JP5881317B2 - Process for producing unsaturated quaternary ammonium salt compound, and antistatic agent and antistatic composition comprising the same - Google Patents

Process for producing unsaturated quaternary ammonium salt compound, and antistatic agent and antistatic composition comprising the same Download PDF

Info

Publication number
JP5881317B2
JP5881317B2 JP2011131756A JP2011131756A JP5881317B2 JP 5881317 B2 JP5881317 B2 JP 5881317B2 JP 2011131756 A JP2011131756 A JP 2011131756A JP 2011131756 A JP2011131756 A JP 2011131756A JP 5881317 B2 JP5881317 B2 JP 5881317B2
Authority
JP
Japan
Prior art keywords
ammonium salt
quaternary ammonium
unsaturated quaternary
dry
antistatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011131756A
Other languages
Japanese (ja)
Other versions
JP2013001654A (en
Inventor
明理 平田
明理 平田
繭 工藤
繭 工藤
美希 竹之内
美希 竹之内
岩峰 平田
岩峰 平田
学士 丸山
学士 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KJ Chemicals Corp
Original Assignee
KJ Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KJ Chemicals Corp filed Critical KJ Chemicals Corp
Priority to JP2011131756A priority Critical patent/JP5881317B2/en
Publication of JP2013001654A publication Critical patent/JP2013001654A/en
Application granted granted Critical
Publication of JP5881317B2 publication Critical patent/JP5881317B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は塩素イオンフリー且つ金属イオンフリーで、高品質な不飽和第4級アンモニウム塩化合物の製造方法、及び、当該不飽和第4級アンモニウム塩化合物からなる帯電防止剤、及び当該帯電防止剤を含有する帯電防止性樹脂組成物に関する。 The present invention relates to a method for producing a high-quality unsaturated quaternary ammonium salt compound free of chlorine ions and metal ions, an antistatic agent comprising the unsaturated quaternary ammonium salt compound, and the antistatic agent. The present invention relates to an antistatic resin composition to be contained.

第4級アンモニウム塩は優れた帯電防止性能を有するため、樹脂用帯電防止剤として従来から知られている(特許文献1、2)。特に近年、樹脂表面にブリードアウトし難く、持続的に帯電防止効果を維持できる高分子型の第4級アンモニウム塩が多く報告された(特許文献3)。 Since quaternary ammonium salts have excellent antistatic performance, they have been conventionally known as antistatic agents for resins (Patent Documents 1 and 2). In particular, in recent years, many polymer-type quaternary ammonium salts that are difficult to bleed out on the resin surface and can maintain the antistatic effect continuously have been reported (Patent Document 3).

カチオン性不飽和第4級アンモニウム塩が高分子型帯電防止組成物のベースモノマーとして使用することが知られている。しかし、多くの不飽和アンモニウム塩は親水性が高いため、製造上の関係により、通常水溶液の状態で流通している。例えば、不飽和第3級アミンであるN,N−ジメチルアミノエチルアクリレートを用い、水とアプロティックな有機溶媒からなる混合溶媒存在下で、4級化剤としてメチルクロライドを加えて4級化反応を行う方法(特許文献4)、N,N−ジメチルアミノエチルアクリレートとベンジルクロライドをアセトン中で4級化反応させた後、水を添加して、アセトンを減圧除去する方法(特許文献5)がよく使われている。当然ながら、この方法により得られるカチオン性第4級アンモニウム塩モノマーは通常水溶液タイプであるため、塗膜時の乾燥性が悪く、また、汎用樹脂、多官能アクリルモノマー、オリゴマー、有機溶媒などとの相溶性が乏しく、均一に分散できず、有効な帯電防止性が発現できないという問題点があった。仮に第4級アンモニウム塩モノマーを高純度に精製し、極性有機溶媒に溶解させたとしても、これらのモノマー自身の親水性が高いために、有機溶媒を除去して使用する際に樹脂中の他成分に対する溶解性が低く、樹脂中で凝縮するか樹脂から析出し、連続した帯電防止膜を形成できず、目標とする帯電防止性能を達成できない場合があった。 It is known that cationic unsaturated quaternary ammonium salts are used as base monomers for polymeric antistatic compositions. However, since many unsaturated ammonium salts have high hydrophilicity, they are usually distributed in the form of an aqueous solution due to the manufacturing relationship. For example, N, N-dimethylaminoethyl acrylate, which is an unsaturated tertiary amine, is used in the presence of a mixed solvent consisting of water and an aprotic organic solvent, and methyl chloride is added as a quaternizing agent to form a quaternization reaction. (Patent Document 4), N, N-dimethylaminoethyl acrylate and benzyl chloride are subjected to a quaternization reaction in acetone, water is added, and acetone is removed under reduced pressure (Patent Document 5). It is often used. Of course, since the cationic quaternary ammonium salt monomer obtained by this method is usually an aqueous solution type, the drying property at the time of coating is poor, and it is also possible to use general-purpose resins, polyfunctional acrylic monomers, oligomers, organic solvents, etc. There is a problem in that the compatibility is poor, it cannot be uniformly dispersed, and effective antistatic properties cannot be exhibited. Even if the quaternary ammonium salt monomer is purified to a high purity and dissolved in a polar organic solvent, the hydrophilicity of these monomers themselves is high. In some cases, the solubility in the component is low, and it is condensed in the resin or deposited from the resin, so that a continuous antistatic film cannot be formed, and the target antistatic performance cannot be achieved.

そこで、樹脂、有機溶媒との相溶性を改良しようとする種々の試みも行われてきた。例えば、アクリレート系第4級アンモニウムモノマーと他の重合可能なビニルモノマーを共重合して使用する方法が報告されている(特許文献6、7)。しかし、これらの方法では、帯電防止組成物中のカチオン性ビニルモノマーの含有量が低下するため、目標とする帯電防止性能を得るためには、この共重合体を多量に添加する必要があり、その結果、樹脂の各種特性が低下するとともに、樹脂組成物の価格が高くなってしまうという問題点があった。 Accordingly, various attempts have been made to improve the compatibility with resins and organic solvents. For example, a method of copolymerizing and using an acrylate quaternary ammonium monomer and another polymerizable vinyl monomer has been reported (Patent Documents 6 and 7). However, in these methods, since the content of the cationic vinyl monomer in the antistatic composition decreases, in order to obtain the target antistatic performance, it is necessary to add a large amount of this copolymer, As a result, there are problems that various properties of the resin are lowered and the price of the resin composition is increased.

また、第4級アンモニウム塩モノマー自身の相溶性向上の目的で、例えば、弱配位性アニオンとしてビス(トリフルオロメタンスルホニル)イミド等のアニオンを有する重合性化合物が提案された(特許文献8、9、10)。また、透明性及び樹脂、溶剤への溶解性を持たせるため、チオシアナートイオンをアニオンとするアンモ二ウム塩が提案された(特許文献11、12、13)。しかし、
これらの提案のアンモニウム塩は全てアンモニウムのクロリド塩又はブロミド塩を原料とする既知の方法である金属塩反応法で合成されている。即ち、水溶液中で、第4級アンモニウムのクロリド塩又はブロミド塩とビス(トリフルオロメタンスルホニル)イミドのアルカリ金属塩、チオシアン酸の金属塩とのアニオン交換反応を行い、目的生成物を酢酸エチルなどの有機溶媒により抽出、分離する方法である。この方法では、アニオンとして塩素又は臭素イオン、同時にカチオンとしてナトリウム、カリウム、リチウム、カルシウムなどのアルカリ金属イオンやアルカリ土類金属イオンの生成物へ混入は回避できない。塩素又は臭素イオンの残存による環境負荷が高く、金属へ腐食性が懸念され、特に電子材料として使用される場合、電子製品の機能低下、故障の原因になる可能性がある。一方、金属イオンが残存すると、空気中の二酸化炭素を吸収しやくなり、同様に金属への腐食が促進され、電子材料として使用できない場合がある。
For the purpose of improving the compatibility of the quaternary ammonium salt monomer itself, for example, a polymerizable compound having an anion such as bis (trifluoromethanesulfonyl) imide as a weakly coordinating anion has been proposed (Patent Documents 8 and 9). 10). In order to provide transparency and solubility in resins and solvents, ammonium salts using thiocyanate ions as anions have been proposed (Patent Documents 11, 12, and 13). But,
All of these proposed ammonium salts are synthesized by a metal salt reaction method, which is a known method using an ammonium chloride salt or bromide salt as a raw material. That is, an anion exchange reaction between a quaternary ammonium chloride salt or bromide salt and an alkali metal salt of bis (trifluoromethanesulfonyl) imide or a metal salt of thiocyanic acid is carried out in an aqueous solution, and the target product is converted to ethyl acetate or the like. This is a method of extraction and separation with an organic solvent. In this method, it is unavoidable to mix chlorine or bromine ions as anions and products of alkali metal ions or alkaline earth metal ions such as sodium, potassium, lithium and calcium as cations. Environmental impact due to residual chlorine or bromine ions is high, and there is a concern about corrosiveness to metals. In particular, when used as an electronic material, there is a possibility that the function of electronic products may be reduced and a failure may occur. On the other hand, when the metal ions remain, it becomes easy to absorb carbon dioxide in the air, and similarly, corrosion to the metal is promoted, so that it may not be used as an electronic material.

一方、トリフルオロメタンスルホニル基をアニオンとして導入した第4級アンモニウム塩モノマーの報告もあった(特許文献14、15)。特許文献14では、原料としてメタクリル酸アミノエチル塩酸塩を使用し、ポジ型レジスト組成物の一構成モノマーとしてメタクリロイルオキシエチルトリメチルアンモニウムトリフルオロメタンスルホナートを合成した。また、特許文献15では、原料としてN,N−ジメチルアミノエチルメタクリレートとトリフルオロメタンスルホン酸メチルを用いて、溶媒としてジクロロメタン中で反応を行い、コンタクトレンズ用架橋コポリマーの構成モノマーを合成した。ところが、これらの特許文献において、第4級アンモニウム塩モノマー、該モノマーを構成成分とするオリゴマー、ポリマーの帯電防止効果についての記載はなかった。仮に、特許文献14、15の記載合成方法でアニオンとしてトリフルオロメタンスルホニル基を有する不飽和第4級アンモニウム塩化合物を取得できても、塩素系の原料又は溶媒を使用するため、目的生成物の第4級アンモニウム塩モノマー中の塩素残存は回避できず、環境負荷の増加、金属への腐食性、電子製品の機能低下等の問題点が依然として解決できていない。 On the other hand, there was a report of a quaternary ammonium salt monomer in which a trifluoromethanesulfonyl group was introduced as an anion (Patent Documents 14 and 15). In Patent Document 14, aminoethyl methacrylate hydrochloride was used as a raw material, and methacryloyloxyethyltrimethylammonium trifluoromethanesulfonate was synthesized as a constituent monomer of a positive resist composition. In Patent Document 15, N, N-dimethylaminoethyl methacrylate and methyl trifluoromethanesulfonate are used as raw materials and the reaction is carried out in dichloromethane as a solvent to synthesize a constituent monomer of a cross-linked copolymer for contact lenses. However, in these patent documents, there is no description about the antistatic effect of a quaternary ammonium salt monomer, an oligomer containing the monomer as a constituent, or a polymer. Even if an unsaturated quaternary ammonium salt compound having a trifluoromethanesulfonyl group as an anion can be obtained by the synthesis methods described in Patent Documents 14 and 15, since a chlorine-based raw material or solvent is used, Residual chlorine in the quaternary ammonium salt monomer cannot be avoided, and problems such as increased environmental load, corrosiveness to metals, and reduced functionality of electronic products have not been solved.

特開2008−231240号公報JP 2008-231240 A 特開2008−13636号公報JP 2008-13636 A 特開2008−231196号公報JP 2008-231196 A 特開昭63−201151号公報Japanese Patent Laid-Open No. 63-201115 特開平07−267906号公報JP 07-267906 A 特開平07−150130号公報Japanese Patent Laid-Open No. 07-150130 特開2007−51241号公報JP 2007-51241 A 特開2007−9042号公報JP 2007-9042 A 特開2005−255843号公報JP 2005-255843 A 特開2006−45425号公報JP 2006-45425 A 特開2009−13295号公報JP 2009-13295 A 特開2009−197074号公報JP 2009-197074 A 特開2009−179671号公報JP 2009-179671 A 特開2007−93778号公報JP 2007-93778 A 特開平09−20814号公報JP 09-20814 A

以上述べたように、アンモニウムカチオンとトリフルオロメタンスルホナートアニオンから構成される、塩素イオンフリー且つ金属イオンフリーで、高品質な不飽和第4級アンモニウム塩化合物を高収率で工業的に製造する方法は従来知られていない。また、汎用アクリルモノマー、有機溶剤や樹脂との相溶性が良好で、活性エネルギー線又は熱により重合性が高く、高透明性と高耐湿性を有し、各種電気化学デバイスにも好適に用いられ、持続的に優れる帯電防止効果を有する帯電防止剤用の安価な、塩素イオンフリー且つ金属塩フリー、及び有機溶媒を含まず、高品質な不飽和第4級アンモニウム塩化合物、当該不飽和第4級アンモニウム塩化合物からなる帯電防止剤及び当該帯電防止剤を含有する帯電防止性樹脂組成物は未だに簡便に得られていない。
As described above, a method for industrially producing a high-quality unsaturated quaternary ammonium salt compound which is composed of an ammonium cation and a trifluoromethanesulfonate anion and is free of chloride ions and metal ions and which is high quality. Is not known in the past. Also, it has good compatibility with general-purpose acrylic monomers, organic solvents and resins, is highly polymerizable by active energy rays or heat, has high transparency and high moisture resistance, and is also suitable for various electrochemical devices. An inexpensive anti-static agent having an excellent antistatic effect, free of chloride ions and metal salts, and free of organic solvents, and of a high quality unsaturated quaternary ammonium salt compound, An antistatic agent composed of a quaternary ammonium salt compound and an antistatic resin composition containing the antistatic agent have not yet been easily obtained.

本発明の第一目的は、塩素イオンフリー且つ金属イオンフリーで、活性エネルギー線又は熱により重合性が高く、高品質な不飽和第4級アンモニウム塩化合物の効率的、且つ経済的な製造方法を提供することにある。
本発明の第二目的は、当該不飽和第4級アンモニウム塩化合物を構成成分とする、汎用アクリルモノマー、有機溶剤や樹脂との相溶性が良好で、他の帯電防止剤組成物に均一に分散でき、また帯電防止効果が優れ且つ長期持続可能な高透明性と高耐湿性を有し、各種電気化学デバイスにも好適に用いられる帯電防止剤、及び、当該帯電防止剤を含有する帯電防止性組成物を提供することにある。
The first object of the present invention is to provide an efficient and economical method for producing a high-quality unsaturated quaternary ammonium salt compound that is free of chlorine ions and metal ions and is highly polymerizable by active energy rays or heat. It is to provide.
The second object of the present invention is to have a good compatibility with general-purpose acrylic monomers, organic solvents and resins containing the unsaturated quaternary ammonium salt compound as a constituent component, and uniformly disperse in other antistatic agent compositions. Antistatic agent with excellent antistatic effect and long-term sustainable high transparency and high moisture resistance, and suitable for use in various electrochemical devices, and antistatic properties containing the antistatic agent It is to provide a composition.

本発明者はこれらの課題を解決するために鋭意検討を行った結果、3級アミン化合物とトリフルオロメタンスルホン酸エステルを有機溶媒の存在下で反応させた後、減圧濃縮、さらに残存有機溶媒を不活性ガスバブリングで除去することにより、一般式(1)(式中、Rは水素原子またはメチル基を、R及びRは各々独立に炭素数1〜3のアルキル基で互いに同一であっても異なっていてもよく、Rは炭素数1〜3のアルキル基又はアリール基を表し、Zは炭素数1〜3のアルキレン基を表す。) で示される不飽和第4級アンモニウム塩化合物を得ることを見出した。さらに当該不飽和第4級アンモニウム塩化合物及び/又は当該不飽和第4級アンモニウム塩化合物からなるオリゴマー、ポリマーで構成した帯電防止剤を見出した。該帯電防止剤を有機溶媒に溶解させてから基材上にコーティング、固定することで帯電防止層を形成させることにより上記課題を解決し、本発明に到達した。
As a result of intensive investigations to solve these problems, the present inventor reacted a tertiary amine compound and trifluoromethanesulfonic acid ester in the presence of an organic solvent, concentrated under reduced pressure, and further removed the remaining organic solvent. By removing by active gas bubbling, general formula (1) (wherein R 1 is a hydrogen atom or a methyl group, R 2 and R 3 are each independently an alkyl group having 1 to 3 carbon atoms, and they are identical to each other). And R 4 represents an alkyl group having 1 to 3 carbon atoms or an aryl group, and Z represents an alkylene group having 1 to 3 carbon atoms.) Found that to get. Furthermore, the antistatic agent comprised by the oligomer and polymer which consist of the said unsaturated quaternary ammonium salt compound and / or the said unsaturated quaternary ammonium salt compound was discovered. The above problems were solved by forming the antistatic layer by dissolving the antistatic agent in an organic solvent and then coating and fixing the antistatic agent on the base material, thereby achieving the present invention.

すなわち本願発明は、
1)一般式(1)
(式中、Rは水素原子またはメチル基を、R及びRは各々独立に炭素数1〜3のアルキル基で互いに同一であっても異なっていてもよく、Rは炭素数1〜3のアルキル基又はアリール基を表し、Zは炭素数1〜3のアルキレン基を表す。)で表される不飽和第4級アンモニウム塩化合物が有機溶媒中で、一般式(2)

(式中、Rは水素原子またはメチル基を、R及びRは各々独立に炭素数1〜3のアルキル基で互いに同一であっても異なっていてもよく、Zは炭素数1〜3のアルキレン基を表す。)で表される3級アミン化合物と、一般式(3)

(式中、Rは炭素数1〜3のアルキル基又はアリール基を表す。)で表されるトリフルオロメタンスルホン酸エステルとの4級化反応により合成されることを特徴とする不飽和第4級アンモニウム塩の製造方法、
2)前記不飽和第4級アンモニウム塩化合物を製造するにあたり、有機溶媒として、アセトニトリル、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチルからなる非プロトン性有機溶媒群から選ばれた少なくとも1種を用いることを特徴とする、前記1)に記載の不飽和第4級アンモニウム塩化合物の製造方法、
3)前記不飽和第4級アンモニウム塩化合物を製造するにあたり、有機溶媒の除去は不活性ガスバブリングによる行うことを特徴とする前記1)又は前記2)記載の不飽和第4級アンモニウム塩化合物の製造方法、
4)前記不飽和第4級アンモニウム塩化合物を製造するにあたり、不活性ガスとして、乾燥窒素、乾燥空気及び乾燥ヘリウム、乾燥ネオン、乾燥アルゴン、乾燥クリプトン、乾燥キセノンと乾燥ラドンなどの乾燥希ガスからなる、前記不飽和第4級アンモニウム塩化合物と反応しない乾燥不活性ガス群から選ばれた少なくとも1種を用いることを特徴とする、前記1)乃至前期3)に記載の不飽和第4級アンモニウム塩化合物の製造方法、
5)前記1〜4いずれか一項に記載の製造方法で合成される塩素イオンフリー(塩素イオン含量は1ppm以下)、金属イオンフリー(各種金属イオン含量は1ppm以下)、且つ有機溶剤の含有量は100ppm未満の不飽和第4級アンモニウム塩化合物、
6)前記5)記載の不飽和第4級アンモニウム塩化合物をラジカル重合させることにより得られる塩素イオンフリー(塩素イオン含量は1ppm以下)且つ金属イオンフリー(各種金属イオン含量は1ppm以下)の4級アンモニウム塩含有オリゴマー又はポリマー、
7)前記5)記載の不飽和第4級アンモニウム塩化合物と他の共重合可能のビニル系単量体との共重合で得られる塩素イオンフリー(塩素イオン含量は1ppm以下)且つ金属イオンフリー(各種金属イオン含量は1ppm以下)の4級アンモニウム塩含有コオリゴマー又はコポリマー、
8)前記5)乃至前記7)の不飽和第4級アンモニウム塩化合物及び/又はオリゴマー若しくはポリマーからなる塩素イオンフリー(塩素イオン含量は1ppm以下)且つ金属イオンフリー(各種金属イオン含量は1ppm以下)の帯電防止剤、
9)前記8)記載の帯電防止剤又は該帯電防止剤を含有する帯電防止組成物であって、前記5)の不飽和第4級アンモニウム塩化合物を構成単位として0.1〜90重量%含有するもの、
10)前記8)又は9)記載の帯電防止剤を含有する帯電防止組成物であって、さらに多官能(メタ)アクリレート及び/又は多官能(メタ)アクリルアミドを含有する帯電防止組成物、
11)基材上に前記8)〜10)いずれか一項に記載の帯電防止剤又は帯電防止組成物を塗装した後、活性エネルギー線又は熱により重合して形成されることを特徴とする帯電防止層、
12)少なくとも片面に前記11)記載の帯電防止層を有することを特徴とする帯電防止フィルム、シート、
を提供するものである。
That is, the present invention
1) General formula (1)
(In the formula, R 1 is a hydrogen atom or a methyl group, R 2 and R 3 are each independently an alkyl group having 1 to 3 carbon atoms, which may be the same as or different from each other, and R 4 has 1 carbon atom) An unsaturated quaternary ammonium salt compound represented by general formula (2) in an organic solvent.

(In the formula, R 1 is a hydrogen atom or a methyl group, R 2 and R 3 are each independently an alkyl group having 1 to 3 carbon atoms, which may be the same as or different from each other; A tertiary amine compound represented by formula (3):

(Wherein R 4 represents an alkyl group having 1 to 3 carbon atoms or an aryl group) and is synthesized by a quaternization reaction with a trifluoromethanesulfonic acid ester represented by A method for producing a quaternary ammonium salt,
2) In the production of the unsaturated quaternary ammonium salt compound, the organic solvent is made of acetonitrile, N, N-dimethylformamide, N, N-dimethylacetamide, methyl acetate, ethyl acetate, propyl acetate, butyl acetate. At least one selected from the group of protic organic solvents, wherein the method for producing an unsaturated quaternary ammonium salt compound according to 1) above,
3) In the production of the unsaturated quaternary ammonium salt compound, the organic solvent is removed by inert gas bubbling. The unsaturated quaternary ammonium salt compound according to 1) or 2) above, Production method,
4) In producing the unsaturated quaternary ammonium salt compound, from inert rare gases such as dry nitrogen, dry air and dry helium, dry neon, dry argon, dry krypton, dry xenon and dry radon. The unsaturated quaternary ammonium according to 1) to 3) above, wherein at least one selected from the group of dry inert gases that do not react with the unsaturated quaternary ammonium salt compound is used. A method for producing a salt compound,
5) Chloride ion-free (chlorine ion content is 1 ppm or less), metal ion-free (various metal ion content is 1 ppm or less), and organic solvent content synthesized by the production method according to any one of 1 to 4 above Is an unsaturated quaternary ammonium salt compound of less than 100 ppm,
6) The quaternary of chloride ion free (chlorine ion content is 1 ppm or less) and metal ion free (various metal ion content is 1 ppm or less) obtained by radical polymerization of the unsaturated quaternary ammonium salt compound described in 5) above. An ammonium salt-containing oligomer or polymer,
7) Chloride ion-free (chlorine ion content is 1 ppm or less) obtained by copolymerization of the unsaturated quaternary ammonium salt compound described in 5) above with other copolymerizable vinyl monomers and metal ion-free ( A quaternary ammonium salt-containing co-oligomer or copolymer having various metal ion contents of 1 ppm or less,
8) Chlorine ion free (chlorine ion content is 1 ppm or less) and metal ion free (various metal ion content is 1 ppm or less) comprising the unsaturated quaternary ammonium salt compound and / or oligomer or polymer of 5) to 7) above Antistatic agent,
9) The antistatic agent according to 8) or an antistatic composition containing the antistatic agent, wherein the unsaturated quaternary ammonium salt compound of 5) is contained in an amount of 0.1 to 90% by weight as a constituent unit. What to do,
10) An antistatic composition containing the antistatic agent described in 8) or 9) above, which further contains a polyfunctional (meth) acrylate and / or a polyfunctional (meth) acrylamide,
11) Charging characterized by being formed by coating the base material with the antistatic agent or antistatic composition according to any one of 8) to 10) and then polymerizing with active energy rays or heat. Prevention layer,
12) An antistatic film, a sheet comprising the antistatic layer described in 11) above on at least one surface,
Is to provide.

本発明の方法によると、塩素イオンフリー、金属イオンフリー、且つ活性エネルギー線又は熱により重合性が高く、高品質な不飽和第4級アンモニウム塩化合物を高収率且つ簡便に製造することができる。また、当該不飽和第4級アンモニウム塩化合物を構成成分とする帯電防止剤及び帯電防止剤組成物は汎用モノマー、有機溶剤や樹脂との相溶性が良好であり、他の帯電防止剤組成物に均一に分散でき、高透明性と高耐湿性を有し、持続的に優れる帯電防止効果を有するため、各種電気化学デバイスにも好適に用いられる。当該帯電防止剤、及び、当該帯電防止剤を含有する帯電防止性組成物、帯電防止層、帯電防止膜または帯電防止フィルム、シートが提供できる。 According to the method of the present invention, it is possible to easily produce a high-quality unsaturated quaternary ammonium salt compound with high yield by chlorine ion-free, metal ion-free, and high polymerizability by active energy rays or heat. . In addition, the antistatic agent and antistatic agent composition comprising the unsaturated quaternary ammonium salt compound as a constituent component have good compatibility with general-purpose monomers, organic solvents and resins, and other antistatic agent compositions. It can be uniformly dispersed, has high transparency and high moisture resistance, and has a continuously excellent antistatic effect, so that it can be suitably used for various electrochemical devices. The antistatic agent, an antistatic composition containing the antistatic agent, an antistatic layer, an antistatic film or an antistatic film, and a sheet can be provided.

以下、本発明を詳細に説明する。
本発明の帯電防止剤は、一般式(1)で表わされる不飽和第4級アンモニウム塩化合物及び当該不飽和第4級アンモニウム塩化合物から構成されるオリゴマー若しくはポリマーのうちいずれか1種以上からなるものである。
Hereinafter, the present invention will be described in detail.
The antistatic agent of the present invention comprises at least one of an unsaturated quaternary ammonium salt compound represented by the general formula (1) and an oligomer or polymer composed of the unsaturated quaternary ammonium salt compound. Is.

一般式(1)の式中、Rは水素原子またはメチル基を、R及びRは各々独立に炭素数1〜3のアルキル基で互いに同一であっても異なっていてもよく、Rは炭素数1〜3のアルキル基又はアリール基を表し、Zは炭素数1〜3のアルキレン基を表す。 In the formula of the general formula (1), R 1 is a hydrogen atom or a methyl group, R 2 and R 3 are each independently an alkyl group having 1 to 3 carbon atoms, which may be the same or different, and R 4 represents an alkyl group having 1 to 3 carbon atoms or an aryl group, and Z represents an alkylene group having 1 to 3 carbon atoms.

本発明の不飽和第4級アンモニウム塩化合物は(メタ)アクリレート系第4級アンモニウム塩であり、具体的には、アクリロイルオキシメチルトリメチルアンモニウムトリフルオロメタンスルホナート、アクリロイルオキシメチルトリエチルアンモニウムトリフルオロメタンスルホナート、アクリロイルオキシメチルトリプロピルアンモニウムトリフルオロメタンスルホナート、アクリロイルオキシエチルトリメチルアンモニウムトリフルオロメタンスルホナート、アクリロイルオキシプロピルトリメチルアンモニウムトリフルオロメタンスルホナート、アクリロイルオキシプロピルメチルジエチルアンモニウムトリフルオロメタンスルホナート、アクリロイルオキシプロピルエチルジメチルアンモニウムトリフルオロメタンスルホナート、アクリロイルオキシプロピルメチルジプロピルアンモニウムトリフルオロメタンスルホナート、アクリロイルオキシプロピルトリエチルアンモニウムトリフルオロメタンスルホナート、アクリロイルオキシプロピルトリプロピルアンモニウムトリフルオロメタンスルホナート、アクリロイルオキシエチルジメチルベンジルアンモニウムトリフルオロメタンスルホナート、アクリロイルオキシプロピルジメチルベンジルアンモニウムトリフルオロメタンスルホナート、アクリロイルオキシプロピルジエチルベンジルアンモニウムトリフルオロメタンスルホナート、アクリロイルオキシプロピルメチルジベンジルアンモニウムトリフルオロメタンスルホナート、アクリロイルオキシプロピルエチルジベンジルアンモニウムトリフルオロメタンスルホナート、メタクリロイルオキシメチルトリメチルアンモニウムトリフルオロメタンスルホナート、メタクリロイルオキシメチルトリエチルアンモニウムトリフルオロメタンスルホナート、メタクリロイルオキシメチルトリプロピルアンモニウムトリフルオロメタンスルホナート、メタクリロイルオキシエチルトリメチルアンモニウムトリフルオロメタンスルホナート、メタクリロイルオキシプロピルトリメチルアンモニウムトリフルオロメタンスルホナート、メタクリロイルオキシプロピルメチルジエチルアンモニウムトリフルオロメタンスルホナート、メタクリロイルオキシプロピルエチルジメチルアンモニウムトリフルオロメタンスルホナート、メタクリロイルオキシプロピルメチルジプロピルアンモニウムトリフルオロメタンスルホナート、メタクリロイルオキシプロピルトリエチルアンモニウムトリフルオロメタンスルホナート、メタクリロイルオキシプロピルトリプロピルアンモニウムトリフルオロメタンスルホナート、メタクリロイルオキシエチルジメチルベンジルアンモニウムトリフルオロメタンスルホナート、メタクリロイルオキシプロピルジメチルベンジルアンモニウムトリフルオロメタンスルホナート、メタクリロイルオキシプロピルジエチルベンジルアンモニウムトリフルオロメタンスルホナート、メタクリロイルオキシプロピルメチルジベンジルアンモニウムトリフルオロメタンスルホナート、メタクリロイルオキシプロピルエチルジベンジルアンモニウムトリフルオロメタンスルホナートなどの(メタ)アクリレート系アンモニウムアルキルトリフルオロメタンスルホナートなどが挙げられる。 The unsaturated quaternary ammonium salt compound of the present invention is a (meth) acrylate-based quaternary ammonium salt, specifically, acryloyloxymethyltrimethylammonium trifluoromethanesulfonate, acryloyloxymethyltriethylammonium trifluoromethanesulfonate, Acryloyloxymethyltripropylammonium trifluoromethanesulfonate, acryloyloxyethyltrimethylammonium trifluoromethanesulfonate, acryloyloxypropyltrimethylammonium trifluoromethanesulfonate, acryloyloxypropylmethyldiethylammonium trifluoromethanesulfonate, acryloyloxypropylethyldimethylammonium trifluoromethane Sulfonate, Acryloyloxypropylmethyldipropylammonium trifluoromethanesulfonate, acryloyloxypropyltriethylammonium trifluoromethanesulfonate, acryloyloxypropyltripropylammonium trifluoromethanesulfonate, acryloyloxyethyldimethylbenzylammonium trifluoromethanesulfonate, acryloyloxypropyldimethylbenzyl Ammonium trifluoromethanesulfonate, acryloyloxypropyldiethylbenzylammonium trifluoromethanesulfonate, acryloyloxypropylmethyldibenzylammonium trifluoromethanesulfonate, acryloyloxypropylethyldibenzylammonium trifluoromethanesulfonate Nert, methacryloyloxymethyltrimethylammonium trifluoromethanesulfonate, methacryloyloxymethyltriethylammonium trifluoromethanesulfonate, methacryloyloxymethyltripropylammonium trifluoromethanesulfonate, methacryloyloxyethyltrimethylammonium trifluoromethanesulfonate, methacryloyloxypropyltrimethylammonium trifluoromethane Sulfonate, methacryloyloxypropylmethyldiethylammonium trifluoromethanesulfonate, methacryloyloxypropylethyldimethylammonium trifluoromethanesulfonate, methacryloyloxypropylmethyldipropylammonium trifluoromethanesulfonate Methacryloyloxypropyltriethylammonium trifluoromethanesulfonate, methacryloyloxypropyltripropylammonium trifluoromethanesulfonate, methacryloyloxyethyldimethylbenzylammonium trifluoromethanesulfonate, methacryloyloxypropyldimethylbenzylammonium trifluoromethanesulfonate, methacryloyloxypropyldiethyl (Meth) acrylate-based ammonium alkyl trifluoros such as benzylammonium trifluoromethanesulfonate, methacryloyloxypropylmethyldibenzylammonium trifluoromethanesulfonate, and methacryloyloxypropylethyldibenzylammonium trifluoromethanesulfonate Such as methanesulfonate and the like.

これらの中では、安価な工業的原料を入手しやすい点で、特にアクリロイルオキシエチルトリメチルアンモニウムトリフルオロメタンスルホナート、メタクリロイルオキシエチルトリメチルアンモニウムトリフルオロメタンスルホナートが好ましい。 Among these, acryloyloxyethyltrimethylammonium trifluoromethanesulfonate and methacryloyloxyethyltrimethylammonium trifluoromethanesulfonate are particularly preferable because inexpensive industrial raw materials are easily available.

本発明の出発物質である一般式(2)で表わされる3級アミン化合物はN,N−二置換アミノ(メタ)アクリレート系モノマーである。 The tertiary amine compound represented by the general formula (2) which is the starting material of the present invention is an N, N-disubstituted amino (meth) acrylate monomer.

一般式(2)の式中、Rは水素原子またはメチル基を、R及びRは各々独立に炭素数1〜3のアルキル基で互いに同一であっても異なっていてもよく、Zは炭素数1〜3のアルキレン基を表す。 In the general formula (2), R 1 is a hydrogen atom or a methyl group, R 2 and R 3 are each independently an alkyl group having 1 to 3 carbon atoms, which may be the same or different, and Z Represents an alkylene group having 1 to 3 carbon atoms.

上記N,N−二置換アミノアルキル(メタ)アクリレートとしては、例えば、N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジエチルアミノエチル(メタ)アクリレート、N,N−ジメチルアミノプロピル(メタ)アクリレート、N,N−ジエチルアミノプロピル(メタ)アクリレート、N,N−メチルエチルアミノエチル(メタ)アクリレート、N,N−メチルプロピルアミノエチル(メタ)アクリレート、N,N−メチルエチルアミノプロピル(メタ)アクリレート、N,N−メチルプロピルアミノプロピル(メタ)アクリレート、N,N−ジプロピルアミノプロピル(メタ)アクリレート等が挙げられる。 Examples of the N, N-disubstituted aminoalkyl (meth) acrylate include N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meta) ) Acrylate, N, N-diethylaminopropyl (meth) acrylate, N, N-methylethylaminoethyl (meth) acrylate, N, N-methylpropylaminoethyl (meth) acrylate, N, N-methylethylaminopropyl (meth) ) Acrylate, N, N-methylpropylaminopropyl (meth) acrylate, N, N-dipropylaminopropyl (meth) acrylate and the like.

本発明のもう一種の出発物質は一般式(3)で表わされるトリフルオロメタンスルホン酸エステルである。具体的には、トリフルオロメタンスルホン酸メチル、トリフルオロメタンスルホン酸エチル、トリフルオロメタンスルホン酸プロピル、トリフルオロメタンスルホン酸イソプロピル、チオシアンブチル、トリフルオロメタンスルホン酸イソブチル、トリフルオロメタンスルホン酸−t−ブチル、トリフルオロメタンスルホン酸ペンチル、トリフルオロメタンスルホン酸ヘキシル、トリフルオロメタンスルホン酸ヘプチル、トリフルオロメタンスルホン酸オクチル、トリフルオロメタンスルホン酸ノニル、トリフルオロメタンスルホン酸デシルなどのトリフルオロメタンスルホン酸アルキルエステル、トリフルオロメタンスルホン酸シクロヘキシルなどのトリフルオロメタンスルホン酸環状脂肪族エステル、トリフルオロメタンスルホン酸フェニル、トリフルオロメタンスルホン酸ベンジル、トリフルオロメタンスルホン酸トリル、トリフルオロメタンスルホン酸トリル、トリフルオロメタンスルホン酸キシリルなどのトリフルオロメタンスルホン酸アリールエステルが挙げられる。これらの中では、融点と反応性の点で、特にトリフルオロメタンスルホン酸メチルとトリフルオロメタンスルホン酸エチルが好ましい。 Another starting material of the present invention is a trifluoromethanesulfonic acid ester represented by the general formula (3). Specifically, methyl trifluoromethanesulfonate, ethyl trifluoromethanesulfonate, propyl trifluoromethanesulfonate, isopropyl trifluoromethanesulfonate, thiocyanbutyl, isobutyl trifluoromethanesulfonate, tert-butyl trifluoromethanesulfonate, trifluoromethanesulfone Trifluoromethanesulfonic acid alkyl esters such as pentyl acid, hexyl trifluoromethanesulfonate, heptyl trifluoromethanesulfonate, octyl trifluoromethanesulfonate, nonyl trifluoromethanesulfonate, decyl trifluoromethanesulfonate, trifluoromethane such as cyclohexyl trifluoromethanesulfonate Sulfonic acid cycloaliphatic ester, trifluoromethanesulfonic acid phenol Le, trifluoromethanesulfonic acid benzyl, trifluoromethanesulfonic acid tolyl, trifluoromethanesulfonic acid tolyl, trifluoromethanesulfonic acid aryl esters such as trifluoromethanesulfonic acid xylyl and the like. Of these, methyl trifluoromethanesulfonate and ethyl trifluoromethanesulfonate are particularly preferable in terms of melting point and reactivity.

前記の3級アミン化合物とトリフルオロメタンスルホン酸エステルの4級化反応において、3級アミン化合物とトリフルオロメタンスルホン酸エステルのモル比は任意であるが、一方を過剰に用いることで反応の完結が促進される。本発明の不飽和第4級アンモニウム塩化合物の重合特性を利用する目的である場合、重合性の3級アミンを過剰に用いる方が、仮に3級アミンが微量に残存しても不飽和第4級アンモニウム塩化合物の重合特性及び帯電防止性能に影響を与えないので好ましい。3級アミン/トリフルオロメタンスルホン酸エステルのモル比は0.2〜5モルが好ましく、0.5〜2モルがより好ましい。 In the quaternization reaction of the tertiary amine compound and trifluoromethanesulfonic acid ester, the molar ratio of the tertiary amine compound and trifluoromethanesulfonic acid ester is arbitrary, but the use of one of them in excess accelerates the completion of the reaction. Is done. When the purpose is to utilize the polymerization characteristics of the unsaturated quaternary ammonium salt compound of the present invention, it is preferable to use an excess of the polymerizable tertiary amine even if a small amount of the tertiary amine remains. This is preferable because it does not affect the polymerization characteristics and antistatic performance of the quaternary ammonium salt compound. The molar ratio of tertiary amine / trifluoromethanesulfonic acid ester is preferably 0.2 to 5 mol, and more preferably 0.5 to 2 mol.

前記の4級化反応においては、有機溶媒の存在下で実施する。使用する有機溶媒として、本発明の出発物質である3級アミン化合物又はトリフルオロメタンスルホン酸エステルの何れか又両方に可溶(100g溶媒に対して5g以上溶解する)であり、且つ反応に悪影響を及ぼさない溶媒であれば、広く使用することができる。例えば、アセトニトリル、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチルからなる非プロトン性有機溶媒群から選ばれた少なくとも1種を用いることができる。これらの中では、酢酸ブチルが出発物質である3級アミン化合物及びトリフルオロメタンスルホン酸エステルに可溶である一方、不飽和第4級アンモニウム塩化合物に難溶(100g溶媒に対して5g未満溶解する)であり、目的生成物である不飽和第4級アンモニウム塩化合物から残存3級アミン化合物及びトリフルオロメタンスルホン酸エステルを取り除きやすいので、最も好ましい。これらの溶媒は、1種あるいは2種以上を用いることができる。 The quaternization reaction is carried out in the presence of an organic solvent. As an organic solvent to be used, it is soluble in either or both of the tertiary amine compound and trifluoromethanesulfonic acid ester which are the starting materials of the present invention (dissolves 5 g or more in 100 g of solvent), and adversely affects the reaction. If it is a solvent that does not reach, it can be widely used. For example, at least one selected from the group of aprotic organic solvents consisting of acetonitrile, N, N-dimethylformamide, N, N-dimethylacetamide, methyl acetate, ethyl acetate, propyl acetate, and butyl acetate can be used. Among these, butyl acetate is soluble in the tertiary amine compound and trifluoromethanesulfonic acid ester which are starting materials, but hardly soluble in the unsaturated quaternary ammonium salt compound (dissolves less than 5 g in 100 g solvent). It is most preferable because the residual tertiary amine compound and trifluoromethanesulfonic acid ester can be easily removed from the unsaturated quaternary ammonium salt compound as the target product. These solvents can be used alone or in combination of two or more.

前記4級化反応に用いられる有機溶媒の配合量は、その種類によっても異なるが、出発物質トリフルオロメタンスルホン酸エステルの濃度が1〜95%となるような範囲が好ましい。さらに5〜90%となるような範囲が特に好ましい。1%未満であれば、原料の接触効率が低下し、反応速度が著しく遅くなる。95%を越えると反応が制御できず、選択率が低下するおそれがあり、また、発熱による重合トラブルなどの問題を生じることがある。 The blending amount of the organic solvent used in the quaternization reaction varies depending on the type, but a range in which the concentration of the starting material trifluoromethanesulfonic acid ester is 1 to 95% is preferable. Furthermore, the range which becomes 5 to 90% is especially preferable. If it is less than 1%, the contact efficiency of the raw material is lowered, and the reaction rate is remarkably slowed. If it exceeds 95%, the reaction cannot be controlled, the selectivity may decrease, and problems such as polymerization troubles due to heat generation may occur.

本発明の不飽和第4級アンモニウム塩化合物を合成するときの反応温度は、通常10℃以上、15〜130℃が好ましく、20〜100℃が特に好ましい。反応温度が10℃未満の場合、反応速度が遅くなり、完結する所要反応時間が長くなる。一方、130℃を超えると原料又は生成物の重合性化合物が重合してしまう可能性がある。使用する原料の沸点が低い場合はオートクレーブなどの密閉型反応器を使用することができる。 The reaction temperature when synthesizing the unsaturated quaternary ammonium salt compound of the present invention is usually 10 ° C. or higher, preferably 15 to 130 ° C., particularly preferably 20 to 100 ° C. When reaction temperature is less than 10 degreeC, reaction rate becomes slow and the required reaction time to complete becomes long. On the other hand, if it exceeds 130 ° C., the raw material or product polymerizable compound may be polymerized. When the starting material to be used has a low boiling point, a closed reactor such as an autoclave can be used.

反応系中の水分は、トリフルオロメタンスルホン酸エステルの加水分解不純物を副生させる恐れがあり、少ない方が好ましい。持ち込まれる水分は、主として原料由来であるため、反応前に、蒸留脱水又は乾燥剤などを使用して水分を除去することが望ましい。 Water in the reaction system may cause hydrolysis impurities of trifluoromethanesulfonic acid ester as a by-product, and is preferably as little as possible. Since the moisture to be brought in is mainly derived from the raw materials, it is desirable to remove the moisture using a distillation dehydration or a drying agent before the reaction.

本発明の不飽和第4級アンモニウム塩化合物は塩素イオンフリー且つ金属イオンフリーの高品質品を得るためには、勿論のことであるが、前述の原料中に含まれる各種塩素イオンの合計が1ppm以下、各種金属イオンの合計が1ppm以下であることが必要である。ここで、金属イオンはナトリウムイオン、リチウムイオン、カリウムイオンなどの1価の金属イオン、カルシウムイオン、マグネシウムイオンなど2価の金属イオン、アルミニウムイオン、鉄イオンなどの多価金属イオンである。 The unsaturated quaternary ammonium salt compound of the present invention is, of course, a chlorine ion-free and metal ion-free high-quality product, and the total of various chlorine ions contained in the raw material is 1 ppm. Hereinafter, the total of various metal ions needs to be 1 ppm or less. Here, the metal ions are monovalent metal ions such as sodium ion, lithium ion and potassium ion, divalent metal ions such as calcium ion and magnesium ion, and polyvalent metal ions such as aluminum ion and iron ion.

反応終了後、余剰の原料と反応溶媒が生成物である不飽和第4級アンモニウム塩化合物との相溶性によるが、蒸留、抽出、薄膜処理により容易に分離、回収し、さらに繰り返し使用することができる。 After completion of the reaction, depending on the compatibility between the surplus raw material and the unsaturated quaternary ammonium salt compound that is the product of the reaction solvent, it can be easily separated and recovered by distillation, extraction, thin film treatment, and used repeatedly. it can.

本発明の不飽和第4級アンモニウム塩化合物は高粘度、しかも蒸気圧がないため、通常の蒸留では、約1〜10%の有機溶媒が残存し、高純度製品の取得はできないという問題があった。本発明の第4級アンモニウム塩化合物は、不飽和基を有するため、有機溶媒を除去するために長時間蒸留を行うと、重合するおそれがある。さらに、沸点の高い有機溶媒を反応溶媒として用いた場合、これを除去するために高温、減圧下で蒸留を行うと、さらに本発明の不飽和第4級アンモニウム塩化合物が重合してしまい、高純度製品の取得が困難となる。そこで、本発明者らは、不活性ガスのバブリングにより揮発性有機溶媒のミストを発生させ、不活性ガス気流に飛沫同伴する特徴に注目し、不活性ガスのバブリングにより残存有機溶媒を100ppm以下に除去することを提案し、簡便且つ経済的、高収率で純度99%以上の不飽和第4級アンモニウム塩化合物高純度品を取得することに至った。即ち、不飽和第4級アンモニウム塩化合物の融点以上で不活性ガスをバブリングさせながら、有機溶媒を蒸発させ、除去、回収する方法である。 Since the unsaturated quaternary ammonium salt compound of the present invention has a high viscosity and no vapor pressure, about 1 to 10% of an organic solvent remains in ordinary distillation, and there is a problem that a high-purity product cannot be obtained. It was. Since the quaternary ammonium salt compound of the present invention has an unsaturated group, there is a risk of polymerization if it is distilled for a long time to remove the organic solvent. Furthermore, when an organic solvent having a high boiling point is used as a reaction solvent, if distillation is performed under high temperature and reduced pressure in order to remove this, the unsaturated quaternary ammonium salt compound of the present invention is further polymerized, resulting in a high Obtaining a purity product becomes difficult. Therefore, the present inventors pay attention to the feature that mist of a volatile organic solvent is generated by bubbling of an inert gas and entrained in the inert gas stream, and the residual organic solvent is reduced to 100 ppm or less by bubbling of the inert gas. It was proposed to remove the quaternary unsaturated quaternary ammonium salt compound having a purity of 99% or more in a simple and economical manner with a high yield. That is, the organic solvent is evaporated, removed and recovered while bubbling an inert gas above the melting point of the unsaturated quaternary ammonium salt compound.

反応終了後の残存溶媒が10%以上である場合、減圧下で蒸留による10%まで除去した後、不活性ガスのバブリング処理がより効率がよいので、好ましい。 When the residual solvent after completion of the reaction is 10% or more, it is preferable because the bubbling treatment of the inert gas is more efficient after removal to 10% by distillation under reduced pressure.

不活性ガスとして、乾燥窒素、乾燥空気、乾燥ヘリウム、乾燥ネオン、乾燥アルゴン、乾燥クリプトン、乾燥キセノンと乾燥ラドンなどの乾燥希ガスからなる、本発明の不飽和第4級アンモニウム塩化合物と反応しない乾燥不活性ガス群から選ばれた少なくとも1種を用いることができる。これらの中では、安価な工業的原料を入手しやすい点で、特に乾燥空気と乾燥窒素が好ましい。これらの不活性ガスは、1種あるいは2種以上を用いることができる。 As an inert gas, it does not react with the unsaturated quaternary ammonium salt compound of the present invention consisting of dry rare gas such as dry nitrogen, dry air, dry helium, dry neon, dry argon, dry krypton, dry xenon and dry radon. At least one selected from the dry inert gas group can be used. Among these, dry air and dry nitrogen are particularly preferable in terms of easy availability of inexpensive industrial raw materials. These inert gases can be used alone or in combination of two or more.

本発明の不飽和第4級アンモニウム塩化合物は非揮発性であるため、不活性ガスバブリング処理時のガス流量は特に限定する必要がない。残存有機溶媒の種類と量によっても異なるが、1mL/min〜100L/minとなるような範囲が好ましい。さらに10mL/min〜10L/minとなるような範囲が特に好ましい。1mL/min未満であれば、有機溶媒の除去速度が著しく遅くなる。100L/minを越えると不経済的になり、また、残存有機溶媒の多い場合、ミスト発生量が多く、突沸現象によるトラブルなどの問題を生じることがある。 Since the unsaturated quaternary ammonium salt compound of the present invention is non-volatile, the gas flow rate during the inert gas bubbling treatment need not be particularly limited. Although it varies depending on the type and amount of the remaining organic solvent, a range of 1 mL / min to 100 L / min is preferable. Further, a range of 10 mL / min to 10 L / min is particularly preferable. If it is less than 1 mL / min, the organic solvent removal rate will be remarkably slow. If it exceeds 100 L / min, it becomes uneconomical, and if there is a large amount of residual organic solvent, the amount of mist generated is large, and problems such as troubles due to bumping may occur.

本発明の不飽和第4級アンモニウム塩化合物は重合性が高いため、反応終了後の減圧蒸留及び常圧下の不活性ガスバブリングによる有機溶媒の回収、除去は重合禁止剤の存在下で実施することが好ましい。重合禁止剤としては公知のものが使用できるが、例えば、ハイドロキノン、メチルハイドロキノン、tert−ブチルハイドロキノン、2,6−ジ−tert−ブチルパラハイドロキノン、2,5−ジ−tert−ブチルハイドロキノン、2,4−ジメチル−6−tertブチルフェノール、ハイドロキノンモノメチルエーテル等のフェノール化合物、N−イソプロピル−N'−フェニル−パラ−フェニレンジアミン、N−(1,3−ジメチルブチル)−N'−フェニル−パラ−フェニレンジアミン、N−(1−メチルヘプチル)−N'−フェニル−パラ−フェニレンジアミン、N,N'−ジフェニル−パラ−フェニレンジアミン、N,N'−ジ−2−ナフチル−パラ−フェニレンジアミン等のパラフェニレンジアミン類、チオジフェニルアミン等のアミン化合物、2,2,6,6−テトラメチルピペリジン−1−オキシル、4?ヒドロキシ?2,2,6,6?テトラメチルピペリジン?1?オキシル、アセトアミドテトラメチルピペリジン−1−オキシル等のピペリジン1−オキシルフリーラジカル化合物類などを例示することができる。これら重合禁止剤は、1種または2種以上を併用しても構わない。 Since the unsaturated quaternary ammonium salt compound of the present invention has high polymerizability, recovery and removal of the organic solvent by distillation under reduced pressure and inert gas bubbling under normal pressure should be carried out in the presence of a polymerization inhibitor. Is preferred. Known polymerization inhibitors can be used, such as hydroquinone, methyl hydroquinone, tert-butyl hydroquinone, 2,6-di-tert-butyl parahydroquinone, 2,5-di-tert-butyl hydroquinone, 2, Phenol compounds such as 4-dimethyl-6-tertbutylphenol and hydroquinone monomethyl ether, N-isopropyl-N′-phenyl-para-phenylenediamine, N- (1,3-dimethylbutyl) -N′-phenyl-para-phenylene Such as diamine, N- (1-methylheptyl) -N′-phenyl-para-phenylenediamine, N, N′-diphenyl-para-phenylenediamine, N, N′-di-2-naphthyl-para-phenylenediamine, etc. Paraphenylenediamines, thiodiphenylamine, etc. Piperidine such as amine compounds, 2,2,6,6-tetramethylpiperidine-1-oxyl, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1 oxyl, acetamidotetramethylpiperidine-1-oxyl Examples thereof include 1-oxyl free radical compounds. These polymerization inhibitors may be used alone or in combination of two or more.

重合禁止剤の添加量は、本発明の不飽和第4級アンモニウム塩化合物に対して1〜10000ppm、好ましくは5〜5000ppmである。 The addition amount of a polymerization inhibitor is 1-10000 ppm with respect to the unsaturated quaternary ammonium salt compound of this invention, Preferably it is 5-5000 ppm.

以上の方法により99%以上の高純度の不飽和第4級アンモニウム塩化合物を得ることができる。さらに、必要に応じて、逆浸透膜処理やイオン交換樹脂処理、キレート樹脂処理などによる残存金属イオンの低減、カラムクロマトグラフィーなどの精製手段により精製してもよい。 By the above method, an unsaturated quaternary ammonium salt compound having a purity of 99% or more can be obtained. Further, if necessary, the residual metal ions may be reduced by reverse osmosis membrane treatment, ion exchange resin treatment, chelate resin treatment, or purification means such as column chromatography.

本発明の本発明の不飽和第4級アンモニウム塩化合物が室温で液体である場合、高純度のままで帯電防止剤として使用することができる。また、室温で液体又は固体である場合、水、有機溶媒に溶解させ、溶液状態での使用も可能である。有機溶媒で薄めて使用する場合、反応溶媒と同様でもよく、異なってもよく、溶解度パラメーター(SP値)の範囲が8〜16(cal/cm3)0.5であるものがよい。 When the unsaturated quaternary ammonium salt compound of the present invention is a liquid at room temperature, it can be used as an antistatic agent with high purity. Further, when it is liquid or solid at room temperature, it can be dissolved in water or an organic solvent and used in a solution state. When diluted with an organic solvent, it may be the same as or different from the reaction solvent, and the solubility parameter (SP value) is in the range of 8 to 16 (cal / cm 3 ) 0.5 .

本発明の不飽和第4級アンモニウム塩化合物及び/又は該不飽和第4級アンモニウム塩化合物を構成成分とするオリゴマー又は/及びポリマーは、プラスチックなどの成形品に塗布した後、乾燥して使用する場合、単独でも帯電防止性、プラスチックへの塗膜性、耐擦傷性、高硬度の効果を十分に示すことができる。また、本発明の本来の帯電防止性、透明性、高耐湿性などの特性を阻害しない範囲で、2個以上のエチレン基を有する多官能(メタ)アクリレートまたは多官能(メタ)アクリルアミドを添加し、不飽和第4級アンモニウム塩化合物と多官能(メタ)アクリレートまたは多官能(メタ)アクリルアミドとの優れた相溶性を利用し、均一な架橋性被膜を基材表面に形成させることができ、さらなる製膜性や耐擦傷性などの塗膜の性能を向上させることができる。 The unsaturated quaternary ammonium salt compound of the present invention and / or the oligomer or / and polymer containing the unsaturated quaternary ammonium salt compound as a constituent component are used after being applied to a molded article such as plastic. In this case, the effects of antistatic properties, coating properties on plastics, scratch resistance, and high hardness can be sufficiently exhibited. In addition, polyfunctional (meth) acrylates or polyfunctional (meth) acrylamides having two or more ethylene groups are added within a range that does not impair the original antistatic properties, transparency, and high moisture resistance of the present invention. , By utilizing the excellent compatibility between the unsaturated quaternary ammonium salt compound and the polyfunctional (meth) acrylate or polyfunctional (meth) acrylamide, a uniform crosslinkable film can be formed on the surface of the substrate. The performance of the coating film such as film forming property and scratch resistance can be improved.

このような多官能(メタ)アクリレートとしてはペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスルトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、1、6−ヘキサンジオールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、ジテトラエチレングリコールジ(メタ)アクリレート、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート等のモノマーとオリゴマーが挙げられる。 Examples of such polyfunctional (meth) acrylates include pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, and dipentaerythritol. Tetra (meth) acrylate, neopentyl glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, trimethylolethane tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, 1,6-hexanediol di (meth) Acrylate, tripropylene glycol di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, ditetraethylene glycol di (meth) acrylate , Epoxy (meth) acrylate, monomers and oligomers such as urethane (meth) acrylate.

このような多官能(メタ)アクリレートの市販品としては、例えば、アロニックスM−400、M−450、M−305、M−309、M−310、M−315、M−320、TO−1200、TO−1231、TO−595、TO−756(以上、東亞合成製)、KAYARD D−310、D−330、DPHA、DPHA−2C(以上、日本化薬製)、ニカラックMX−302(三和ケミカル社製)等が挙げられる。 As a commercial item of such a polyfunctional (meth) acrylate, for example, Aronix M-400, M-450, M-305, M-309, M-310, M-315, M-320, TO-1200, TO-1231, TO-595, TO-756 (above, manufactured by Toagosei Co., Ltd.), KAYARD D-310, D-330, DPHA, DPHA-2C (above, manufactured by Nippon Kayaku Co., Ltd.), Nikalac MX-302 (Sanwa Chemical) Etc.).

また、多官能(メタ)アクリルアミドとしては、メチレンビスアクリルアミド、メチレンビスメタアクリルアミド、エチレンビスアクリルアミド、エチレンビスメタアクリルアミド、ジアリルアクリルアミド等のモノマーとウレタンアクリルアミド(特開2002−37849)等のオリゴマーが挙げられる。 Examples of the polyfunctional (meth) acrylamide include monomers such as methylene bisacrylamide, methylene bismethacrylamide, ethylene bisacrylamide, ethylene bismethacrylamide, and diallyl acrylamide, and oligomers such as urethane acrylamide (Japanese Patent Laid-Open No. 2002-37849). .

これらの多官能(メタ)アクリレートと多官能(メタ)アクリルアミドは、1種類でも、複数の多官能モノマー、オリゴマーを組み合わせて使用してもよい。また、このような多官能モノマー、オリゴマーを使用する場合、本発明の不飽和第4級アンモニウム塩化合物構成単位に対して0.001〜25000重量%含有させることが好ましく、また50〜20000重量%含有させることが特に好ましい。含有量が0.1重量%未満ではその添加効果が認められず、25000重量%を越えると、架橋率が高くなるため、塗膜の硬度、耐擦傷性は向上するが、弾力性が失われて割れやすくなる。 These polyfunctional (meth) acrylates and polyfunctional (meth) acrylamides may be used alone or in combination of a plurality of polyfunctional monomers and oligomers. Moreover, when using such a polyfunctional monomer and oligomer, it is preferable to contain 0.001 to 25000 weight% with respect to the unsaturated quaternary ammonium salt compound structural unit of this invention, and also 50 to 20000 weight% It is particularly preferable to contain it. If the content is less than 0.1% by weight, the effect of addition is not recognized. If the content exceeds 25000% by weight, the crosslinking rate increases, so that the hardness and scratch resistance of the coating film are improved, but the elasticity is lost. Easily break.

本発明の不飽和第4級アンモニウム塩化合物は、帯電防止組成物及び帯電防止層の種々の性能、例えば硬化物性を硬くあるいは、柔らかく調整する際には、他の重合性化合物を混合し、共重合させてもよく、重合性化合物としては、アルキル(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、不飽和ニトリルモノマー、不飽和カルボン酸、アミド基含有モノマー、メチロール基含有モノマー、アルコキシメチル基含有モノマー、エポキシ基含有モノマー、多官能性モノマー、ビニルエステル、オレフィンなど分子鎖中に反応性二重結合をもつラジカル重合化合物が挙げられる。 The unsaturated quaternary ammonium salt compound of the present invention is mixed with other polymerizable compounds to adjust various properties of the antistatic composition and the antistatic layer, for example, hardened or softened properties. Polymerizable compounds include alkyl (meth) acrylates, hydroxyalkyl (meth) acrylates, unsaturated nitrile monomers, unsaturated carboxylic acids, amide group-containing monomers, methylol group-containing monomers, alkoxymethyl group-containing monomers. And radical polymerization compounds having a reactive double bond in the molecular chain, such as epoxy group-containing monomers, polyfunctional monomers, vinyl esters, and olefins.

アルキル(メタ)アクリレートの例としては、メチルアクリレート、エチルアクリレート、プロピルアクリレート、イソプロピルアクリレート、ブチルアクリレート、イソブチルアクリレート、ヘキシルアクリレート、シクロヘキシルアクリレート、2−エチルヘキシルアクリレート、ラウリルアクリレート、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、イソプロピルアクリレート、ブチルメタクリレート、イソブチルメタクリレート、ヘキシルメタクリレート、シクロヘキシルメタクリレート、2−エチルヘキシルメタクリレート、ラウリルメタクリレートなどが挙げられる。 Examples of alkyl (meth) acrylates include methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, butyl acrylate, isobutyl acrylate, hexyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate Isopropyl acrylate, butyl methacrylate, isobutyl methacrylate, hexyl methacrylate, cyclohexyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate and the like.

ヒドロキシアルキル(メタ)アクリレートとしては、例えばヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、及びヒドロキシブチル(メタ)アクリレート等が挙げられる。 Examples of the hydroxyalkyl (meth) acrylate include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and hydroxybutyl (meth) acrylate.

不飽和ニトリルモノマーの例としては、アクリロニトリル、メタクリロニトリルなどが挙げられる。 Examples of unsaturated nitrile monomers include acrylonitrile and methacrylonitrile.

不飽和カルボン酸の例としては、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸、モノアルキルイタコネート等がある。 Examples of unsaturated carboxylic acids include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, monoalkyl itaconate and the like.

このような重合性化合物は、1種類に限らず、複数の種類を組み合わせて使用してもよい。 Such a polymerizable compound is not limited to one type, and a plurality of types may be used in combination.

本発明の不飽和第4級アンモニウム塩化合物は重合性化合物と公知の方法によって重合体または共重合体とすることができる。重合方法としては、例えば、乳化重合、溶液重合、懸濁重合、塊状重合等の方法を用いることができる。 The unsaturated quaternary ammonium salt compound of the present invention can be made into a polymer or copolymer by a known method with a polymerizable compound. As the polymerization method, for example, methods such as emulsion polymerization, solution polymerization, suspension polymerization, bulk polymerization and the like can be used.

ラジカル重合開始剤としては、アゾビスイソブチロニトリル、アゾビスバレロニトリル等のアゾ化合物系触媒や、ベンゾイルパーオキシド、過酸化水素等の過酸化物系触媒、過硫酸アンモニウム、過硫酸ナトリウムなどの過硫酸塩系触媒等を用いることができる。重合開始剤の使用量は、重合性単量体100重量%に対して0.05〜10重量%、好ましくは0.2〜3重量%である。   Examples of radical polymerization initiators include azo compound catalysts such as azobisisobutyronitrile and azobisvaleronitrile, peroxide catalysts such as benzoyl peroxide and hydrogen peroxide, peroxides such as ammonium persulfate and sodium persulfate. A sulfate-based catalyst or the like can be used. The usage-amount of a polymerization initiator is 0.05 to 10 weight% with respect to 100 weight% of polymerizable monomers, Preferably it is 0.2 to 3 weight%.

本発明の不飽和第4級アンモニウム塩化合物の含有量は、使用する多官能(メタ)アクリレート、多官能(メタ)アクリアミドの粘度、他の重合性化合物の配合量、樹脂組成物に要求される物性によるので、特に限定されるものではないが、帯電防止組成物中の固形分比で0.1〜90重量%、好ましくは1〜60重量%である。この不飽和第4級アンモニウム塩化合物の含有量が0.1重量%以下では帯電防止性能が不十分となり、90重量%を超えると透明性に劣るものとなる。   The content of the unsaturated quaternary ammonium salt compound of the present invention is required for the polyfunctional (meth) acrylate to be used, the viscosity of the polyfunctional (meth) acrylamide, the blending amount of other polymerizable compounds, and the resin composition. Although it is based on physical properties, it is not particularly limited, but is 0.1 to 90% by weight, preferably 1 to 60% by weight in terms of solid content in the antistatic composition. When the content of the unsaturated quaternary ammonium salt compound is 0.1% by weight or less, the antistatic performance is insufficient, and when it exceeds 90% by weight, the transparency is inferior.

本発明の不飽和第4級アンモニウム塩化合物及び/又は該化合物を構成成分とするオリゴマーもしくはポリマーを含む帯電防止剤、該帯電防止剤に多官能(メタ)アクリレート又は/及び多官能(メタ)アクリルアミドをさらに含有する帯電防止組成物は基材上に塗装して硬化させることによりコーティングすることから、塗装可能な粘度に調整するため、反応性希釈剤や有機溶媒を含有していることが好ましい。 Antistatic agent comprising unsaturated quaternary ammonium salt compound of the present invention and / or oligomer or polymer containing the compound as a constituent, polyfunctional (meth) acrylate or / and polyfunctional (meth) acrylamide as the antistatic agent Since the antistatic composition further containing is coated on a substrate by being cured, it is preferable to contain a reactive diluent or an organic solvent in order to adjust the viscosity to be paintable.

反応性希釈剤は25℃の粘度が500mPa・s以下である低粘度ビニルモノマーであれば、特に限定するものではないが、速硬性、低臭気、高引火点、高塗膜硬度が要求される観点から、ヒドロキシエチル(メタ)アクリルアミド、ジメチル(メタ)アクリルアミド、ジエチル(メタ)アクリルアミド、ジメチルアミノプロピル(メタ)アクリルアミド、アクリロイルモルホリンなどが好ましい。 The reactive diluent is not particularly limited as long as it is a low-viscosity vinyl monomer having a viscosity at 25 ° C. of 500 mPa · s or less, but it requires fast curing, low odor, high flash point, and high coating film hardness. From the viewpoint, hydroxyethyl (meth) acrylamide, dimethyl (meth) acrylamide, diethyl (meth) acrylamide, dimethylaminopropyl (meth) acrylamide, acryloylmorpholine and the like are preferable.

有機溶媒は本発明の不飽和第4級アンモニウム塩化合物、該化合物を構成成分とするオリゴマー及びポリマーを溶解できるものが好ましい。特に、該不飽和第4級アンモニウム塩化合物及び単独重合で得られるオリゴマーとポリマーに対して、溶解性パラメータが9〜15(cal/cm0.5の有機溶媒が好ましい。 The organic solvent is preferably one that can dissolve the unsaturated quaternary ammonium salt compound of the present invention and the oligomer and polymer containing the compound as a constituent component. In particular, an organic solvent having a solubility parameter of 9 to 15 (cal / cm 3 ) 0.5 is preferable for the unsaturated quaternary ammonium salt compound and the oligomer and polymer obtained by homopolymerization.

本発明の不飽和第4級アンモニウム塩化合物を構成成分として含む帯電防止組成物は、活性エネルギー線又は熱による硬化が可能であるので、プラスチックなどの成形品に塗装し、乾燥後、硬化することによって、帯電防止性ハードコート樹脂組成物として使用することができる。   Since the antistatic composition containing the unsaturated quaternary ammonium salt compound of the present invention as a constituent component can be cured by active energy rays or heat, it is applied to a molded article such as plastic, dried and cured. Can be used as an antistatic hard coat resin composition.

本発明の活性エネルギー線とは、活性種を発生する化合物(光重合開始剤)を分解して活性種を発生させることのできるエネルギー線と定義される。このような活性エネルギー線としては、可視光、紫外線(UV)、赤外線、X線、α線、β線、γ線等の光エネルギー線が挙げられる。ただし、一定のエネルギーレベルを有し、硬化速度が速く、しかも照射装置が比較的安価で、小型である点から、紫外線を使用することが好ましい。   The active energy ray of the present invention is defined as an energy ray capable of decomposing a compound (photopolymerization initiator) that generates active species to generate active species. Examples of such active energy rays include light energy rays such as visible light, ultraviolet rays (UV), infrared rays, X-rays, α rays, β rays, and γ rays. However, it is preferable to use ultraviolet rays because it has a certain energy level, has a high curing rate, is relatively inexpensive, and is compact.

本発明の不飽和第4級アンモニウム塩化合物を光硬化させる際は、光開始剤を添加しておく。光開始剤は、活性エネルギー線として電子線を用いる場合には特に必要はないが、紫外線を用いる場合には必要となる。光開始剤はアセトフェノン系、ベンゾイン系、ベンゾフェノン系、チオキサントン系等の通常のものから適宜選択すればよい。光開始剤のうち、市販の光開始剤としてはチバ・スペシャルティーケミカルズ社製、商品名Darocure1116、Darocure1173、IRGACURE184、IRGACURE369、IRGACURE500、IRGACURE651、IRGACURE754、IRGACURE819、IRGACURE907、IRGACURE1300、IRGACURE1800、IRGACURE1870、IRGACURE2959、IRGACURE4265、IRGACURE TPO、UCB社製、商品名ユベクリルP36、などを用いることができる。   When the unsaturated quaternary ammonium salt compound of the present invention is photocured, a photoinitiator is added. The photoinitiator is not particularly necessary when an electron beam is used as the active energy ray, but is necessary when ultraviolet rays are used. The photoinitiator may be appropriately selected from ordinary ones such as acetophenone, benzoin, benzophenone, and thioxanthone. Among the photoinitiators, commercially available photoinitiators are manufactured by Ciba Specialty Chemicals, Inc., trade names Darocure 1116, Darocure 1173, IRGACURE 184, IRGACURE 369, IRGACURE 500, IRGACURE 651, IRGACURE 754, IRGACURE 819, IRGACURE 129, IRGACURE 1800, IRGACURE IRGACURE TPO, manufactured by UCB, trade name Ubekrill P36, etc. can be used.

本発明の不飽和第4級アンモニウム塩化合物の帯電防止性や相溶性などの特性を阻害しない範囲で、顔料、染料、界面活性剤、ブロッキング防止剤、バインダー、架橋剤、酸化防止剤、紫外線吸収剤等の他の任意成分を併用してもよい。   As long as the properties such as antistatic properties and compatibility of the unsaturated quaternary ammonium salt compound of the present invention are not impaired, pigments, dyes, surfactants, antiblocking agents, binders, crosslinking agents, antioxidants, UV absorption You may use other arbitrary components, such as an agent, together.

本発明の帯電防止組成物を調製する際に、これらの組成成分の添加順序としては不飽和第4級アンモニウム塩化合物及び/又は該不飽和第4級アンモニウム塩化合物を構成成分とするオリゴマーもしくはポリマー、反応性希釈剤及び/又は有機溶媒、多官能(メタ)アクリレート又は/及び多官能(メタ)アクリルアミド、光重合開始剤、その他の添加剤の順に行うことが好ましい。 When preparing the antistatic composition of the present invention, the addition order of these composition components is an unsaturated quaternary ammonium salt compound and / or an oligomer or polymer containing the unsaturated quaternary ammonium salt compound as a constituent component. , Reactive diluent and / or organic solvent, polyfunctional (meth) acrylate or / and polyfunctional (meth) acrylamide, photopolymerization initiator, and other additives are preferably used in this order.

以下、実施例によって本発明をさらに説明するが、本発明はこれに限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention further, this invention is not limited to this.

なお、以下の実施例、比較例において、帯電防止組成物の特性評価は、以下の方法により行った。
(1)不飽和第4級アンモニウム塩化合物の定量方法
電位差自動滴定装置(装置名:AT−610 京都電子工業株式会社製)を用いて、濃度0.02mol/Lのテトラフェニルほう酸ナトリウム溶液(関東化学株式会社製)により滴定を行い、滴定量から第4級アンモニウム塩濃度を求める。
(2)塗装
厚さ100μmのポリエチレンテレフタラート(PET)フィルムをガラス製板(縦200×横200×厚さ5mm)の上に貼り付け、動かないように水平面に固定した。PETフィルムの先方の端に帯電防止ハードコート剤を帯状に滴下して、バーコーター(RDS60)で全体に均等な力がかかるように両端を押さえ、回転させずに同じ速さ(5cm/sec)で手前まで引いて塗装し、熱風乾燥機で80℃、3分の条件で溶媒を除去し、塗膜を得た。塗膜の付着状態を目視によって観察し、塗膜の形成性とべたつき性を評価した。
塗膜の形成性
◎:ハジキがなく、均一な塗装膜である;
○:ハジキが極めて僅にあるが、ほぼ均一な塗装膜である;
△:ハジキが幾分あるが、全体としてはほぼ均一な塗装膜である;
×:ハジキが多く、不均一な塗装膜である。
べたつき性
◎:ベタツキが全くない;
○:僅かにベタツキがある;
△:若干のベタツキがある;
×:明らかなベタツキがある。
(3)紫外線硬化
塗装面を上向きにして紫外線照射を行って硬化させ、帯電防止ハードコート膜を得た。紫外線硬化条件は、出力300W、単位当たり出力50W/cmの高圧水銀灯1本を設置した紫外線照射装置(オーク製作所 モデルOHD320M)を使用し、1秒当たりに紫外線エネルギーは10mJ/cmであるように試料板とランプの距離を調節した。塗膜の表面がベタつかなくなるまでに必要な照射時間を硬化時間として測定した。硬化後、各PETフィルム上の塗膜の透明性を目視によって観察し、下記方法により表面抵抗率測定、耐擦傷性試験、鉛筆硬度試験を行った。
硬化後塗膜の透明性
◎:透明で表面が平滑;
○:透明だが凹凸がある;
△:僅かな曇りや凹凸がある;
×:極度な曇りや凹凸がある
(4)表面抵抗率測定
型板 (縦110×横110mm) を用い、カッターナイフで帯電防止ハードコート膜を裁断し、温度25℃、相対湿度60%に調整した恒温恒室機に入れ、24時間静置し、表面抵抗率測定用試料を得た。JIS K 6911 に基づき、YOKOGAWA HEWLETT-PACKARD製HIGH RESISTANFE METER 4329Aを用いて測定を行った。
(5)耐擦傷性試験
スチールウールを#0000のスチールウールを用いて、200g/cmの荷重をかけながら帯電防止ハードコート膜の上で10往復させ、傷の発生の有無を評価した。
耐擦傷性評価
◎:膜の剥離や傷の発生がほとんど認められない;
○:膜にわずかな細い傷が認められる;
△:膜全面に筋状の傷が認められる;
×:膜の剥離が生じる。
(6)耐湿性試験
帯電防止ハードコート膜を40℃、90%RHの恒温槽内にて3日間保管し、膜の外観の変化を目視で評価した。
◎:外観に変化が無い;
○:白化などの外観変化が僅かに認められるが問題のないレベル;
△:白化などの外観変化が僅かに認められる;
×:白化などの外観変化が著しく認められる;
(7)鉛筆硬度試験
帯電防止ハードコート膜について、JIS K 5400 に基づき、鉛筆硬度試験を行った。
In the following examples and comparative examples, the characteristics of the antistatic composition were evaluated by the following methods.
(1) Method for quantifying unsaturated quaternary ammonium salt compound Using a potentiometric automatic titrator (device name: AT-610, manufactured by Kyoto Electronics Industry Co., Ltd.), a sodium tetraphenylborate solution having a concentration of 0.02 mol / L (Kanto) Titration is performed by Chemical Co., Ltd., and the quaternary ammonium salt concentration is determined from the titration amount.
(2) Coating A polyethylene terephthalate (PET) film having a thickness of 100 μm was stuck on a glass plate (length 200 × width 200 × thickness 5 mm) and fixed on a horizontal surface so as not to move. An antistatic hard coat agent is dropped in the form of a strip on the end of the PET film, and both ends are pressed with a bar coater (RDS60) so that a uniform force is applied to the entire film. The same speed (5 cm / sec) without rotation Then, the paint was pulled to the near side, and the solvent was removed at 80 ° C. for 3 minutes with a hot air dryer to obtain a coating film. The adhesion state of the coating film was visually observed to evaluate the film formability and stickiness.
Formability of coating film A: Uniform coating film without repelling;
○: There is very little repellency, but the coating film is almost uniform;
Δ: There is some repelling, but the coating film is almost uniform as a whole;
X: A lot of repelling and a non-uniform coating film.
Stickiness ◎: No stickiness at all;
○: Slightly sticky;
Δ: Slight stickiness;
X: There is clear stickiness.
(3) Ultraviolet curing The coated surface was directed upward and cured by ultraviolet irradiation to obtain an antistatic hard coat film. The ultraviolet curing condition is such that an ultraviolet irradiation device (Oak Seisakusho Model OHD320M) equipped with a high pressure mercury lamp with an output of 300 W and an output of 50 W / cm per unit is used, and the ultraviolet energy is 10 mJ / cm 2 per second. The distance between the sample plate and the lamp was adjusted. The irradiation time required until the surface of the coating film was not sticky was measured as the curing time. After curing, the transparency of the coating film on each PET film was visually observed, and surface resistivity measurement, scratch resistance test, and pencil hardness test were performed by the following methods.
Transparency of coating after curing ◎: Transparent and smooth surface;
○: Transparent but uneven
Δ: Slight cloudiness or unevenness;
X: Extremely cloudy or uneven (4) Surface resistivity measurement Using a template (length 110 x width 110 mm), the antistatic hard coat film is cut with a cutter knife and adjusted to a temperature of 25 ° C and a relative humidity of 60% The sample was placed in a thermostatic chamber and allowed to stand for 24 hours to obtain a sample for measuring surface resistivity. Based on JIS K 6911, measurement was performed using a HIGH RESISTANFE METER 4329A manufactured by Yokogawa HEWLETT-PACKARD.
(5) Scratch resistance test Using steel wool of # 0000, the steel wool was reciprocated 10 times on the antistatic hard coat film while applying a load of 200 g / cm 2 to evaluate the presence or absence of scratches.
Scratch resistance evaluation A: Almost no film peeling or scratches are observed;
○: slight thin scratches are observed on the membrane;
Δ: A streak is found on the entire surface of the membrane;
X: Peeling of the film occurs.
(6) Moisture resistance test The antistatic hard coat film was stored in a constant temperature bath at 40 ° C. and 90% RH for 3 days, and the change in the appearance of the film was visually evaluated.
A: No change in appearance;
○: A level in which a slight change in appearance such as whitening is observed but is not a problem;
Δ: Slight change in appearance such as whitening is observed;
×: Appearance change such as whitening is remarkably recognized;
(7) Pencil Hardness Test A pencil hardness test was performed on the antistatic hard coat film based on JIS K 5400.

不飽和第4級アンモニウム塩化合物の製造実施例である合成例、比較合成例を以下に示す。 Synthesis examples and comparative synthesis examples which are production examples of unsaturated quaternary ammonium salt compounds are shown below.

〈不飽和第4級アンモニウム塩化合物の合成〉
合成例1
窒素雰囲気下で、500mLの三つ口フラスコにN,N−ジメチルアミノエチルアクリレート(興人製:DMAEA)40g、酢酸エチル160gを加え、内温を30℃に調整、撹拌しながらトリフルオロメタンスルホン酸メチル45.4gを滴下し、反応温度30℃〜35℃で4級化反応を実施した。6時間後、反応液を取り出し、30℃、90torrでエバポレーターにより減圧濃縮を行った。ガスクロマトグラフ定量分析により、酢酸エチルは9.1%含有と確認した。続いて、35℃、常圧下にて4時間、10mL/minの流量で乾燥空気によりバブリングを行い、目的生成物であるアクリロイルオキシエチルトリメチルアンモニウムトリフルオロメタンスルホナートを室温で透明な液体として84.1g得た。ガスクロマトグラフにより、酢酸エチルは未検出(100ppm以下)、DMAEA1000ppm、トリフルオロメタンスルホン酸メチル未検出(100ppm以下)であった。また、電位差滴定で第4級アンモニウム塩濃度(該目的物の純度)を求めたところ、99.8%であった。収率は99.0%であった。元素分析では、実測値(C:35.07%、H:5.11%、N:4.38%)が理論値(C:35.18%、H:5.25%、N:4.56%)と一致した。イオンクロマトグラフにより、塩素イオン、ナトリウムイオン、カリウムイオン、リチウムイオン、カルシウムイオンを定量し、それぞれの含量は1ppm以下であった。
<Synthesis of unsaturated quaternary ammonium salt compound>
Synthesis example 1
Under a nitrogen atmosphere, 40 g of N, N-dimethylaminoethyl acrylate (manufactured by Kojin: DMAEA) and 160 g of ethyl acetate were added to a 500 mL three-necked flask, the internal temperature was adjusted to 30 ° C., and trifluoromethanesulfonic acid was stirred. 45.4 g of methyl was added dropwise, and a quaternization reaction was carried out at a reaction temperature of 30 ° C to 35 ° C. After 6 hours, the reaction solution was taken out and concentrated under reduced pressure using an evaporator at 30 ° C. and 90 torr. Gas chromatograph quantitative analysis confirmed that ethyl acetate contained 9.1%. Subsequently, bubbling was performed with dry air at a flow rate of 10 mL / min at 35 ° C. under normal pressure for 4 hours, and 84.1 g of the target product acryloyloxyethyltrimethylammonium trifluoromethanesulfonate was obtained as a transparent liquid at room temperature. Obtained. According to a gas chromatograph, ethyl acetate was not detected (100 ppm or less), DMAEA 1000 ppm, and methyl trifluoromethanesulfonate was not detected (100 ppm or less). Further, the quaternary ammonium salt concentration (purity of the target product) was determined by potentiometric titration and found to be 99.8%. The yield was 99.0%. In elemental analysis, measured values (C: 35.07%, H: 5.11%, N: 4.38%) are theoretical values (C: 35.18%, H: 5.25%, N: 4. 56%). Chlorine ions, sodium ions, potassium ions, lithium ions, and calcium ions were quantified by ion chromatography, and their contents were 1 ppm or less.

合成例2
窒素雰囲気下で、300mLの三つ口フラスコにN,N−ジメチルアミノエチルアクリレート(興人製:DMAEA)40g、酢酸ブチル110gを加え、内温を30℃に調整、撹拌しながらトリフルオロメタンスルホン酸メチル43.7gを滴下し、反応温度30℃〜35℃で4級化反応を実施した。5時間後、二層分離した下層の4級アンモニウム塩層を取り出し、40℃、5torrで減圧濃縮した。ガスクロマトグラフにより、酢酸ブチル10.5%を確認した。続いて、45℃、常圧下にて4時間、乾燥空気でバブリング(流量20ml/min)を行い、目的生成物アクリロイルオキシエチルトリメチルアンモニウムトリフルオロメタンスルホナートを室温において、透明な液体として80.1g得た。ガスクロマトグラフにより、酢酸ブチルは未検出(100ppm以下)、DMAEAは未検出(100ppm以下)、トリフルオロメタンスルホン酸メチルは未検出(100ppm以下)であった。電位差滴定で第4級アンモニウム塩濃度(該目的物の純度)を求めたところ、100%であった。また、収率は98.0%であった。元素分析では、実測値(C:35.22%、H:5.09%、N:4.35%)が理論値(C:35.18%、H:5.25%、N:4.56%)と一致した。イオンクロマトグラフにより、塩素イオン、ナトリウムイオン、カリウムイオン、リチウムイオン、カルシウムイオンを定量し、それぞれの含量は1ppm以下であった。
Synthesis example 2
Under a nitrogen atmosphere, 40 g of N, N-dimethylaminoethyl acrylate (manufactured by Kojin: DMAEA) and 110 g of butyl acetate were added to a 300 mL three-necked flask, the internal temperature was adjusted to 30 ° C., and trifluoromethanesulfonic acid was stirred. 43.7 g of methyl was added dropwise, and a quaternization reaction was carried out at a reaction temperature of 30 ° C to 35 ° C. After 5 hours, the lower quaternary ammonium salt layer separated into two layers was taken out and concentrated under reduced pressure at 40 ° C. and 5 torr. A gas chromatograph confirmed 10.5% butyl acetate. Subsequently, bubbling with dry air (flow rate 20 ml / min) was performed at 45 ° C. and normal pressure for 4 hours to obtain 80.1 g of the target product acryloyloxyethyltrimethylammonium trifluoromethanesulfonate as a transparent liquid at room temperature. It was. By gas chromatography, butyl acetate was not detected (100 ppm or less), DMAEA was not detected (100 ppm or less), and methyl trifluoromethanesulfonate was not detected (100 ppm or less). When the concentration of the quaternary ammonium salt (purity of the target product) was determined by potentiometric titration, it was 100%. The yield was 98.0%. In elemental analysis, measured values (C: 35.22%, H: 5.09%, N: 4.35%) are theoretical values (C: 35.18%, H: 5.25%, N: 4. 56%). Chlorine ions, sodium ions, potassium ions, lithium ions, and calcium ions were quantified by ion chromatography, and their contents were 1 ppm or less.

合成例3
窒素雰囲気下で、300mLの三つ口フラスコにN,N−ジメチルアミノエチルメタクリレート(和光純薬工業社製:DMAEMA)40g、酢酸ブチル110gを加え、内温を30℃に調整、撹拌しながらトリフルオロメタンスルホン酸メチル38gを滴下し、反応温度30℃〜35℃で4級化反応を実施した。2時間後、析出した結晶をろ過し、40℃、5torrで減圧乾燥した。ガスクロマトグラフにより、酢酸ブチル1.2%を確認した。続いて、85℃に加熱し、結晶を融解させ、常圧下にて3時間、乾燥空気でバブリング(流量50ml/min)を行い、目的生成物であるメタクリロイルオキシエチルトリメチルアンモニウムトリフルオロメタンスルホナートを室温において、サラサラした白色結晶として71.0gを得た。ガスクロマトグラフにより、酢酸ブチルは未検出(100ppm以下)、DMAMEAは200ppm、トリフルオロメタンスルホン酸メチルは未検出(100ppm以下)であった。電位差滴定で第4級アンモニウム塩濃度(該目的物の純度)を求めたところ、99.9%であった。また、収率は95.5%であった。元素分析では、実測値(C:37.29%、H:5.45%、N:4.37%)が理論値(C:37.38%、H:5.65%、N:4.36%)と一致した。イオンクロマトグラフにより、塩素イオン、ナトリウムイオン、カリウムイオン、リチウムイオン、カルシウムイオンを定量し、それぞれの含量は1ppm以下であった。
Synthesis example 3
Under a nitrogen atmosphere, 40 g of N, N-dimethylaminoethyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd .: DMAEMA) and 110 g of butyl acetate are added to a 300 mL three-necked flask, the internal temperature is adjusted to 30 ° C., and trifluoro is stirred. 38 g of methyl methanemethanesulfonate was added dropwise, and a quaternization reaction was carried out at a reaction temperature of 30 ° C to 35 ° C. After 2 hours, the precipitated crystals were filtered and dried under reduced pressure at 40 ° C. and 5 torr. The gas chromatograph confirmed butyl acetate 1.2%. Subsequently, the mixture was heated to 85 ° C. to melt the crystals, bubbled with dry air (flow rate 50 ml / min) for 3 hours under normal pressure, and the target product, methacryloyloxyethyltrimethylammonium trifluoromethanesulfonate, was cooled to room temperature. In this way, 71.0 g was obtained as white crystals that were smooth. By gas chromatography, butyl acetate was not detected (100 ppm or less), DMAMEA was 200 ppm, and methyl trifluoromethanesulfonate was not detected (100 ppm or less). When the concentration of the quaternary ammonium salt (purity of the target product) was determined by potentiometric titration, it was 99.9%. The yield was 95.5%. In elemental analysis, measured values (C: 37.29%, H: 5.45%, N: 4.37%) are theoretical values (C: 37.38%, H: 5.65%, N: 4. 36%). Chlorine ions, sodium ions, potassium ions, lithium ions, and calcium ions were quantified by ion chromatography, and their contents were 1 ppm or less.

合成例4
窒素雰囲気下で、300mLの三つ口フラスコにN,N−ジメチルアミノエチルアクリレート(興人製:DMAEA)40g、酢酸ブチル120gを加え、内温を30℃に調整、撹拌しながらトリフルオロメタンスルホン酸エチル47.4gを滴下し、反応温度30℃〜35℃で4級化反応を実施した。6時間後、二層分離した下層の4級アンモニウム塩層を取り出し、40℃、5torrで減圧濃縮した。ガスクロマトグラフの定量分析により、酢酸ブチルの残存量は9.7%と確認した。続いて、45℃、常圧下にて4時間、流量10ml/minの乾燥空気でバブリングを行い、目的生成物アクリロイルオキシエチルジメチルエチルアンモニウムトリフルオロメタンスルホナートを室温で透明な液体として82.8g得た。ガスクロマトグラフにより、酢酸ブチルは未検出(100ppm以下)、DMAEAは未検出(100ppm以下)、トリフルオロメタンスルホン酸エチルは未検出(100ppm以下)であった。電位差滴定で第4級アンモニウム塩濃度(該目的物の純度)を求めたところ、99.9%であった。また、収率は97.0%であった。元素分析では、実測値(C:37.25%、H:5.67%、N:4.18%)が理論値(C:37.38%、H:5.65%、N:4.36%)と一致した。イオンクロマトグラフにより、塩素イオン、ナトリウムイオン、カリウムイオン、リチウムイオン、カルシウムイオンを定量し、それぞれの含量は1ppm以下であった。
Synthesis example 4
Under a nitrogen atmosphere, 40 g of N, N-dimethylaminoethyl acrylate (manufactured by Kojin: DMAEA) and 120 g of butyl acetate were added to a 300 mL three-necked flask, the internal temperature was adjusted to 30 ° C., and trifluoromethanesulfonic acid was stirred. Ethyl 47.4g was dripped and the quaternization reaction was implemented at reaction temperature 30 degreeC-35 degreeC. After 6 hours, the lower quaternary ammonium salt layer separated into two layers was taken out and concentrated under reduced pressure at 40 ° C. and 5 torr. The residual amount of butyl acetate was confirmed to be 9.7% by quantitative analysis using a gas chromatograph. Subsequently, bubbling was performed with dry air at a flow rate of 10 ml / min at 45 ° C. under normal pressure for 4 hours to obtain 82.8 g of the target product acryloyloxyethyldimethylethylammonium trifluoromethanesulfonate as a transparent liquid at room temperature. . By gas chromatography, butyl acetate was not detected (100 ppm or less), DMAEA was not detected (100 ppm or less), and ethyl trifluoromethanesulfonate was not detected (100 ppm or less). When the concentration of the quaternary ammonium salt (purity of the target product) was determined by potentiometric titration, it was 99.9%. The yield was 97.0%. In elemental analysis, measured values (C: 37.25%, H: 5.67%, N: 4.18%) are theoretical values (C: 37.38%, H: 5.65%, N: 4. 36%). Chlorine ions, sodium ions, potassium ions, lithium ions, and calcium ions were quantified by ion chromatography, and their contents were 1 ppm or less.

合成例5
窒素雰囲気下で、300mLの三つ口フラスコにN,N−ジメチルアミノエチルメタクリレート(和光純薬工業社製:DMAEMA)40g、酢酸ブチル110gを加え、内温を30℃に調整、撹拌しながらトリフルオロメタンスルホン酸エチル43.2gを滴下し、反応温度30℃〜35℃で4級化反応を実施した。2時間後、析出した結晶をろ過し、40℃、5torrで減圧乾燥した。ガスクロマトグラフにより、酢酸ブチル1.6%を確認した。続いて、85℃に加熱し、結晶を融解させ、常圧下にて4時間、乾燥空気でバブリング(流量50mL/min)を行い、目的生成物であるメタクリロイルオキシエチルジメチルエチルアンモニウムトリフルオロメタンスルホナートを室温において、サラサラした白色結晶として76.4gを得た。ガスクロマトグラフにより、酢酸ブチルは未検出(100ppm以下)、DMAMEAは230ppm、トリフルオロメタンスルホン酸エチルは未検出(100ppm以下)であった。電位差滴定で第4級アンモニウム塩濃度(該目的物の純度)を求めたところ、99.8%であった。また、収率は96%であった。元素分析では、実測値(C:39.28%、H:5.99%、N:4.15%)が理論値(C:39.40%、H:6.01%、N:4.18%)と一致した。イオンクロマトグラフにより、塩素イオン、ナトリウムイオン、カリウムイオン、リチウムイオン、カルシウムイオンを定量し、それぞれの含量は1ppm以下であった。
Synthesis example 5
Under a nitrogen atmosphere, 40 g of N, N-dimethylaminoethyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd .: DMAEMA) and 110 g of butyl acetate are added to a 300 mL three-necked flask, the internal temperature is adjusted to 30 ° C., and trifluoro is stirred. 43.2 g of ethyl methane sulfonate was added dropwise, and a quaternization reaction was carried out at a reaction temperature of 30 ° C to 35 ° C. After 2 hours, the precipitated crystals were filtered and dried under reduced pressure at 40 ° C. and 5 torr. The gas chromatograph confirmed 1.6% of butyl acetate. Subsequently, the mixture was heated to 85 ° C. to melt the crystals, bubbled with dry air for 4 hours under normal pressure (flow rate: 50 mL / min), and the target product, methacryloyloxyethyldimethylethylammonium trifluoromethanesulfonate, was added. At room temperature, 76.4 g was obtained as white crystals that were smooth. By gas chromatography, butyl acetate was not detected (100 ppm or less), DMAMEA was 230 ppm, and ethyl trifluoromethanesulfonate was not detected (100 ppm or less). When the concentration of the quaternary ammonium salt (purity of the target product) was determined by potentiometric titration, it was 99.8%. The yield was 96%. In elemental analysis, measured values (C: 39.28%, H: 5.99%, N: 4.15%) are theoretical values (C: 39.40%, H: 6.01%, N: 4. 18%). Chlorine ions, sodium ions, potassium ions, lithium ions, and calcium ions were quantified by ion chromatography, and their contents were 1 ppm or less.

合成例6
窒素雰囲気下で、300mLの三つ口フラスコにN,N−ジメチルアミノエチルアクリレート(興人製:DMAEA)40g、酢酸ブチル110gを加え、内温を30℃に調整、撹拌しながらトリフルオロメタンスルホン酸メチル43.7gを滴下し、反応温度30℃〜35℃で4級化反応を実施した。5時間後、二層分離した下層の4級アンモニウム塩層を取り出し、40℃、5torrで減圧濃縮した。ガスクロマトグラフにより、酢酸ブチル10.5%を確認した。続いて、45℃、常圧下にて4時間、乾燥窒素でバブリングを行った。ガスクロマトグラフにより、酢酸ブチルは未検出(100ppm以下)、DMAEA1000ppm、トリフルオロメタンスルホン酸メチル未検出(100ppm以下)であった。この結果、アクリロイルオキシエチルトリメチルアンモニウムトリフルオロメタンスルホナートを透明液体として78.0g得た。電位差滴定で第4級アンモニウム塩濃度(該目的物の純度)を求めたところ、99.8%であった。また、収率は93.8%であった。元素分析では、実測値(C:35.13%、H:5.32%、N:4.55%)が理論値(C:35.18%、H:5.25%、N:4.56%)と一致した。イオンクロマトグラフにより、塩素イオン、ナトリウムイオン、カリウムイオン、リチウムイオン、カルシウムイオンを定量し、それぞれの含量は1ppm以下であった。
Synthesis Example 6
Under a nitrogen atmosphere, 40 g of N, N-dimethylaminoethyl acrylate (manufactured by Kojin: DMAEA) and 110 g of butyl acetate were added to a 300 mL three-necked flask, the internal temperature was adjusted to 30 ° C., and trifluoromethanesulfonic acid was stirred. 43.7 g of methyl was added dropwise, and a quaternization reaction was carried out at a reaction temperature of 30 ° C to 35 ° C. After 5 hours, the lower quaternary ammonium salt layer separated into two layers was taken out and concentrated under reduced pressure at 40 ° C. and 5 torr. A gas chromatograph confirmed 10.5% butyl acetate. Subsequently, bubbling was performed with dry nitrogen at 45 ° C. under normal pressure for 4 hours. By gas chromatograph, butyl acetate was not detected (100 ppm or less), DMAEA 1000 ppm, and methyl trifluoromethanesulfonate was not detected (100 ppm or less). As a result, 78.0 g of acryloyloxyethyltrimethylammonium trifluoromethanesulfonate was obtained as a transparent liquid. When the concentration of the quaternary ammonium salt (purity of the target product) was determined by potentiometric titration, it was 99.8%. The yield was 93.8%. In elemental analysis, measured values (C: 35.13%, H: 5.32%, N: 4.55%) are theoretical values (C: 35.18%, H: 5.25%, N: 4. 56%). Chlorine ions, sodium ions, potassium ions, lithium ions, and calcium ions were quantified by ion chromatography, and their contents were 1 ppm or less.

比較合成例1
500mLの三口フラスコにトリフルオロメタンスルホン酸ナトリウム54.7gをイオン交換水に250g溶解させ、トリフルオロメタンスルホン酸ナトリウム水溶液を調製した。この水溶液にアクリロイルオキシエチルトリメチルアンモニウムクロライド(興人製:DMAEA−Q)79%水溶液70gを35℃で1時間かけて滴下し、均一で透明な反応液を得た。続いて、酢酸エチル200gを加え、抽出を行った。抽出は3回行い、その後、酢酸エチル層を合せてエバポレーターにより濃縮した。電位差滴定で濃縮液中の第4級アンモニウム塩濃度を求めたところ、未検出であり、目的生成物は得られなかった。
Comparative Synthesis Example 1
In a 500 mL three-necked flask, 54.7 g of sodium trifluoromethanesulfonate was dissolved in ion-exchanged water to prepare an aqueous sodium trifluoromethanesulfonate solution. To this aqueous solution, 70 g of a 79% aqueous solution of acryloyloxyethyltrimethylammonium chloride (manufactured by Kojin: DMAEA-Q) was added dropwise at 35 ° C. over 1 hour to obtain a uniform and transparent reaction solution. Subsequently, 200 g of ethyl acetate was added for extraction. Extraction was performed three times, and then the ethyl acetate layers were combined and concentrated by an evaporator. When the concentration of the quaternary ammonium salt in the concentrate was determined by potentiometric titration, it was not detected, and the target product was not obtained.

比較合成例2
窒素雰囲気下で、1Lオートクレーブガラス容器にN,N−ジメチルアミノエチルアクリレート(興人製:DMAEA)200g、メタノール270gを加え、内温を30℃以下に調整し、撹拌しながら塩化メチルを注入し、4級化反応を実施した。
反応液中の残存遊離アミン(残存DMAEA)が0.3%以下になったところで反応液中の過剰の塩化メチルを減圧留去し、アクリロイルオキシエチルトリメチルアンモニウムクロライド(DMAEA−Q)50%含有メタノール液532g(収率98.3%)を得た。
続いて、500mLの三つ口フラスコに、トリフルオロメタンスルホン酸ナトリウム49.4g、メタノール200gを加え、該溶液を攪拌しながら、上記で合成したDMAEA−Q50%含有メタノール液100gを25℃で1時間をかけて滴下し、同時に白色結晶状固形物が析出した。滴下終了後、さらに25℃で2時間攪拌した後、結晶をろ過し、メタノールで洗浄した後、ろ液中のメタノールを減圧留去し、アクリロイルオキシエチルトリメチルアンモニウムトリフルオロメタンスルホナートを透明な液体として75.1g得た。電位差滴定で第4級アンモニウム塩濃度を求めたところ、該目的生成物の純度は88.7%、収率は83.9%であった。イオンクロマトグラフにより、塩素イオン、ナトリウムイオンを定量し、塩素イオン20800ppm、ナトリウムイオン2300ppmであった。
Comparative Synthesis Example 2
Under a nitrogen atmosphere, 200 g of N, N-dimethylaminoethyl acrylate (manufactured by Kojin: DMAEA) and 270 g of methanol are added to a 1 L autoclave glass container, the internal temperature is adjusted to 30 ° C. or less, and methyl chloride is injected while stirring. A quaternization reaction was carried out.
When the residual free amine (residual DMAEA) in the reaction solution became 0.3% or less, excess methyl chloride in the reaction solution was distilled off under reduced pressure, and methanol containing acryloyloxyethyltrimethylammonium chloride (DMAEA-Q) 50%. 532 g (yield 98.3%) of liquid was obtained.
Subsequently, 49.4 g of sodium trifluoromethanesulfonate and 200 g of methanol were added to a 500 mL three-necked flask, and 100 g of the methanol solution containing DMAEA-Q 50% synthesized above was stirred at 25 ° C. for 1 hour while stirring the solution. And a white crystalline solid was deposited at the same time. After completion of the dropwise addition, the mixture was further stirred at 25 ° C. for 2 hours, and then the crystals were filtered and washed with methanol. Then, methanol in the filtrate was distilled off under reduced pressure to make acryloyloxyethyltrimethylammonium trifluoromethanesulfonate as a transparent liquid. 75.1 g was obtained. When the quaternary ammonium salt concentration was determined by potentiometric titration, the purity of the target product was 88.7% and the yield was 83.9%. Chlorine ion and sodium ion were quantified by ion chromatography, and the chlorine ion was 20800 ppm and the sodium ion was 2300 ppm.

比較合成例3
1Lの三つ口フラスコにメタクリル酸2−アミノエチル塩酸塩(Aldrich社製)18.4g、アセトン500mLを加え、0℃のアイスバスで撹拌しながら、トリフルオロメタンスルホン酸メチル65.7gを滴下し、続いて炭酸カリウム83gを添加した。反応液を0℃に保ち、24時間撹拌後、アセトンを減圧留去し、懸濁した残渣を得た。得られた残渣にクロロホルム500mL、水500mLを加え、分液ロートで有機相を分離、減圧濃縮し、半固体状の生成物を得た。続いて、酢酸エチルを加え撹拌し、不溶な固形分をろ過で取り除き、ろ液を真空下で濃縮、乾燥することにより、淡黄色固体粉末を18.5g取得した。ガスクロマトグラフにより、酢酸エチルは2.3%含有し、又、トリフルオロメタンスルホン酸メチルとアセトンの反応で副生した多数の不純物の発生を確認した。電位差滴定でメタクリロイルオキシエチルトリメチルアンモニウムトリフルオロメタンスルホナートの純度を求めたところ、57.5%であった。収率は33.1%であった。
Comparative Synthesis Example 3
Add 18.4 g of 2-aminoethyl methacrylate hydrochloride (Aldrich) and 500 mL of acetone to a 1 L three-necked flask, and add 65.7 g of methyl trifluoromethanesulfonate dropwise with stirring in an ice bath at 0 ° C. Subsequently, 83 g of potassium carbonate was added. The reaction solution was kept at 0 ° C. and stirred for 24 hours, and then acetone was distilled off under reduced pressure to obtain a suspended residue. Chloroform 500 mL and water 500 mL were added to the obtained residue, and the organic phase was separated with a separatory funnel and concentrated under reduced pressure to obtain a semi-solid product. Subsequently, ethyl acetate was added and stirred, insoluble solids were removed by filtration, and the filtrate was concentrated and dried under vacuum to obtain 18.5 g of a pale yellow solid powder. The gas chromatograph contained 2.3% ethyl acetate, and the generation of many impurities by-produced by the reaction of methyl trifluoromethanesulfonate and acetone was confirmed. When the purity of methacryloyloxyethyltrimethylammonium trifluoromethanesulfonate was determined by potentiometric titration, it was 57.5%. The yield was 33.1%.

比較合成例4
窒素雰囲気下で、300mLの三つ口フラスコにN,N−ジメチルアミノエチルメタクリレート(和光純薬工業社製:DMAEMA)40g、ジクロロメタン120gを加え、内温を35℃に調整、撹拌しながらトリフルオロメタンスルホン酸メチル41.8gを滴下し、反応温度35〜40℃で4級化反応を実施した。8時間撹拌後、エバポレーターにより反応液を減圧濃縮し、半固体状生成物を52.5g取得した。ガスクロマトグラフにより、ジクロロメタンは7.4%、DMAEMA4.5%、トリフルオロメタンスルホン酸メチル由来の多数の不純物の発生を確認した。また、電位差滴定で第4級アンモニウム塩メタクリロイルオキシエチルトリメチルアンモニウムトリフルオロメタンスルホナートの純度を求めたところ、74.8%であった。また、収率は48.1%であった。イオンクロマトグラフにより塩素イオンを定量し、79000ppmであった。
Comparative Synthesis Example 4
Under a nitrogen atmosphere, 40 g of N, N-dimethylaminoethyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd .: DMAEMA) and 120 g of dichloromethane were added to a 300 mL three-necked flask, the internal temperature was adjusted to 35 ° C., and trifluoromethane was stirred. 41.8 g of methyl sulfonate was added dropwise, and a quaternization reaction was carried out at a reaction temperature of 35 to 40 ° C. After stirring for 8 hours, the reaction solution was concentrated under reduced pressure using an evaporator to obtain 52.5 g of a semi-solid product. The gas chromatograph confirmed the generation of a large number of impurities derived from 7.4% dichloromethane, 4.5% DMAEMA, and methyl trifluoromethanesulfonate. The purity of the quaternary ammonium salt methacryloyloxyethyltrimethylammonium trifluoromethanesulfonate was determined by potentiometric titration and found to be 74.8%. The yield was 48.1%. Chlorine ion was quantified by ion chromatography and found to be 79000 ppm.

合成例1〜6の結果から分かるように、本発明の合成方法によると、重合などのトラブルは発生せず、高純度、高収率で、目的の塩素イオンフリー、金属イオンフリー、且つ反応用有機溶媒を完全に除去した不飽和第4級アンモニウム塩化合物が取得できる。 As can be seen from the results of Synthesis Examples 1 to 6, according to the synthesis method of the present invention, no troubles such as polymerization occur, high purity and high yield, the target chloride ion free, metal ion free, and for reaction An unsaturated quaternary ammonium salt compound from which the organic solvent has been completely removed can be obtained.

一方、比較合成例1〜4の結果から、水溶液中で行われたアニオン交換反応にて実施した場合、目的の不飽和第4級アンモニウム塩化合物と副生する金属塩が共に水に溶解するため、不飽和第4級アンモニウム塩化合物を単離することが困難であると明らかになり、また、メタノール、アセトン、ジクロロメタンなどの有機溶媒中でアニオン交換反応又は酸エステルによる4級化反応を行っても、有機溶媒の残存、副生物の多数発生、塩素イオンと金属イオンの残存など多くの問題点があり、高収率で高純度の目的の不飽和第4級アンモニウム塩化合物を取得することができない。 On the other hand, from the results of Comparative Synthesis Examples 1 to 4, the target unsaturated quaternary ammonium salt compound and the by-product metal salt both dissolve in water when carried out in an anion exchange reaction performed in an aqueous solution. It was revealed that it was difficult to isolate an unsaturated quaternary ammonium salt compound, and an anion exchange reaction or an acid ester quaternization reaction was performed in an organic solvent such as methanol, acetone, or dichloromethane. However, there are many problems such as residual organic solvent, generation of by-products, residual chlorine ions and metal ions, and it is possible to obtain the desired unsaturated quaternary ammonium salt compound with high yield and high purity. Can not.

本発明の製造方法により得られた不飽和第4級アンモニウム塩化合物を組成物とする帯電防止剤とする実施例、比較例を以下に示す。 Examples and comparative examples in which an antistatic agent having an unsaturated quaternary ammonium salt compound obtained by the production method of the present invention as a composition are shown below.

実施例A−1
帯電防止ハードコート剤の作製
合成例1で合成したアクリロイルオキシエチルトリメチルアンモニウムトリフルオロメタンスルホナート23重量部をIPA120重量部に溶解してから、ペンタエリスリトールトリアクリレート(共栄社化学(株)社製:ライトアクリレートPE−3A)35重量部、光開始剤として、チバ・スペシャルティーケミカルズ社製、商品名Darocure1173 3重量部を加え、均一に混合し、紫外線硬化可能な帯電防止ハードコート剤を得た。その後、得られたハードコート剤を厚さ100μmのPETフィルムに塗装し、紫外線硬化を行い、帯電防止性ハードコートを作製した。
Example A-1
Preparation of Antistatic Hard Coating Agent After dissolving 23 parts by weight of acryloyloxyethyltrimethylammonium trifluoromethanesulfonate synthesized in Synthesis Example 1 in 120 parts by weight of IPA, pentaerythritol triacrylate (manufactured by Kyoeisha Chemical Co., Ltd .: Light acrylate) PE-3A) 35 parts by weight, 3 parts by weight of Ciba Specialty Chemicals, trade name Darocure 1173 as a photoinitiator were added and mixed uniformly to obtain an anti-static hard coat agent capable of ultraviolet curing. Thereafter, the obtained hard coat agent was applied to a PET film having a thickness of 100 μm and subjected to ultraviolet curing to produce an antistatic hard coat.

実施例A−2〜9、比較例A−10〜18
表1と表2に記載の組成に変えた以外は実施例A−1とで同様に帯電防止ハードコートを作製、評価した。
Examples A-2 to 9, Comparative Examples A-10 to 18
An antistatic hard coat was prepared and evaluated in the same manner as in Example A-1, except that the compositions shown in Tables 1 and 2 were used.

実施例B−1
〈ホモポリマー溶液の合成〉
撹拌翼、還流冷却器、ガス導入口を備えたフラスコに、合成例1で合成したアクリロイルオキシエチルトリメチルアンモニウムトリフルオロメタンスルホナート20重量部とアゾイソブチロニトリル(AIBN)0.2重量部をメタノール(MeOH)120重量部に混合溶解し、窒素気流下60℃で8時間重合し、第4級アンモニウム塩ホモポリマー溶液(a)を得た。
〈第4級アンモニウム塩ホモポリマー含有の帯電防止ハードコート剤の作製〉
第4級アンモニウム塩ホモポリマー溶液(a)10重量部に、ペンタエリスリトールトリアクリレート(共栄社化学社製:ライトアクリレートPE−3A)50重量部とジペンタエリスリトールヘキサアクリレート(共栄社化学社製:ライトアクリレートDPE−6A)50重量部、及び光開始剤として、チバ・スペシャルティーケミカルズ社製、商品名Darocure1173 3重量部を、IPAとメチルエチルケトン(MEK)の1:1重量比の混合溶媒120重量部に混合溶解して、紫外線硬化可能な4級塩ポリマー含有の帯電防止ハードコート剤を得た。その後、得られたハードコート剤を厚さ100μmのPETフィルムに塗装し、紫外線硬化を行い、帯電防止性ハードコートを作製した。
Example B-1
<Synthesis of homopolymer solution>
In a flask equipped with a stirring blade, a reflux condenser, and a gas inlet, 20 parts by weight of acryloyloxyethyltrimethylammonium trifluoromethanesulfonate synthesized in Synthesis Example 1 and 0.2 parts by weight of azoisobutyronitrile (AIBN) were added to methanol. (MeOH) was mixed and dissolved in 120 parts by weight and polymerized at 60 ° C. for 8 hours under a nitrogen stream to obtain a quaternary ammonium salt homopolymer solution (a).
<Preparation of antistatic hard coating agent containing quaternary ammonium salt homopolymer>
10 parts by weight of the quaternary ammonium salt homopolymer solution (a), 50 parts by weight of pentaerythritol triacrylate (Kyoeisha Chemical Co., Ltd .: Light Acrylate PE-3A) and dipentaerythritol hexaacrylate (Kyoeisha Chemical Co., Ltd .: Light Acrylate DPE) -6A) As a photoinitiator, 3 parts by weight of Ciba Specialty Chemicals, trade name Darocure 1173 as a photoinitiator was mixed and dissolved in 120 parts by weight of a 1: 1 solvent mixture of IPA and methyl ethyl ketone (MEK). Thus, an antistatic hard coat agent containing a quaternary salt polymer which can be cured by ultraviolet rays was obtained. Thereafter, the obtained hard coat agent was applied to a PET film having a thickness of 100 μm and subjected to ultraviolet curing to produce an antistatic hard coat.

実施例B−2
〈コポリマー溶液の合成〉
撹拌翼、還流冷却器、ガス導入口を備えたフラスコに、合成例1で合成したアクリロイルオキシエチルトリメチルアンモニウムトリフルオロメタンスルホナート10重量部、2−エチルヘキシルアクリレート(EHA)10重量部とAIBN 0.2重量部をIPA120重量部に混合溶解し、窒素気流下70℃で8時間重合し、第4級アンモニウム塩コポリマー溶液(b)を得た。
コポリマー溶液の合成におけるモノマーの配合比を表3に示す。
Example B-2
<Synthesis of copolymer solution>
In a flask equipped with a stirring blade, a reflux condenser, and a gas inlet, 10 parts by weight of acryloyloxyethyltrimethylammonium trifluoromethanesulfonate synthesized in Synthesis Example 1, 10 parts by weight of 2-ethylhexyl acrylate (EHA), and AIBN 0.2 Part by weight was mixed and dissolved in 120 parts by weight of IPA and polymerized at 70 ° C. for 8 hours under a nitrogen stream to obtain a quaternary ammonium salt copolymer solution (b).
Table 3 shows the mixing ratio of the monomers in the synthesis of the copolymer solution.

実施例B−2〜6、比較例B−7〜8
表4に記載の組成に変えた以外は実施例B−1と同様に帯電防止性ハードコートを作製、評価した。
Examples B-2 to 6, Comparative Examples B-7 to 8
An antistatic hard coat was prepared and evaluated in the same manner as in Example B-1, except that the composition shown in Table 4 was changed.

実施例と比較例のUV硬化性と塗膜の帯電防止性評価結果から、市販の不飽和第4級アンモニウム塩はアニオンとして塩素イオンを有するため、それから得られた塗膜はべとつき、透明性が悪く、また、それらの原因により均一な塗膜が得られず、耐擦傷性や硬度が低下し、帯電防止効果も低いことが分かった。さらに、不飽和第4級アンモニウム塩化合物中の金属イオン濃度が高い場合も、吸湿しやすくなるため、得られた帯電防止膜は耐湿性が悪く、塗膜の表面が白化するなどの問題が発生する。本発明の不飽和第4級アンモニウム塩化合物は、塩素イオンフリー、金属イオンフリー、有機溶媒含有せず、多官能モノマーや有機溶媒との相溶性が高く、特に帯電防止剤組成物中の非極性成分とも相溶するので、均一且つ透明な、着色しない帯電防止性塗膜が得られる。本発明の製造方法は簡便で、高純度の目的不飽和第4級アンモニウム塩化合物を高収率で取得できる。さらに、得られた高品質な不飽和第4級アンモニウム塩化合物は、UV硬化に要するエネルギーが少なく、透明性がよく、着色せず、高耐擦傷性、高硬度、高耐加水分解性を併せ持ち、優れた帯電防止効果が得られる。 From the results of evaluation of UV curability and antistatic property of the coating film of Examples and Comparative Examples, since the commercially available unsaturated quaternary ammonium salt has chlorine ions as anions, the coating film obtained therefrom is sticky and has transparency. It was found that a uniform coating film was not obtained due to these causes, the scratch resistance and hardness were lowered, and the antistatic effect was low. Furthermore, even when the metal ion concentration in the unsaturated quaternary ammonium salt compound is high, it becomes easy to absorb moisture, so that the resulting antistatic film has poor moisture resistance, causing problems such as whitening of the coating surface. To do. The unsaturated quaternary ammonium salt compound of the present invention is free of chloride ions, metal ions, does not contain organic solvents, has high compatibility with polyfunctional monomers and organic solvents, and is particularly nonpolar in antistatic agent compositions. Since it is compatible with the components, a uniform, transparent, non-colored antistatic coating can be obtained. The production method of the present invention is simple, and a high-purity target unsaturated quaternary ammonium salt compound can be obtained in high yield. Furthermore, the resulting high quality unsaturated quaternary ammonium salt compound requires less energy for UV curing, has good transparency, is not colored, has high scratch resistance, high hardness, and high hydrolysis resistance. Excellent antistatic effect can be obtained.

以上説明してきたように、本発明の不飽和第4級アンモニウム塩化合物は、常温、常圧でも十分な速度で高純度且つ高収率で製造することができる。また、塩素イオンフリー、金属イオンフリー、且つ有機溶媒を含有しないため、環境負荷が少なく、電子材料にも適用されると共に、他の多官能モノマーなどの帯電防止組成物及び有機溶媒との相溶性が良好である。この不飽和第4級アンモニウム塩化合物からなる帯電防止組成物を用いて形成される帯電防止層は、帯電防止性、透明性、耐擦傷性、高硬度、着色し難く、さらに耐湿性に優れる。本発明の不飽和第4級アンモニウム塩化合物からなる帯電防止層は、紫外線硬化型樹脂組成物、粘着剤組成物等の樹脂にあらかじめ添加して使用する場合などに好適に用いることができる。 As described above, the unsaturated quaternary ammonium salt compound of the present invention can be produced with high purity and high yield at a sufficient rate even at room temperature and normal pressure. In addition, it is free of chlorine ions, metal ions, and does not contain organic solvents, so it has low environmental impact, is applicable to electronic materials, and is compatible with antistatic compositions such as other polyfunctional monomers and organic solvents. Is good. The antistatic layer formed using the antistatic composition comprising this unsaturated quaternary ammonium salt compound is antistatic, transparent, scratch resistant, high in hardness, hardly colored, and has excellent moisture resistance. The antistatic layer comprising the unsaturated quaternary ammonium salt compound of the present invention can be suitably used when it is added in advance to a resin such as an ultraviolet curable resin composition or an adhesive composition.

Claims (4)

一般式(1)
(式中、Rは水素原子またはメチル基を、R及びRは各々独立に炭素数1〜3のアルキル基で互いに同一であっても異なっていてもよく、Rは炭素数1〜3のアルキル基又はアリール基を表し、Zは炭素数1〜3のアルキレン基を表す。)で表される不飽和第4級アンモニウム塩が有機溶媒中で、一般式(2)
(式中、Rは水素原子またはメチル基を、R及びRは各々独立に炭素数1〜3のアルキル基で互いに同一であっても異なっていてもよく、Zは炭素数1〜3のアルキレン基を表す。)で表される3級アミン化合物と、一般式(3)
(式中、Rは炭素数1〜3のアルキル基又はアリール基を表す。)で表されるトリフルオロメタンスルホン酸エステルとの4級化反応により合成されることを特徴とする不飽和第4級アンモニウム塩の製造方法であって、前記有機溶媒は、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチルから選ばれた少なくとも1種を用い、且つ、反応後有機溶媒の除去は不活性ガスバブリングにより行うことを特徴する不飽和第4級アンモニウム塩の製造方法。
General formula (1)
(In the formula, R 1 is a hydrogen atom or a methyl group, R 2 and R 3 are each independently an alkyl group having 1 to 3 carbon atoms, which may be the same as or different from each other, and R 4 has 1 carbon atom) An unsaturated quaternary ammonium salt represented by the general formula (2) in an organic solvent.
(In the formula, R 1 is a hydrogen atom or a methyl group, R 2 and R 3 are each independently an alkyl group having 1 to 3 carbon atoms, which may be the same as or different from each other; A tertiary amine compound represented by formula (3):
(Wherein R 4 represents an alkyl group having 1 to 3 carbon atoms or an aryl group) and is synthesized by a quaternization reaction with a trifluoromethanesulfonic acid ester represented by A method for producing a quaternary ammonium salt, wherein the organic solvent is at least one selected from methyl acetate, ethyl acetate, propyl acetate, and butyl acetate, and the organic solvent is removed by inert gas bubbling after the reaction. A process for producing an unsaturated quaternary ammonium salt, characterized in that it is carried out.
前記不飽和第4級アンモニウム塩を製造するにあたり、有機溶媒の除去は、不飽和第4級アンモニウム塩化合物の融点以上で不活性ガスバブリングにより行うことを特徴とする請求項1に記載の不飽和第4級アンモニウム塩の製造方法。 The unsaturated solvent according to claim 1, wherein in the production of the unsaturated quaternary ammonium salt, the organic solvent is removed by bubbling with an inert gas above the melting point of the unsaturated quaternary ammonium salt compound. A method for producing a quaternary ammonium salt. 前記不飽和第4級アンモニウム塩を製造するにあたり、有機溶媒の除去は常圧下の不活性ガスバブリングにより行うことを特徴とする請求項1又は請求項2に記載の不飽和第4級アンモニウム塩の製造方法。 3. The unsaturated quaternary ammonium salt according to claim 1, wherein the organic solvent is removed by inert gas bubbling under normal pressure when the unsaturated quaternary ammonium salt is produced. Production method. 前記不飽和第4級アンモニウム塩を製造するにあたり、不活性ガスとして、乾燥窒素、乾燥空気、乾燥ヘリウム、乾燥ネオン、乾燥アルゴン、乾燥クリプトン、乾燥キセノンと乾燥ラドンからなる、前記不飽和第4級アンモニウム塩と反応しない乾燥不活性ガス群から選ばれた少なくとも1種を用いることを特徴とする、請求項1乃至請求項3に記載の不飽和第4級アンモニウム塩の製造方法。 In producing the unsaturated quaternary ammonium salt, the unsaturated quaternary quaternary consisting of dry nitrogen, dry air, dry helium, dry neon, dry argon, dry krypton, dry xenon and dry radon as an inert gas. The method for producing an unsaturated quaternary ammonium salt according to any one of claims 1 to 3, wherein at least one selected from a dry inert gas group that does not react with the ammonium salt is used.
JP2011131756A 2011-06-14 2011-06-14 Process for producing unsaturated quaternary ammonium salt compound, and antistatic agent and antistatic composition comprising the same Active JP5881317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011131756A JP5881317B2 (en) 2011-06-14 2011-06-14 Process for producing unsaturated quaternary ammonium salt compound, and antistatic agent and antistatic composition comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011131756A JP5881317B2 (en) 2011-06-14 2011-06-14 Process for producing unsaturated quaternary ammonium salt compound, and antistatic agent and antistatic composition comprising the same

Publications (2)

Publication Number Publication Date
JP2013001654A JP2013001654A (en) 2013-01-07
JP5881317B2 true JP5881317B2 (en) 2016-03-09

Family

ID=47670587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011131756A Active JP5881317B2 (en) 2011-06-14 2011-06-14 Process for producing unsaturated quaternary ammonium salt compound, and antistatic agent and antistatic composition comprising the same

Country Status (1)

Country Link
JP (1) JP5881317B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6165621B2 (en) * 2013-03-29 2017-07-19 住友理工株式会社 Conductive composition for electrophotographic equipment and electroconductive roll for electrophotographic equipment using the same
JP6285164B2 (en) 2013-12-05 2018-02-28 デクセリアルズ株式会社 Compound, thermosetting resin composition, and thermosetting sheet
CN110402258B (en) * 2017-03-06 2021-11-30 Dic株式会社 Active energy ray-curable composition, cured product, and film
JP7232460B2 (en) * 2019-02-21 2023-03-03 Kjケミカルズ株式会社 Polymerizable dental resin composition
CN114044932A (en) * 2021-12-08 2022-02-15 江苏普清净化科技有限公司 Anti-static polymer film rolling material and preparation method thereof
CN115260930B (en) * 2022-07-21 2023-06-27 泉州森润煜辉反光材料有限公司 Production process of super-soft reflective fabric

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072753A (en) * 1993-06-17 1995-01-06 Takeda Chem Ind Ltd Production of half-blocked diisocyanate compound
JPH07267906A (en) * 1994-03-30 1995-10-17 Kohjin Co Ltd Production of aqueous solution of unsaturated quaternary ammonium salt
DE60125409T2 (en) * 2000-10-06 2007-09-27 Carnegie Mellon University POLYMERIZATION PROCESS FOR ION MONOMERS
JP5669373B2 (en) * 2009-06-05 2015-02-12 Kjケミカルズ株式会社 Quaternary cationic antistatic agent, antistatic composition containing the same and molded product
JP2013509619A (en) * 2009-10-30 2013-03-14 スリーエム イノベイティブ プロパティズ カンパニー Optical device with antistatic properties

Also Published As

Publication number Publication date
JP2013001654A (en) 2013-01-07

Similar Documents

Publication Publication Date Title
JP5881317B2 (en) Process for producing unsaturated quaternary ammonium salt compound, and antistatic agent and antistatic composition comprising the same
TW201731923A (en) Curable polymers
JP5669373B2 (en) Quaternary cationic antistatic agent, antistatic composition containing the same and molded product
KR100778755B1 (en) Crosslinkable resin compositions
CN101993512B (en) Process for preparing polyacrylates
TWI778029B (en) Curable-type composition
KR20210005005A (en) Polymer and oxygen absorber and resin composition using the same
CN103261237B (en) Prepare the method for radiation-hardenable composition
JP5885459B2 (en) Method for producing water-insoluble ionic vinyl monomer, and antistatic agent and antistatic composition comprising the same
JP5638250B2 (en) Antistatic agent and antistatic composition comprising unsaturated quaternary ammonium salt compound
JP6230256B2 (en) Acrylic pressure-sensitive adhesive, pressure-sensitive adhesive sheet, double-sided pressure-sensitive adhesive sheet, transparent electrode pressure-sensitive adhesive, touch panel and image display device, and method for producing a pressure-sensitive adhesive layer-containing laminate
JP2005179511A (en) Radically polymerizable coating material composition
JP2013227247A (en) Method of manufacturing water-insoluble ionic vinyl monomer, and antistatic agent and antistatic composition made thereof
JP2003002919A (en) Novel di(meth)acrylate and curable composition containing the same
JP6277381B2 (en) Glycidyl group-containing (meth) acrylamide
JP5821103B2 (en) Antistatic agent and antistatic composition comprising quaternary cationic vinyl monomer
JP4539003B2 (en) Novel di (meth) acrylate and curable composition containing the same
JP4253977B2 (en) Active energy ray-curable composition
JP2001172336A (en) Activated energy ray-curing type resin composition
JP2013159738A (en) Active energy ray-curable resin composition
JP2011140448A (en) Method for producing ionic vinyl monomer and antistatic agent and antistatic composition comprising the same
JP4086641B2 (en) Curable composition
JP2002003559A (en) Crosslinking resin composition
JP2011140455A (en) Method for producing ionic vinyl monomer and antistatic agent and antistatic composition comprising the same
JPH0465409A (en) Surface-modifying agent for polymeric material curable with actinic energy ray and production thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140117

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20140312

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160202

R150 Certificate of patent or registration of utility model

Ref document number: 5881317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250