JP5888812B2 - Laminated nonwoven fabric - Google Patents

Laminated nonwoven fabric Download PDF

Info

Publication number
JP5888812B2
JP5888812B2 JP2012091623A JP2012091623A JP5888812B2 JP 5888812 B2 JP5888812 B2 JP 5888812B2 JP 2012091623 A JP2012091623 A JP 2012091623A JP 2012091623 A JP2012091623 A JP 2012091623A JP 5888812 B2 JP5888812 B2 JP 5888812B2
Authority
JP
Japan
Prior art keywords
core
density polyethylene
sheath
melting point
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012091623A
Other languages
Japanese (ja)
Other versions
JP2013221217A (en
Inventor
辰太 森岡
辰太 森岡
祐介 永塚
祐介 永塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2012091623A priority Critical patent/JP5888812B2/en
Publication of JP2013221217A publication Critical patent/JP2013221217A/en
Application granted granted Critical
Publication of JP5888812B2 publication Critical patent/JP5888812B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、片面がヒートシール層として機能しうる積層不織布に関し、脱臭剤や乾燥剤等の粉末を収納して袋状物を得る際に好適な積層不織布に関するものである。   The present invention relates to a laminated nonwoven fabric in which one side can function as a heat seal layer, and relates to a laminated nonwoven fabric suitable for storing a powder such as a deodorizer and a desiccant to obtain a bag-like material.

従来より、袋状物を得るのに、片面がヒートシール層として機能しうる積層不織布が用いられている。たとえば、四角形の積層不織布を中央から二つ折りして、ヒートシール層同士を重ね合わせ、その二方周縁をヒートシールして得られた袋の口から粉末を収納し、その後、袋の口をヒートシールして、粉末を密封した袋状物を得ることが行われている。また、四角形の積層不織布を二枚準備し、ヒートシール層同士が当接するように重ね合わせると共に粉末を挟持させ、その四方周縁をヒートシールして、粉末を密封した袋状物を得ることが行われている。   Conventionally, laminated nonwoven fabrics that can function as a heat seal layer have been used to obtain a bag-like product. For example, a rectangular laminated nonwoven fabric is folded in half from the center, the heat seal layers are overlapped, the powder is stored from the mouth of the bag obtained by heat-sealing the two peripheral edges, and then the mouth of the bag is heated. It has been practiced to obtain a bag-like product sealed with powder. Also, two sheets of rectangular laminated nonwoven fabric are prepared, stacked so that the heat seal layers come into contact with each other, and the powder is sandwiched, and the four-side periphery is heat-sealed to obtain a bag-like product in which the powder is sealed. It has been broken.

このような積層不織布として、長繊維不織布層、極細繊維不織布層及び複合長繊維不織布層の順で積層されたものが提案されている(特許文献1の請求項1)。この積層不織布は、複合長繊維不織布層をヒートシール層とするものであり、極細繊維不織布層が袋状物に収納した粉末が外部に飛散しないようにするためのフィルター層となっているものである。しかしながら、この積層不織布は極細繊維不織布層によって、長繊維不織布層及び複合長繊維不織布層を接合するもので(特許文献1の段落0026)、極細繊維不織布層が溶融しフィルム状となるものである(特許文献1の段落0042)。かかる積層不織布は、極細繊維不織布層がフィルム化されるので、通気性が低下するということがあった。このため、脱臭剤や乾燥剤等の粉末を収納した袋状物として使用する場合、脱臭性能や乾燥性能が低下するということがあった。また、フィルム化された箇所に亀裂が入ると、袋状物に収納した粉末(特に微粉末)が外部に飛散する恐れがあった。   As such a laminated nonwoven fabric, what laminated | stacked in order of the long-fiber nonwoven fabric layer, the ultrafine fiber nonwoven fabric layer, and the composite long-fiber nonwoven fabric layer is proposed (Claim 1 of patent document 1). This laminated nonwoven fabric has a composite long fiber nonwoven fabric layer as a heat seal layer, and the ultrafine fiber nonwoven fabric layer serves as a filter layer for preventing the powder stored in the bag from scattering to the outside. is there. However, this laminated nonwoven fabric joins the long fiber nonwoven fabric layer and the composite long fiber nonwoven fabric layer with the ultrafine fiber nonwoven fabric layer (paragraph 0026 of Patent Document 1), and the ultrafine fiber nonwoven fabric layer is melted to form a film. (Patent Document 1, paragraph 0042). In such a laminated nonwoven fabric, since the ultrafine fiber nonwoven fabric layer is formed into a film, the air permeability is sometimes lowered. For this reason, when using as a bag-like thing which stored powders, such as a deodorizer and a desiccant, deodorizing performance and drying performance might fall. In addition, when a crack is formed in the filmed portion, there is a possibility that powder (particularly fine powder) stored in the bag-like material may be scattered outside.

また、特許文献1に記載された積層不織布は、長繊維不織布層、極細繊維不織布層及び複合長繊維不織布層を部分的熱圧着(エンボスロールと平滑ロールとを用いて行う熱圧着)で一体化するもので、長繊維不織布層表面が凹凸状態となっており、印刷適性に劣るということがあった。   Moreover, the laminated nonwoven fabric described in patent document 1 integrates the long fiber nonwoven fabric layer, the ultrafine fiber nonwoven fabric layer, and the composite long fiber nonwoven fabric layer by partial thermocompression bonding (thermocompression performed using an embossing roll and a smooth roll). Therefore, the surface of the non-woven fabric nonwoven fabric layer is uneven, and printability is inferior.

再公表WO2007/086429号公報(特許請求の範囲)Republished WO2007 / 086429 (Claims)

本発明は、特許文献1記載と同様の三層構造の積層不織布でありながら、特定の素材からなる芯鞘型複合長繊維と特定の素材からなる極細繊維を用いて、極細繊維不織布層をフィルム化させることなく一体化でき、通気性の低下や粉末の外部飛散を防止しうる積層不織布を提供するものである。また、表面が平滑で印刷適性の良好な積層不織布を提供するものである。   The present invention is a laminated nonwoven fabric having a three-layer structure similar to that described in Patent Document 1, but using a core-sheath type composite continuous fiber made of a specific material and an ultrafine fiber made of a specific material, It is an object of the present invention to provide a laminated nonwoven fabric that can be integrated without being reduced, and that can prevent deterioration in air permeability and external scattering of powder. The present invention also provides a laminated nonwoven fabric having a smooth surface and good printability.

すなわち、本発明は、鞘成分が高密度ポリエチレンよりなり、芯成分が前記高密度ポリエチレンの融点よりも高い融点を持つポリエステルよりなる第一芯鞘型複合長繊維の集積体からなる表面層、前記高密度ポリエチレンの融点よりも高い融点を持つポリプロピレン又はポリブチレンテレフタレートよりなる極細繊維の集積体からなる中間層及び鞘成分が前記高密度ポリエチレンの融点よりも低い融点を持つ線状低密度ポリエチレンよりなり、芯成分が前記線状低密度ポリエチレンの融点よりも高い融点を持つポリエステルよりなる第二芯鞘型複合長繊維の集積体からなる裏面層を具備する積層不織布であり、前記第一芯鞘型複合長繊維の鞘成分である高密度ポリエチレンの多くは溶融し芯成分から分離して前記極細繊維相互間に食い込んで固化し、これによって前記表面層と前記中間層とが貼合されていると共に、前記中間層の反対側に位置する前記表面層の面は比較的平滑になっており、前記第二芯鞘型複合長繊維の鞘成分である線状低密度ポリエチレンの多くは芯成分から分離せずに軟化又は溶融して固化し、前記裏面層と前記中間層とが貼合されていると共に、前記中間層の反対側に位置する前記裏面層の面に前記第二芯鞘型複合長繊維の鞘成分である線状低密度ポリエチレンが露出していることにより、前記裏面層がヒートシール層として機能しうることを特徴とする積層不織布に関するものである。なお、本発明における融点とは、パーキンエルマー社製の示差走査熱量計DSC−7型を用い、昇温速度20℃/分で測定したものである。   That is, the present invention provides a surface layer comprising an assembly of first core-sheath composite long fibers comprising a sheath component made of high-density polyethylene and a core component made of polyester having a melting point higher than the melting point of the high-density polyethylene, An intermediate layer and a sheath component made of an aggregate of ultrafine fibers made of polypropylene or polybutylene terephthalate having a melting point higher than that of the high density polyethylene are made of linear low density polyethylene having a melting point lower than that of the high density polyethylene. A laminated nonwoven fabric comprising a back layer composed of an assembly of second core-sheath composite long fibers made of polyester having a melting point higher than that of the linear low-density polyethylene, the first core-sheath type Most high-density polyethylene, which is a sheath component of composite long fibers, melts and separates from the core component, and bites between the ultrafine fibers. As a result, the surface layer and the intermediate layer are bonded together, and the surface of the surface layer located on the opposite side of the intermediate layer is relatively smooth, and the second core-sheath type composite Most of the linear low density polyethylene that is the sheath component of the long fiber is softened or melted and solidified without being separated from the core component, and the back layer and the intermediate layer are bonded together, and the intermediate layer The back surface layer can function as a heat seal layer by exposing the linear low density polyethylene that is the sheath component of the second core-sheath type composite long fiber to the surface of the back surface layer located on the opposite side. It is related with the laminated nonwoven fabric characterized by these. In addition, melting | fusing point in this invention is measured with the temperature increase rate of 20 degree-C / min using the differential scanning calorimeter DSC-7 type | mold by Perkin-Elmer.

[表面層について]
表面層は、本発明に係る積層不織布を用いて袋状物を得たとき、袋状物の外層となるものである。表面層は、鞘成分が高密度ポリエチレンよりなり、芯成分が高密度ポリエチレンの融点よりも高い融点を持つポリエステルよりなる第一芯鞘型複合長繊維の集積体からなる。高密度ポリエチレンの融点は120℃〜140℃であるのが好ましい。高密度ポリエチレンの融点が120℃未満になると、裏面層の線状低密度ポリエチレンとの融点差が小さくなり、裏面層の線状低密度ポリエチレンを溶融させるために、表面層からヒートシールバー等の熱源を当接する際に、高密度ポリエチレンも軟化又は溶融しやすくなり、熱源に高密度ポリエチレンが付着しやすくなる。また、高密度ポリエチレンの融点が140℃を超えると、積層不織布を製造する際に、極細繊維の軟化又は溶融を防止しながら、高密度ポリエチレンを溶融させて極細繊維相互間に食い込ませにくくなる。
[Surface layer]
The surface layer is an outer layer of the bag-like material when the bag-like material is obtained using the laminated nonwoven fabric according to the present invention. The surface layer is made of an aggregate of first core-sheath composite long fibers made of polyester having a sheath component made of high-density polyethylene and a core component having a melting point higher than that of the high-density polyethylene. The melting point of the high density polyethylene is preferably 120 ° C to 140 ° C. When the melting point of the high-density polyethylene is less than 120 ° C., the difference in melting point from the linear low-density polyethylene of the back surface layer becomes small, and in order to melt the linear low-density polyethylene of the back surface layer, When contacting the heat source, the high-density polyethylene is also easily softened or melted, and the high-density polyethylene is easily attached to the heat source. Moreover, when the melting point of the high density polyethylene exceeds 140 ° C., it becomes difficult to melt the high density polyethylene and bite between the ultrafine fibers while preventing the softening or melting of the ultrafine fibers when manufacturing the laminated nonwoven fabric.

芯成分であるポリエステルの融点は、250℃〜260℃であるのが好ましい。この程度の融点であると、高密度ポリエチレンとの融点差が大きく、高密度ポリエチレンが溶融し芯成分であるポリエステルから分離して、極細繊維相互間に食い込んでいくような熱量を与えても、ポリエステルが軟化或いは溶融したり、又は劣化することなく、当初の繊維形態を維持する。これにより、表面層のフィルム化を防止しうるので好ましい。また、表面層には、高密度ポリエチレンが溶融し極細繊維相互間に食い込んでいくような熱量が与えられるため、表面層の表面(中間層の反対側に位置する面)は平滑化され、印刷適性に優れたものとなる。   The melting point of the polyester as the core component is preferably 250 ° C to 260 ° C. When the melting point is about this level, the difference in melting point from the high-density polyethylene is large, and the high-density polyethylene is melted and separated from the polyester as the core component. The polyester maintains its original fiber form without softening, melting, or degradation. This is preferable because the surface layer can be prevented from being formed into a film. In addition, the surface layer is given heat so that the high-density polyethylene melts and penetrates between the ultrafine fibers, so the surface layer (surface located on the opposite side of the intermediate layer) is smoothed and printed. Excellent aptitude.

第一芯鞘型複合長繊維の芯成分と鞘成分の重量比は任意であるが、芯成分:鞘成分=0.25〜4:1であるのが好ましく、特に芯成分:鞘成分=0.4〜2.5:1であるのがより好ましく、芯成分:鞘成分=1:1であるのが最も好ましい。鞘成分の重量比がこの範囲を超えて少なくなると、鞘成分が極細繊維相互間に食い込みにくくなる傾向が生じる。また、鞘成分の重量比がこの範囲を超えて多くなると、表面層がフィルム化する恐れが生じる。   The weight ratio of the core component to the sheath component of the first core-sheath composite long fiber is arbitrary, but it is preferable that the core component: sheath component = 0.25-4: 1, and particularly the core component: sheath component = 0. 4 to 2.5: 1 is more preferable, and core component: sheath component = 1: 1 is most preferable. When the weight ratio of the sheath component decreases beyond this range, the sheath component tends to become difficult to bite between the ultrafine fibers. Further, if the weight ratio of the sheath component exceeds this range, the surface layer may become a film.

第一芯鞘型複合長繊維の繊維径は任意であるが、引張強度等の物性面から、1〜7dtexであるのが好ましい。繊維径が1dtex未満であると、表面層の引張強度が低下する傾向が生じる。また、繊維径が7dtexを超えると、第一芯鞘型複合長繊維相互間の間隙が大きくなり、表面層の表面(中間層の反対側に位置する面)を平滑化しにくくなる傾向が生じる。   The fiber diameter of the first core-sheath composite long fiber is arbitrary, but is preferably 1 to 7 dtex from the viewpoint of physical properties such as tensile strength. If the fiber diameter is less than 1 dtex, the tensile strength of the surface layer tends to decrease. On the other hand, when the fiber diameter exceeds 7 dtex, the gap between the first core-sheath composite long fibers becomes large, and the surface of the surface layer (surface located on the opposite side of the intermediate layer) tends to be difficult to smooth.

表面層を構成する第一芯鞘型複合長繊維の鞘成分は、中間層を構成している極細繊維相互間に食い込んでいるので、表面層と中間層を明確に分離することは困難である。しかしながら、概ね表面層と中間層とを分離した場合、表面層の繊維量は、10〜50g/m2であるのが好ましい。表面層の繊維量が10g/m2未満になると、中間層を隠蔽し保護する効果が低下する傾向が生じる。また、表面層の繊維量が50g/m2を超えると、過剰品質であり、得られる袋状物の重量が重くなる傾向が生じる。 Since the sheath component of the first core-sheath composite long fiber constituting the surface layer bites between the ultrafine fibers constituting the intermediate layer, it is difficult to clearly separate the surface layer and the intermediate layer. . However, when the surface layer and the intermediate layer are generally separated, the amount of fibers in the surface layer is preferably 10 to 50 g / m 2 . When the amount of fibers in the surface layer is less than 10 g / m 2 , the effect of concealing and protecting the intermediate layer tends to be reduced. On the other hand, if the amount of fibers in the surface layer exceeds 50 g / m 2 , the quality is excessive and the resulting bag-like product tends to be heavy.

[中間層について]
中間層は、表面層と裏面層の間に挟持されているものであり、袋状物内に収納した粉末(特に微粉末)を外部へ飛散させないようにするためのフィルター層として機能するものである。すなわち、中間層は極細繊維の集積体で構成されており、極細繊維相互間の間隙は微細になっており、微粉末が透過して外部に飛散するのを防止する。極細繊維の繊維径は、0.1〜10μmであるのが好ましく、特に0.5〜6μmであるのが好ましい。極細繊維の繊維径を0.1μm未満とするのは、製造上、困難である。また、極細繊維の繊維径が10μmを超えると、極細繊維相互間の間隙が大きくなって、袋状物内に収納される微粉末が外部に飛散する傾向が生じる。
[About the middle layer]
The intermediate layer is sandwiched between the front surface layer and the back surface layer, and functions as a filter layer for preventing the powder (particularly fine powder) contained in the bag-like material from being scattered outside. is there. That is, the intermediate layer is composed of an aggregate of ultrafine fibers, and the gaps between the ultrafine fibers are fine, preventing the fine powder from being transmitted and scattered outside. The fiber diameter of the ultrafine fiber is preferably 0.1 to 10 μm, and particularly preferably 0.5 to 6 μm. It is difficult in production to make the fiber diameter of the ultrafine fiber less than 0.1 μm. On the other hand, when the fiber diameter of the ultrafine fibers exceeds 10 μm, the gap between the ultrafine fibers becomes large, and the fine powder stored in the bag-like material tends to be scattered outside.

極細繊維はポリプロピレン又はポリブチレンテレフタレートよりなる。ポリプロピレン又はポリブチレンテレフタレートよりなる極細繊維の融点は、表面層を構成している第一芯鞘型複合長繊維の鞘成分である高密度ポリエチレンの融点よりも高くなっている。したがって、高密度ポリエチレンが溶融して、極細繊維相互間に食い込んでも、ポリプロピレン又はポリブチレンテレフタレートよりなる極細繊維は、軟化又は溶融せずに、当初の極細繊維形態を維持している。よって、極細繊維の集積体が持つフィルター機能を十分に発揮するのである。ポリプロピレンよりなる極細繊維の融点は、第一芯鞘型複合長繊維の鞘成分である高密度ポリエチレンの融点よりも約10℃〜50℃高く、150℃〜170℃であるのが好ましい。また、ポリブチレンテレフタレートよりなる極細繊維の融点は、当該高密度ポリエチレンの融点よりも約80℃〜120℃高く、220℃〜240℃であるのが好ましい。   The ultrafine fibers are made of polypropylene or polybutylene terephthalate. The melting point of the ultrafine fiber made of polypropylene or polybutylene terephthalate is higher than the melting point of the high density polyethylene that is the sheath component of the first core-sheath type composite continuous fiber constituting the surface layer. Therefore, even if the high-density polyethylene melts and bites between the ultrafine fibers, the ultrafine fibers made of polypropylene or polybutylene terephthalate are not softened or melted and maintain the original ultrafine fiber form. Therefore, the filter function of the ultrafine fiber aggregate is sufficiently exhibited. The melting point of the ultrafine fiber made of polypropylene is preferably about 10 to 50 ° C. and 150 to 170 ° C. higher than the melting point of the high-density polyethylene which is the sheath component of the first core-sheath composite long fiber. Further, the melting point of the ultrafine fiber made of polybutylene terephthalate is preferably about 80 to 120 ° C. and 220 to 240 ° C. higher than the melting point of the high-density polyethylene.

中間層の繊維量は、5〜100g/m2であるのが好ましく、特に7〜50g/m2であるのが好ましい。中間層の繊維量が5g/m2未満であると、極細繊維相互間で形成された微細な間隙が少なくなり、フィルター機能が低下する傾向が生じる。さらに、ヒートシール時において、裏面層を構成している第二芯鞘型複合長繊維の鞘成分である線状低密度ポリエチレンが、中間層を透過して、表面層の表面に滲み出す恐れがある。また、中間層の繊維量が100g/m2を超えると、中間層の内部にまで、溶融した高密度ポリエチレンが食い込みにくくなり、中間層自体が層剥離する傾向が生じる。 Fiber content of the intermediate layer is preferably from 5 to 100 g / m 2, it is preferred particularly 7~50g / m 2. When the amount of fibers in the intermediate layer is less than 5 g / m 2 , fine gaps formed between the ultrafine fibers are reduced, and the filter function tends to be lowered. Furthermore, at the time of heat sealing, there is a risk that the linear low density polyethylene which is the sheath component of the second core-sheath type composite continuous fiber constituting the back layer penetrates the intermediate layer and oozes out to the surface of the surface layer. is there. On the other hand, if the amount of fibers in the intermediate layer exceeds 100 g / m 2 , the melted high-density polyethylene is difficult to bite into the intermediate layer, and the intermediate layer itself tends to peel off.

[裏面層について]
裏面層は、本発明に係る積層不織布を用いて袋状物を得るとき、ヒートシール層として機能するものである。裏面層は、鞘成分が高密度ポリエチレンの融点よりも低い融点を持つ線状低密度ポリエチレンよりなり、芯成分が線状低密度ポリエチレンの融点よりも高い融点を持つポリエステルよりなる第二芯鞘型複合長繊維の集積体からなる。第二芯鞘型複合長繊維の鞘成分はヒートシール時に溶融固化して接着成分となるものである。すなわち、第二芯鞘型複合長繊維の鞘成分は、積層不織布の表面層に熱源を当接してヒートシールする際に、溶融するものである。したがって、表面層を構成している第一芯鞘型複合長繊維の鞘成分である高密度ポリエチレンよりも融点の低い線状低密度ポリエチレンを採用するのである。たとえば、第一芯鞘型複合長繊維の鞘成分である高密度ポリエチレンと同等の融点を持つものを、第二芯鞘型複合長繊維の鞘成分とすると、ヒートシール時に後者を溶融させようとすると、前者の高密度ポリエチレンも溶融してしまい、表面層に当接する熱源に高密度ポリエチレンが付着し、ヒートシールを続行することができない。また、裏面層と中間層とは、第二芯鞘型複合長繊維の鞘成分である線状低密度ポリエチレンの多くが芯成分から分離せずに軟化又は溶融して固化することによって、貼合されている。したがって、第二芯鞘型複合長繊維の鞘成分である線状低密度ポリエチレンの多くは、裏面層の表面(中間層の反対側に位置する面)に露出しており、ヒートシールする際の接着成分として有効に機能するのである。
[Back side layer]
The back layer functions as a heat seal layer when a bag-like material is obtained using the laminated nonwoven fabric according to the present invention. The back layer is a second core-sheath type in which the sheath component is made of linear low-density polyethylene having a melting point lower than that of high-density polyethylene, and the core component is made of polyester having a melting point higher than that of linear low-density polyethylene. It consists of an aggregate of composite long fibers. The sheath component of the second core-sheath type composite continuous fiber is melted and solidified during heat sealing to become an adhesive component. That is, the sheath component of the second core-sheath composite long fiber melts when a heat source is brought into contact with the surface layer of the laminated nonwoven fabric and heat sealed. Therefore, linear low density polyethylene having a melting point lower than that of high density polyethylene which is a sheath component of the first core-sheath composite long fiber constituting the surface layer is employed. For example, if a sheath component of the second core-sheath type composite long fiber is a sheath component of the second core-sheath type composite long fiber that has the same melting point as the high-density polyethylene that is the sheath component of the first core-sheath type composite long fiber, the latter will be melted during heat sealing. Then, the former high-density polyethylene is also melted, and the high-density polyethylene adheres to the heat source in contact with the surface layer, and heat sealing cannot be continued. Moreover, the back layer and the intermediate layer are bonded by softening or melting and solidifying most of the linear low density polyethylene which is the sheath component of the second core-sheath type composite long fiber without being separated from the core component. Has been. Therefore, most of the linear low-density polyethylene that is the sheath component of the second core-sheath type composite continuous fiber is exposed on the surface of the back surface layer (the surface located on the opposite side of the intermediate layer), and is used when heat-sealing. It functions effectively as an adhesive component.

線状低密度ポリエチレンの融点は75℃〜110℃であるのが好ましい。線状低密度ポリエチレンの融点が75℃未満になると、第二芯鞘型複合長繊維にべたつき感が生じ、取り扱いにくくなる傾向が生じる。また、線状低密度ポリエチレンの融点が110℃を超えると、表面層を構成する第一芯鞘型複合長繊維の鞘成分である高密度ポリエチレンとの融点差が小さくなり、ヒートシール時に高密度ポリエチレンが溶融して、熱源に付着する恐れがある。第二芯鞘型複合長繊維の芯成分であるポリエステルの融点は、線状低密度ポリエチレンの融点よりも高く、250℃〜260℃であるのが好ましい。この程度の融点であると、線状低密度ポリエチレンとの融点差が大きく、ヒートシール時に線状低密度ポリエチレンが溶融して、ポリエステルが軟化或いは溶融したり、又は劣化することなく、当初の繊維形態を維持する。これにより、ヒートシール箇所に芯成分が繊維形態で残存しており、ヒートシール箇所の引裂強力の低下を防止しうる。   The melting point of the linear low density polyethylene is preferably 75 ° C to 110 ° C. When the melting point of the linear low density polyethylene is less than 75 ° C., the second core-sheath type composite continuous fiber has a sticky feeling and tends to be difficult to handle. Moreover, when the melting point of the linear low density polyethylene exceeds 110 ° C., the melting point difference from the high density polyethylene which is the sheath component of the first core-sheath composite long fiber constituting the surface layer becomes small, and the high density during heat sealing. Polyethylene may melt and adhere to the heat source. The melting point of the polyester that is the core component of the second core-sheath type composite continuous fiber is higher than the melting point of the linear low density polyethylene, and is preferably 250 ° C. to 260 ° C. When the melting point is about this level, the melting point difference from the linear low density polyethylene is large, the linear low density polyethylene melts at the time of heat sealing, and the original fiber is not softened, melted or deteriorated. Maintain form. Thereby, the core component remains in a fiber form at the heat seal portion, and a reduction in tear strength at the heat seal portion can be prevented.

線状低密度ポリエチレンは、メタロセン重合触媒によって重合されたものを用いるのが好ましい。この理由は、線状低密度ポリエチレンの分子量分布が狭くなるからである。具体的には、Q値(重量平均分子量/数平均分子量)が3.5以下であるのが好ましい。Q値が3.5を超えて、分子量分布が広くなり、低分子量のものが多量に混入していると、第二芯鞘型複合長繊維にべたつき感が生じ、取り扱いにくくなる傾向が生じる。また、高分子量のものが多量に混入していると、ヒートシール時に溶融しにくくなり、接着力が低下する傾向が生じる。さらに、線状低密度ポリエチレンは、高密度ポリエチレンに比べて柔軟性があり、ヒートシール時において、所望の形態に馴染みやすい点でも、好ましいものである。   As the linear low density polyethylene, it is preferable to use a polymer polymerized by a metallocene polymerization catalyst. This is because the molecular weight distribution of linear low density polyethylene is narrowed. Specifically, the Q value (weight average molecular weight / number average molecular weight) is preferably 3.5 or less. If the Q value exceeds 3.5, the molecular weight distribution becomes wide, and a low molecular weight fiber is mixed in a large amount, the second core-sheath composite long fiber has a sticky feeling and tends to be difficult to handle. Moreover, when a high molecular weight thing is mixed in a large amount, it will become difficult to fuse | melt at the time of heat sealing, and the tendency for adhesive force to fall will arise. Furthermore, linear low density polyethylene is preferable in that it is more flexible than high density polyethylene and is easily adapted to a desired form during heat sealing.

線状低密度ポリエチレンのメルトフローレート(JIS K 6922に記載の方法に準拠し、温度190℃で荷重21.18Nで測定した。)は、10〜30g/10分であるのが好ましい。メルトフローレートが30g/10分を超えると、線状低密度ポリエチレンの流動性が高くなり、芯成分から分離する傾向が生じ、好ましくない。すなわち、裏面層の表面(中間層の反対側に位置する面)に残存しにくくなって、当該表面に線状低密度ポリエチレンが露出しにくくなり、ヒートシール時における接着力が低下する傾向が生じる。なお、メルトフローレートを10g/10分未満とすると、第二芯鞘型複合長繊維が製造しにくくなる傾向が生じる。   The melt flow rate of linear low density polyethylene (based on the method described in JIS K 6922, measured at a temperature of 190 ° C. and a load of 21.18 N) is preferably 10 to 30 g / 10 minutes. When the melt flow rate exceeds 30 g / 10 min, the flowability of the linear low density polyethylene becomes high and tends to separate from the core component, which is not preferable. That is, it becomes difficult to remain on the surface of the back surface layer (the surface located on the opposite side of the intermediate layer), the linear low density polyethylene is hardly exposed on the surface, and the adhesive force during heat sealing tends to decrease. . If the melt flow rate is less than 10 g / 10 minutes, the second core-sheath composite long fiber tends to be difficult to manufacture.

第二芯鞘型複合長繊維の芯成分と鞘成分の重量比は任意であるが、芯成分:鞘成分=0.25〜4:1であるのが好ましく、特に芯成分:鞘成分=0.6〜2.5:1であるのがより好ましく、芯成分:鞘成分=1:1であるのが最も好ましい。鞘成分の重量比がこの範囲を超えて少なくなると、ヒートシール時における接着力が低下する傾向が生じる。また、鞘成分の重量比がこの範囲を超えて多くなると、裏面層がフィルム化する恐れが生じる。   The weight ratio of the core component to the sheath component of the second core-sheath type composite continuous fiber is arbitrary, but it is preferable that the core component: sheath component = 0.25-4: 1, particularly the core component: sheath component = 0. More preferably, it is 6 to 2.5: 1, and most preferably the core component: sheath component = 1: 1. If the weight ratio of the sheath component is less than this range, the adhesive strength during heat sealing tends to decrease. Further, if the weight ratio of the sheath component exceeds this range, the back layer may be formed into a film.

第二芯鞘型複合長繊維の繊維径は任意であるが、1〜7dtexであるのが好ましい。繊維径が1dtex未満であると、第二芯鞘型複合長繊維の鞘成分の絶対量が少なくなり、ヒートシール時における接着力が低下する傾向が生じる。また、繊維径が7dtexを超えると、裏面層の表面(中間層の反対側に位置する面)に凹凸が生じやすくなり、ヒートシール時における接着力が低下する傾向が生じる。   The fiber diameter of the second core-sheath type composite continuous fiber is arbitrary, but is preferably 1 to 7 dtex. When the fiber diameter is less than 1 dtex, the absolute amount of the sheath component of the second core-sheath composite long fiber is reduced, and the adhesive force during heat sealing tends to be reduced. In addition, when the fiber diameter exceeds 7 dtex, unevenness tends to occur on the surface of the back surface layer (the surface located on the opposite side of the intermediate layer), and the adhesive force during heat sealing tends to decrease.

裏面層と中間層も明確に分離することは困難であるが、概ね裏面層と中間層とを分離した場合、裏面層の繊維量は、10〜70g/m2であるのが好ましい。裏面層の繊維量が10g/m2未満になると、第二芯鞘型複合長繊維の鞘成分の絶対量が少なくなり、ヒートシール時における接着力が低下する傾向が生じる。また、裏面層の繊維量が70g/m2を超えると、過剰品質であり、得られる袋状物の重量が重くなる傾向が生じる。 Although it is difficult to clearly separate the back layer and the intermediate layer, when the back layer and the intermediate layer are roughly separated, the fiber amount of the back layer is preferably 10 to 70 g / m 2 . When the fiber amount of the back layer is less than 10 g / m 2 , the absolute amount of the sheath component of the second core-sheath composite long fiber decreases, and the adhesive force during heat sealing tends to decrease. On the other hand, if the amount of fibers in the back layer exceeds 70 g / m 2 , the quality is excessive and the resulting bag-like product tends to be heavy.

[積層不織布の製造方法について]
本発明に係る積層不織布は、たとえば、以下の方法で得ることができる。まず、鞘成分が高密度ポリエチレンよりなり、芯成分が高密度ポリエチレンの融点よりも高い融点を持つポリエステルよりなる第一芯鞘型複合長繊維の集積体(A)、高密度ポリエチレンの融点よりも高い融点を持つポリプロピレン又はポリブチレンテレフタレートよりなる極細繊維の集積体(B)及び鞘成分が高密度ポリエチレンの融点よりも低い融点を持つ線状低密度ポリエチレンよりなり、芯成分が線状低密度ポリエチレンの融点よりも高い融点を持つポリエステルよりなる第二芯鞘型複合長繊維の集積体(C)を準備する。集積体(A)は、第一芯鞘型複合長繊維を溶融紡糸法で形成し、これを集積して長繊維相互間を接着する、いわゆるスパンボンド法で得ることができる。長繊維相互間の接着は、第一芯鞘型複合長繊維の鞘成分の軟化又は溶融により、行うことができる。集積体(B)は、溶融させた樹脂を風力で吹き付けて細化し極細繊維として集積する、いわゆるメルトブロー法で得ることができる。極細繊維相互間は、極細繊維自体の粘着性によって接着されていてもよいし、接着されていなくてもよい。集積体(C)は、第二芯鞘型複合長繊維を溶融紡糸法で形成し、これを集積して長繊維相互間を接着する、いわゆるスパンボンド法で得ることができる。長繊維相互間の接着は、第一芯鞘型複合長繊維の場合と同様に、第二芯鞘型複合長繊維の鞘成分の軟化又は溶融により、行うことができる。
[Production method of laminated nonwoven fabric]
The laminated nonwoven fabric according to the present invention can be obtained, for example, by the following method. First, the first core-sheath-type composite continuous fiber assembly (A), in which the sheath component is made of high-density polyethylene and the core component is made of polyester having a melting point higher than that of the high-density polyethylene, An assembly of ultrafine fibers (B) made of polypropylene or polybutylene terephthalate having a high melting point and a linear low density polyethylene whose sheath component has a melting point lower than that of high density polyethylene, and whose core component is a linear low density polyethylene An aggregate (C) of second core-sheath composite long fibers made of polyester having a melting point higher than the melting point is prepared. The aggregate (A) can be obtained by a so-called spunbond method in which first core-sheath composite long fibers are formed by a melt spinning method, and these are accumulated and bonded together. Adhesion between long fibers can be performed by softening or melting the sheath component of the first core-sheath composite long fiber. The aggregate (B) can be obtained by a so-called melt-blowing method in which a melted resin is blown with wind force to be thinned and accumulated as ultrafine fibers. The ultrafine fibers may be bonded to each other depending on the tackiness of the ultrafine fibers themselves, or may not be bonded. The aggregate (C) can be obtained by a so-called spunbond method in which second core-sheath composite long fibers are formed by a melt spinning method, and these are accumulated to bond the long fibers together. Adhesion between the long fibers can be performed by softening or melting the sheath component of the second core-sheath type composite long fiber as in the case of the first core-sheath type composite long fiber.

次に、集積体(A)と集積体(B)を積層した二層積層体を、集積体(A)が金属製加熱平滑ロールの周面に当接させながら搬送して、所定時間加熱し、集積体(A)中の第一芯鞘型複合長繊維の鞘成分を溶融させる。そして、鞘成分の多くを第一芯鞘型複合長繊維の芯成分から分離させて、集積体(B)中の極細繊維相互間に食い込ませる。その後、集積体(B)面に集積体(C)を積層し、前記所定時間よりも短い時間加熱し、集積体(C)中の第二芯鞘型複合長繊維の鞘成分の多くを芯成分から分離させることなく、軟化又は溶融させる。その後、集積体(A)、集積体(B)及び集積体(C)の順で積層された三層積層体を冷却し、第一及び第二芯鞘型複合長繊維の鞘成分を固化させる。これによって、第一芯鞘型複合長繊維の鞘成分は、集積体(B)中の極細繊維相互間に食い込んだ状態で固化し、集積体(A)と集積体(B)が貼合される。一方、集積体(C)中の第二芯鞘型複合長繊維の鞘成分も固化し、集積体(B)と貼合される。以上のようにして、集積体(A)、集積体(B)及び集積体(C)の順で貼合され一体化された積層不織布が得られるのである。   Next, the two-layer laminate in which the aggregate (A) and the aggregate (B) are laminated is conveyed while the aggregate (A) is in contact with the peripheral surface of the metal heating smooth roll and heated for a predetermined time. The sheath component of the first core-sheath composite long fiber in the aggregate (A) is melted. Then, most of the sheath component is separated from the core component of the first core-sheath composite long fiber, and is bitten between the ultrafine fibers in the aggregate (B). Thereafter, the aggregate (C) is laminated on the surface of the aggregate (B) and heated for a time shorter than the predetermined time, so that most of the sheath component of the second core-sheath composite long fiber in the aggregate (C) is cored. Soften or melt without separation from components. Thereafter, the three-layer laminate laminated in the order of the aggregate (A), the aggregate (B) and the aggregate (C) is cooled to solidify the sheath component of the first and second core-sheath composite long fibers. . As a result, the sheath component of the first core-sheath type composite long fiber is solidified in a state of being bitten between the ultrafine fibers in the aggregate (B), and the aggregate (A) and the aggregate (B) are bonded together. The On the other hand, the sheath component of the second core-sheath composite long fiber in the aggregate (C) is also solidified and bonded to the aggregate (B). As described above, a laminated nonwoven fabric bonded and integrated in the order of the aggregate (A), the aggregate (B), and the aggregate (C) is obtained.

また、集積体(A)、集積体(B)及び集積体(C)を積層した三層積層体を、金属製加熱平滑ロールと弾性非加熱平滑ロールの間に通して、積層不織布を得てもよい。この場合、集積体(A)は、金属製加熱平滑ロールと弾性非加熱平滑ロールの間に通す前に、金属製加熱平滑ロールの周面に当接させて、十分に加熱することが肝要である。すなわち、いずれの方法においても、集積体(A)には熱量を多く与え、第一芯鞘型複合長繊維の鞘成分の多くが芯成分から分離する程度に溶融させ、集積体(B)中の極細繊維相互間に食い込ませるようにする。一方、集積体(C)には、集積体(A)に与えた熱量に比べて少ない熱量を与え、第二芯鞘型複合長繊維の鞘成分の多くが芯成分から分離することなく軟化又は溶融させ、集積体(B)と貼合しうるようにして積層不織布を製造するのである。   Also, a laminated nonwoven fabric is obtained by passing a three-layer laminate obtained by laminating the aggregate (A), the aggregate (B) and the aggregate (C) between a metal heated smooth roll and an elastic non-heated smooth roll. Also good. In this case, it is important that the assembly (A) is sufficiently heated by being brought into contact with the peripheral surface of the metal heating smooth roll before passing between the metal heating smooth roll and the elastic non-heating smooth roll. is there. That is, in any of the methods, the aggregate (A) is given a large amount of heat and melted to such an extent that most of the sheath component of the first core-sheath composite long fiber is separated from the core component. It is made to bite between the extra fine fibers. On the other hand, the aggregate (C) is given a small amount of heat compared to the amount of heat given to the aggregate (A), and many of the sheath components of the second core-sheath composite long fiber are softened or separated without being separated from the core component. A laminated nonwoven fabric is produced in such a manner that it can be melted and bonded to the aggregate (B).

本発明に係る積層不織布は、表面層、中間層及び裏面層の順で積層されてなるものであり、裏面層がヒートシール層として機能するものである。したがって、この裏面層同士を重ね合わせて、周縁をヒートシールして接着すると袋状物となる。また、この袋状物の中に炭や活性炭等の吸湿性粉末や脱臭性粉末を収納しておけば、各種食品等と共に包装することによって、吸湿材や脱臭材となる。特に、中間層が極細繊維の集積体よりなるため、吸湿性微粉末や脱臭性微粉末を収納しても、これが外部に飛散しにくく、好ましいものである。また、極細繊維の集積体がフィルム化していないので、1cc/cm2・秒以上の通気度(JIS L 1096 通気性A法 フラジール形法)があり、吸湿性能や脱臭性能が低下しない。 The laminated nonwoven fabric according to the present invention is formed by laminating a surface layer, an intermediate layer and a back layer in this order, and the back layer functions as a heat seal layer. Therefore, when the back surface layers are overlapped and the periphery is heat sealed and bonded, a bag-like material is obtained. Moreover, if hygroscopic powder and deodorizing powders, such as charcoal and activated carbon, are accommodated in this bag-shaped material, it will become a hygroscopic material and a deodorizing material by packaging with various foods. In particular, since the intermediate layer is composed of an aggregate of ultrafine fibers, even if hygroscopic fine powder or deodorizing fine powder is stored, it is preferable that it is not easily scattered outside. In addition, since the aggregate of ultrafine fibers is not formed into a film, it has an air permeability of 1 cc / cm 2 · sec or more (JIS L 1096 air permeability A method, fragile type method), and does not deteriorate moisture absorption performance and deodorization performance.

本発明に係る積層不織布は、表面層、中間層及び裏面層の順で積層されてなり、表面層を構成している第一芯鞘型複合長繊維の鞘成分の多くが芯成分から分離し、中間層の極細繊維相互の間隙に食い込んで、表面層と中間層が一体化している。また、裏面層を構成している第二芯鞘型複合長繊維の鞘成分の多くは芯成分から分離することなく、中間層の極細繊維と貼合され、裏面層と中間層が一体化している。したがって、中間層を構成している極細繊維は溶融固化しておらず繊維形態を維持しており、また第一及び第二芯鞘型複合長繊維の芯成分も当初の繊維形態を維持した状態で、表面層、中間層及び裏面層が一体化している。この積層不織布は、各層がフィルム化しておらず、特に中間層がフィルム化していないため、通気性の低下が少ない。よって、本発明に係る積層不織布を用い、脱臭剤や乾燥剤等の粉末を収納して袋状物とした場合、脱臭性能や乾燥性能が低下しにくいという効果を奏する。また、フィルム化されておらず、当初の繊維形態を維持しているので、折り曲げ等によって亀裂が入りにくく、袋状物に収納した粉末(特に微粉末)が外部に飛散しにくいという効果を奏する。さらに、裏面層の第二芯鞘型複合長繊維の鞘成分の多くは、芯成分から分離せずに残存しており、裏面層の表面(中間層の反対側に位置する面)において鞘成分が露出している。したがって、裏面層はヒートシール層として有効に機能し、十分な接着力を実現しうるものである。また、本発明に係る積層不織布の表面層の表面(中間層の反対側に位置する面)は、平滑性に優れているため、印刷適性も良好であるという効果を奏する。   The laminated nonwoven fabric according to the present invention is laminated in the order of the surface layer, the intermediate layer, and the back layer, and most of the sheath component of the first core-sheath composite long fiber constituting the surface layer is separated from the core component. The surface layer and the intermediate layer are integrated into the gap between the ultrafine fibers of the intermediate layer. In addition, many of the sheath components of the second core-sheath composite long fiber constituting the back layer are bonded to the ultrafine fibers of the intermediate layer without being separated from the core component, and the back layer and the intermediate layer are integrated. Yes. Therefore, the ultrafine fibers constituting the intermediate layer are not melted and solidified and maintain the fiber form, and the core components of the first and second core-sheath composite long fibers maintain the original fiber form. Thus, the front surface layer, the intermediate layer, and the back surface layer are integrated. In this laminated nonwoven fabric, each layer is not formed into a film, and particularly, the intermediate layer is not formed into a film. Therefore, when the laminated nonwoven fabric according to the present invention is used to store a powder such as a deodorizing agent or a desiccant to form a bag-like product, there is an effect that the deodorizing performance and the drying performance are not easily lowered. Moreover, since it is not formed into a film and maintains the original fiber form, there is an effect that it is difficult for cracks to be formed by bending or the like, and the powder (particularly fine powder) stored in the bag-like material is difficult to be scattered outside. . Further, most of the sheath component of the second core-sheath composite long fiber of the back layer remains without being separated from the core component, and the sheath component on the surface of the back layer (the surface located on the opposite side of the intermediate layer) Is exposed. Therefore, the back layer effectively functions as a heat seal layer and can realize a sufficient adhesive force. Moreover, since the surface (surface located on the opposite side of the intermediate layer) of the surface layer of the laminated nonwoven fabric according to the present invention is excellent in smoothness, the printability is also good.

実施例1
[繊維集積体(A)の準備]
融点256℃のポリエステルと融点134℃の高密度ポリエチレンを、複合溶融紡糸装置に導入し、ポリエステルを芯成分とし高密度ポリエチレンを鞘成分とする第一芯鞘型複合長繊維を溶融紡糸すると共に、コンベア上に集積して長繊維ウェブを得た後、エンボス装置に長繊維ウェブを導入し、第一芯鞘型複合長繊維相互間を部分的に圧接して繊維集積体(A)を得た。なお、第一芯鞘型複合長繊維の繊維径は3.3dtexであり、芯成分と鞘成分の重量比は1:1であった。また、繊維集積体(A)の目付は20g/m2であった。
Example 1
[Preparation of fiber assembly (A)]
A polyester having a melting point of 256 ° C. and a high-density polyethylene having a melting point of 134 ° C. are introduced into a composite melt spinning apparatus, and the first core-sheath type composite continuous fiber having polyester as a core component and high-density polyethylene as a sheath component is melt-spun. After accumulating on a conveyor and obtaining a long fiber web, the long fiber web was introduced into an embossing device, and the first core-sheath composite long fibers were partially pressed together to obtain a fiber aggregate (A). . In addition, the fiber diameter of the 1st core-sheath type | mold composite continuous fiber was 3.3 dtex, and the weight ratio of a core component and a sheath component was 1: 1. The basis weight of the fiber aggregate (A) was 20 g / m 2 .

[繊維集積体(B)の準備]
融点163℃のポリプロピレンをメルトブローダイに導入し、ダイ中から加熱空気を吹き付けて極細繊維を形成し、コンベア上に集積して繊維集積体(B)を得た。極細繊維の繊維径は3μmであり、繊維集積体(B)の目付は20g/m2であった。
[Preparation of fiber assembly (B)]
Polypropylene having a melting point of 163 ° C. was introduced into a melt blow die, and heated air was blown from the die to form ultrafine fibers, which were collected on a conveyor to obtain a fiber assembly (B). The fiber diameter of the ultrafine fibers was 3 μm, and the basis weight of the fiber aggregate (B) was 20 g / m 2 .

[繊維集積体(C)の準備]
融点256℃のポリエステルと、融点102℃でメルトフローレート15g/10分の線状低密度ポリエチレンを、複合溶融紡糸装置に導入し、ポリエステルを芯成分とし線状低密度ポリエチレンを鞘成分とする第二芯鞘型複合長繊維を溶融紡糸すると共に、コンベア上に集積して長繊維ウェブを得た後、エンボス装置に長繊維ウェブを導入し、第二芯鞘型複合長繊維相互間を部分的に圧接して繊維集積体(C)を得た。なお、第二芯鞘型複合長繊維の繊維径は3.3dtexであり、芯成分と鞘成分の重量比は1:1であった。また、繊維集積体(C)の目付は30g/m2であった。
[Preparation of fiber assembly (C)]
A polyester having a melting point of 256 ° C. and a linear low density polyethylene having a melting point of 102 ° C. and a melt flow rate of 15 g / 10 min are introduced into a composite melt spinning apparatus. The polyester is the core component and the linear low density polyethylene is the sheath component. After melt spinning the two-core-sheath composite long fibers and collecting them on a conveyor to obtain a long-fiber web, the long-fiber web is introduced into the embossing device, and the second core-sheath-type composite long fibers are partially separated from each other. To obtain a fiber assembly (C). In addition, the fiber diameter of the 2nd core-sheath type | mold composite continuous fiber was 3.3 dtex, and the weight ratio of a core component and a sheath component was 1: 1. The basis weight of the fiber aggregate (C) was 30 g / m 2 .

繊維集積体(A)と繊維集積体(B)を積層した二層積層体を、繊維集積体(A)が金属製加熱平滑ロールの周面に当接するようにし、当該周面の約1/2に沿わせた。金属製加熱平滑ロールの周面温度は135℃とした。そして、二層積層体が当該周面に沿って搬送されると共に加熱され、金属製加熱平滑ロールの周面から離れる直前に、繊維集積体(C)を繊維集積体(B)と積層し、弾性非加熱平滑ロールと金属製加熱平滑ロールで挟んで加圧した。加圧後、搬送すると共に冷却され、巻取ロールに巻き取って積層不織布を得た。なお、この積層不織布は、通気度が4cc/cm2・秒であった。 A two-layer laminate in which the fiber aggregate (A) and the fiber aggregate (B) are laminated so that the fiber aggregate (A) abuts on the peripheral surface of the metal heating smooth roll, and about 1 / 2 along. The peripheral surface temperature of the metal heating smooth roll was set to 135 ° C. And the two-layer laminate is conveyed and heated along the peripheral surface, and immediately before leaving the peripheral surface of the metal heating smooth roll, the fiber aggregate (C) is laminated with the fiber aggregate (B), The pressure was sandwiched between an elastic non-heated smooth roll and a metal heated smooth roll. After pressurization, the sheet was conveyed and cooled, and wound on a winding roll to obtain a laminated nonwoven fabric. This laminated nonwoven fabric had an air permeability of 4 cc / cm 2 · sec.

実施例2
繊維集積体(B)の極細繊維の繊維径を1μmとした他は、実施例1と同一の方法により、積層不織布を得た。
Example 2
A laminated nonwoven fabric was obtained by the same method as in Example 1 except that the fiber diameter of the ultrafine fibers of the fiber assembly (B) was 1 μm.

実施例3
繊維集積体(B)の目付を30g/m2とした他は、実施例1と同一の方法により、積層不織布を得た。
Example 3
A laminated nonwoven fabric was obtained by the same method as in Example 1 except that the basis weight of the fiber aggregate (B) was 30 g / m 2 .

実施例4
融点226℃のポリブチレンテレフタレートをメルトブローダイに導入し、ダイ中から加熱空気を吹き付けて極細繊維を形成し、コンベア上に集積して繊維集積体(B’)を得た。極細繊維の繊維径は3μmであり、繊維集積体(B’)の目付は20g/m2であった。
実施例1で用いた繊維集積体(B)に代えて、この繊維集積体(B’)を用いる他は、実施例1と同一の方法により、積層不織布を得た。
Example 4
Polybutylene terephthalate having a melting point of 226 ° C. was introduced into a meltblowing die, heated air was blown from the die to form ultrafine fibers, and accumulated on a conveyor to obtain a fiber assembly (B ′). The fiber diameter of the ultrafine fibers was 3 μm, and the basis weight of the fiber aggregate (B ′) was 20 g / m 2 .
A laminated nonwoven fabric was obtained by the same method as in Example 1 except that this fiber aggregate (B ′) was used instead of the fiber aggregate (B) used in Example 1.

以上の実施例で得られた積層不織布は、表面層、中間層及び裏面層の順で積層一体化されたものであった。図1は、積層不織布の表面層の表面(中間層の反対側に位置する面)側からの電子顕微鏡写真である。表面層を構成している第一芯鞘型複合長繊維の鞘成分の多くが溶融し、背後の中間層を構成する極細繊維相互間に食い込んでいるのが観察される。図2は、積層不織布の裏面層の表面(中間層の反対側に位置する面)側からの電子顕微鏡写真である。裏面層を構成している第二芯鞘型複合長繊維は、第一芯鞘型複合長繊維のように鞘成分の多くが、背後の中間層に食い込んでいないのが観察される。また、図1及び2から、中間層を構成している極細繊維は、当初の繊維形態を維持しており、フィルム化されていないことが観察される。   The laminated nonwoven fabric obtained in the above examples was laminated and integrated in the order of the surface layer, the intermediate layer, and the back layer. FIG. 1 is an electron micrograph from the surface (surface located on the opposite side of the intermediate layer) side of the laminated nonwoven fabric. It is observed that most of the sheath component of the first core-sheath type composite long fiber constituting the surface layer melts and bites between the ultrafine fibers constituting the back intermediate layer. FIG. 2 is an electron micrograph from the surface of the back layer of the laminated nonwoven fabric (the surface located on the opposite side of the intermediate layer). It is observed that the second core-sheath type composite continuous fiber constituting the back surface layer does not bite most of the sheath component into the back intermediate layer unlike the first core-sheath type composite continuous fiber. Moreover, it is observed from FIGS. 1 and 2 that the ultrafine fibers constituting the intermediate layer maintain the original fiber form and are not formed into a film.

本発明の一例に係る積層不織布を表面層の表面(中間層の反対側に位置する面)側から観察した電子顕微鏡写真である。It is the electron micrograph which observed the laminated nonwoven fabric which concerns on an example of this invention from the surface (surface located in the other side of an intermediate | middle layer) side of a surface layer. 本発明の一例に係る積層不織布を裏面層の表面(中間層の反対側に位置する面)側から観察した電子顕微鏡写真である。It is the electron micrograph which observed the laminated nonwoven fabric which concerns on an example of this invention from the surface (surface located in the other side of an intermediate | middle layer) side of a back surface layer.

Claims (6)

鞘成分が高密度ポリエチレンよりなり、芯成分が前記高密度ポリエチレンの融点よりも高い融点を持つポリエステルよりなる第一芯鞘型複合長繊維の集積体からなる表面層、
前記高密度ポリエチレンの融点よりも高い融点を持つポリプロピレン又はポリブチレンテレフタレートよりなる極細繊維の集積体からなる中間層及び
鞘成分が前記高密度ポリエチレンの融点よりも低い融点を持つ線状低密度ポリエチレンよりなり、芯成分が前記線状低密度ポリエチレンの融点よりも高い融点を持つポリエステルよりなる第二芯鞘型複合長繊維の集積体からなる裏面層
を具備する積層不織布であり、
前記第一芯鞘型複合長繊維の鞘成分である高密度ポリエチレンの多くは溶融し芯成分から分離して前記極細繊維相互間に食い込んで固化し、これによって前記表面層と前記中間層とが貼合されていると共に、前記中間層の反対側に位置する前記表面層の面は比較的平滑になっており、
前記第二芯鞘型複合長繊維の鞘成分である線状低密度ポリエチレンの多くは芯成分から分離せずに軟化又は溶融して固化し、前記裏面層と前記中間層とが貼合されていると共に、前記中間層の反対側に位置する前記裏面層の面に前記第二芯鞘型複合長繊維の鞘成分である線状低密度ポリエチレンが露出していることにより、前記裏面層がヒートシール層として機能しうることを特徴とする積層不織布。
A surface layer made of an aggregate of first core-sheath type composite continuous fibers made of polyester having a sheath component made of high-density polyethylene and a core component having a melting point higher than the melting point of the high-density polyethylene;
An intermediate layer composed of an assembly of ultrafine fibers made of polypropylene or polybutylene terephthalate having a melting point higher than that of the high-density polyethylene, and a linear low-density polyethylene having a sheath component having a melting point lower than that of the high-density polyethylene. The core component is a laminated nonwoven fabric comprising a back layer composed of an aggregate of second core-sheath type composite continuous fibers made of polyester having a melting point higher than the melting point of the linear low density polyethylene,
Most of the high-density polyethylene, which is the sheath component of the first core-sheath composite long fiber, melts and separates from the core component and bites between the ultrafine fibers to solidify, whereby the surface layer and the intermediate layer are separated. And the surface of the surface layer located on the opposite side of the intermediate layer is relatively smooth,
Most of the linear low density polyethylene that is the sheath component of the second core-sheath type composite long fiber is softened or melted and solidified without being separated from the core component, and the back layer and the intermediate layer are bonded together. And the linear low density polyethylene that is the sheath component of the second core-sheath composite long fiber is exposed on the surface of the back layer located on the opposite side of the intermediate layer, so that the back layer is heated. A laminated nonwoven fabric characterized by being able to function as a sealing layer.
第一芯鞘型複合長繊維の鞘成分である高密度ポリエチレンの融点は120℃〜140℃であり、芯成分であるポリエステルの融点は250℃〜260℃であり、
極細繊維を構成するポリプロピレンの融点は150℃〜170℃であり、また極細繊維を構成するポリブチレンテレフタレートの融点は220℃〜240℃であり、
第二芯鞘型複合長繊維の鞘成分である線状低密度ポリエチレンの融点は75℃〜110℃であり、芯成分であるポリエステルの融点は250℃〜260℃である請求項1記載の積層不織布。
The melting point of the high-density polyethylene that is the sheath component of the first core-sheath composite long fiber is 120 ° C to 140 ° C, and the melting point of the polyester that is the core component is 250 ° C to 260 ° C.
The melting point of polypropylene constituting the ultrafine fiber is 150 ° C to 170 ° C, and the melting point of polybutylene terephthalate constituting the ultrafine fiber is 220 ° C to 240 ° C.
The lamination according to claim 1, wherein the melting point of the linear low density polyethylene which is the sheath component of the second core-sheath type composite continuous fiber is 75 ° C to 110 ° C, and the melting point of the polyester which is the core component is 250 ° C to 260 ° C. Non-woven fabric.
線状低密度ポリエチレンは、メタロセン系重合触媒によって重合されたものである請求項1記載の積層不織布。   The laminated nonwoven fabric according to claim 1, wherein the linear low density polyethylene is polymerized by a metallocene polymerization catalyst. 線状低密度ポリエチレンのメルトフローレートは、10〜30g/10分である請求項1記載の積層不織布。   The laminated nonwoven fabric according to claim 1, wherein the melt flow rate of the linear low density polyethylene is 10 to 30 g / 10 minutes. 請求項1記載の積層不織布の裏面層同士を重ね合わせ、ヒートシールによって周縁を接合してなる袋状物。   A bag-like product obtained by superimposing the back layers of the laminated nonwoven fabric according to claim 1 and joining the peripheral edges by heat sealing. 吸湿性微粉末が収納されてなる請求項5記載の袋状物。   The bag-like product according to claim 5, which contains hygroscopic fine powder.
JP2012091623A 2012-04-13 2012-04-13 Laminated nonwoven fabric Active JP5888812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012091623A JP5888812B2 (en) 2012-04-13 2012-04-13 Laminated nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012091623A JP5888812B2 (en) 2012-04-13 2012-04-13 Laminated nonwoven fabric

Publications (2)

Publication Number Publication Date
JP2013221217A JP2013221217A (en) 2013-10-28
JP5888812B2 true JP5888812B2 (en) 2016-03-22

Family

ID=49592418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012091623A Active JP5888812B2 (en) 2012-04-13 2012-04-13 Laminated nonwoven fabric

Country Status (1)

Country Link
JP (1) JP5888812B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6026783B2 (en) * 2012-06-05 2016-11-16 Oci株式会社 Meat packaging sheet and meat packaging casing
JP6195776B2 (en) * 2013-10-22 2017-09-13 ユニチカ株式会社 Method for producing three-layer laminated nonwoven fabric
CN103756127A (en) * 2013-11-27 2014-04-30 芜湖跃飞新型吸音材料股份有限公司 LLDPE modified isotatic polypropylene non-woven fabric and preparation method thereof
JP6560095B2 (en) * 2015-10-22 2019-08-14 ユニチカ株式会社 Laminated nonwoven fabric and method for producing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7008888B2 (en) * 2003-07-24 2006-03-07 E. I. Du Pont De Nemours And Company Multiple component spunbond web
JP5030427B2 (en) * 2006-01-25 2012-09-19 旭化成せんい株式会社 Bag
JP4944545B2 (en) * 2006-08-30 2012-06-06 旭化成せんい株式会社 FILTER FILTER MATERIAL AND METHOD FOR PRODUCING FOOD-INCLOSED PAG
JP5191180B2 (en) * 2007-07-23 2013-04-24 旭化成せんい株式会社 Hygroscopic / deodorant sheet

Also Published As

Publication number Publication date
JP2013221217A (en) 2013-10-28

Similar Documents

Publication Publication Date Title
JP4658148B2 (en) Thermal adhesive laminated nonwoven fabric
JP6195776B2 (en) Method for producing three-layer laminated nonwoven fabric
JP5688012B2 (en) Laminated nonwoven fabric
JP5888812B2 (en) Laminated nonwoven fabric
JP6172924B2 (en) Manufacturing method of nonwoven fabric substrate for air filter or mask
JP6560095B2 (en) Laminated nonwoven fabric and method for producing the same
CN106164354B (en) Non-woven fabric plate and using its extraction with filter and extraction bag
WO2015151168A1 (en) Air filter material
JP6114022B2 (en) Laminated nonwoven fabric
JP4748838B2 (en) Thermal adhesive composite sheet
JP2004154760A (en) Nonwoven fabric for filter and extraction pack
JP2008238493A (en) Adhesive fiber sheet and its manufacturing method
JP5064898B2 (en) Food filter and food-enclosed bag body using the same
JP5191180B2 (en) Hygroscopic / deodorant sheet
JP4972342B2 (en) Hygroscopic sheet
JP5030427B2 (en) Bag
JP2018192764A (en) Laminate structure
JP2933667B2 (en) Composite sheet for filling and packaging
JP2006291421A (en) Nonwoven fabric for bag for recovering feather
JP2006334906A (en) Air-permeable laminated sheet
JP2001315239A (en) Nonwoven fabric for heat sealing and method of manufacturing the same
JP4426072B2 (en) Laminated body for filling and packaging and bag-like material comprising the same
WO2019155558A1 (en) Production method for filter medium, filter medium, and respirator
JP3157107U (en) Disposable protective clothing
JP4866794B2 (en) Food filter and food enclosing bag body using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160215

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5888812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150