JP6114022B2 - Laminated nonwoven fabric - Google Patents

Laminated nonwoven fabric Download PDF

Info

Publication number
JP6114022B2
JP6114022B2 JP2012272466A JP2012272466A JP6114022B2 JP 6114022 B2 JP6114022 B2 JP 6114022B2 JP 2012272466 A JP2012272466 A JP 2012272466A JP 2012272466 A JP2012272466 A JP 2012272466A JP 6114022 B2 JP6114022 B2 JP 6114022B2
Authority
JP
Japan
Prior art keywords
layer
sheath
core
nonwoven fabric
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012272466A
Other languages
Japanese (ja)
Other versions
JP2014118641A (en
Inventor
辰太 森岡
辰太 森岡
裕介 永塚
裕介 永塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2012272466A priority Critical patent/JP6114022B2/en
Publication of JP2014118641A publication Critical patent/JP2014118641A/en
Application granted granted Critical
Publication of JP6114022B2 publication Critical patent/JP6114022B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、通気性、透湿性、耐水性に優れ、脱臭剤や乾燥剤等の粉末を良好に収納して袋状物を得る際に好適な積層不織布に関するものである。   The present invention relates to a laminated nonwoven fabric that is excellent in air permeability, moisture permeability, and water resistance, and suitable for obtaining a bag-like product by satisfactorily containing a powder such as a deodorizing agent or a desiccant.

ヒートシール処理によって製袋加工を行うことができる不織布としては、鞘部にポリエチレン、芯部にポリエステルを配した芯鞘型繊維からなる不織布が知られている(例えば、特許文献1)。このような芯鞘型繊維からなる不織布は、例えば、一種のポリマーからなる単相の繊維からなる不織布と比較して、ヒートシール部分の強度に優れ、接着強力が高い。このような芯鞘型繊維からなる不織布をヒートシールにより得られた袋状物は、各種用途に用いられるが、例えば、袋の口から粉末を収納して用いる用途では、繊維間の空隙から粉末が漏れる恐れがある。   As a non-woven fabric that can be processed by heat sealing, a non-woven fabric made of core-sheath fiber in which polyethylene is disposed in the sheath and polyester is disposed in the core is known (for example, Patent Document 1). Such a nonwoven fabric composed of core-sheath fibers has superior heat seal strength and high adhesive strength compared to, for example, a nonwoven fabric composed of single-phase fibers composed of a kind of polymer. A bag-like material obtained by heat-sealing such a nonwoven fabric composed of core-sheath fibers is used for various applications. For example, in applications where powder is stored from the mouth of a bag, the powder from the gap between fibers is used. May leak.

一方、長繊維不織布層、極細繊維不織布層及び複合長繊維不織布層の順で積層されたものが提案されている(特許文献2の請求項1)。この積層不織布は、複合長繊維不織布層をヒートシール層とするものであり、極細繊維不織布層が袋状物に収納した粉末が外部に飛散しないようにするためのフィルター層となっているものである。しかしながら、この積層不織布は極細繊維不織布層によって、長繊維不織布層及び複合長繊維不織布層を接合するもので(特許文献2の段落0026)、極細繊維不織布層が溶融しフィルム状となるものである(特許文献2の段落0042)。かかる積層不織布は極細繊維不織布層がフィルム化されるので、通気性が低下するということがあった。このため、脱臭剤や乾燥剤等の粉末を収納した袋状物として使用する場合、脱臭性能や乾燥性能が低下するということがあった。また、フィルム化された箇所に亀裂が入ると、袋状物に収納した粉末(特に微粉末)が外部に飛散する恐れがあった。   On the other hand, what laminated | stacked in order of the long fiber nonwoven fabric layer, the ultrafine fiber nonwoven fabric layer, and the composite long fiber nonwoven fabric layer is proposed (Claim 1 of patent document 2). This laminated nonwoven fabric has a composite long fiber nonwoven fabric layer as a heat seal layer, and the ultrafine fiber nonwoven fabric layer serves as a filter layer for preventing the powder stored in the bag from scattering to the outside. is there. However, this laminated nonwoven fabric joins the long fiber nonwoven fabric layer and the composite long fiber nonwoven fabric layer with the ultrafine fiber nonwoven fabric layer (paragraph 0026 of Patent Document 2), and the ultrafine fiber nonwoven fabric layer is melted to form a film. (Patent Document 2, paragraph 0042). In such a laminated nonwoven fabric, since the ultrafine fiber nonwoven fabric layer is formed into a film, the air permeability may be lowered. For this reason, when using as a bag-like thing which stored powders, such as a deodorizer and a desiccant, deodorizing performance and drying performance might fall. Further, when a crack is formed in the filmed portion, there is a possibility that the powder (particularly fine powder) stored in the bag-like material is scattered outside.

また、特許文献2に記載された積層不織布は、長繊維不織布層、極細繊維不織布層及び複合長繊維不織布層を部分的熱圧着 (エンボスロールと平滑ロールとを用いて行う熱圧着)で一体化するもので、長繊維不織布層表面が凹凸状態となっており、印刷適性に劣るということがあった。   Moreover, the laminated nonwoven fabric described in Patent Document 2 is a combination of a long fiber nonwoven fabric layer, an ultrafine fiber nonwoven fabric layer and a composite long fiber nonwoven fabric layer by partial thermocompression bonding (thermocompression performed using an embossing roll and a smooth roll). Therefore, the surface of the non-woven fabric nonwoven fabric layer is uneven, and printability is inferior.

特公平8−14069号公報Japanese Examined Patent Publication No. 8-14069 再公表WO2007/086429号公報Republished WO2007 / 086429

本発明者らは、上記問題に鑑みて、特許文献2記載と同様の三層構造の積層不織布でありながら、特定の素材からなる芯鞘型複合長繊維と特定の素材からなる極細繊維を用いて、極細繊維不織布層をフィルム化させることなく一体化でき、通気性の低下や粉末の外部飛散を防止しうる積層不織布を提供するものである。さらには、表面が平滑で印刷適性の良好な積層不織布を提供するものである。   In view of the above problems, the present inventors use a core-sheath composite long fiber made of a specific material and an ultrafine fiber made of a specific material while being a laminated nonwoven fabric having a three-layer structure similar to that described in Patent Document 2. Thus, the present invention provides a laminated non-woven fabric that can be integrated without forming the ultrafine fiber non-woven fabric layer into a film, and that can prevent deterioration of air permeability and external scattering of powder. Furthermore, the present invention provides a laminated nonwoven fabric having a smooth surface and good printability.

本発明は、表面層と中間層と裏面層とを具備する積層不織布であり、
表面層と裏面層が、鞘成分が高密度ポリエチレンよりなり、芯成分が前記高密度ポリエチレンの融点よりも高い融点を持つポリエステルよりなる芯鞘型複合長繊維の集積体からなり、
中間層が、前記高密度ポリエチレンの融点よりも高い融点を持つポリプロピレン又はポリブチレンテレフタレートよりなる極細繊維の集積体からなり、
前記表面層を構成する芯鞘型複合長繊維の鞘成分である高密度ポリエチレンの多くは溶融し芯成分から分離して前記極細繊維相互間に食い込んで固化し、これによって前記表面層と前記中間層とが貼合されていると共に、前記中間層の反対側に位置する前記表面層の面は比較的平滑になっており、
前記裏面層を構成する芯鞘型複合長繊維の鞘成分である高密度ポリエチレンの多くは芯成分から分離せず軟化又は溶融して固化し、前記裏面層と前記中間層とが貼合されていると共に、前記中間層の反対側に位置する前記裏面層の面に前記裏面層を構成する芯鞘型複合長繊維の鞘成分である高密度ポリエチレンが露出していることにより、前記裏面層がヒートシール層として機能しうることを特徴とする積層不織布を要旨とするものである。
The present invention is a laminated nonwoven fabric comprising a surface layer, an intermediate layer, and a back layer,
The front surface layer and the back surface layer are composed of an assembly of core-sheath composite long fibers composed of polyester having a sheath component made of high-density polyethylene and a core component having a melting point higher than the melting point of the high-density polyethylene,
The intermediate layer is composed of an assembly of ultrafine fibers made of polypropylene or polybutylene terephthalate having a melting point higher than that of the high-density polyethylene,
Most of the high-density polyethylene that is the sheath component of the core-sheath type composite continuous fiber constituting the surface layer is melted and separated from the core component, and bites between the ultrafine fibers to be solidified, whereby the surface layer and the intermediate layer are solidified. And the surface of the surface layer located on the opposite side of the intermediate layer is relatively smooth,
Most of the high-density polyethylene that is the sheath component of the core-sheath composite long fiber constituting the back layer is softened or melted and solidified without being separated from the core component, and the back layer and the intermediate layer are bonded together. And the high-density polyethylene that is the sheath component of the core-sheath-type composite continuous fiber constituting the back surface layer is exposed on the surface of the back surface layer that is located on the opposite side of the intermediate layer. The gist of the laminated nonwoven fabric is that it can function as a heat seal layer.

[表面層について]
表面層は、本発明に係る積層不織布を用いて、例えば袋状物を得たとき、袋状物の外層となるものである。表面層は、鞘成分が高密度ポリエチレンよりなり、芯成分が高密度ポリエチレンの融点よりも高い融点を持つポリエステルよりなる芯鞘型複合長繊維の集積体からなる。高密度ポリエチレンの融点は140℃以下であるのが好ましい。高密度ポリエチレンの融点が140℃を超えると、積層不織布を製造する際に、極細繊維の軟化又は溶融を防止しながら、高密度ポリエチレンを溶融させて極細繊維相互間に食い込ませにくくなる。なお、高密度ポリエチレンの下限は120℃程度がよい。
[Surface layer]
The surface layer is an outer layer of the bag-like material when, for example, a bag-like material is obtained using the laminated nonwoven fabric according to the present invention. The surface layer is made of an aggregate of core-sheath composite long fibers made of polyester having a sheath component made of high-density polyethylene and a core component having a melting point higher than that of the high-density polyethylene. The melting point of the high density polyethylene is preferably 140 ° C. or lower. When the melting point of the high-density polyethylene exceeds 140 ° C., it becomes difficult to melt the high-density polyethylene and bite between the ultrafine fibers while preventing the softening or melting of the ultrafine fibers when manufacturing the laminated nonwoven fabric. The lower limit of the high density polyethylene is preferably about 120 ° C.

芯成分であるポリエステルの融点は、250℃〜260℃であるのが好ましい。この程度の融点であると、高密度ポリエチレンとの融点差が大きく、高密度ポリエチレンが溶融し芯成分であるポリエステルから分離して、極細繊維相互間に食い込んでいくような熱量を与えても、ポリエステルが軟化あるいは溶融することなく、また劣化することなく、当初の繊維形態を維持する。これにより、表面層における表面(中間層の反対側に位置する面)のフィルム化を防止しうるので好ましい。また、表面層における表面には、高密度ポリエチレンが溶融し極細繊維相互間に食い込んでいくような熱量が与えられるため、これら表面は平滑化され、印刷適性に優れたものとなる。   The melting point of the polyester as the core component is preferably 250 ° C to 260 ° C. When the melting point is about this level, the difference in melting point from the high-density polyethylene is large, and the high-density polyethylene is melted and separated from the polyester as the core component. The polyester maintains its original fiber form without softening or melting, and without deterioration. Thereby, film formation of the surface (surface located on the opposite side of the intermediate layer) in the surface layer can be prevented, which is preferable. In addition, since the surface layer is given a heat quantity such that the high-density polyethylene melts and bites between the ultrafine fibers, these surfaces are smoothed and have excellent printability.

芯鞘型複合長繊維の芯成分と鞘成分の重量比は任意であるが、芯成分:鞘成分=0.25〜4:1であるのが好ましく、特に芯成分:鞘成分=0.4〜2.5:1であるのがより好ましく、芯成分:鞘成分=1:1であるのが最も好ましい。鞘成分の重量比がこの範囲を超えて少なくなると、鞘成分が極細繊維相互間に食い込みにくくなる傾向が生じる。また、鞘成分の重量比がこの範囲を超えて多くなると、表面層がフィルム化する恐れが生じる。   Although the weight ratio of the core component to the sheath component of the core-sheath type composite continuous fiber is arbitrary, it is preferable that the core component: sheath component = 0.25-4: 1, and particularly the core component: sheath component = 0.4. More preferably, it is ˜2.5: 1, and most preferably core component: sheath component = 1: 1. When the weight ratio of the sheath component decreases beyond this range, the sheath component tends to become difficult to bite between the ultrafine fibers. Further, if the weight ratio of the sheath component exceeds this range, the surface layer may become a film.

芯鞘型複合長繊維の繊維径は任意であるが、引張強度等の物性面から、1〜7dtexであるのが好ましい。繊維径が1dtex未満であると、表面層の引張強度が低下する傾向が生じる。また、繊維径が7dtexを超えると、芯鞘型複合長繊維相互間の間隙が大きくなり、表面層の表面を平滑化しにくくなる傾向が生じ、また、表面に存在する長繊維が剥がれて毛羽立ちやすくなって耐摩耗性が低下する傾向にある。   The fiber diameter of the core-sheath type composite continuous fiber is arbitrary, but is preferably 1 to 7 dtex from the viewpoint of physical properties such as tensile strength. If the fiber diameter is less than 1 dtex, the tensile strength of the surface layer tends to decrease. Further, when the fiber diameter exceeds 7 dtex, the gap between the core-sheath type composite long fibers becomes large and the surface layer tends to be difficult to smooth, and the long fibers existing on the surface are peeled off and are easily fluffed. As a result, the wear resistance tends to decrease.

表面層を構成する芯鞘型複合長繊維の鞘成分は、中間層を構成している極細繊維相互間に食い込んでいるので、表面層と中間層を明確に分離することは困難である。しかしながら、概ね表面層と中間層とを分離した場合、表面層の繊維量は、それぞれ10〜50g/m2であるのが好ましい。表面層の繊維量が10g/m2未満になると、中間層を隠蔽し保護する効果が低下する傾向が生じる。また、表面層の繊維量が50g/m2を超えると、過剰品質であり、得られる袋状物の重量が重くなる傾向が生じ、また、表面層の厚みが大きくなるため、中間層と積層する際の熱処理工程で、表面層の裏面(中間層側に位置する面)の鞘成分に十分に熱が伝わらない場合があり鞘成分の溶融が不足する傾向となると、中間層に鞘成分が溶融により食い込みにくい傾向となる。 Since the sheath component of the core-sheath composite long fiber constituting the surface layer bites between the ultrafine fibers constituting the intermediate layer, it is difficult to clearly separate the surface layer and the intermediate layer. However, when the surface layer and the intermediate layer are roughly separated, the amount of fibers in the surface layer is preferably 10 to 50 g / m 2 , respectively. When the amount of fibers in the surface layer is less than 10 g / m 2 , the effect of concealing and protecting the intermediate layer tends to be reduced. Further, if the amount of fibers in the surface layer exceeds 50 g / m 2 , the quality is excessive and the weight of the resulting bag-like material tends to increase, and the thickness of the surface layer increases, so In the heat treatment step, the heat may not be sufficiently transferred to the sheath component on the back surface of the surface layer (the surface located on the intermediate layer side) and the sheath component tends to be insufficiently melted in the intermediate layer. It tends to be difficult to bite by melting.

[中間層について]
中間層は、表面層と裏面層の間に挟持されているものであり、袋状物内に収納した粉末(特に微粉末)を外部へ飛散させないようにするため、フィルター層として機能するものである。また、袋状物内に流動性を有する樹脂や液体を収納して使用する場合や、オムツの各種部材の一部として使用する場合に、浸透による染み出しを抑制する機能を担うものである。すなわち、中間層は極細繊維の集積体で構成されており、極細繊維相互間の間隙は微細になっており、微粉末が透過して外部に飛散する、あるいは液状物等の浸透による染み出しを防止する。極細繊維の繊維径は、0.1〜10μmであるのが好ましく、特に0.5〜6μmであるのが好ましい。極細繊維の繊維径を0.1μm未満とするのは、製造上困難であり、得られたとしても生産性が極端に劣る。また、極細繊維の繊維径が10μmを超えると、極細繊維相互間の間隙が大きくなって、袋状物内に収納される微粉末が外部に飛散する、あるいは液状物が浸透して染み出す傾向が生じやすくなる。このような極細繊維で構成される中間層は、いわゆるメルトブロー法により得られるメルトブロー不織布が好ましく用いられる。
[About the middle class]
The intermediate layer is sandwiched between the front surface layer and the back surface layer, and functions as a filter layer in order to prevent the powder (particularly fine powder) stored in the bag-like material from being scattered outside. is there. Moreover, when storing and using resin and liquid which have fluidity | liquidity in a bag-like thing, or using as a part of various members of a diaper, it bears the function which suppresses the oozing by penetration. That is, the intermediate layer is composed of an assembly of ultrafine fibers, and the gap between the ultrafine fibers is fine, so that fine powder permeates and scatters to the outside, or oozes out due to penetration of a liquid material or the like. To prevent. The fiber diameter of the ultrafine fiber is preferably 0.1 to 10 μm, and particularly preferably 0.5 to 6 μm. Setting the fiber diameter of the ultrafine fiber to less than 0.1 μm is difficult in production, and even if obtained, the productivity is extremely inferior. In addition, when the fiber diameter of the ultrafine fiber exceeds 10 μm, the gap between the ultrafine fibers becomes large, and the fine powder stored in the bag-like material tends to scatter to the outside, or the liquid material penetrates and oozes out. Is likely to occur. As the intermediate layer composed of such ultrafine fibers, a melt blown nonwoven fabric obtained by a so-called melt blow method is preferably used.

極細繊維はポリプロピレン又はポリブチレンテレフタレートよりなる。ポリプロピレン又はポリブチレンテレフタレートよりなる極細繊維の融点は、表面層を構成している芯鞘型複合長繊維の鞘成分である高密度ポリエチレンの融点よりも高くなっている。 したがって、高密度ポリエチレンが溶融して、極細繊維相互間に食い込んでも、ポリプロピレン又はポリブチレンテレフタレートよりなる極細繊維は、軟化又は溶融せずに、当初の極細繊維形態を維持している。よって、極細繊維の集積体が持つフィルター機能を十分に発揮するのである。ポリプロピレンよりなる極細繊維の融点は、表面層を構成する芯鞘型複合長繊維の鞘成分である高密度ポリエチレンの融点よりも約10℃〜50℃高く、150℃〜170℃であるのが好ましい。また、ポリブチレンテレフタレートよりなる極細繊維の融点は、当該高密度ポリエチレンの融点よりも約80℃〜120℃高く、220℃〜240℃であるのが好ましい。   The ultrafine fibers are made of polypropylene or polybutylene terephthalate. The melting point of the ultrafine fiber made of polypropylene or polybutylene terephthalate is higher than the melting point of the high density polyethylene which is the sheath component of the core-sheath type composite continuous fiber constituting the surface layer. Therefore, even if the high-density polyethylene melts and bites between the ultrafine fibers, the ultrafine fibers made of polypropylene or polybutylene terephthalate are not softened or melted and maintain the original ultrafine fiber form. Therefore, the filter function of the ultrafine fiber aggregate is sufficiently exhibited. The melting point of the ultrafine fiber made of polypropylene is about 10 ° C. to 50 ° C. higher than the melting point of the high density polyethylene that is the sheath component of the core-sheath type composite continuous fiber constituting the surface layer, and is preferably 150 ° C. to 170 ° C. . Further, the melting point of the ultrafine fiber made of polybutylene terephthalate is preferably about 80 to 120 ° C. and 220 to 240 ° C. higher than the melting point of the high-density polyethylene.

中間層の繊維量は、5〜100g/m2であるのが好ましく、特に10〜50g/m2であるのが好ましい。中間層の繊維量が5g/m2未満であると、極細繊維相互間で形成された微細な間隙が少なくなり、フィルター機能が低下する傾向が生じる。また、中間層の繊維量が100g/m2を超えると、中間層の内部にまで、溶融した高密度ポリエチレンが食い込みにくくなり、中間層自体が層剥離する傾向が生じる。 Fiber content of the intermediate layer is preferably from 5 to 100 g / m 2, it is preferred in particular 10 to 50 g / m 2. When the amount of fibers in the intermediate layer is less than 5 g / m 2 , fine gaps formed between the ultrafine fibers are reduced, and the filter function tends to be lowered. On the other hand, if the amount of fibers in the intermediate layer exceeds 100 g / m 2 , the melted high-density polyethylene is difficult to bite into the intermediate layer, and the intermediate layer itself tends to peel off.

[裏面層について]
裏面層は、本発明に係る積層不織布を用いて、例えば袋状物を得るとき、ヒートシール層として機能するものである。裏面層は、上述した表面層を構成する芯鞘型複合長繊維の集積体と同様の芯鞘型複合長繊維の集積体からなる。すなわち、鞘成分が高密度ポリエチレンよりなり、芯成分が高密度ポリエチレンの融点よりも高い融点を持つポリエステルよりなる芯鞘型複合長繊維の集積体からなる。裏面層は、ヒートシール層として機能するものであるので、芯鞘型複合長繊維の鞘成分は、積層不織布の表面層に熱源を当接してヒートシールする際に、溶融する。
[Back side layer]
The back layer functions as a heat seal layer when, for example, a bag-like material is obtained using the laminated nonwoven fabric according to the present invention. The back surface layer is composed of a core-sheath composite long fiber assembly similar to the core-sheath composite long fiber assembly constituting the surface layer described above. That is, the sheath component is composed of high-density polyethylene, and the core component is composed of an aggregate of core-sheath composite long fibers composed of polyester having a melting point higher than that of high-density polyethylene. Since the back layer functions as a heat seal layer, the sheath component of the core-sheath composite long fiber melts when the heat source is brought into contact with the surface layer of the laminated nonwoven fabric and heat sealed.

裏面層と表面層とは、同様の芯鞘型複合長繊維の集積体からなるものであるが、両者は、中間層との貼合の形態が異なる。表面層は、表面層を構成する芯鞘型複合長繊維の鞘成分である高密度ポリエチレンの多くは溶融し芯成分から分離して前記極細繊維相互間に食い込んで固化し、これによって表面層と中間層とが貼合されていると共に、中間層の反対側に位置する表面層の面は比較的平滑になっている。これに対して、裏面層は、裏面層を構成する芯鞘型複合長繊維の鞘成分である高密度ポリエチレンの多くが芯成分から分離せずに軟化又は溶融して固化することによって、中間層と貼合されている。したがって、裏面層を構成する芯鞘型複合長繊維の鞘成分である高密度ポリエチレンの多くは、裏面層の表面(中間層の反対側に位置する面)に露出しており、ヒートシールする際の接着成分として有効に機能するのである。   The back surface layer and the front surface layer are composed of the same core-sheath-type composite continuous fiber aggregate, but both are different in the form of bonding with the intermediate layer. Most of the high-density polyethylene that is the sheath component of the core-sheath type composite long fiber that constitutes the surface layer is melted and separated from the core component, and bites between the ultrafine fibers to be solidified. While the intermediate layer is bonded, the surface of the surface layer located on the opposite side of the intermediate layer is relatively smooth. On the other hand, the back layer is an intermediate layer formed by softening or melting and solidifying most of the high-density polyethylene that is the sheath component of the core-sheath type composite continuous fiber constituting the back layer without separating from the core component. It is pasted. Therefore, most of the high-density polyethylene that is the sheath component of the core-sheath type composite continuous fiber constituting the back surface layer is exposed on the surface of the back surface layer (the surface located on the opposite side of the intermediate layer). It functions effectively as an adhesive component.

裏面層における高密度ポリエチレンの融点は140℃以下であるのが好ましい。また、裏面層における高密度ポリエチレンの融点は、表面層における高密度ポリエチレンの融点と同等もしくは表面層における高密度ポリエチレンの融点以下であることが好ましい。表面層における高密度ポリエチレンの融点よりも高いと、ヒートシール時に表面層における高密度ポリエチレンが溶融して、熱源に付着する恐れがある。   The melting point of the high-density polyethylene in the back layer is preferably 140 ° C. or lower. The melting point of the high-density polyethylene in the back layer is preferably equal to or lower than the melting point of the high-density polyethylene in the surface layer. If the melting point of the high-density polyethylene in the surface layer is higher, the high-density polyethylene in the surface layer may melt during heat sealing and adhere to the heat source.

裏面層における芯鞘型複合長繊維の芯成分であるポリエステルの融点は、鞘成分である高密度ポリエチレンの融点よりも高く、250℃〜260℃であるのが好ましい。この程度の融点であると、ヒートシール時に高密度ポリエチレンが溶融して、ポリエステルが軟化あるいは溶融することなく、また劣化することなく、当初の繊維形態を維持する。これにより、ヒートシール箇所に芯成分が繊維形態で残存しており、ヒートシール箇所の引裂強力の低下を防止しうる。   The melting point of the polyester that is the core component of the core-sheath composite long fiber in the back layer is higher than the melting point of the high-density polyethylene that is the sheath component, and is preferably 250 ° C to 260 ° C. When the melting point is about this level, the high-density polyethylene is melted at the time of heat sealing, and the original fiber form is maintained without the polyester softening or melting or deterioration. Thereby, the core component remains in a fiber form at the heat seal portion, and a reduction in tear strength at the heat seal portion can be prevented.

裏面層における高密度ポリエチレンのメルトフローレート(JIS K 6922に記載の方法に準拠し、温度190℃で荷重21.18Nで測定した。)は、30g/10分以下であるのが好ましい。メルトフローレートが30g/10分を超えると、高密度ポリエチレンの流動性が高くなり、芯成分から分離する傾向が生じ、好ましくない。すなわち、裏面層の表面(中間層の反対側に位置する面)に残存しにくくなって、当該表面に高密度ポリエチレンが露出しにくくなり、ヒートシール時における接着力が低下する傾向が生じる。なお、メルトフローレートの下限は、芯鞘型複合長繊維の製造しやすさを考慮して、10g/10分程度がよい。   The melt flow rate of the high-density polyethylene in the back layer (based on the method described in JIS K 6922, measured at a temperature of 190 ° C. and a load of 21.18 N) is preferably 30 g / 10 min or less. When the melt flow rate exceeds 30 g / 10 min, the flowability of the high-density polyethylene is increased, and the tendency to separate from the core component is not preferable. That is, it becomes difficult to remain on the surface of the back surface layer (the surface located on the opposite side of the intermediate layer), making it difficult for high-density polyethylene to be exposed on the surface, and the adhesive force during heat sealing tends to decrease. The lower limit of the melt flow rate is preferably about 10 g / 10 minutes in consideration of the ease of manufacturing the core-sheath type composite continuous fiber.

裏面層における芯鞘型複合長繊維の芯成分と鞘成分の重量比は任意であるが、芯成分:鞘成分=0.25〜4:1であるのが好ましく、特に芯成分:鞘成分=0.6〜2.5:1であるのがより好ましく、芯成分:鞘成分=1:1であるのが最も好ましい。鞘成分の重量比がこの範囲を超えて少なくなると、ヒートシール時における接着力が低下する傾向が生じる。また、鞘成分の重量比がこの範囲を超えて多くなると、裏面層がフィルム化する恐れが生じる。   Although the weight ratio of the core component and the sheath component of the core-sheath type composite long fiber in the back layer is arbitrary, it is preferable that the core component: sheath component = 0.25-4: 1, particularly the core component: sheath component = The ratio is more preferably 0.6 to 2.5: 1, and most preferably the core component: sheath component = 1: 1. If the weight ratio of the sheath component is less than this range, the adhesive strength during heat sealing tends to decrease. Further, if the weight ratio of the sheath component exceeds this range, the back layer may be formed into a film.

裏面層における芯鞘型複合長繊維の繊維径は任意であるが、1〜7dtexであるのが好ましい。繊維径が1dtex未満であると、芯鞘型複合長繊維の鞘成分の絶対量が少なくなり、ヒートシール時における接着力が低下する傾向が生じる。また、繊維径が7dtexを超えると、裏面層の表面(中間層の反対側に位置する面)に凹凸が生じやすくなり、ヒートシール時における接着力が低下する傾向が生じる。   The fiber diameter of the core-sheath composite long fiber in the back layer is arbitrary, but is preferably 1 to 7 dtex. When the fiber diameter is less than 1 dtex, the absolute amount of the sheath component of the core-sheath composite long fiber is reduced, and the adhesive force during heat sealing tends to be reduced. In addition, when the fiber diameter exceeds 7 dtex, unevenness tends to occur on the surface of the back surface layer (the surface located on the opposite side of the intermediate layer), and the adhesive force during heat sealing tends to decrease.

裏面層と中間層も明確に分離することは困難であるが、概ね裏面層と中間層とを分離した場合、裏面層の繊維量は、10〜70g/m2であるのが好ましい。裏面層の繊維量が
10g/m2未満になると、裏面層における芯鞘型複合長繊維の鞘成分の絶対量が少なくなり、ヒートシール時における接着力が低下する傾向が生じる。また、裏面層の繊維量が70g/m2を超えると、過剰品質であり、得られる袋状物の重量が重くなる傾向が生じる。
Although it is difficult to clearly separate the back layer and the intermediate layer, when the back layer and the intermediate layer are roughly separated, the fiber amount of the back layer is preferably 10 to 70 g / m 2 . When the fiber amount of the back surface layer is less than 10 g / m 2 , the absolute amount of the sheath component of the core-sheath composite long fiber in the back surface layer decreases, and the adhesive force during heat sealing tends to decrease. On the other hand, if the amount of fibers in the back layer exceeds 70 g / m 2 , the quality is excessive and the resulting bag-like product tends to be heavy.

[積層不織布の製造方法について]
本発明に係る積層不織布は、たとえば、以下の方法で得ることができる。まず、鞘成分が高密度ポリエチレンよりなり、芯成分が高密度ポリエチレンの融点よりも高い融点を持つポリエステルよりなる芯鞘型複合長繊維の集積体(表面層用)及び同様の芯鞘型複合長繊維の集積体(裏面層用)、高密度ポリエチレンの融点よりも高い融点を持つポリプロピレン又はポリブチレンテレフタレートよりなる極細繊維の集積体(中間層用)を準備する。集積体(表面層用)及び集積体(裏面層用)は、芯鞘型複合長繊維を溶融紡糸法で形成し、これを集積して長繊維相互間を接着する、いわゆるスパンボンド法で得ることができる。長繊維相互間の接着は、芯鞘型複合長繊維の鞘成分の軟化又は溶融により、行うことができる。集積体(中間層用)は、溶融させた樹脂を高速高温空気で吹き付けて細化し極細繊維として集積する、いわゆるメルトブロ一法で得ることができる。極細繊維相互間は、紡糸時の極細繊維自体の粘着性によって接着されていてもよいし、接着されていなくてもよい。
[Production method of laminated nonwoven fabric]
The laminated nonwoven fabric according to the present invention can be obtained, for example, by the following method. First, an assembly of core-sheath composite long fibers (for surface layer) and a similar core-sheath composite length made of polyester having a sheath component made of high-density polyethylene and a core component having a melting point higher than that of high-density polyethylene. An aggregate of fibers (for the back layer) and an aggregate of ultrafine fibers (for the intermediate layer) made of polypropylene or polybutylene terephthalate having a melting point higher than that of the high-density polyethylene are prepared. The aggregate (for the surface layer) and the aggregate (for the back layer) are obtained by a so-called spunbond method in which core-sheath composite long fibers are formed by a melt spinning method, and these are accumulated and bonded together. be able to. Adhesion between long fibers can be performed by softening or melting the sheath component of the core-sheath composite long fiber. The aggregate (for the intermediate layer) can be obtained by a so-called melt-blowing method in which a melted resin is blown with high-speed and high-temperature air to make it fine and accumulate as ultrafine fibers. The ultrafine fibers may or may not be bonded to each other depending on the tackiness of the ultrafine fibers themselves during spinning.

次に、集積体(裏面層用)と集積体(中間層用)を積層した二層積層体を、集積体(裏面層用)が金属製加熱平滑ロール側に位置するようにして、弾性非加熱平滑ロールと金属製加熱平滑ロールとの間に挟んで加熱および加圧し、集積体(裏面層用)中の芯鞘型複合長繊維の鞘成分を溶融させるが鞘成分の多くが芯鞘型複合長繊維の芯成分から分離することなく、集積体(中間層用)に貼合せる。ここで集積体(中間層用)側を、弾性非加熱平滑ロールに接触させる理由は、この加熱加圧工程によって、集積体(中間層用)の繊維相互間が密着して集積体(中間層用)表面がフィルム化したり、ぺーパーライクにならないようにするためである。よって、この加熱加圧工程によって、集積体(中間層用)を構成する繊維相互間は密着せずに繊維形態を保持した状態で堆積されており、通気性は低下しない。   Next, a two-layer laminate in which the aggregate (for the back layer) and the aggregate (for the intermediate layer) are laminated is placed on the metal heating smooth roll side so that the non-elastic Heated and pressed between a heated smooth roll and a metal heated smooth roll to heat and pressurize and melt the sheath component of the core-sheath composite long fiber in the aggregate (for the back layer), but most of the sheath component is the core-sheath type Without being separated from the core component of the composite long fiber, it is bonded to the aggregate (for the intermediate layer). Here, the reason for bringing the aggregate (for intermediate layer) side into contact with the elastic non-heated smooth roll is that the fibers of the aggregate (for intermediate layer) are brought into close contact with each other by this heating and pressing step. This is to prevent the surface from becoming a film or paper-like. Therefore, by this heating and pressurizing step, the fibers constituting the aggregate (for the intermediate layer) are deposited in a state of keeping the fiber form without being in close contact with each other, and the air permeability is not lowered.

その後、得られた2層積層体の集積体(中間層用)面に集積体(表面層用)を積層し、集積体(表面層用)が加熱ロール側に位置するように供給し、3層の集積体が積層してなる積層体を加熱ロールに沿わせ、集積体(表面層)に最も多くの熱が加わるように加熱処理し、集積体(表面層)中の芯鞘型複合長繊維の鞘成分を、鞘成分の多くを芯成分から分離する程度に溶融させ、集積体(中間層)中の極細繊維相互間に食い込ませるように加熱し、次いで、3層の積層体を金属製加熱平滑ロールと弾性非加熱平滑ロールとの間に挟み加熱および加圧し、集積体(表面層)中の芯鞘型複合長繊維の鞘成分の多くが溶融させて芯成分から分離させ、その溶融した鞘成分を集積体(中間層)中の極細繊維相互間に食い込ませ、かつ3層として一体化させる。このとき、金属製加熱平滑ロール側に集積体(表面層)が接するように配置する。なお、集積体(表面層)を加熱ロールに沿わせて加熱する工程と、3層を一体化させるための金属製加熱平滑ロールと弾性非加熱平滑ロールとの間で加熱加圧処理する工程は、同一工程とし、加熱ロールと金属製加熱平滑ロールとして同一のものを用いることもできる。すなわち、三層の集積体が積層してなる積層体を加熱ロールに沿わせて加熱熱処理し、加熱ロールの周面から離れる直前に、弾性非加熱平滑ロールと加熱ロールの間に挟んで加圧することもできる。   Thereafter, the stack (for the surface layer) is stacked on the stack (for the intermediate layer) surface of the obtained two-layer stack, and supplied so that the stack (for the surface layer) is located on the heating roll side. A laminated body composed of laminated layers is placed on a heating roll and heat-treated so that most heat is applied to the laminated body (surface layer), and the core-sheath composite length in the laminated body (surface layer) The sheath component of the fiber is melted to such a degree that most of the sheath component is separated from the core component, and is heated so as to penetrate between the ultrafine fibers in the aggregate (intermediate layer). Heated and pressed between a heated smooth roll and an elastic non-heated smooth roll, and many of the sheath components of the core-sheath type composite continuous fiber in the aggregate (surface layer) are melted and separated from the core component. The melted sheath component is bitten between the microfibers in the aggregate (intermediate layer) and integrated into three layers. Make it. At this time, it arrange | positions so that an accumulation body (surface layer) may contact | connect a metal heating smooth roll side. The step of heating the aggregate (surface layer) along the heating roll and the step of heating and pressing between the metal heating smooth roll and the elastic non-heating smooth roll for integrating the three layers are as follows: The same process can be used as the heating roll and the metal heating smooth roll. That is, a laminate formed by laminating three-layered assemblies is subjected to heat treatment along the heating roll, and immediately before leaving the peripheral surface of the heating roll, it is pressed between the elastic non-heating smooth roll and the heating roll. You can also.

その後、集積体(表面層)、集積体(中間層)及び集積体(裏面層)の順で積層された三層積層体を冷却し、集積体(表面層)及び集積体(裏面層)の芯鞘型複合長繊維の鞘成分を固化させる。このときの圧力は、集積体(中間層)自体が層剥離しない程度、かつ、通気性が本発明の範囲に収まるように適宜調整する。   After that, the three-layer laminate that is laminated in the order of the aggregate (surface layer), the aggregate (intermediate layer), and the aggregate (back surface layer) is cooled, and the aggregate (surface layer) and the aggregate (back surface layer) The sheath component of the core-sheath type composite long fiber is solidified. The pressure at this time is appropriately adjusted so that the aggregate (intermediate layer) itself does not delaminate and the air permeability is within the scope of the present invention.

これによって集積体(表面層)の芯鞘型複合長繊維の鞘成分は、集積体(中間層)中の極細繊維相互間に食い込んだ状態で固化し、また、集積体(裏面層)の芯鞘型複合長繊維の鞘成分は溶融固化することにより集積体(中間層)と貼り合わされて、集積体(表面層)、集積体(中間層)及び集積体(裏面層)の順で貼合され一体化された積層不織布が得られるのである。   As a result, the sheath component of the core-sheath-type composite long fiber of the aggregate (surface layer) is solidified in a state of being bitten between the ultrafine fibers in the aggregate (intermediate layer), and the core of the aggregate (back layer) The sheath component of the sheath-type composite long fiber is melted and solidified to be bonded to the aggregate (intermediate layer), and the aggregate (surface layer), the aggregate (intermediate layer), and the aggregate (back layer) are bonded in this order. Thus, an integrated laminated nonwoven fabric is obtained.

本発明に係る積層不織布は、表面層、中間層及び裏面層の順で積層されてなるものであり、裏面層がヒートシール層として機能するものである。したがって、この裏面層同士を重ね合わせて、周縁をヒートシールして接着すると袋状物となる。また、この袋状物の中に炭や活性炭、クレイ(粘土)等の吸湿性粉末や脱臭性粉末を収納しておけば、各種食品等と共に包装することによって、吸湿材や脱臭材となる。特に、中間層が極細繊維の集積体よりなるため、吸湿性微粉末や脱臭性微粉末を収納してもこれが外部に飛散しにくく、好ましい。さらには、袋状物の中に流動性を有する樹脂や液体を収納して使用する場合や、オムツの各種部材の一部として使用する場合に、浸透による染み出しを抑制しやすく、好ましい。また、極細繊維の集積体がフィルム化していないので、1cc/cm2・秒以上の通気度(JIS L1096A法フラジール形法)があり、吸湿性能や脱臭性能が低下しない。なお、通気度の上限は、20cc/cm2・秒程度がよい。また、耐水圧(JIS L1092静水圧法)が400mmH2O(mmAq)以上であり、液状物の浸透による染み出しを抑制することが可能である。 The laminated nonwoven fabric according to the present invention is formed by laminating a surface layer, an intermediate layer and a back layer in this order, and the back layer functions as a heat seal layer. Therefore, when the back surface layers are overlapped and the periphery is heat sealed and bonded, a bag-like material is obtained. Moreover, if hygroscopic powder and deodorizing powders, such as charcoal, activated carbon, clay (clay), are accommodated in this bag-like material, it will become a hygroscopic material and a deodorizing material by packaging with various foods. In particular, since the intermediate layer is made of an aggregate of ultrafine fibers, it is preferable that even if hygroscopic fine powder or deodorizing fine powder is stored, it is difficult to scatter outside. Furthermore, when storing and using resin and liquid which have fluidity | liquidity in a bag-shaped thing, or when using as a part of various members of a diaper, it is easy to suppress the seepage by penetration and is preferable. Further, since the aggregate of ultrafine fibers is not formed into a film, it has an air permeability of 1 cc / cm 2 · sec or more (JIS L1096A method fragile method), and does not deteriorate moisture absorption performance or deodorization performance. The upper limit of the air permeability is preferably about 20 cc / cm 2 · sec. Further, the water pressure resistance (JIS L1092 hydrostatic pressure method) is 400 mmH 2 O (mmAq) or more, and it is possible to suppress the seepage due to the penetration of the liquid material.

さらに、積層不織布における平均孔径(ASTM F−361−86に基づき測定されるミーン・フロー・ポアサイズ(MFP)を平均孔径とする。本発明においては、パーム・ポロメーター(POROUS MATERIALS,INC製)を用いて測定した。)が1〜20μmであることが好ましい。より好ましくは5〜15μmである。平均孔径が20μmを超えて大きいと、通気度及び耐水圧を上記の範囲を保ちにくい傾向となり、また微細な粉末の漏れが生じる傾向となる。   Further, the average pore size in the laminated nonwoven fabric (mean flow pore size (MFP) measured based on ASTM F-361-86 is used as the average pore size.) In the present invention, a palm porometer (manufactured by POROUS MATERIALS, INC) is used. It is preferable that it is 1-20 micrometers. More preferably, it is 5-15 micrometers. When the average pore diameter is larger than 20 μm, the air permeability and the water pressure resistance tend to be difficult to maintain the above ranges, and fine powder leakage tends to occur.

本発明に係る積層不織布は、表面層、中間層及び裏面層の順で積層されてなり、表面層を構成している芯鞘型複合長繊維の鞘成分の一部が芯成分から分離して中間層の極細繊維相互の間隙に食い込んで中間層の極細繊維と貼合され、表面層、中間層及び裏面層が一体化している。したがって、中間層を構成している極細繊維は溶融固化しておらず繊維形態を維持しており、また表面層及び裏面層の芯鞘型複合長繊維の芯成分も当初の繊維形態を維持した状態で、 表面層、中間層及び裏面層が一体化している。この積層不織布は、各層がフィルム化しておらず、特に中間層がフィルム化していないため、通気性の低下が少ない。   The laminated nonwoven fabric according to the present invention is laminated in the order of the surface layer, the intermediate layer, and the back layer, and a part of the sheath component of the core-sheath type composite continuous fiber constituting the surface layer is separated from the core component. The surface layer, the intermediate layer, and the back surface layer are integrated by cutting into the gaps between the ultrafine fibers of the intermediate layer and being bonded to the ultrafine fibers of the intermediate layer. Therefore, the ultrafine fibers constituting the intermediate layer are not melted and solidified and maintain the fiber form, and the core components of the core-sheath type composite long fibers of the surface layer and the back layer also maintain the original fiber form. In the state, the surface layer, the intermediate layer, and the back layer are integrated. In this laminated nonwoven fabric, each layer is not formed into a film, and particularly, the intermediate layer is not formed into a film.

よって、本発明に係る積層不織布を用い、脱臭剤や乾燥剤等の粉末を収納して袋状物とした場合、脱臭性能や乾燥性能が低下しにくいという効果を奏する。また、フィルム化されておらず、当初の繊維形態を維持しているので、折り曲げ等によって亀裂が入りにくく、袋状物に収納した粉末(特に微粉末)が外部に飛散しにくいという効果を奏する。また、耐水性も有することから、液状物の浸透による染み出しも抑制することができる。   Therefore, when the laminated nonwoven fabric according to the present invention is used to store a powder such as a deodorizing agent or a desiccant to form a bag-like product, there is an effect that the deodorizing performance and the drying performance are not easily lowered. Moreover, since it is not formed into a film and maintains the original fiber form, there is an effect that it is difficult for cracks to be formed by bending or the like, and the powder (particularly fine powder) stored in the bag-like material is difficult to be scattered outside. . Moreover, since it also has water resistance, it can also suppress oozing out due to penetration of a liquid material.

さらに、裏面層の芯鞘型複合長繊維の鞘成分の多くは、芯成分から分離せずに残存しているため、ヒートシール層として有効に機能し、十分な接着力を実現しうるものである。   Furthermore, since many of the sheath components of the core-sheath type composite continuous fiber of the back layer remain without being separated from the core component, they function effectively as a heat seal layer and can realize sufficient adhesive force. is there.

また、表面層の表面は平滑性に優れているため、印刷適性も良好であり、また、滑り性が良いため摩擦抵抗が少なく、毛羽立ちにくいという効果を奏する。  Further, since the surface of the surface layer is excellent in smoothness, printability is also good, and since the slipperiness is good, there is an effect that there is little frictional resistance and fuzziness is difficult.

実施例1
[繊維集積体(裏面層用)の準備]
融点256℃のポリエステルと融点134℃でありMFRが24g/分の高密度ポリエチレンを、複合溶融紡糸装置に導入し、ポリエステルを芯成分とし高密度ポリチレンを鞘成分とする芯鞘型複合長繊維を溶融紡糸すると共に、コンベア上に集積して長繊維ウェブを得た後、エンボス装置に長繊維ウェブを導入し、芯鞘型複合長繊維相互間を部分的に圧接して繊維集積体を、スパンボンド法により得た。なお、芯鞘型複合長繊維の繊維径は3.3dtexであり、芯成分と鞘成分の重量比は1:1であった。また、繊維集積体の目付は20g/m2であった。
Example 1
[Preparation of fiber assembly (for back layer)]
Polyester having a melting point of 256 ° C. and high-density polyethylene having a melting point of 134 ° C. and an MFR of 24 g / min are introduced into a composite melt spinning apparatus, and a core-sheath type composite long fiber having polyester as a core component and high-density polyethylene as a sheath component is introduced. After melt spinning and accumulating on a conveyor to obtain a long fiber web, the long fiber web is introduced into an embossing device, and the core-sheath composite long fibers are partially pressed together to form a fiber aggregate. Obtained by the bond method. The core-sheath composite long fiber had a fiber diameter of 3.3 dtex, and the weight ratio of the core component to the sheath component was 1: 1. Further, the basis weight of the fiber aggregate was 20 g / m 2 .

[繊維集積体(表面層用)の準備]
融点256℃のポリエステルと融点134℃の高密度ポリエチレンを、複合溶融紡糸装置に導入し、ポリエステルを芯成分とし高密度ポリチレンを鞘成分とする芯鞘型複合長繊維を溶融紡糸すると共に、コンベア上に集積して長繊維ウェブを得た後、エンボス装置に長繊維ウェブを導入し、芯鞘型複合長繊維相互間を部分的に圧接して繊維集積体を、スパンボンド法により得た。なお、芯鞘型複合長繊維の繊維径は3.3dtexであり、芯成分と鞘成分の重量比は1:1であった。また、繊維集積体の目付は20g/m2であった。
[Preparation of fiber assembly (for surface layer)]
A polyester having a melting point of 256 ° C. and a high-density polyethylene having a melting point of 134 ° C. are introduced into a composite melt spinning apparatus, and melt-spinned core-sheath type composite continuous fiber having polyester as a core component and high-density polyethylene as a sheath component is After obtaining the long fiber web by being integrated, the long fiber web was introduced into the embossing apparatus, and the core-sheath type composite long fibers were partially pressed together to obtain a fiber aggregate by a spunbond method. The core-sheath composite long fiber had a fiber diameter of 3.3 dtex, and the weight ratio of the core component to the sheath component was 1: 1. Further, the basis weight of the fiber aggregate was 20 g / m 2 .

[繊維集積体(中間層)の準備]
融点163℃のポリプロピレンをメルトブローダイに導入し、ダイ中から加熱空気を吹き付けて極細繊維を形成し、コンベア上に集積して繊維集積体を得た。極細繊維の繊維径は3μmであり、繊維集積体の目付は20g/m2であった。
[Preparation of fiber aggregate (intermediate layer)]
Polypropylene having a melting point of 163 ° C. was introduced into a melt blow die and heated air was blown from the die to form ultrafine fibers, which were collected on a conveyor to obtain a fiber assembly. The fiber diameter of the ultrafine fibers was 3 μm, and the basis weight of the fiber aggregate was 20 g / m 2 .

[3層の積層]
繊維集積体(裏面層用)と繊維集積体(中間層用)を積層した二層積層体を、繊維集積体(裏面層用)が金属製加熱平滑ロール側となるように、弾性非加熱平滑ロールと金属製加熱平滑ロールで挟んで加圧した。金属製加熱平滑ロールの周面温度は140℃とした。
[Three layers]
A two-layer laminate in which a fiber aggregate (for the back layer) and a fiber aggregate (for the intermediate layer) are laminated, elastic non-heated smooth so that the fiber aggregate (for the back layer) is on the metal heating smooth roll side. The pressure was sandwiched between a roll and a metal heated smooth roll. The peripheral surface temperature of the metal heating smooth roll was 140 ° C.

次いで、この二層積層体の繊維集積体(中間層用)側に繊維集積体(表面層用)を積層し、3層積層体を、金属製加熱平滑ロールの周面に当接させて加熱処理を施した。このとき、繊維集積体(表面層)側が金属製加熱平滑ロールに当接するようにして処理した。なお、金属製加熱平滑ロールの周面温度は135℃とした。   Next, a fiber aggregate (for the surface layer) is laminated on the fiber aggregate (for the intermediate layer) side of the two-layer laminate, and the three-layer laminate is heated by contacting the peripheral surface of the metal heating smooth roll. Treated. At this time, it processed so that the fiber aggregate (surface layer) side might contact the metal heating smooth roll. The peripheral surface temperature of the metal heated smooth roll was set to 135 ° C.

次に、三層積層体が当該周面に沿って搬送されると共に加熱され、金属製加熱平滑ロールの周面から離れる直前に、弾性非加熱平滑ロールと金属製加熱平滑ロールの間に挟んで加圧した。 加圧後、搬送すると共に冷却され、巻取ロールに巻き取って積層不織布を得た。なお、この積層不織布は、通気度が4cc/cm2・秒程度、耐水圧が600mmH20、平均孔径が9μm程度であった。 Next, the three-layer laminate is conveyed and heated along the peripheral surface, and is sandwiched between the elastic non-heating smooth roll and the metal heating smooth roll immediately before leaving the peripheral surface of the metal heating smooth roll. Pressurized. After pressurization, the sheet was conveyed and cooled, and wound on a winding roll to obtain a laminated nonwoven fabric. The laminated nonwoven fabric had an air permeability of about 4 cc / cm 2 · sec, a water pressure resistance of 600 mmH 20 , and an average pore diameter of about 9 μm.

実施例2
繊維集積体(中間層)の極細繊維の繊維径を1μmとした他は、実施例1と同一の方法により、積層不織布を得た。なお、この積層不織布は、通気度が2cc/cm2・秒、耐水圧が800mmH2Oであった。
Example 2
A laminated nonwoven fabric was obtained by the same method as in Example 1 except that the fiber diameter of the ultrafine fibers of the fiber assembly (intermediate layer) was 1 μm. The laminated nonwoven fabric had an air permeability of 2 cc / cm 2 · sec and a water pressure resistance of 800 mmH 2 O.

実施例3
繊維集積体(中間層)の目付を30g/m2とした他は、実施例1と同一の方法により、積層不織布を得た。なお、この積層不織布は、通気度が2cc/cm2・秒、耐水圧が800mmH2Oであった。
Example 3
A laminated nonwoven fabric was obtained by the same method as in Example 1 except that the basis weight of the fiber aggregate (intermediate layer) was 30 g / m 2 . The laminated nonwoven fabric had an air permeability of 2 cc / cm 2 · sec and a water pressure resistance of 800 mmH 2 O.

実施例4
融点226℃のポリブチレンテレフタレートをメルトブローダイに導入し、ダイ中から加熱空気を吹き付けて極細繊維を形成し、コンベア上に集積して繊維集積体(中間層用)を得た。極細繊維の繊維径は4μmであり、繊維集積体(中間層用)の目付は20g/m2であった。
実施例1で用いた繊維集積体(中間層)に代えて、上記のポリブチレンテレフタレート極細繊維からなる織維集積体(中間層)を用いる他は、実施例1と同一の方法により、積層不織布を得た。
Example 4
Polybutylene terephthalate having a melting point of 226 ° C. was introduced into a melt blow die and heated air was blown from the die to form ultrafine fibers, which were accumulated on a conveyor to obtain a fiber aggregate (for an intermediate layer). The fiber diameter of the ultrafine fibers was 4 μm, and the basis weight of the fiber aggregate (for the intermediate layer) was 20 g / m 2 .
In place of the fiber assembly (intermediate layer) used in Example 1, a laminated nonwoven fabric was obtained in the same manner as in Example 1, except that the woven fabric assembly (intermediate layer) composed of the above-mentioned polybutylene terephthalate ultrafine fibers was used. Got.

実施例1〜4で得られた積層不織布は、表面層、中間層、裏面層(素材構成は表面層と同じ)の順で積層一体化されたものである中間層を構成している極細繊維は、当初の繊維形態を維持しており、フィルム化されていないため、通気性と耐水圧に富んだ状態が維持されていた。
The laminated nonwoven fabrics obtained in Examples 1 to 4 are laminated and integrated in the order of a surface layer, an intermediate layer, and a back layer (the material configuration is the same as that of the surface layer) . The ultrafine fibers constituting the intermediate layer maintained the original fiber form and were not formed into a film, and thus maintained a state rich in air permeability and water pressure resistance.

図1は、積層不織布の表面層の表面(中間層の反対側に位置する面)側からの電子顕微鏡写真である。表面層を構成している芯鞘型複合長繊維の鞘成分の多くが溶融し、背後の中間層を構成する極細繊維相互間に食い込んでいるのが観察される。図2は、積層不織布の裏面層の表面(中間層の反対側に位置する面)側からの電子顕微鏡写真である。裏面層を構成している芯鞘型複合長繊維は、表面層を構成している第一芯鞘型複合長繊維のように鞘成分の多くが、背後の中間層に食い込んでいないのが観察される。また、図1及び2から、中間層を構成している極細繊維は、当初の繊維形態を維持しており、フィルム化されていないことが観察される。   FIG. 1 is an electron micrograph from the surface (surface located on the opposite side of the intermediate layer) side of the laminated nonwoven fabric. It is observed that most of the sheath component of the core-sheath type composite long fiber constituting the surface layer melts and bites between the ultrafine fibers constituting the back intermediate layer. FIG. 2 is an electron micrograph from the surface of the back layer of the laminated nonwoven fabric (the surface located on the opposite side of the intermediate layer). The core-sheath type composite continuous fiber constituting the back layer is observed that most of the sheath component does not bite into the back intermediate layer like the first core-sheath type composite continuous fiber constituting the surface layer. Is done. Moreover, it is observed from FIGS. 1 and 2 that the ultrafine fibers constituting the intermediate layer maintain the original fiber form and are not formed into a film.

比較例1
融点130℃のポリエチレンをメルトブローダイに導入し、ダイ中から加熱空気を吹き付けて極細繊維を形成し、コンベア上に集積して繊維集積体(中間層用)を得た。極細繊維の繊維径は5μmであり、繊維集積体(中間層用)の目付は30g/m2であった。
Comparative Example 1
Polyethylene having a melting point of 130 ° C. was introduced into a melt blow die, and heated air was blown from the die to form ultrafine fibers, which were collected on a conveyor to obtain a fiber assembly (for an intermediate layer). The fiber diameter of the ultrafine fibers was 5 μm, and the basis weight of the fiber aggregate (for the intermediate layer) was 30 g / m 2 .

実施例1で用いた繊維集積体(中間層用)に代えて、このポリエチレンからなる極細繊維によって構成される織維集積体(中間層用)を用いた他は、実施例1と同様にして繊維積層体を得た。得られた繊維積層体は、表裏面の鞘部が溶けて、かつ中間層の繊維も溶融して繊維形状が残存していなかった。   Instead of the fiber assembly (for the intermediate layer) used in Example 1, a woven fabric assembly (for the intermediate layer) composed of ultrafine fibers made of polyethylene was used in the same manner as in Example 1. A fiber laminate was obtained. In the obtained fiber laminate, the sheath portions on the front and back surfaces were melted, and the fibers in the intermediate layer were also melted so that the fiber shape did not remain.

そこで、2層積層体を得る加熱加圧処理の際の金属製加熱平滑ロールの周面温度を115℃に設定し、3層積層体を得る際の金属加熱平滑ロールの周面温度も115℃に設定し、繊維積層体を得た。得られた繊維積層体を観察すると、それぞれの層間の界面での接着は強固であり、剥離しなかった。中間層の繊維集積体を観察すると、極細繊維は残存せず、溶融または軟化して、表面層と裏面層とを接着する熱接着剤として機能したことが確認された。なお、中間層のポリエチレンの極細繊維は、メルトブロー法に適用するために一般に分子量が低く溶融粘度が低いため、影響を受け易すく、融点以下の加熱条件での熱処理であっても過剰に溶融流動が生じたことによる現象であると推定する。
得られた繊維積層体の通気度は4cc/cm2・秒であり、耐水圧は180mmH2Oであった。また、中間層が熱の影響により繊維形状を維持できず溶融して表裏層内へ流動により入り込んでしまい、極細繊維による細密な構造が破壊されてしまったので、耐水圧が下がったと考えられる。
Therefore, the peripheral surface temperature of the metal heated smooth roll during the heat and pressure treatment for obtaining the two-layer laminate is set to 115 ° C., and the peripheral surface temperature of the metal heated smooth roll for obtaining the three-layer laminate is also 115 ° C. To obtain a fiber laminate. When the obtained fiber laminate was observed, adhesion at the interface between the layers was strong and did not peel off. When observing the fiber aggregate of the intermediate layer, it was confirmed that the ultrafine fibers did not remain and melted or softened to function as a thermal adhesive for bonding the front surface layer and the back surface layer. In addition, the polyethylene ultrafine fibers in the intermediate layer are generally susceptible to being affected by the low molecular weight and low melt viscosity for application to the melt-blowing method. It is presumed that this is due to the phenomenon.
The air permeability of the obtained fiber laminate was 4 cc / cm 2 · sec, and the water pressure resistance was 180 mmH 2 O. In addition, the intermediate layer cannot maintain the fiber shape due to the influence of heat and melts and enters into the front and back layers by flow, and the fine structure due to the ultrafine fibers is destroyed.

本発明の一例に係る積層不織布を表面層の表面(中間層の反対側に位置する面)側から観察した電子顕微鏡写真である。It is the electron micrograph which observed the laminated nonwoven fabric which concerns on an example of this invention from the surface (surface located in the other side of an intermediate | middle layer) side of a surface layer. 本発明の一例に係る積層不織布を裏面層の表面(中間層の反対側に位置する面)側から観察した電子顕微鏡写真である。It is the electron micrograph which observed the laminated nonwoven fabric which concerns on an example of this invention from the surface (surface located in the other side of an intermediate | middle layer) side of a back surface layer.

Claims (7)

表面層と中間層と裏面層とを具備する積層不織布であり、
表面層と裏面層が、鞘成分が高密度ポリエチレンよりなり、芯成分が前記高密度ポリエチレンの融点よりも高い融点を持つポリエステルよりなる芯鞘型複合長繊維の集積体からなり、
中間層が、前記高密度ポリエチレンの融点よりも高い融点を持つポリプロピレン又はポリブチレンテレフタレートよりなる極細繊維の集積体からなり、
前記表面層を構成する芯鞘型複合長繊維の鞘成分である高密度ポリエチレンの多くは溶融し芯成分から分離して前記極細繊維相互間に食い込んで固化し、これによって前記表面層と前記中間層とが貼合されていると共に、前記中間層の反対側に位置する前記表面層の面は比較的平滑になっており、
前記裏面層を構成する芯鞘型複合長繊維の鞘成分である高密度ポリエチレンの多くは芯成分から分離せず軟化又は溶融して固化し、前記裏面層と前記中間層とが貼合されていると共に、前記中間層の反対側に位置する前記裏面層の面に前記裏面層を構成する芯鞘型複合長繊維の鞘成分である高密度ポリエチレンが露出していることにより、前記裏面層がヒートシール層として機能しうることを特徴とする積層不織布。
A laminated nonwoven fabric comprising a surface layer, an intermediate layer, and a back layer;
The front surface layer and the back surface layer are composed of an assembly of core-sheath composite long fibers composed of polyester having a sheath component made of high-density polyethylene and a core component having a melting point higher than the melting point of the high-density polyethylene,
The intermediate layer is composed of an assembly of ultrafine fibers made of polypropylene or polybutylene terephthalate having a melting point higher than that of the high-density polyethylene,
Most of the high-density polyethylene that is the sheath component of the core-sheath type composite continuous fiber constituting the surface layer is melted and separated from the core component, and bites between the ultrafine fibers to be solidified, whereby the surface layer and the intermediate layer are solidified. And the surface of the surface layer located on the opposite side of the intermediate layer is relatively smooth,
Most of the high-density polyethylene that is the sheath component of the core-sheath composite long fiber constituting the back layer is softened or melted and solidified without being separated from the core component, and the back layer and the intermediate layer are bonded together. And the high-density polyethylene that is the sheath component of the core-sheath-type composite continuous fiber constituting the back surface layer is exposed on the surface of the back surface layer that is located on the opposite side of the intermediate layer. A laminated nonwoven fabric, which can function as a heat seal layer.
表面層及び裏面層を構成する芯鞘型複合長繊維の鞘成分である高密度ポリエチレンの融点は120℃〜140℃であり、芯成分であるポリエステルの融点250℃〜260℃であり、極細繊維を構成するポリプロピレンの融点は150℃〜170℃であり、また極細繊維を構成するポリブチレンテレフタレートの融点は220℃〜240℃である請求項1記載の積層不織布。 The melting point of the high-density polyethylene, which is the sheath component of the core-sheath type composite long fiber constituting the surface layer and the back layer, is 120 ° C. to 140 ° C., and the melting point of the core component polyester is 250 ° C. to 260 ° C. 2. The laminated nonwoven fabric according to claim 1, wherein the melting point of the polypropylene constituting the fiber is 150 ° C. to 170 ° C., and the melting point of the polybutylene terephthalate constituting the ultrafine fiber is 220 ° C. to 240 ° C. 2. 耐水圧が400mmHO以上であることを特徴する請求項1〜2のいずれかに記載の積層不織布。 The laminated nonwoven fabric according to claim 1, wherein the water pressure resistance is 400 mmH 2 O or more. 通気度が1cc/cm・秒以上であることを特徴する請求項1〜3のいずれかに記載の積層不織布。 The laminated nonwoven fabric according to any one of claims 1 to 3, wherein the air permeability is 1 cc / cm 2 · sec or more. 平均孔径が1〜20μmであることを特徴とする請求項1〜4のいずれかに記載の積層不織布。 The laminated nonwoven fabric according to any one of claims 1 to 4, wherein an average pore diameter is 1 to 20 µm. 請求項1〜5記載の積層不織布の裏面層同士を重ね合わせ、ヒートシールによって接合されてなる袋状物。 A bag-like product formed by stacking the back layers of the laminated nonwoven fabric according to claim 1 and joining them by heat sealing. 吸湿性微粉末が収納されてなる請求項6記載の袋状物。 The bag-like product according to claim 6, wherein hygroscopic fine powder is stored.
JP2012272466A 2012-12-13 2012-12-13 Laminated nonwoven fabric Active JP6114022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012272466A JP6114022B2 (en) 2012-12-13 2012-12-13 Laminated nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012272466A JP6114022B2 (en) 2012-12-13 2012-12-13 Laminated nonwoven fabric

Publications (2)

Publication Number Publication Date
JP2014118641A JP2014118641A (en) 2014-06-30
JP6114022B2 true JP6114022B2 (en) 2017-04-12

Family

ID=51173731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012272466A Active JP6114022B2 (en) 2012-12-13 2012-12-13 Laminated nonwoven fabric

Country Status (1)

Country Link
JP (1) JP6114022B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6195776B2 (en) * 2013-10-22 2017-09-13 ユニチカ株式会社 Method for producing three-layer laminated nonwoven fabric
CN105437630A (en) * 2015-12-31 2016-03-30 常熟市金陵无纺布有限公司 Novel non-woven fabric composite cushion and preparation method thereof
TWI778006B (en) * 2017-01-16 2022-09-21 日商巴川製紙所股份有限公司 Self-heating sheet-like material for absorbing and desorbing moisture, moisture absorbing and desorbing body, and moisture absorbing and desorbing device using the same
JP2018192764A (en) * 2017-05-22 2018-12-06 ユニチカ株式会社 Laminate structure

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3405669A1 (en) * 1984-02-17 1985-08-22 Fa. Carl Freudenberg, 6940 Weinheim FILLED FABRIC AND METHOD FOR THE PRODUCTION THEREOF
JPH08216310A (en) * 1995-02-17 1996-08-27 Nippon Kyushutai Gijutsu Kenkyusho:Kk Porous welded composite material sheet and its production
JP2004043985A (en) * 2002-07-09 2004-02-12 Yuuhou:Kk Method for producing nonwoven fabric and sheetlike forming material
JP4627397B2 (en) * 2002-09-09 2011-02-09 旭化成せんい株式会社 Nonwoven fabric and extraction pack for filters
US7008888B2 (en) * 2003-07-24 2006-03-07 E. I. Du Pont De Nemours And Company Multiple component spunbond web
JP5030427B2 (en) * 2006-01-25 2012-09-19 旭化成せんい株式会社 Bag
JP4972342B2 (en) * 2006-05-16 2012-07-11 旭化成せんい株式会社 Hygroscopic sheet
JP5260391B2 (en) * 2009-04-06 2013-08-14 旭化成せんい株式会社 Functional sheet

Also Published As

Publication number Publication date
JP2014118641A (en) 2014-06-30

Similar Documents

Publication Publication Date Title
JP6114022B2 (en) Laminated nonwoven fabric
JP6560095B2 (en) Laminated nonwoven fabric and method for producing the same
JP6195776B2 (en) Method for producing three-layer laminated nonwoven fabric
FR2529235A1 (en) IMPERMEABLE AND ABSORBENT DAM ETOFFER COMPRISING FIBERS AND FIBROUS NAPPES AND METHOD FOR MANUFACTURING THE SAME
JP2014114521A (en) Method for manufacturing nonwoven fabric substrate for air filter or mask
JP2010523428A5 (en)
JP5888812B2 (en) Laminated nonwoven fabric
JP2004154760A (en) Nonwoven fabric for filter and extraction pack
JP4748838B2 (en) Thermal adhesive composite sheet
JP2018192764A (en) Laminate structure
JP4972342B2 (en) Hygroscopic sheet
JP5030427B2 (en) Bag
EP2584081B1 (en) Self-adhesive fiber mat
JP5068938B2 (en) Breathable laminated sheet
KR101902522B1 (en) Hybrid nonwovens composed of polypropylene long-fiber nonwoven layer and polyethylene long-fiber nonwoven layer and method for producing the same
JP2006291421A (en) Nonwoven fabric for bag for recovering feather
JP5053325B2 (en) Method for producing nonwoven fabric for disposable warmer
JP6867019B2 (en) Manufacturing method of air permeable tarpaulin
JP4756933B2 (en) Thick adhesive product with excellent adhesiveness and manufacturing method thereof
JP3474044B2 (en) Laminate
JP4521718B2 (en) Composite airlaid sheet for food extraction
JP5221165B2 (en) Packaging materials
JP3190510U (en) Composite sheet
JP4999906B2 (en) Laminated paper
JP4426072B2 (en) Laminated body for filling and packaging and bag-like material comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170316

R150 Certificate of patent or registration of utility model

Ref document number: 6114022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150