの吐出口24cからウエハ11の回転中心Oに向けて吐出された加工水42は、ウエハ11の回転による遠心力で回転中心Oから外周に向かって輪を描くように拡がりながら裏面11b上を流れ、研削加工で生じた研削屑や飛沫を外周側に流して除去する。   Then, the processed water 42 discharged from the discharge port 24c of the first water nozzle 24a toward the rotation center O of the wafer 11 is rotated from the rotation center O toward the outer periphery by the centrifugal force generated by the rotation of the wafer 11. It flows on the back surface 11b while spreading as drawn, and grinding scraps and splashes generated by grinding are flowed to the outer peripheral side to be removed.

一方、前記第2の水用ノズル24bの吐出口24cからウエハ11の外周近傍に向けて吐出された加工水42は、研削砥石部23の回転で、研削砥石23aとウエハ11との間に誘引されて流れ込み、加工部分の潤滑及び冷却を行う。なお、図3に示す第2の水用ノズル24bの位置は、ウエハ11の径が例えば200mmの場合と300mmの場合とで異なり、図3では径が200mmのウエハ11の場合で示している。   On the other hand, the processing water 42 discharged from the discharge port 24 c of the second water nozzle 24 b toward the outer periphery of the wafer 11 is attracted between the grinding wheel 23 a and the wafer 11 by the rotation of the grinding wheel portion 23. Then, the machined part is lubricated and cooled. The position of the second water nozzle 24b shown in FIG. 3 differs depending on whether the diameter of the wafer 11 is 200 mm or 300 mm, for example, and FIG. 3 shows the case of the wafer 11 having a diameter of 200 mm.

前記接触式厚み測定器25は、一対のタッチセンサ25a,25bであり、各タッチセンサ25a,25bの先端にはそれぞれプローブ32a,32bが取り付けられている。また、図2及び図3に示しているように、一方のタッチセンサ25aは、プローブ32aを回転しているウエハ11の裏面11bの外周端近傍に当接して配置され、他方のタッチセンサ25bは、プローブ32bを回転しているチャックテーブル22の上面22aに当接して配置されている。より詳しく説明すると、タッチセンサ25aのプローブ32a及びタッチセンサ25bのプローブ32bは、図3に示しているように、第2の水用ノズル24bの吐出口24cから吐出された加工水42の影響を少なくするために、研削砥石部23に対してウエハ11の回転方向下流側で、かつ第2の水用ノズル24bの吐出口24c付近位置に配設されている。なお、タッチセンサ25aを配置する位置は、前記第2の水用ノズル24bの場合と同じように、ウエハ11の径が例えば200mmの場合と300mmの場合とで異なり、図3では径が200mmのウエハ11の場合で示している。そして、径が300mmの場合では、径が200mmの場合よりも外周方向外側に移動した位置に設定される。   The contact-type thickness measuring device 25 is a pair of touch sensors 25a and 25b, and probes 32a and 32b are attached to the tips of the touch sensors 25a and 25b, respectively. Also, as shown in FIGS. 2 and 3, one touch sensor 25a is disposed in contact with the vicinity of the outer peripheral edge of the back surface 11b of the wafer 11 rotating the probe 32a, and the other touch sensor 25b is The probe 32b is disposed in contact with the upper surface 22a of the chuck table 22 rotating. More specifically, as shown in FIG. 3, the probe 32a of the touch sensor 25a and the probe 32b of the touch sensor 25b are affected by the processing water 42 discharged from the discharge port 24c of the second water nozzle 24b. In order to reduce this, the grinding wheel portion 23 is disposed downstream of the grinding wheel portion 23 in the rotation direction of the wafer 11 and in the vicinity of the discharge port 24c of the second water nozzle 24b. As in the case of the second water nozzle 24b, the position where the touch sensor 25a is arranged differs depending on whether the diameter of the wafer 11 is 200 mm or 300 mm. In FIG. The case of the wafer 11 is shown. In the case where the diameter is 300 mm, the position is set to a position moved to the outer side in the outer circumferential direction than in the case where the diameter is 200 mm.

そして、接触式厚み測定器25の各タッチセンサ25a,25bは、プローブ32a,32bの変化が差動トランスによって電圧信号に変換される。また、その変換信号が制御部28に入力され、制御部29では変換差電圧信号に基づいてチェックテーブル22の上面22aとウエハ11の裏面11bとの間の距離、すなわちウエハ11及び保護テープ15の厚さをリアルタイムに実測する。   In each touch sensor 25a, 25b of the contact-type thickness measuring device 25, changes in the probes 32a, 32b are converted into voltage signals by a differential transformer. The conversion signal is input to the control unit 28, and the control unit 29 determines the distance between the upper surface 22 a of the check table 22 and the back surface 11 b of the wafer 11 based on the conversion difference voltage signal, that is, the wafer 11 and the protective tape 15. Measure the thickness in real time.

図4に示しているように、前記非接触式厚み測定器26は、エア吹き付け手段33と一体化されている。また、非接触式厚み測定器26は、第1の水用ノズル24aの吐出口24cから吐出される加工水42及び第2の水用ノズル24bの吐出口24cから吐出された加工水42の影響を受けるのを少なくするために、研削砥石部23に対してウエハ11の回転方向下流側で、かつ第1の水用ノズル24aの吐出口24cと離れたウエハ11の外周端付近位置に配設されている。一方、エア吹き付け手段33は、図2に示しているように、エア供給源27と、該エア供給源27に接続されて設けられたエアノズル34を有してなる。   As shown in FIG. 4, the non-contact type thickness measuring device 26 is integrated with the air blowing means 33. Further, the non-contact type thickness measuring device 26 is affected by the processing water 42 discharged from the discharge port 24c of the first water nozzle 24a and the processing water 42 discharged from the discharge port 24c of the second water nozzle 24b. In order to reduce receiving, the wafer 11 is disposed downstream of the grinding wheel portion 23 in the rotational direction of the wafer 11 and near the outer peripheral edge of the wafer 11 away from the discharge port 24c of the first water nozzle 24a. Has been. On the other hand, as shown in FIG. 2, the air blowing means 33 includes an air supply source 27 and an air nozzle 34 connected to the air supply source 27.

前記エアノズル34は、図2に示しているように、チャックテーブル22に保持されたウエハ11の裏面11bと近接した位置に配置されている。また、図4に示しているように、ウエハ11の裏面11bに対して垂直な第1の孔34aとエアノズル34内で一端側が第1の孔34aに通じる第2の孔34bとを有している。なお、第1の孔34aにおける開口35の面は、ウエハ11の裏面11bに対してほぼ平行で、かつ対向して設けられており、したがって開口35から吹き出される後述するエア41は、ウエハ11の裏面11bに対してほぼ垂直に当たるようになっている。   As shown in FIG. 2, the air nozzle 34 is disposed at a position close to the back surface 11 b of the wafer 11 held on the chuck table 22. Further, as shown in FIG. 4, the first hole 34 a is perpendicular to the back surface 11 b of the wafer 11 and the second hole 34 b is connected to the first hole 34 a at one end side in the air nozzle 34. Yes. Note that the surface of the opening 35 in the first hole 34 a is provided substantially parallel to and opposite to the back surface 11 b of the wafer 11, and therefore air 41 to be described later blown out from the opening 35 is used for the wafer 11. The back surface 11b is substantially perpendicular to the back surface 11b.

そして、前記非接触式厚み測定器26は、エアノズル34における第1の孔34aの上端側に、該第1の孔34aの上端側の開口側を塞ぐようにして設けられている。また、第2の孔34bの他端側はエア供給源27に繋がっている。したがって、エアノズル34では、エア供給源27からのエア41の供給を第2の孔34bが受けると、このエア41は第1の孔34b側に送られ、更に第1の孔34bの下面側の開口35からウエハ11の裏面11bに対してほぼ垂直に吹き付けられる。そのエア41が吹き付けた部位が、図3中に符号Sで示す範囲である。以後、この範囲Sを「照射部位S」という。なお、図3中に示す照射部位Sの位置も、前記第2の水用ノズル24b及び前記タッチセンサ25aのプローブ32aの場合と同じように、ウエハ11の径が例えば200mmの場合と300mmの場合とで異なり、図3では径が200mmのウエハ11の場合で示している。そして、径が300mmの場合では、径が200mmの場合よりも外周方向外側に移動した位置に設定されるが、照射部位S内の照射ポイント36とプローブ32aの位置は、何れの場合も同一円周上に配置されるのが好ましい。   The non-contact type thickness measuring device 26 is provided on the upper end side of the first hole 34a in the air nozzle 34 so as to close the opening side on the upper end side of the first hole 34a. The other end of the second hole 34 b is connected to the air supply source 27. Therefore, in the air nozzle 34, when the second hole 34b receives the supply of the air 41 from the air supply source 27, the air 41 is sent to the first hole 34b side, and further on the lower surface side of the first hole 34b. It is sprayed from the opening 35 substantially perpendicularly to the back surface 11 b of the wafer 11. The portion to which the air 41 is blown is a range indicated by a symbol S in FIG. Hereinafter, this range S is referred to as “irradiation site S”. In addition, the position of the irradiation part S shown in FIG. 3 is also the case where the diameter of the wafer 11 is, for example, 200 mm and 300 mm, as in the case of the second water nozzle 24b and the probe 32a of the touch sensor 25a. FIG. 3 shows the case of the wafer 11 having a diameter of 200 mm. In the case where the diameter is 300 mm, the position is set at a position moved outward in the outer circumferential direction as compared with the case where the diameter is 200 mm. However, the positions of the irradiation point 36 and the probe 32 a in the irradiation site S are the same in each case. It is preferable to arrange on the circumference.

また、照射部位Sに吹き付けられたエア41は、その照射部位Sにおける加工水42及び加工屑を外側に吹き飛ばし、同時に、図5に示しているように、その照射部位S内に加工水42で作られる一定厚みの薄膜tを形成する。なお、本実施例では、開口35の直径は2〜3mm、エア41の吹き出し量は約100リットル/分であり、また、エア41の吹き出しで形成される照射部位Sは、図2に示しているように後述するレーザ光40の照射ポイント36の外側周囲を大きく囲むようにして作られ、その薄膜tの厚みはほぼ10μmとなるように設定してある。   Further, the air 41 blown to the irradiation site S blows away the processing water 42 and the processing waste in the irradiation site S to the outside. At the same time, as shown in FIG. A thin film t having a certain thickness is formed. In this embodiment, the diameter of the opening 35 is 2 to 3 mm, the amount of blown air 41 is about 100 liters / minute, and the irradiation site S formed by blowing the air 41 is shown in FIG. As shown, the outer periphery of an irradiation point 36 of a laser beam 40, which will be described later, is formed so as to largely surround, and the thickness of the thin film t is set to be approximately 10 μm.

一方、前記第1の孔34aの上端側に取り付けられている前記非接触式厚み測定器26は、第1の孔34aを通して、ウエハ11の裏面11bに対して垂直にレーザ光40を発射し、上記照射ポイント36を照射するレーザ照射部(図示せず)と、ウエハ11の裏面11bからの反射光と表面11aからの反射光を受光するフォトダイオードなどの受光部(図示せず)と、を有してなるもので、その非接触式厚み測定器26自体は一般に知られた測定器である。また、非接触式厚み測定器26には制御部29が接続されており、制御部29では非接触式厚み測定器26の受光部で各々受光された表裏面からの反射波による干渉波の波形を検波回路(図示せず)で分析し、その波形に応じてウエハ11の厚みを検出するようになっている。   On the other hand, the non-contact type thickness measuring device 26 attached to the upper end side of the first hole 34a emits a laser beam 40 perpendicularly to the back surface 11b of the wafer 11 through the first hole 34a. A laser irradiation part (not shown) for irradiating the irradiation point 36; and a light receiving part (not shown) such as a photodiode for receiving the reflected light from the back surface 11b of the wafer 11 and the reflected light from the surface 11a. The non-contact type thickness measuring device 26 itself is a generally known measuring device. In addition, a control unit 29 is connected to the non-contact type thickness measuring device 26, and in the control unit 29, a waveform of an interference wave due to reflected waves from the front and back surfaces respectively received by the light receiving unit of the non-contact type thickness measuring device 26. Is detected by a detection circuit (not shown), and the thickness of the wafer 11 is detected according to the waveform.

また、前記非接触式厚み測定器26の受光部には、該受光部による検出結果などを記憶しておく前記記憶部28が接続されている。その記憶部28は、接触式厚み測定器25及び非接触式厚み測定器26で測定された検出結果の他に、制御部29が各種の処理を実行するためのプログラムなどが記憶されている。   The light receiving unit of the non-contact type thickness measuring device 26 is connected to the storage unit 28 for storing the detection result by the light receiving unit. In addition to the detection results measured by the contact-type thickness measuring device 25 and the non-contact-type thickness measuring device 26, the storage unit 28 stores programs for the control unit 29 to execute various processes.

次に、このように構成された半導体加工装置21の動作の一例を説明する。前記ウエハ11は、裏面11bを上側(研削砥石部23側)に向けてチャックテーブル22上の所定の位置に真空チャックされた状態で固定保持され、チャックテーブル22と共に図3中の矢印L方向に回転する。   Next, an example of operation | movement of the semiconductor processing apparatus 21 comprised in this way is demonstrated. The wafer 11 is fixed and held in a vacuum chucked state at a predetermined position on the chuck table 22 with the back surface 11b facing upward (grinding wheel portion 23 side), and along with the chuck table 22 in the direction of arrow L in FIG. Rotate.

また、チャックテーブル22の回転と同時に、水用ノズル24から加工水42が供給されるとともに、エア供給源27からエア吹き付け手段33にエア41が供給される。そして、このエア41が、第1の孔34aの下面開口35からウエハ11の裏面11b上に吹き付けられて照射部位Sの加工水42の一部を除去し、照射部位Sに薄膜tを形成する。なお、この薄膜tの形成は、ウエハ11の研削加工時に、研削屑の除去及び飛沫侵入防御などを行う。同時に、非接触式厚み測定器26による厚み測定におけるウエハ11の裏面11bからの反射光と表面11aからの反射光の干渉強度を強めて、非接触式厚み測定器26による測定精度を向上させる。   Simultaneously with the rotation of the chuck table 22, the processing water 42 is supplied from the water nozzle 24, and the air 41 is supplied from the air supply source 27 to the air blowing means 33. And this air 41 is sprayed on the back surface 11b of the wafer 11 from the lower surface opening 35 of the 1st hole 34a, and a part of the process water 42 of the irradiation site | part S is removed, and the thin film t is formed in the irradiation site | part S. . The thin film t is formed by removing grinding debris and preventing splash intrusion when the wafer 11 is ground. At the same time, the interference intensity between the reflected light from the back surface 11b of the wafer 11 and the reflected light from the front surface 11a in the thickness measurement by the non-contact type thickness measuring device 26 is increased, and the measurement accuracy by the non-contact type thickness measuring device 26 is improved.

さらに、薄膜tの形成と同時に、接触式厚み測定器25による厚み測定と、非接触式厚み測定器26による厚み測定をリアルタイムに行い、接触式厚み測定器25による測定値と非接触式厚み測定器26による測定値を記憶部28に各々リアルタイムに記憶する。また、制御部29により、接触式厚み測定器25による測定値と非接触式厚み測定器26による測定値の比較を行う。そして、比較した値の差が許容範囲内であり、この状態が連続して得られたとき、制御部29では非接触式厚み測定器26で測定を行うための準備条件、すなわち測定を行っても問題とならない条件が整っていると判断する。   Further, simultaneously with the formation of the thin film t, the thickness measurement by the contact thickness meter 25 and the thickness measurement by the non-contact thickness meter 26 are performed in real time, and the measurement value by the contact thickness meter 25 and the non-contact thickness measurement. The measurement values obtained by the device 26 are stored in the storage unit 28 in real time. Further, the control unit 29 compares the measured value obtained by the contact-type thickness measuring device 25 with the measured value obtained by the non-contact-type thickness measuring device 26. Then, when the difference between the compared values is within an allowable range, and this state is continuously obtained, the control unit 29 performs a preparation condition for performing the measurement with the non-contact type thickness measuring device 26, that is, performs the measurement. It is judged that the conditions that do not cause any problems are in place.

そして、制御部29では、記憶部28に記憶されたある一定時間の間に得られた測定値を平均化して平均値Aを得る。また、測定した次の平均値Bが平均値Aよりも許容範囲以上ずれる場合、再度、平均値Aを採用する。さらに、測定した次の平均値Bが平均値Aよりも許容範囲以上ずれる状態が一定の時間以上続く場合は、非接触式厚み測定器26で得られた測定値を採用しないで、接触式厚み測定器25による厚み測定値を基に研削加工を行う。すなわち、非接触式による測定から接触式の測定に切り切り換える。したがって、制御部29における測定では、非接触式厚み測定器26で得られた測定値自身が安定していることが測定を行うための準備条件となる。   Then, the control unit 29 averages the measurement values obtained during a certain time stored in the storage unit 28 to obtain an average value A. Further, when the next average value B measured is more than the allowable range from the average value A, the average value A is adopted again. Further, when the measured average value B is shifted from the average value A by more than an allowable range for a certain time or longer, the measured value obtained by the non-contact thickness measuring device 26 is not adopted, and the contact-type thickness is measured. Grinding is performed based on the thickness measured by the measuring device 25. In other words, the measurement is switched from the non-contact measurement to the contact measurement. Therefore, in the measurement in the control unit 29, it is a preparation condition for performing the measurement that the measurement value itself obtained by the non-contact type thickness measuring device 26 is stable.

また、上記準備条件が整えられていることを確認したら、それまで非接触式厚み測定器26で得られた値を記憶部28に記憶し、かつ、制御部29の制御で研削砥石部23を下降させ、ウエハ11の研削加工を仕上げ目標厚さになるまで行う。なお、上記各準備条件を整えているか否かの条件確認は、加工中、連続して行っており、その条件から外れるような状態が所定回数繰り返された場合は、非接触式厚み測定器26による測定から接触式厚み測定器25による厚み測定に切り換え、目標厚さになるまで加工を行う。これらの制御を行うことにより、非接触式厚み測定器26による測定をより安定して、正確に測定を行うことができる。さらに、仮に、非接触式厚み測定器26による測定ができなくても、接触式厚み測定器25による厚み測定を使用することにより、ウエハ11の加工厚みを正確に得ることができる。   When it is confirmed that the above preparation conditions are set, the value obtained by the non-contact type thickness measuring device 26 is stored in the storage unit 28 and the grinding wheel unit 23 is controlled by the control unit 29. The wafer 11 is lowered and grinding of the wafer 11 is performed until the finish target thickness is reached. Whether or not each of the above preparation conditions is satisfied is checked continuously during the processing, and when a state deviating from the conditions is repeated a predetermined number of times, the non-contact type thickness measuring device 26 is used. The measurement is switched from the measurement by the thickness measurement by the contact-type thickness measuring device 25, and the processing is performed until the target thickness is reached. By performing these controls, the measurement by the non-contact type thickness measuring device 26 can be performed more stably and accurately. Furthermore, even if the measurement by the non-contact type thickness measuring device 26 cannot be performed, the processing thickness of the wafer 11 can be accurately obtained by using the thickness measurement by the contact type thickness measuring device 25.

以上、説明したように、本発明の半導体ウエハ加工装置21によれば、レーザ光40の干渉波を利用してウエハ11の厚さを測定するにあたり、エア吹き付け手段33により、被加工面で、かつレーザ光40を当てる照射部位Sに切削屑及び飛沫を無くした加工水42だけによる一定厚みの薄膜tを作り、その薄膜tを設けた被加工面に対して、非接触式厚み測定器26の照射部よりレーザ光40を裏面11bの照射ポイント36に対し直角に照射し、かつ受光部でウエハ11の裏面11bで反射されたレーザ光40と表面11aで反射されたレーザ光40との干渉波を受光し、その干渉波から厚みを測定するので、加工水42や屑の影響を受けることなく安定した測定値を得ることができる。これにより、測定精度が向上する。   As described above, according to the semiconductor wafer processing apparatus 21 of the present invention, when measuring the thickness of the wafer 11 using the interference wave of the laser beam 40, the air blowing means 33 is used to measure the thickness of the wafer 11 on the processing surface. In addition, a thin film t having a constant thickness is formed only by the processing water 42 from which cutting waste and splashes are eliminated at the irradiation site S to which the laser light 40 is applied, and the non-contact type thickness measuring device 26 is applied to the processing surface provided with the thin film t. Between the laser beam 40 reflected from the back surface 11b of the wafer 11 and the laser beam 40 reflected from the front surface 11a by the light receiving unit. Since the wave is received and the thickness is measured from the interference wave, a stable measurement value can be obtained without being affected by the processed water 42 and the waste. Thereby, the measurement accuracy is improved.

なお、本発明は、本発明の精神を逸脱しない限り種々の改変を為すことができ、そして、本発明が該改変されたものに及ぶことは当然である。   It should be noted that the present invention can be variously modified without departing from the spirit of the present invention, and the present invention naturally extends to the modified ones.

本発明は、半導体ウエハの厚さを測定する以外のレーザ光を当てて測定する測定装置にも応用できる。   The present invention can also be applied to a measuring apparatus that applies a laser beam to measure other than the thickness of a semiconductor wafer.

11 半導体ウエハ
11a 表面(下面)
11b 裏面(上面)
21 半導体ウエハ加工装置
22 チャックテーブル
23 研削砥石部
23a 研削砥石
24 水用ノズル
24a 第1の水用ノズル
24b 第2の水用ノズル
25 接触式厚み測定器
25a タッチセンサ
25b タッチセンサ
26 非接触式厚み測定器
27 エア供給源
28 記憶部
29 制御部
30 モータ
31 出力軸
32a プローブ
32b プローブ
33 エア吹き付け手段
34 エアノズル
34a 第1の孔
34b 第2の孔
35 開口
36 レーザ光の照射ポイント
40 レーザ光
41 エア
42 加工水
L チャックテーブルの回転方向
R 研削砥石部の回転方向
S 照射部位
t 薄膜
O ウエハの回転中心
11 Semiconductor wafer 11a surface (lower surface)
11b Back side (upper surface)
21 Semiconductor wafer processing device 22 Chuck table 23 Grinding wheel 23a Grinding wheel 24 Water nozzle 24a First water nozzle 24b Second water nozzle 25 Contact type thickness measuring instrument 25a Touch sensor 25b Touch sensor 26 Non-contact type thickness Measuring device 27 Air supply source 28 Storage unit 29 Control unit 30 Motor 31 Output shaft 32a Probe 32b Probe 33 Air blowing means 34 Air nozzle 34a First hole 34b Second hole 35 Opening 36 Laser light irradiation point 40 Laser light 41 Air 42 Processing Water L Chuck Table Rotation Direction R Grinding Wheel Rotation Direction S Irradiation Site t Thin Film O Wafer Rotation Center

Claims (4)

半導体ウエハの下面を保持手段により保持し、上面を研削砥石で加工水を供給しながら研削加工するとともに、研削加工途中の前記半導体ウエハの上面にレーザ光を照射し、ウエハの上面で反射されたレーザ光と下面で反射されたレーザ光との干渉波を受光して該半導体ウエハの厚みを非接触で測定する半導体ウエハ加工装置における半導体ウエハの厚み測定方法であって、
前記レーザ光を照射する前記半導体ウエハの照射部位にエアを前記ウエハの上面に対して垂直に吹き付け、該照射部位に前記加工水による一定厚みの薄膜を形成し、前記レーザ光を前記半導体ウエハに前記薄膜を通して照射することを特徴とする半導体ウエハの厚み測定方法。
The lower surface of the semiconductor wafer is held by a holding means, and the upper surface is ground while supplying processing water with a grinding wheel, and the upper surface of the semiconductor wafer is irradiated with laser light and is reflected on the upper surface of the wafer. A method for measuring a thickness of a semiconductor wafer in a semiconductor wafer processing apparatus for receiving an interference wave between a laser beam and a laser beam reflected by a lower surface and measuring the thickness of the semiconductor wafer in a non-contact manner,
Air is blown perpendicularly to the upper surface of the wafer to irradiate the semiconductor wafer to be irradiated with the laser light, a thin film having a constant thickness is formed by the processing water on the irradiated portion, and the laser light is applied to the semiconductor wafer. Irradiating through the thin film, a method for measuring a thickness of a semiconductor wafer.
半導体ウエハの下面を保持手段により保持し、上面を研削砥石で加工水を供給しながら研削加工する半導体ウエハ加工装置において、
研削加工中の前記半導体ウエハにレーザ光を照射し、該半導体ウエハの上面で反射されたレーザ光と下面で反射されたレーザ光との干渉波を受光して該半導体ウエハの厚みを非接触で測定する半導体ウエハの厚み測定手段と、
前記レーザ光を照射する前記半導体ウエハの照射部位にエアを前記ウエハの上面に対して垂直に吹き付け、該照射部位に前記加工水による一定厚みの薄膜を形成するエア吹き付け手段と、
を備えることを特徴とする半導体ウエハ加工装置。
In a semiconductor wafer processing apparatus for holding a lower surface of a semiconductor wafer by a holding means and grinding the upper surface while supplying processing water with a grinding wheel,
The semiconductor wafer being ground is irradiated with laser light, and an interference wave between the laser light reflected on the upper surface of the semiconductor wafer and the laser light reflected on the lower surface is received so that the thickness of the semiconductor wafer is contactless. Means for measuring the thickness of the semiconductor wafer to be measured;
And air blowing means blowing vertically, to form a thin film single Teiatsumi that by the processing water to the irradiated area to the top surface of the wafer to air on the irradiated part of the semiconductor wafer is irradiated with the laser beam,
A semiconductor wafer processing apparatus comprising:
上記半導体ウエハの厚み測定手段によるレーザ光を照射するレーザ照射部と前記半導体ウエハの表裏面で反射されたレーザ光を受ける受光部を、前記エア吹き付け手段のエア吹出口の真上に設けてなることを特徴とする請求項2に記載の半導体ウエハ加工装置。 The light receiving portion for receiving the laser beam reflected by the front and back surfaces of the semiconductor wafer and the laser irradiation unit for irradiating a laser beam by the thickness measuring means of the semiconductor wafer, formed by providing the air outlet of the true on the air blowing means The semiconductor wafer processing apparatus according to claim 2. 上記薄膜の厚みを10μmに設定してなることを特徴とする請求項2または3記載の半導体ウエハ加工装置。 4. The semiconductor wafer processing apparatus according to claim 2, wherein the thickness of the thin film is set to 10 [ mu] m.
JP2012253456A 2012-11-19 2012-11-19 Semiconductor wafer thickness measuring method and semiconductor wafer processing apparatus Active JP5890767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012253456A JP5890767B2 (en) 2012-11-19 2012-11-19 Semiconductor wafer thickness measuring method and semiconductor wafer processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012253456A JP5890767B2 (en) 2012-11-19 2012-11-19 Semiconductor wafer thickness measuring method and semiconductor wafer processing apparatus

Publications (2)

Publication Number Publication Date
JP2014103213A JP2014103213A (en) 2014-06-05
JP5890767B2 true JP5890767B2 (en) 2016-03-22

Family

ID=51025478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012253456A Active JP5890767B2 (en) 2012-11-19 2012-11-19 Semiconductor wafer thickness measuring method and semiconductor wafer processing apparatus

Country Status (1)

Country Link
JP (1) JP5890767B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6486752B2 (en) * 2015-04-08 2019-03-20 株式会社ディスコ Dry polishing machine
JP6535799B1 (en) * 2018-08-27 2019-06-26 日東電工株式会社 Method for producing stretched resin film, method for producing polarizer, and device for producing stretched resin film
JP7216601B2 (en) * 2019-04-17 2023-02-01 株式会社ディスコ Polishing equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223192A (en) * 2000-02-08 2001-08-17 Nikon Corp Polishing condition monitoring method and device, polishing device, semiconductor device manufacturing method, and semiconductor device
JP2006147773A (en) * 2004-11-18 2006-06-08 Ebara Corp Polishing apparatus and polishing method
JP2007220775A (en) * 2006-02-15 2007-08-30 Mitsubishi Electric Corp Grinder for semiconductor substrate, and method of manufacturing semiconductor device
JP4913481B2 (en) * 2006-06-12 2012-04-11 株式会社ディスコ Wafer grinding equipment
JP5311858B2 (en) * 2008-03-27 2013-10-09 株式会社東京精密 Wafer grinding method and wafer grinding apparatus
JP2010199227A (en) * 2009-02-24 2010-09-09 Disco Abrasive Syst Ltd Grinding device
JP2012148376A (en) * 2011-01-20 2012-08-09 Ebara Corp Polishing method and polishing apparatus

Also Published As

Publication number Publication date
JP2014103213A (en) 2014-06-05

Similar Documents

Publication Publication Date Title
TWI713707B (en) Component manufacturing method and grinding device
KR102275113B1 (en) Method for processing wafer
JP5890768B2 (en) Semiconductor wafer processing equipment
JP5757831B2 (en) Cutting blade tip shape detection method
TWI680832B (en) Grinding method of workpiece
JP6618822B2 (en) Method for detecting wear amount of grinding wheel
JP2009050944A (en) Substrate thickness measuring method and substrate processing device
JP2007335458A (en) Wafer grinder
US20150380283A1 (en) Processing apparatus
JP5890767B2 (en) Semiconductor wafer thickness measuring method and semiconductor wafer processing apparatus
JP2007123687A (en) Grinding method for underside of semiconductor wafer and grinding apparatus for semiconductor wafer
JP5795942B2 (en) SAW device wafer grinding method
JP5121390B2 (en) Wafer processing method
JP2015116637A (en) Grinding method
KR102413288B1 (en) Adhesion degree detection method
JP5731806B2 (en) Grinding equipment
JP2018187688A (en) Processing device
JP2018161733A (en) Method for processing wafer
JP2020109805A (en) Workpiece processing method
KR20180048373A (en) Scratch detecting method
JP6095521B2 (en) Split method
JP5114153B2 (en) Wafer processing method
JP5787653B2 (en) Laser processing equipment
US11328956B2 (en) Wafer processing method
JP2022000615A (en) Ultrasonic thickness measuring instrument and grinding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150702

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20150702

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160219

R150 Certificate of patent or registration of utility model

Ref document number: 5890767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250