JP5885831B2 - 機械に実装される、テストランの間に非線形ダイナミック実システムからデータを取得する方法 - Google Patents
機械に実装される、テストランの間に非線形ダイナミック実システムからデータを取得する方法 Download PDFInfo
- Publication number
- JP5885831B2 JP5885831B2 JP2014513175A JP2014513175A JP5885831B2 JP 5885831 B2 JP5885831 B2 JP 5885831B2 JP 2014513175 A JP2014513175 A JP 2014513175A JP 2014513175 A JP2014513175 A JP 2014513175A JP 5885831 B2 JP5885831 B2 JP 5885831B2
- Authority
- JP
- Japan
- Prior art keywords
- model
- dynamic
- excitation signal
- output
- sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 47
- 238000012360 testing method Methods 0.000 title claims description 25
- 238000005312 nonlinear dynamic Methods 0.000 title claims description 12
- 238000013461 design Methods 0.000 claims description 45
- 230000005284 excitation Effects 0.000 claims description 36
- 239000011159 matrix material Substances 0.000 claims description 35
- 230000008569 process Effects 0.000 claims description 9
- 238000005259 measurement Methods 0.000 claims description 7
- 238000013459 approach Methods 0.000 claims description 4
- 108010076504 Protein Sorting Signals Proteins 0.000 claims 4
- 238000005457 optimization Methods 0.000 description 17
- 230000006870 function Effects 0.000 description 12
- 230000035945 sensitivity Effects 0.000 description 9
- 238000004364 calculation method Methods 0.000 description 8
- 238000013528 artificial neural network Methods 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 4
- 238000004422 calculation algorithm Methods 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000012897 Levenberg–Marquardt algorithm Methods 0.000 description 1
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000013401 experimental design Methods 0.000 description 1
- 238000011478 gradient descent method Methods 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 230000008450 motivation Effects 0.000 description 1
- 230000008654 plant damage Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- URWAJWIAIPFPJE-YFMIWBNJSA-N sisomycin Chemical compound O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H](CC=C(CN)O2)N)[C@@H](N)C[C@H]1N URWAJWIAIPFPJE-YFMIWBNJSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M17/00—Testing of vehicles
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M15/00—Testing of engines
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0218—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
- G05B23/0256—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults injecting test signals and analyzing monitored process response, e.g. injecting the test signal while interrupting the normal operation of the monitored system; superimposing the test signal onto a control signal during normal operation of the monitored system
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computing arrangements based on specific mathematical models
- G06N7/08—Computing arrangements based on specific mathematical models using chaos models or non-linear system models
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D45/00—Electrical control not provided for in groups F02D41/00 - F02D43/00
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Software Systems (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Data Mining & Analysis (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Algebra (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Nonlinear Science (AREA)
- Molecular Biology (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Feedback Control In General (AREA)
- Testing And Monitoring For Control Systems (AREA)
Description
付記(ii):回帰ベクトルφ(l,θ)に関する出力ウェイトの感度ベクトルΦω(l)パラメータの微分は、次の通り与えられる。
入力の制約:例えば、k回目の観測における入力が[umin,umax]によって定義される許容範囲を逸脱すると仮定し、その場合、次の制約が有効となる。
Claims (7)
- 機械に実装される、テストランの間に非線形ダイナミック実システムからデータを取得する方法であって、このテストラン用の事前に作り出された試験設計により、少なくとも一つの測定チャネルのためのダイナミック励起信号のシーケンスを生成する工程と、少なくとも一つの出力チャネルのシステム出力を測定する工程とを有する方法において、
ダイナミック励起信号のシーケンスを用いて試験設計を作り出して、そのダイナミック励起信号のシーケンスを実システムのモデルに供給することにより出力データを取得する方法によって、このダイナミック励起信号のシーケンスが生成され、このモデルが、非線形ダイナミックモデルで構成されて、完成した試験設計シーケンスの情報内容に関する基準を決定する工程と、ダイナミック励起信号のシーケンス全体を変更する工程、この変更したダイナミック励起信号のシーケンスを実システムのモデルに供給することにより、新しい出力データを取得する工程及び前記の情報内容に関する基準を再び決定する工程から成る次の工程と、前記の基準が最適値に到達するまで、実システムのテストラン用の試験設計として、最後に作り出されたダイナミック励起信号のシーケンスを使用して、前記の次の工程を反復して繰り返す工程とを有することを特徴とする方法。 - 各工程の間に、ダイナミック励起信号及び/又はモデル出力データが所定の制約を遵守しているかを調べ、それによって、遵守していない場合に、遵守するようにすると同時に、当該の基準が最適値に近付くように、ダイナミック励起信号のシーケンスを修正することを特徴とする請求項1に記載の方法。
- 各反復後に、ダイナミック励起信号に関する基準の微分を決定して、その微分が所定の値を下回るか、或いは所定の回数の反復に到達したら、反復を停止することを特徴とする請求項1又は2に記載の方法。
- 当該の基準がフィッシャー情報行列から決定されることを特徴とする請求項1から3までのいずれか一つに記載の方法。
- 当該の基準がフィッシャー情報行列から、その行列の逆行列のトレースの計算とその行列式又は最小固有値の計算によって決定されることを特徴とする請求項4に記載の方法。
- 当該の出力データが、非線形ダイナミックモデルアーキテクチャとして多層パーセプトロンネットワーク(MLP)を用いたモデルにより決定されることを特徴とする請求項1から5までのいずれか一つに記載の方法。
- 当該の出力データが、非線形ダイナミックモデルアーキテクチャとしてローカルモデルネットワーク(LMN)又は高木・菅野ファジーモデルを用いたモデルにより決定されることを特徴とする請求項1から6までのいずれか一つに記載の方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ATA0804/2011 | 2011-05-31 | ||
ATA804/2011A AT511577B1 (de) | 2011-05-31 | 2011-05-31 | Maschinell umgesetztes verfahren zum erhalten von daten aus einem nicht linearen dynamischen echtsystem während eines testlaufs |
PCT/EP2012/060156 WO2012163972A1 (en) | 2011-05-31 | 2012-05-30 | Machine-implemented method for obtaining data from a nonlinear dynamic real system during a test run |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014519118A JP2014519118A (ja) | 2014-08-07 |
JP5885831B2 true JP5885831B2 (ja) | 2016-03-16 |
Family
ID=46208009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014513175A Active JP5885831B2 (ja) | 2011-05-31 | 2012-05-30 | 機械に実装される、テストランの間に非線形ダイナミック実システムからデータを取得する方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9404833B2 (ja) |
EP (1) | EP2715459B1 (ja) |
JP (1) | JP5885831B2 (ja) |
AT (1) | AT511577B1 (ja) |
WO (1) | WO2012163972A1 (ja) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012005197B3 (de) * | 2012-03-16 | 2013-06-13 | Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr | Verfahren zur Optimierung einer Brennkraftmaschine |
AT512003A3 (de) * | 2013-01-23 | 2014-05-15 | Avl List Gmbh | Verfahren zur Ermittlung eines regelungstechnischen Beobachters für den SoC |
AT512251B1 (de) * | 2013-02-28 | 2014-08-15 | Avl List Gmbh | Verfahren zum Entwerfen eines nichtlinearen Reglers für nichtlineare Prozesse |
AT512977B1 (de) * | 2013-05-22 | 2014-12-15 | Avl List Gmbh | Methode zur Ermittlung eines Modells einer Ausgangsgröße eines technischen Systems |
DE102015207252A1 (de) * | 2015-04-21 | 2016-10-27 | Avl List Gmbh | Verfahren und Vorrichtung zur modellbasierten Optimierung einer technischen Einrichtung |
US10768586B2 (en) * | 2015-06-05 | 2020-09-08 | Shell Oil Company | System and method for background element switching for models in model predictive estimation and control applications |
AT517251A2 (de) * | 2015-06-10 | 2016-12-15 | Avl List Gmbh | Verfahren zur Erstellung von Kennfeldern |
DE102015223974A1 (de) * | 2015-12-02 | 2017-06-08 | Robert Bosch Gmbh | Verfahren und Vorrichtung zur Beeinflussung eines Fahrzeugverhaltens |
DE102016120052A1 (de) | 2016-10-20 | 2018-04-26 | Technische Universität Darmstadt | Verfahren zur Ermittlung von Stützpunkten eines Versuchsplans |
US10635813B2 (en) | 2017-10-06 | 2020-04-28 | Sophos Limited | Methods and apparatus for using machine learning on multiple file fragments to identify malware |
CN107942662B (zh) * | 2017-11-16 | 2019-04-05 | 四川大学 | 有限时间状态反馈控制器设计方法及装置 |
US11003774B2 (en) | 2018-01-26 | 2021-05-11 | Sophos Limited | Methods and apparatus for detection of malicious documents using machine learning |
US11941491B2 (en) | 2018-01-31 | 2024-03-26 | Sophos Limited | Methods and apparatus for identifying an impact of a portion of a file on machine learning classification of malicious content |
US11270205B2 (en) | 2018-02-28 | 2022-03-08 | Sophos Limited | Methods and apparatus for identifying the shared importance of multiple nodes within a machine learning model for multiple tasks |
US20190302707A1 (en) * | 2018-03-28 | 2019-10-03 | Mitsubishi Electric Research Laboratories, Inc. | Anomaly Detection in Manufacturing Systems Using Structured Neural Networks |
US11947668B2 (en) | 2018-10-12 | 2024-04-02 | Sophos Limited | Methods and apparatus for preserving information between layers within a neural network |
US11574052B2 (en) | 2019-01-31 | 2023-02-07 | Sophos Limited | Methods and apparatus for using machine learning to detect potentially malicious obfuscated scripts |
CN110554683B (zh) * | 2019-09-09 | 2020-12-18 | 北京航天自动控制研究所 | 一种周期性控制过程中多模态自适应动态激励添加方法 |
US11556568B2 (en) | 2020-01-29 | 2023-01-17 | Optum Services (Ireland) Limited | Apparatuses, methods, and computer program products for data perspective generation and visualization |
CN113267998B (zh) * | 2021-03-19 | 2024-02-02 | 北京航空航天大学 | 一种用于原子陀螺温控系统的高精度建模和控制方法 |
US12010129B2 (en) | 2021-04-23 | 2024-06-11 | Sophos Limited | Methods and apparatus for using machine learning to classify malicious infrastructure |
CN115929285A (zh) * | 2022-11-11 | 2023-04-07 | 西南石油大学 | 一种基于拉格朗日支持向量机算法的地温梯度预测方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005522778A (ja) * | 2002-04-10 | 2005-07-28 | ケンドロ ラボラトリー プロダクツ,リミテッドパートナーシップ | データ中心の自動化 |
US8065022B2 (en) | 2005-09-06 | 2011-11-22 | General Electric Company | Methods and systems for neural network modeling of turbine components |
JP4764362B2 (ja) * | 2007-02-15 | 2011-08-31 | 日本放送協会 | イベント判別装置及びイベント判別プログラム |
JP5085175B2 (ja) * | 2007-03-30 | 2012-11-28 | 公益財団法人鉄道総合技術研究所 | 鉄道車両用懸架装置の動特性推定方法 |
US8024610B2 (en) * | 2007-05-24 | 2011-09-20 | Palo Alto Research Center Incorporated | Diagnosing intermittent faults |
JP2010086405A (ja) * | 2008-10-01 | 2010-04-15 | Fuji Heavy Ind Ltd | 制御パラメータの適合化システム |
JP5405252B2 (ja) | 2009-09-18 | 2014-02-05 | 本田技研工業株式会社 | 学習制御システム及び学習制御方法 |
-
2011
- 2011-05-31 AT ATA804/2011A patent/AT511577B1/de active
-
2012
- 2012-05-30 JP JP2014513175A patent/JP5885831B2/ja active Active
- 2012-05-30 WO PCT/EP2012/060156 patent/WO2012163972A1/en active Application Filing
- 2012-05-30 EP EP12725374.8A patent/EP2715459B1/en active Active
- 2012-05-30 US US14/111,092 patent/US9404833B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US20140067197A1 (en) | 2014-03-06 |
JP2014519118A (ja) | 2014-08-07 |
EP2715459B1 (en) | 2015-08-19 |
US9404833B2 (en) | 2016-08-02 |
AT511577A3 (de) | 2014-12-15 |
AT511577A2 (de) | 2012-12-15 |
AT511577B1 (de) | 2015-05-15 |
EP2715459A1 (en) | 2014-04-09 |
WO2012163972A1 (en) | 2012-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5885831B2 (ja) | 機械に実装される、テストランの間に非線形ダイナミック実システムからデータを取得する方法 | |
US11675319B2 (en) | Empirical modeling with globally enforced general constraints | |
Lopez-Martin et al. | Software development effort prediction of industrial projects applying a general regression neural network | |
CN110471276B (zh) | 用于为物理系统创建模型函数的装置 | |
CN106971077B (zh) | 一种基于时间片段参数辨识的动态仿真模型验证方法 | |
Gutjahr et al. | Advanced modeling and optimization for virtual calibration of internal combustion engines | |
Ravi et al. | Data-driven modeling of multiaxial fatigue in frequency domain | |
Hametner et al. | Nonlinear identification with local model networks using GTLS techniques and equality constraints | |
Zheng et al. | Primary–auxiliary model scheduling based estimation of the vertical wheel force in a full vehicle system | |
Zeng et al. | Machine learning enabled fusion of CAE data and test data for vehicle crashworthiness performance evaluation by analysis | |
CN114383648A (zh) | 一种温度仪表故障诊断方法及装置 | |
Giri et al. | Neural network-based prediction of productivity parameters | |
Andolfatto et al. | On neural networks’ ability to approximate geometrical variation propagation in assembly | |
Li et al. | A comprehensive framework for model validation and reliability assessment of container crane structures | |
Malmström et al. | Asymptotic prediction error variance for feedforward neural networks | |
Abdullah et al. | Comparison of non-linear time series models (Beta-t-EGARCH and NARMAX models) with Radial Basis Function Neural Network using Real Data | |
KR101151013B1 (ko) | 타이어 성능 평가 방법 | |
Kovacs et al. | A metamodel-based adaptive sampling approach for efficient failure region characterization of integrated circuits | |
Stadlbauer et al. | Analytic model based design of experiments for nonlinear dynamic systems with constraints | |
Babak et al. | Models and Measures for Standardless Measurements of the Composite Materials Characteristics | |
Pozevalkin et al. | Approximation of machine tool experimental thermal characteristics by neural network | |
Stadlbauer et al. | Analytic multilayer perceptron based experiment design for nonlinear systems | |
Wang et al. | Robustness quantification of recurrent neural network using unscented transform | |
Potyupkin | Technical Inspection of Complex Objects Using Information Redundancy | |
Brünnhäußer et al. | Geometric Design Process Automation with Artificial Intelligence |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140813 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141110 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150513 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150807 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160127 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160209 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5885831 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |