JP5878046B2 - Turbo refrigerator and control method thereof - Google Patents

Turbo refrigerator and control method thereof Download PDF

Info

Publication number
JP5878046B2
JP5878046B2 JP2012056231A JP2012056231A JP5878046B2 JP 5878046 B2 JP5878046 B2 JP 5878046B2 JP 2012056231 A JP2012056231 A JP 2012056231A JP 2012056231 A JP2012056231 A JP 2012056231A JP 5878046 B2 JP5878046 B2 JP 5878046B2
Authority
JP
Japan
Prior art keywords
economizer
refrigerant
control valve
stage
liquid level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012056231A
Other languages
Japanese (ja)
Other versions
JP2013190151A (en
Inventor
遠藤 哲也
哲也 遠藤
入江 毅一
毅一 入江
Original Assignee
荏原冷熱システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荏原冷熱システム株式会社 filed Critical 荏原冷熱システム株式会社
Priority to JP2012056231A priority Critical patent/JP5878046B2/en
Priority to CN201320113337.4U priority patent/CN203203287U/en
Priority to CN201310079486.8A priority patent/CN103307795B/en
Publication of JP2013190151A publication Critical patent/JP2013190151A/en
Application granted granted Critical
Publication of JP5878046B2 publication Critical patent/JP5878046B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、エコノマイザを備えたターボ冷凍機に係り、特に多段圧縮エコノマイザサイクルを用いたターボ冷凍機及びその制御方法に関するものである。   The present invention relates to a turbo chiller including an economizer, and more particularly to a turbo chiller using a multistage compression economizer cycle and a control method thereof.

従来、冷凍空調装置などに利用されるターボ冷凍機は、冷媒を封入したクローズドシステムで構成され、冷水(被冷却流体)から熱を奪って冷媒が蒸発して冷凍効果を発揮する蒸発器と、前記蒸発器で蒸発した冷媒ガスを圧縮して高圧の冷媒ガスにする圧縮機と、高圧の冷媒ガスを冷却水(冷却流体)で冷却して凝縮させる凝縮器と、前記凝縮した冷媒を減圧して膨張させる膨張弁(膨張機構)とを、冷媒配管によって連結して構成されている。そして、圧縮機として冷媒ガスを多段の羽根車によって多段に圧縮する多段圧縮機を用いた場合は、凝縮器と蒸発器の間の冷媒配管中に設置した中間冷却器であるエコノマイザで生じる冷媒ガスを圧縮機の中間段(多段の羽根車の中間部分)に導入することが行われている(例えば、特許文献1)。   Conventionally, a turbo refrigerator used in a refrigeration air conditioner or the like is configured by a closed system in which a refrigerant is enclosed, an evaporator that takes heat from cold water (fluid to be cooled) and evaporates the refrigerant to exert a refrigeration effect; A compressor that compresses the refrigerant gas evaporated in the evaporator to form a high-pressure refrigerant gas; a condenser that cools and condenses the high-pressure refrigerant gas with cooling water (cooling fluid); and depressurizes the condensed refrigerant. An expansion valve (expansion mechanism) that is expanded by being connected by a refrigerant pipe. When a multistage compressor that compresses refrigerant gas in multiple stages with a multistage impeller is used as the compressor, the refrigerant gas generated in the economizer that is an intermediate cooler installed in the refrigerant pipe between the condenser and the evaporator Is introduced into an intermediate stage of the compressor (an intermediate part of a multistage impeller) (for example, Patent Document 1).

特開2009−236430号公報JP 2009-236430 A

上述したエコノマイザを備えたターボ冷凍機においては、エコノマイザで液冷媒と冷媒ガスとを分離し、分離した冷媒ガスを多段圧縮機の中間段(多段の羽根車の中間部分)に導入することにより冷凍サイクル全体としての冷凍効果を増加させている。エコノマイザを備えたターボ冷凍機を運転する場合、定格運転付近では凝縮器と蒸発器との間の圧力差が充分にあるため、冷媒は凝縮器からエコノマイザを経由して蒸発器に戻り、エコノマイザ内に液冷媒が滞留することはなく、エコノマイザの気液分離機能が有効に働く。   In the above-described turbo refrigerator equipped with the economizer, the liquid refrigerant and the refrigerant gas are separated by the economizer, and the separated refrigerant gas is introduced into the intermediate stage of the multistage compressor (intermediate part of the multistage impeller). The refrigeration effect as a whole cycle is increased. When operating a centrifugal chiller equipped with an economizer, there is a sufficient pressure difference between the condenser and the evaporator near the rated operation, so the refrigerant returns from the condenser to the evaporator via the economizer, The liquid refrigerant does not stay in the gas, and the gas-liquid separation function of the economizer works effectively.

しかしながら、冷凍機の運転開始時には、凝縮器と蒸発器との間の圧力差が生じないため、蒸発器への冷媒の戻りが悪くなり、エコノマイザ内に液冷媒が滞留することになる。
近年、冷凍機を小型化して設置スペースを小さくしたいという要請がますます高まり、エコノマイザについても可能な限り小型化を図るという傾向にある。そのため、冷凍機の運転開始時に、エコノマイザ内に滞留した液冷媒によってデミスタの機能が損なわれる場合もあり、エコノマイザの気液分離機能を充分に発揮できず、冷媒液滴が多段ターボ圧縮機の中間段(多段の羽根車の中間部分)に吸い込まれてしまう。すなわち、エコノマイザから多段ターボ圧縮機の中間段への冷媒液滴のキャリーオーバが起こるため、冷媒液滴が高速回転している羽根車に当たることになる。起動停止の頻度が高くなり、このような事態が長期間継続すると羽根車が侵食され、圧縮機の性能が低下してしまい、また圧縮機の安定した運転が不可能となるという問題がある。
However, at the start of operation of the refrigerator, there is no pressure difference between the condenser and the evaporator, so the return of the refrigerant to the evaporator worsens and the liquid refrigerant stays in the economizer.
In recent years, there has been an increasing demand for downsizing the refrigerator to reduce the installation space, and the economizer tends to be miniaturized as much as possible. For this reason, the function of the demister may be impaired by the liquid refrigerant remaining in the economizer at the start of operation of the refrigerator, the gas-liquid separation function of the economizer cannot be fully exhibited, and the refrigerant droplets are in the middle of the multistage turbo compressor. It is sucked into the stage (the middle part of the multistage impeller). That is, the refrigerant droplets carry over from the economizer to the intermediate stage of the multi-stage turbo compressor, so that the refrigerant droplets hit the impeller rotating at high speed. If the frequency of starting and stopping becomes high and such a situation continues for a long period of time, the impeller is eroded, the compressor performance is deteriorated, and the compressor cannot be stably operated.

本発明は、上述の事情に鑑みなされたもので、冷凍機の運転開始時にエコノマイザから多段圧縮機の中間段への冷媒液滴の吸込の発生を防止することができるターボ冷凍機及びその制御方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and a turbo chiller capable of preventing the refrigerant droplets from being sucked into the intermediate stage of the multistage compressor from the economizer when the operation of the refrigerator is started, and a control method therefor The purpose is to provide.

上述の目的を達成するため、本発明のターボ冷凍機は、被冷却流体から熱を奪って冷媒が蒸発し冷凍効果を発揮する蒸発器と、冷媒を多段の羽根車によって圧縮する多段ターボ圧縮機と、圧縮された冷媒ガスを冷却流体で冷却して凝縮させる凝縮器と、凝縮した冷媒液の一部を蒸発させて蒸発した冷媒ガスを前記多段ターボ圧縮機の多段圧縮段の中間部分に供給する中間冷却器であるエコノマイザとを備えたターボ冷凍機において、前記エコノマイザと前記多段ターボ圧縮機の多段圧縮段の中間部分とを連通する流路に設けられ、前記流路を開閉する制御弁と、前記エコノマイザの液位を計測する液位計測手段と、前記液位計測手段で得た液位に基づいて前記制御弁の開閉制御を行う制御装置とを備え、前記制御装置は、冷凍機の運転開始時には前記制御弁を閉じておき、運転開始から所定時間経過後に前記エコノマイザの液位が所定高さ以下である場合に前記制御弁を開く制御を行い、前記制御装置は、冷凍機の運転開始から所定時間経過後に前記エコノマイザの液位が前記所定高さを越えている場合であっても、前記凝縮器と前記蒸発器の圧力差が所定圧力以上であれば前記制御弁を開く制御を行うことを特徴とする。
エコノマイザは、液冷媒を貯留する容器状の貯留部の上部にデミスタを配置して構成されており、デミスタにより冷媒に含まれる液滴が分離され、液滴は容器状の貯留部に回収されるようになっている。しかしながら、冷凍機の運転開始時には、エコノマイザに液冷媒が滞留するため、液冷媒の液位がデミスタの下端または下端近傍まで到達し、デミスタの気液分離機能が損なわれる場合がある。エコノマイザの液面レベルは冷凍機の運転開始から所定時間後、例えば1〜2分後に定常のレベルに達するため、液面レベルは運転開始から所定時間後、例えば1〜2分後に計測を開始する。エコノマイザの液面レベルからデミスタの下端までの距離が所定距離(例えば、100mm)以上あれば、冷媒液滴のキャリーオーバはないため、制御弁を開き、エコノマイザサイクルの使用を開始する。
ここで、エコノマイザの液位が所定高さとは、エコノマイザの液面レベルからデミスタの下端までの距離が充分にあって(例えば、100mm以上)、エコノマイザから多段ターボ圧縮機への冷媒液滴のキャリーオーバが起こらない液面高さを云う。前記エコノマイザの液面レベルからデミスタの下端までの距離(例えば、100mm)は、実験的に求めた数値である。
本発明によれば、冷凍機の運転開始から所定時間経過後にエコノマイザの液位が所定高さを越えている場合であっても、凝縮器と蒸発器の圧力差(ΔP)が所定圧力以上であれば、冷媒液滴が多段ターボ圧縮機にキャリーオーバされる恐れがないので、制御弁を開き、エコノマイザサイクルの使用を開始する。前記所定圧力は、例えば、冷媒としてR134aを用いた場合には、0.2MPaである。
本発明の好ましい態様によれば、前記液位計測手段は、液面計からなることを特徴とする。
本発明のターボ冷凍機の制御方法は、被冷却流体から熱を奪って冷媒が蒸発し冷凍効果を発揮する蒸発器と、冷媒を多段の羽根車によって圧縮する多段ターボ圧縮機と、圧縮された冷媒ガスを冷却流体で冷却して凝縮させる凝縮器と、凝縮した冷媒液の一部を蒸発させて蒸発した冷媒ガスを前記多段ターボ圧縮機の多段圧縮段の中間部分に供給する中間冷却器であるエコノマイザと、前記エコノマイザと前記多段ターボ圧縮機の多段圧縮段の中間部分とを連通する流路に設けられ前記流路を開閉する制御弁とを備えたターボ冷凍機の制御方法であって、冷凍機の運転開始時には前記制御弁を閉じておき、運転開始から所定時間経過後に前記エコノマイザの液位が所定高さ以下である場合に前記制御弁を開き、冷凍機の運転開始から所定時間経過後に前記エコノマイザの液位が前記所定高さを越えている場合であっても、前記凝縮器と前記蒸発器の圧力差が所定圧力以上であれば前記制御弁を開くことを特徴とする。
本発明の好ましい態様によれば、前記エコノマイザの液位は、液面計により計測することを特徴とする。
In order to achieve the above-described object, a turbo refrigerator of the present invention includes an evaporator that takes heat from a fluid to be cooled and evaporates the refrigerant to exert a refrigeration effect, and a multistage turbo compressor that compresses the refrigerant using a multistage impeller. A condenser that cools and condenses the compressed refrigerant gas with a cooling fluid, and evaporates a part of the condensed refrigerant liquid to supply the evaporated refrigerant gas to an intermediate portion of the multistage compression stage of the multistage turbo compressor A turbo chiller including an economizer that is an intermediate cooler that is provided in a flow path that connects the economizer and an intermediate portion of a multistage compression stage of the multistage turbo compressor, and a control valve that opens and closes the flow path , A liquid level measuring means for measuring the level of the economizer, and a control device for controlling the opening and closing of the control valve based on the liquid level obtained by the liquid level measuring means . At the start of operation It is kept closed and the control valve performs control to open the control valve when the liquid level of the economizer from the start of operation after a predetermined period of time is equal to or less than the predetermined height, the control device, the start of the operation of the refrigerator Even if the liquid level of the economizer exceeds the predetermined height after a predetermined time has elapsed, the control valve is controlled to open if the pressure difference between the condenser and the evaporator is equal to or higher than a predetermined pressure. It is characterized by.
The economizer is configured by disposing a demister on the upper part of a container-like storage unit that stores liquid refrigerant. The demister separates droplets contained in the refrigerant, and the droplets are collected in the container-like storage unit. It is like that. However, since the liquid refrigerant stays in the economizer at the start of operation of the refrigerator, the liquid level of the liquid refrigerant reaches the lower end of the demister or near the lower end, and the gas-liquid separation function of the demister may be impaired. Since the level level of the economizer reaches a steady level after a predetermined time from the start of operation of the refrigerator, for example, 1-2 minutes, the liquid level is measured after a predetermined time, for example, 1-2 minutes after the start of operation. . If the distance from the liquid level of the economizer to the lower end of the demister is equal to or greater than a predetermined distance (for example, 100 mm), the refrigerant droplets do not carry over, so the control valve is opened and the use of the economizer cycle is started.
Here, the liquid level of the economizer is a predetermined height. The distance from the liquid level of the economizer to the lower end of the demister is sufficient (for example, 100 mm or more), and the refrigerant droplets carry from the economizer to the multistage turbo compressor. The liquid level that does not cause overflow. The distance (for example, 100 mm) from the liquid level of the economizer to the lower end of the demister is a numerical value obtained experimentally.
According to the present invention, the pressure difference (ΔP) between the condenser and the evaporator is not less than a predetermined pressure even when the liquid level of the economizer exceeds a predetermined height after a predetermined time has elapsed since the start of operation of the refrigerator. If there is, there is no fear that the refrigerant droplets are carried over to the multistage turbo compressor, so the control valve is opened and the use of the economizer cycle is started. The predetermined pressure is, for example, 0.2 MPa when R134a is used as the refrigerant.
According to a preferred aspect of the present invention, the liquid level measuring means comprises a liquid level gauge.
The turbo chiller control method of the present invention includes an evaporator that takes heat from a fluid to be cooled and evaporates the refrigerant to exert a refrigeration effect, a multistage turbo compressor that compresses the refrigerant with a multistage impeller, and a compressed A condenser that cools and condenses the refrigerant gas with a cooling fluid, and an intermediate cooler that evaporates a part of the condensed refrigerant liquid and supplies the evaporated refrigerant gas to an intermediate portion of the multistage compression stage of the multistage turbo compressor. A turbo chiller control method comprising: an economizer; and a control valve that opens and closes the flow path provided in a flow path that connects the economizer and an intermediate portion of a multistage compression stage of the multistage turbo compressor, When the operation of the refrigerator is started, the control valve is closed, and when the economizer liquid level is equal to or lower than the predetermined height after a predetermined time has elapsed from the start of operation, the control valve is opened, and a predetermined time has elapsed since the start of the operation of the refrigerator. Even when the liquid level of the economizer after exceeds the predetermined height, the pressure difference between the evaporator and the condenser, characterized in that opening the control valve as long as or greater than a predetermined pressure.
According to a preferred aspect of the present invention, the liquid level of the economizer is measured by a liquid level gauge.

本発明の実施形態によれば、被冷却流体から熱を奪って冷媒が蒸発し冷凍効果を発揮する蒸発器と、冷媒を多段の羽根車によって圧縮する多段ターボ圧縮機と、圧縮された冷媒ガスを冷却流体で冷却して凝縮させる凝縮器と、凝縮した冷媒液の一部を蒸発させて蒸発した冷媒ガスを前記多段ターボ圧縮機の多段圧縮段の中間部分に供給する中間冷却器であるエコノマイザとを備えたターボ冷凍機において、前記エコノマイザと前記多段ターボ圧縮機の多段圧縮段の中間部分とを連通する流路に設けられ、前記流路を開閉する制御弁と、前記凝縮器と前記蒸発器の圧力差を計測する差圧計測手段と、前記差圧計測手段で得た圧力差に基づいて前記制御弁の開閉制御を行う制御装置とを備え、前記制御装置は、冷凍機の運転開始時には前記制御弁を閉じておき、運転開始後に前記凝縮器と前記蒸発器の圧力差が所定圧力以上になったときに前記制御弁を開く制御を行う。
上記実施形態によれば、冷凍機の運転開始時には、エコノマイザと多段ターボ圧縮機とを接続する流路に設置された制御弁を閉じることにより、冷媒液滴が多段ターボ圧縮機の多段圧縮段の中間部分に吸い込まれる(キャリーオーバされる)ことがないように制御している。そして、運転開始後に凝縮器と蒸発器の圧力差が所定圧力以上になったときに制御弁を開く制御を行う。これは、冷凍機の運転開始後には、凝縮器と蒸発器の圧力差が増加してくるため、液冷媒がエコノマイザ内に滞留することなく蒸発器に戻り、エコノマイザから多段ターボ圧縮機の多段圧縮段の中間部分への冷媒液滴のキャリーオーバを防止することができるからである。
ここで、凝縮器と蒸発器の圧力差(ΔP)が所定圧力以上とは、例えば、冷媒としてR134aを用いた場合には、凝縮器と蒸発器の圧力差(ΔP)が0.2MPa以上である。前記所定圧力は、冷媒の種類によって異なるが、定常運転状態(例えば、蒸発温度6℃,凝縮温度38℃)における冷媒物性から定まる凝縮圧力と蒸発圧力との差を基準として、運転開始時であることを考慮して、蒸発温度および凝縮温度の温度差(例えば、13℃)に対応して冷媒物性から定まる凝縮圧力と蒸発圧力との差を求めることにより決定した値である。
According to an embodiment of the present invention, an evaporator that takes heat from a fluid to be cooled and evaporates the refrigerant to exert a refrigeration effect, a multistage turbo compressor that compresses the refrigerant with a multistage impeller, and a compressed refrigerant gas A condenser that cools and condenses the refrigerant with a cooling fluid, and an economizer that is an intermediate cooler that evaporates a part of the condensed refrigerant liquid and supplies the evaporated refrigerant gas to an intermediate portion of the multistage compression stage of the multistage turbo compressor And a control valve that opens and closes the flow path, the condenser, and the evaporation are provided in a flow path that communicates the economizer and an intermediate portion of the multi-stage compression stage of the multi-stage turbo compressor. Differential pressure measuring means for measuring the pressure difference of the container, and a control device for controlling the opening and closing of the control valve based on the pressure difference obtained by the differential pressure measuring means, the control device starts the operation of the refrigerator Sometimes the control valve Closed advance, performs control to open the control valve when the pressure difference between the evaporator and the condenser after the start of operation exceeds a predetermined pressure.
According to the above embodiment , at the start of the operation of the refrigerator, the refrigerant droplets in the multistage compression stage of the multistage turbo compressor are closed by closing the control valve installed in the flow path connecting the economizer and the multistage turbo compressor. It is controlled so that it is not sucked (carry over) into the middle part. Then, control is performed to open the control valve when the pressure difference between the condenser and the evaporator becomes equal to or higher than a predetermined pressure after the operation is started. This is because the pressure difference between the condenser and the evaporator increases after the start of operation of the refrigerator, so that the liquid refrigerant returns to the evaporator without staying in the economizer, and the multistage compression of the multistage turbo compressor from the economizer This is because it is possible to prevent the refrigerant droplets from being carried over to the middle part of the stage.
Here, the pressure difference (ΔP) between the condenser and the evaporator is equal to or higher than a predetermined pressure. For example, when R134a is used as the refrigerant, the pressure difference (ΔP) between the condenser and the evaporator is 0.2 MPa or more. is there. The predetermined pressure varies depending on the type of refrigerant, but is based on the difference between the condensation pressure and the evaporation pressure determined from the physical properties of the refrigerant in a steady operation state (for example, an evaporation temperature of 6 ° C. and a condensation temperature of 38 ° C.). In view of this, the value is determined by obtaining the difference between the condensation pressure and the evaporation pressure determined from the physical properties of the refrigerant corresponding to the temperature difference between the evaporation temperature and the condensation temperature (for example, 13 ° C.).

本発明の実施形態によれば、前記差圧計測手段は、前記凝縮器に設けた圧力計と前記蒸発器に設けた圧力計からなる。 According to an embodiment of the present invention, the differential pressure measuring means, ing from a pressure gauge provided in the evaporator and a pressure gauge provided in the condenser.

本発明の実施形態によれば、前記制御装置は、冷凍機の運転開始後に前記凝縮器と前記蒸発器の圧力差が所定圧力以上にならない場合であっても、運転開始から所定時間経過後に前記制御弁を開く制御を行う。
通常、ターボ冷凍機の運転開始後、短時間(1〜数分間)で凝縮器と蒸発器の圧力差(ΔP)は所定圧力(例えば、0.2MPa)以上になる。しかしながら、冷却水の温度が低すぎる場合などの例外的な条件下では、圧力差(ΔP)が所定圧力に達しない場合がある。この場合、制御弁を開いてエコノマイザサイクルを使用しても、冷凍負荷つまり冷媒循環量自体が少ないため、エコノマイザから多段ターボ圧縮機に冷媒液滴がキャリーオーバされる可能性はきわめて低い。そこで、本発明においては、冷凍機の運転開始から所定時間経過(例えば、30分経過)した場合には、制御弁を開き、エコノマイザサイクルの使用を開始する。
According to an embodiment of the present invention, the control device is configured such that, even when a pressure difference between the condenser and the evaporator does not become a predetermined pressure or more after the start of operation of the refrigerator, the control device It intends line control to open the control valve.
Usually, the pressure difference (ΔP) between the condenser and the evaporator becomes a predetermined pressure (for example, 0.2 MPa) or more in a short time (1 to several minutes) after the operation of the turbo refrigerator is started. However, under exceptional conditions such as when the temperature of the cooling water is too low, the pressure difference (ΔP) may not reach the predetermined pressure. In this case, even if the economizer cycle is used with the control valve opened, the refrigerant load, that is, the refrigerant circulation amount itself is small, so that the possibility that the refrigerant droplets carry over from the economizer to the multistage turbo compressor is extremely low. Therefore, in the present invention, when a predetermined time has elapsed (for example, 30 minutes have elapsed) since the start of operation of the refrigerator, the control valve is opened and the use of the economizer cycle is started.

本発明の実施形態によれば、前記エコノマイザの液位を計測する液位計測手段を備え、前記制御装置は、冷凍機の運転開始時には前記制御弁を閉じておき、運転開始から所定時間経過後に前記エコノマイザの液位が所定高さ以下である場合に前記制御弁を開く制御を行う。
本発明の実施形態によれば、前記エコノマイザから前記多段ターボ圧縮機の多段圧縮段の中間部分に供給される冷媒の温度を計測する温度計測手段を備え、前記制御装置は、冷凍機の運転中に前記制御弁を開いておき、運転中に前記温度計測手段で得た計測値が変動を繰り返すハンチングが起きたときに前記制御弁を閉じる制御を行う。
According to an embodiment of the present invention, it is provided with a liquid level measuring means for measuring the level of the economizer, and the control device closes the control valve at the start of operation of the refrigerator, and after a predetermined time has elapsed from the start of operation. intends line control of liquid level in said economizer opens the control valve when it is below a predetermined height.
According to an embodiment of the present invention, the economizer comprises temperature measuring means for measuring the temperature of the refrigerant supplied to the intermediate part of the multistage compression stage of the multistage turbo compressor, and the control device is operating the refrigerator have opened the control valve, it intends row control to close the control valve when the measured value obtained by the temperature measuring means during operation occurs hunting repeated variations.

本発明の実施形態によれば、被冷却流体から熱を奪って冷媒が蒸発し冷凍効果を発揮する蒸発器と、冷媒を多段の羽根車によって圧縮する多段ターボ圧縮機と、圧縮された冷媒ガスを冷却流体で冷却して凝縮させる凝縮器と、凝縮した冷媒液の一部を蒸発させて蒸発した冷媒ガスを前記多段ターボ圧縮機の多段圧縮段の中間部分に供給する中間冷却器であるエコノマイザとを備えたターボ冷凍機において、前記エコノマイザと前記多段ターボ圧縮機の多段圧縮段の中間部分とを連通する流路に設けられ、前記流路を開閉する制御弁と、前記エコノマイザから前記多段ターボ圧縮機の多段圧縮段の中間部分に供給される冷媒の温度を計測する温度計測手段と、前記温度計測手段で得た計測値に基づいて前記制御弁の開閉制御を行う制御装置を備え、前記制御装置は、冷凍機の運転中に前記制御弁を開いておき、運転中に前記温度計測手段で得た計測値が変動を繰り返すハンチングが起きたときに前記制御弁を閉じる制御を行う。 According to an embodiment of the present invention, an evaporator that takes heat from a fluid to be cooled and evaporates the refrigerant to exert a refrigeration effect, a multistage turbo compressor that compresses the refrigerant with a multistage impeller, and a compressed refrigerant gas A condenser that cools and condenses the refrigerant with a cooling fluid, and an economizer that is an intermediate cooler that evaporates a part of the condensed refrigerant liquid and supplies the evaporated refrigerant gas to an intermediate portion of the multistage compression stage of the multistage turbo compressor And a control valve that opens and closes the flow path, and is provided in a flow path that communicates the economizer and an intermediate portion of the multi-stage compression stage of the multi-stage turbo compressor, and from the economizer to the multi-stage turbo A temperature measuring means for measuring the temperature of the refrigerant supplied to an intermediate part of the multistage compression stage of the compressor, and a control device for performing opening / closing control of the control valve based on the measured value obtained by the temperature measuring means. , Wherein the control device, keep the control valve open during operation of the refrigerator, the line control to close the control valve when the measured value obtained by the temperature measuring means during operation occurs hunting repeating variation Yeah.

上記実施形態によれば、冷媒液滴のキャリーオーバが生じて多段ターボ圧縮機の多段圧縮段の中間部分に冷媒液滴が吸い込まれると、冷媒液滴が温度計測手段に当たることになる。すると、冷媒液滴は温度計測手段の表面で直ちに蒸発するため、検知温度が低下する。冷媒液滴は温度計測手段に繰り返し当たるため、温度計測値は変動を繰り返す、いわゆるハンチングを起こす。そこで、本発明においては、温度計測手段の計測値にハンチングが起きたときに、制御弁を閉じる。 According to the above embodiment , when the refrigerant droplets carry over and the refrigerant droplets are sucked into the intermediate portion of the multistage compression stage of the multistage turbo compressor, the refrigerant droplets hit the temperature measuring means. Then, since the refrigerant droplets are immediately evaporated on the surface of the temperature measuring means, the detected temperature is lowered. Since the refrigerant droplet repeatedly hits the temperature measuring means, the temperature measurement value repeatedly fluctuates, so-called hunting occurs. Therefore, in the present invention, the control valve is closed when hunting occurs in the measured value of the temperature measuring means.

本発明の実施形態によれば、前記温度計測手段は、前記多段ターボ圧縮機の多段圧縮段の中間部分に設置された温度センサからなる。 According to an embodiment of the present invention, the temperature measuring means, ing from a temperature sensor installed in the intermediate portion of the multi-stage compression stage of the multi-stage turbo compressor.

本発明の実施形態によれば、前記制御装置は、前記制御弁を閉じた後に、前記凝縮器と前記蒸発器の圧力差又は前記エコノマイザの液位が所定条件を満たしたときに前記制御弁を開く制御を行う。
上記実施形態によれば、制御弁を閉じた後に、凝縮器と蒸発器の圧力差又はエコノマイザの液位が所定条件を満たしたときには、冷媒液滴のキャリーオーバの恐れがなくなるので、制御弁を開き、エコノマイザサイクルの使用を開始する。
ここで、凝縮器と前記蒸発器の圧力差又は前記エコノマイザの液位が所定条件を満たしたときとは、制御弁を閉じたときに、凝縮器と蒸発器の圧力差(ΔP1)を測定するとともにエコノマイザの液位(H1)を測定し、その後、凝縮器と蒸発器の圧力差(ΔP2)が制御弁を閉じたときの圧力差(ΔP1)より所定圧力(例えば、0.05MPa)以上高くなっている場合又はエコノマイザの液位(H2)が制御弁を閉じたときのエコノマイザの液位(H1)より所定高さ(例えば、20mm)以上低くなっている場合である。前記所定圧力(例えば、0.05MPa)および前記所定高さ(例えば、20mm)は実験的に求めた数値である。
According to an embodiment of the present invention, after the control valve is closed, the control device controls the control valve when a pressure difference between the condenser and the evaporator or a liquid level of the economizer satisfies a predetermined condition. It intends line control to open.
According to the above embodiment , after the control valve is closed, when the pressure difference between the condenser and the evaporator or the liquid level of the economizer satisfies a predetermined condition, there is no risk of carryover of refrigerant droplets. Open and start using the economizer cycle.
Here, when the pressure difference between the condenser and the evaporator or the level of the economizer satisfies a predetermined condition, the pressure difference (ΔP1) between the condenser and the evaporator is measured when the control valve is closed. In addition, the level of the economizer (H1) is measured, and then the pressure difference (ΔP2) between the condenser and the evaporator is higher than the pressure difference (ΔP1) when the control valve is closed by a predetermined pressure (for example, 0.05 MPa) or more. The economizer liquid level (H2) is lower than the economizer liquid level (H1) when the control valve is closed by a predetermined height (for example, 20 mm) or more. The predetermined pressure (for example, 0.05 MPa) and the predetermined height (for example, 20 mm) are numerical values obtained experimentally.

本発明の実施形態によれば、被冷却流体から熱を奪って冷媒が蒸発し冷凍効果を発揮する蒸発器と、冷媒を多段の羽根車によって圧縮する多段ターボ圧縮機と、圧縮された冷媒ガスを冷却流体で冷却して凝縮させる凝縮器と、凝縮した冷媒液の一部を蒸発させて蒸発した冷媒ガスを前記多段ターボ圧縮機の多段圧縮段の中間部分に供給する中間冷却器であるエコノマイザと、前記エコノマイザと前記多段ターボ圧縮機の多段圧縮段の中間部分とを連通する流路に設けられ前記流路を開閉する制御弁とを備えたターボ冷凍機の制御方法であって、冷凍機の運転開始時には前記制御弁を閉じておき、運転開始後に前記凝縮器と前記蒸発器の圧力差が所定圧力以上になったときに前記制御弁を開く。 According to an embodiment of the present invention, an evaporator that takes heat from a fluid to be cooled and evaporates the refrigerant to exert a refrigeration effect, a multistage turbo compressor that compresses the refrigerant with a multistage impeller, and a compressed refrigerant gas A condenser that cools and condenses the refrigerant with a cooling fluid, and an economizer that is an intermediate cooler that evaporates a part of the condensed refrigerant liquid and supplies the evaporated refrigerant gas to an intermediate portion of the multistage compression stage of the multistage turbo compressor And a control method of a centrifugal chiller comprising a control valve provided in a flow path communicating the economizer and an intermediate portion of the multi-stage compression stage of the multi-stage turbo compressor, wherein the control valve opens and closes the flow path. at the start of the operation kept closed with the control valve, the control valve open when the pressure difference between the evaporator and the condenser after the start of operation exceeds a predetermined pressure.

本発明の実施形態によれば、前記凝縮器と前記蒸発器の圧力差は、前記凝縮器に設けた圧力計と前記蒸発器に設けた圧力計により計測する。
本発明の実施形態によれば、冷凍機の運転開始後に前記凝縮器と前記蒸発器の圧力差が所定圧力以上にならない場合であっても、運転開始から所定時間経過後に前記制御弁を開く。
According to an embodiment of the present invention, the pressure difference between the evaporator and the condenser, measured by a pressure gauge provided in the evaporator and a pressure gauge provided in the condenser.
According to an embodiment of the present invention, even when the pressure difference between the evaporator and the condenser after the start operation of the refrigerator is not higher than a predetermined pressure, rather the control valve from the start of operation after a predetermined period of time to open .

本発明の実施形態によれば、冷凍機の運転開始時には前記制御弁を閉じておき、運転開始から所定時間経過後に前記エコノマイザの液位が所定高さ以下である場合に前記制御弁を開く。
本発明の実施形態によれば、冷凍機の運転中に前記制御弁を開いておき、運転中に前記エコノマイザから前記多段ターボ圧縮機の多段圧縮段の中間部分に供給される冷媒の温度計測値が変動を繰り返すハンチングが起きたときに前記制御弁を閉じる。
According to an embodiment of the present invention, at the start operation of the refrigerator kept closed with the control valve, the control valve when the liquid level of the economizer from the start of operation after a predetermined period of time is equal to or less than the predetermined height Open .
According to an embodiment of the present invention, the control valve is opened during operation of the refrigerator, and the temperature measurement value of the refrigerant supplied from the economizer to the intermediate portion of the multistage compression stage of the multistage turbo compressor during operation. There it closes the control valve when the has occurred hunting repeated variations.

本発明の実施形態によれば、被冷却流体から熱を奪って冷媒が蒸発し冷凍効果を発揮する蒸発器と、冷媒を多段の羽根車によって圧縮する多段ターボ圧縮機と、圧縮された冷媒ガスを冷却流体で冷却して凝縮させる凝縮器と、凝縮した冷媒液の一部を蒸発させて蒸発した冷媒ガスを前記多段ターボ圧縮機の多段圧縮段の中間部分に供給する中間冷却器であるエコノマイザと、前記エコノマイザと前記多段ターボ圧縮機の多段圧縮段の中間部分とを連通する流路に設けられ前記流路を開閉する制御弁とを備えたターボ冷凍機の制御方法であって、冷凍機の運転中に前記制御弁を開いておき、運転中に前記エコノマイザから前記多段ターボ圧縮機の多段圧縮段の中間部分に供給される冷媒の温度計測値が変動を繰り返すハンチングが起きたときに前記制御弁を閉じる。 According to an embodiment of the present invention, an evaporator that takes heat from a fluid to be cooled and evaporates the refrigerant to exert a refrigeration effect, a multistage turbo compressor that compresses the refrigerant with a multistage impeller, and a compressed refrigerant gas A condenser that cools and condenses the refrigerant with a cooling fluid, and an economizer that is an intermediate cooler that evaporates a part of the condensed refrigerant liquid and supplies the evaporated refrigerant gas to an intermediate portion of the multistage compression stage of the multistage turbo compressor And a control method of a centrifugal chiller comprising a control valve provided in a flow path communicating the economizer and an intermediate portion of the multi-stage compression stage of the multi-stage turbo compressor, wherein the control valve opens and closes the flow path. When the control valve is opened during the operation, and during operation, hunting occurs in which the temperature measurement value of the refrigerant supplied from the economizer to the intermediate portion of the multistage compression stage of the multistage turbo compressor repeatedly fluctuates. It closes the serial control valve.

本発明の実施形態によれば、前記エコノマイザから前記多段ターボ圧縮機の多段圧縮段の中間部分に供給される冷媒の温度は、前記多段ターボ圧縮機の多段圧縮段の中間部分に設置された温度センサにより計測する。
本発明の実施形態によれば、前記制御弁を閉じた後に、前記凝縮器と前記蒸発器の圧力差又は前記エコノマイザの液位が所定条件を満たしたときに前記制御弁を開く。
According to the embodiment of the present invention, the temperature of the refrigerant supplied from the economizer to the intermediate part of the multistage compression stage of the multistage turbo compressor is the temperature set in the intermediate part of the multistage compression stage of the multistage turbo compressor. that be measured by the sensor.
According to an embodiment of the present invention, after closing the control valve, the control valve Open when liquid level in the pressure difference or the economizer of the evaporator and the condenser satisfies a predetermined condition.

本発明は、以下に列挙する効果を奏する。
(1)冷凍機の運転開始時にエコノマイザから多段ターボ圧縮機の多段圧縮段の中間部分に冷媒液滴がキャリーオーバされることがなく、冷媒液滴に起因する羽根車の侵食を回避することができる。したがって、長期間に亘って安定性があり且つ信頼性の高い冷凍機の運転を実現できる。
(2)冷凍機の運転中にエコノマイザから多段ターボ圧縮機への冷媒液滴のキャリーオーバが発生した場合に、エコノマイザと圧縮機との間の制御弁を閉止することにより、冷媒液滴のキャリーオーバを速やかに止めることができる。
The present invention has the following effects.
(1) The refrigerant droplets are not carried over from the economizer to the intermediate portion of the multistage compression stage of the multistage turbo compressor at the start of operation of the refrigerator, and the impeller erosion caused by the refrigerant droplets can be avoided. it can. Therefore, it is possible to realize the operation of the refrigerator that is stable and reliable over a long period of time.
(2) When a refrigerant droplet carryover from the economizer to the multi-stage turbo compressor occurs during operation of the refrigerator, the refrigerant droplet is carried by closing the control valve between the economizer and the compressor. Over can be stopped quickly.

図1は、本発明に係るターボ冷凍機の一実施形態を示す模式図である。FIG. 1 is a schematic diagram showing an embodiment of a turbo refrigerator according to the present invention. 図2(a),(b),(c)は、ターボ冷凍機の運転開始時および運転中に本発明の制御方法に基づいて制御装置により実施される制御手順を示すフローチャートである。FIGS. 2A, 2B, and 2C are flowcharts showing a control procedure performed by the control device based on the control method of the present invention at the start and during operation of the turbo chiller.

以下、本発明に係るターボ冷凍機及びその制御方法の実施形態を図1および図2を参照して説明する。図1および図2において、同一または相当する構成要素には、同一の符号を付して重複した説明を省略する。
図1は、本発明に係るターボ冷凍機の一実施形態を示す模式図である。図1に示す実施形態においては、二段圧縮単段エコノマイザサイクルを用いたターボ冷凍機について説明する。図1に示すように、ターボ冷凍機は、冷媒を圧縮する多段ターボ圧縮機TCと、圧縮された冷媒ガスを冷却水(冷却流体)で冷却して凝縮させる凝縮器4と、冷水(被冷却流体)から熱を奪って冷媒が蒸発し冷凍効果を発揮する蒸発器5と、凝縮器4と蒸発器5との間に配置される中間冷却器であるエコノマイザ6と、エコノマイザ6の前後に設置され凝縮冷媒を減圧して膨張させる膨張機構8,8とを備え、これら各機器を冷媒が循環する冷媒配管9によって連結して構成されている。
Hereinafter, an embodiment of a turbo refrigerator and a control method thereof according to the present invention will be described with reference to FIGS. 1 and 2. 1 and 2, the same or corresponding components are denoted by the same reference numerals, and redundant description is omitted.
FIG. 1 is a schematic diagram showing an embodiment of a turbo refrigerator according to the present invention. In the embodiment shown in FIG. 1, a turbo refrigerator using a two-stage compression single-stage economizer cycle will be described. As shown in FIG. 1, the turbo refrigerator includes a multi-stage turbo compressor TC that compresses refrigerant, a condenser 4 that cools and condenses the compressed refrigerant gas with cooling water (cooling fluid), and cold water (cooled). Installed in front of and behind the economizer 6, an evaporator 5 that takes heat from the fluid) and evaporates the refrigerant to exert a refrigeration effect, an economizer 6 that is an intermediate cooler disposed between the condenser 4 and the evaporator 5 And an expansion mechanism 8 for depressurizing and expanding the condensed refrigerant, and these devices are connected by a refrigerant pipe 9 through which the refrigerant circulates.

図1に示す実施形態においては、多段ターボ圧縮機TCは、二段ターボ圧縮機からなり、一段目圧縮機1と、二段目圧縮機2と、これらの圧縮機1,2を駆動する圧縮機モータ3とから構成されている。一段目圧縮機1の吐出側と二段目圧縮機2の吸込側とは、流路10によって接続されている。多段ターボ圧縮機TCにおいては、蒸発器5から一段目圧縮機1に導入された冷媒ガスは一段目圧縮機1により一段目の圧縮が行われ、次に流路10によって二段目圧縮機2に導入された冷媒ガスは二段目圧縮機2により二段目の圧縮が行われ、その後、凝縮器4に送られる。   In the embodiment shown in FIG. 1, the multi-stage turbo compressor TC is a two-stage turbo compressor, and the first-stage compressor 1, the second-stage compressor 2, and the compression that drives these compressors 1 and 2. And a machine motor 3. The discharge side of the first stage compressor 1 and the suction side of the second stage compressor 2 are connected by a flow path 10. In the multistage turbo compressor TC, the refrigerant gas introduced from the evaporator 5 into the first stage compressor 1 is compressed by the first stage by the first stage compressor 1, and then the second stage compressor 2 by the flow path 10. The refrigerant gas introduced into is compressed in the second stage by the second stage compressor 2 and then sent to the condenser 4.

また、エコノマイザ6と前記流路10とは流路11によって接続されており、エコノマイザ6で分離された冷媒ガスは多段ターボ圧縮機TCの多段の圧縮段(この例では2段)の中間部分(この例では一段目と二段目の間の部分)に導入されるようになっている。エコノマイザ6と多段ターボ圧縮機TCとを接続する流路11には、電動式の制御弁7が設けられており、エコノマイザ6から多段ターボ圧縮機TCの圧縮段への冷媒ガスの供給および供給停止が制御できるようになっている。   Further, the economizer 6 and the flow path 10 are connected by a flow path 11, and the refrigerant gas separated by the economizer 6 is an intermediate portion of the multistage compression stage (two stages in this example) of the multistage turbo compressor TC ( In this example, it is introduced into a portion between the first stage and the second stage). An electric control valve 7 is provided in a flow path 11 connecting the economizer 6 and the multistage turbo compressor TC, and supply and stop of supply of refrigerant gas from the economizer 6 to the compression stage of the multistage turbo compressor TC. Can be controlled.

図1に示すように構成されたターボ冷凍機の冷凍サイクルでは、多段ターボ圧縮機TCと凝縮器4と蒸発器5とエコノマイザ6とを冷媒が循環し、蒸発器5で得られる冷熱源で冷水が製造されて負荷に対応し、冷凍サイクル内に取り込まれた蒸発器5からの熱量および圧縮機モータ3から供給される多段ターボ圧縮機TCの仕事に相当する熱量が凝縮器4に供給される冷却水に放出される。一方、エコノマイザ6にて分離された冷媒ガスは多段ターボ圧縮機TCの多段圧縮段の中間部分に導入され、一段目圧縮機1からの冷媒ガスと合流して二段目圧縮機2により圧縮される。2段圧縮単段エコノマイザサイクルによれば、エコノマイザ6による冷凍効果部分が付加されるので、その分だけ冷凍効果が増加し、エコノマイザ6を設置しない場合に比べて冷凍効果の高効率化を図ることができる。   In the refrigeration cycle of the turbo chiller configured as shown in FIG. 1, the refrigerant circulates through the multistage turbo compressor TC, the condenser 4, the evaporator 5, and the economizer 6, and chilled water is generated by the cold heat source obtained by the evaporator 5. Is manufactured, corresponds to the load, and the amount of heat from the evaporator 5 taken into the refrigeration cycle and the amount of heat corresponding to the work of the multistage turbo compressor TC supplied from the compressor motor 3 are supplied to the condenser 4. Released into cooling water. On the other hand, the refrigerant gas separated by the economizer 6 is introduced into an intermediate portion of the multistage compression stage of the multistage turbo compressor TC, merged with the refrigerant gas from the first stage compressor 1 and compressed by the second stage compressor 2. The According to the two-stage compression single-stage economizer cycle, since the refrigeration effect portion by the economizer 6 is added, the refrigeration effect is increased by that amount, and the efficiency of the refrigeration effect is improved as compared with the case where the economizer 6 is not installed. Can do.

上述したように、エコノマイザ6を備えたターボ冷凍機は高効率の冷凍サイクルを構築できるものではあるが、冷凍機の運転開始時には、凝縮器4と蒸発器5との間の圧力差が生じないため、蒸発器5への冷媒の戻りが悪くなってエコノマイザ6内に液冷媒が滞留する。そのため、エコノマイザ6内に滞留した液冷媒によってデミスタの機能が損なわれる場合があり、エコノマイザ6の気液分離機能を充分に発揮できず、冷媒液滴が多段ターボ圧縮機TCの多段圧縮段の中間部分に吸い込まれてしまうという問題がある。   As described above, the turbo chiller provided with the economizer 6 can construct a highly efficient refrigeration cycle, but no pressure difference between the condenser 4 and the evaporator 5 occurs at the start of the operation of the refrigerator. For this reason, the return of the refrigerant to the evaporator 5 becomes worse and the liquid refrigerant stays in the economizer 6. For this reason, the function of the demister may be impaired by the liquid refrigerant staying in the economizer 6, the gas-liquid separation function of the economizer 6 cannot be sufficiently exhibited, and the refrigerant droplets are intermediate between the multistage compression stages of the multistage turbo compressor TC. There is a problem of being sucked into the part.

そのため、本発明においては、冷凍機の運転開始時には、エコノマイザ6と多段ターボ圧縮機TCとを接続する流路11に設置された制御弁7を閉じることにより、冷媒液滴が多段ターボ圧縮機TCの多段圧縮段の中間部分に吸い込まれる(キャリーオーバされる)ことがないように制御している。   Therefore, in the present invention, when the operation of the refrigerator is started, the control valve 7 installed in the flow path 11 connecting the economizer 6 and the multistage turbo compressor TC is closed, so that the refrigerant droplets are generated in the multistage turbo compressor TC. Is controlled so as not to be sucked into (carry over) the intermediate portion of the multi-stage compression stage.

次に、制御弁7の開閉を制御するための構成について説明する。
図1に示すように、凝縮器4および蒸発器5には、それぞれ圧力センサP1,圧力センサP2が設置されている。多段ターボ圧縮機TCの二段目圧縮機2の入口部には、二段目圧縮機の入口冷媒温度を計測する温度センサT1が設置されている。エコノマイザ6には、液面計LVが設置されている。圧力センサP1,圧力センサP2,温度センサT1および液面計LVは、それぞれ制御装置20に接続されている。また、制御弁7は制御装置20に接続されている。
Next, a configuration for controlling opening and closing of the control valve 7 will be described.
As shown in FIG. 1, the condenser 4 and the evaporator 5 are provided with a pressure sensor P1 and a pressure sensor P2, respectively. A temperature sensor T1 that measures the inlet refrigerant temperature of the second stage compressor is installed at the inlet of the second stage compressor 2 of the multistage turbo compressor TC. The economizer 6 is provided with a liquid level gauge LV. The pressure sensor P1, the pressure sensor P2, the temperature sensor T1, and the liquid level gauge LV are each connected to the control device 20. The control valve 7 is connected to the control device 20.

上述の構成により、圧力センサP1からの圧力信号S1、圧力センサP2からの圧力信号S2および液面計LVからの液面レベル信号S3は、それぞれ制御装置20に入力され、圧力信号S1,S2から凝縮器4と蒸発器5との間の圧力差(ΔP)が検知され、液面レベル信号S3からエコノマイザ6内の液冷媒の液面レベル(L)が検知される。また、温度センサT1からの温度信号S4は制御装置20に入力され、二段目圧縮機2の入口部冷媒温度が検知される。 With the above-described configuration, the pressure signal S1 from the pressure sensor P1, the pressure signal S2 from the pressure sensor P2, and the liquid level signal S3 from the liquid level gauge LV are input to the control device 20, respectively, from the pressure signals S1 and S2. The pressure difference (ΔP) between the condenser 4 and the evaporator 5 is detected, and the liquid level (L H ) of the liquid refrigerant in the economizer 6 is detected from the liquid level signal S3. Further, the temperature signal S4 from the temperature sensor T1 is input to the control device 20, and the inlet refrigerant temperature of the second stage compressor 2 is detected.

本発明においては、冷凍機の運転開始時には、エコノマイザ6と多段ターボ圧縮機TCとを接続する流路11に設置された制御弁7を閉じることにより、冷媒液滴が多段ターボ圧縮機TCの多段圧縮段の中間部分に吸い込まれる(キャリーオーバされる)ことがないように制御しているが、運転開始後に冷媒液滴が多段ターボ圧縮機TC側にキャリーオーバしない条件が整ったときに制御弁7を開き、エコノマイザサイクルを生かすように制御している。   In the present invention, at the start of the operation of the refrigerator, by closing the control valve 7 installed in the flow path 11 connecting the economizer 6 and the multistage turbo compressor TC, the refrigerant droplets become multistage of the multistage turbo compressor TC. The control valve is controlled so that it is not sucked into (carryed over) into the middle part of the compression stage, but the condition that the refrigerant droplets do not carry over to the multistage turbo compressor TC side after the start of operation is satisfied. 7 is controlled to make the best use of the economizer cycle.

次に、冷凍機の運転開始後に、制御弁7を開いてエコノマイザサイクルを使用するための条件について説明する。この条件は、実験によって求めたものである。
1)凝縮器4と蒸発器5の圧力差が所定圧力以上になった場合に制御弁7を開く。
標準的な運転状態(定常運転状態)を仮定して、冷媒としてR134aを用いた場合、蒸発器における蒸発温度を6℃、凝縮器における凝縮温度を38℃とすると、冷媒物性から蒸発圧力は0.362MPa、凝縮圧力は0.963MPaである。したがって、標準的な運転状態(定常運転状態)における凝縮器と蒸発器の圧力差(ΔP)≒0.6MPaである。
Next, conditions for opening the control valve 7 and using the economizer cycle after starting the operation of the refrigerator will be described. This condition was obtained by experiment.
1) Open the control valve 7 when the pressure difference between the condenser 4 and the evaporator 5 exceeds a predetermined pressure.
Assuming a standard operating state (steady operating state), when R134a is used as the refrigerant, if the evaporation temperature in the evaporator is 6 ° C. and the condensation temperature in the condenser is 38 ° C., the evaporation pressure is 0 due to the physical properties of the refrigerant. .362 MPa and the condensation pressure is 0.963 MPa. Therefore, the pressure difference (ΔP) between the condenser and the evaporator in the standard operation state (steady operation state) ≈0.6 MPa.

これに対して、運転開始時であることを考慮して、蒸発温度と凝縮温度の温度差を13℃とみると、蒸発器における蒸発温度を7℃、凝縮器における凝縮温度を20℃とすると、冷媒物性から蒸発圧力は0.375MPa、凝縮圧力は0.572MPaである。したがって、冷凍機の運転開始時における凝縮器と蒸発器の圧力差(ΔP)≒0.2MPaを導き出すことができる。すなわち、凝縮器と蒸発器の圧力差(ΔP)が0.2MPa以上であれば、液冷媒はエコノマイザ内に滞留することなく蒸発器に戻ると考えられる。   On the other hand, considering that it is at the start of operation, if the temperature difference between the evaporation temperature and the condensation temperature is 13 ° C, the evaporation temperature in the evaporator is 7 ° C and the condensation temperature in the condenser is 20 ° C. From the physical properties of the refrigerant, the evaporation pressure is 0.375 MPa and the condensation pressure is 0.572 MPa. Therefore, it is possible to derive a pressure difference (ΔP) ≈0.2 MPa between the condenser and the evaporator at the start of operation of the refrigerator. That is, if the pressure difference (ΔP) between the condenser and the evaporator is 0.2 MPa or more, it is considered that the liquid refrigerant returns to the evaporator without staying in the economizer.

そこで、本発明者らは、図1に示すように構成されたターボ冷凍機を用いて凝縮器と蒸発器の圧力差(ΔP)を確認しながら起動・停止実験を繰り返し行ったものである。この時、多段ターボ圧縮機TCの二段目圧縮機2に設置された温度センサT1により圧縮機の入口冷媒温度を計測するとともにエコノマイザ6と多段ターボ圧縮機TCとを接続する流路11に設けた覗き窓から冷媒液滴のキャリーオーバの有無を観測した。この場合、冷媒液滴のキャリーオーバが生じて二段目圧縮機2に冷媒液滴が吸い込まれると、冷媒液滴が二段目圧縮機2の入口部に設置された温度センサT1に当たることになる。すると、冷媒液滴は温度センサT1の表面で直ちに蒸発するため、検知温度が低下する。冷媒液滴は温度センサT1に繰り返し当たるため、温度計測値は変動を繰り返す、いわゆるハンチングを起こす。このハンチングは、所定温度以上(例えば、±0.5℃以上)の温度変化を短時間(例えば、5分)で繰り返すことである。すなわち、温度センサT1の計測値から、冷媒液滴のキャリーオーバを検知することができる。   Therefore, the present inventors repeatedly performed start / stop experiments while confirming the pressure difference (ΔP) between the condenser and the evaporator using a turbo refrigerator configured as shown in FIG. At this time, the temperature sensor T1 installed in the second stage compressor 2 of the multistage turbo compressor TC measures the refrigerant temperature at the inlet of the compressor, and is provided in the flow path 11 connecting the economizer 6 and the multistage turbo compressor TC. The presence or absence of carryover of refrigerant droplets was observed from the observation window. In this case, when the refrigerant droplet carryover occurs and the refrigerant droplet is sucked into the second stage compressor 2, the refrigerant droplet hits the temperature sensor T <b> 1 installed at the inlet of the second stage compressor 2. Become. Then, since the refrigerant droplets are immediately evaporated on the surface of the temperature sensor T1, the detected temperature is lowered. Since the refrigerant droplet repeatedly hits the temperature sensor T1, the temperature measurement value repeatedly fluctuates, so-called hunting occurs. This hunting is to repeat a temperature change above a predetermined temperature (for example, ± 0.5 ° C. or more) in a short time (for example, 5 minutes). That is, the carryover of the refrigerant droplet can be detected from the measured value of the temperature sensor T1.

このように、温度センサT1による圧縮機の入口冷媒温度の計測と覗き窓からの冷媒液滴のキャリーオーバの有無の観測とを行うことにより、凝縮器4と蒸発器5の圧力差(ΔP)が0.2MPa以上であれば、冷媒液滴のキャリーオーバがないことを確認した。すなわち、冷媒がR134aの場合には、冷凍機の運転開始後に凝縮器4と蒸発器5の圧力差(ΔP)が0.2MPa以上になったときに、制御弁7を開く制御を行うことにより、エコノマイザ6から多段ターボ圧縮機TCの多段圧縮段の中間部分への冷媒液滴のキャリーオーバを防止することができる。   Thus, the pressure difference (ΔP) between the condenser 4 and the evaporator 5 is measured by measuring the refrigerant temperature at the inlet of the compressor by the temperature sensor T1 and observing whether or not the refrigerant droplets carry over from the viewing window. Was 0.2 MPa or more, it was confirmed that there was no carryover of refrigerant droplets. That is, when the refrigerant is R134a, the control valve 7 is controlled to open when the pressure difference (ΔP) between the condenser 4 and the evaporator 5 becomes 0.2 MPa or more after the operation of the refrigerator is started. The carryover of the refrigerant droplets from the economizer 6 to the intermediate portion of the multistage compression stage of the multistage turbo compressor TC can be prevented.

2)エコノマイザ6の液位が所定高さ以下である場合に制御弁7を開く。
エコノマイザ6は、液冷媒を貯留する容器状の貯留部の上部にデミスタ12(図1参照)を配置して構成されており、デミスタにより冷媒に含まれる液滴が分離され、液滴は容器状の貯留部に回収されるようになっている。
しかしながら、冷凍機の運転開始時には、エコノマイザ6に液冷媒が滞留するため、液冷媒の液位がデミスタの下端または下端近傍まで到達し、デミスタの気液分離機能が損なわれる場合がある。
2) Open the control valve 7 when the level of the economizer 6 is below a predetermined height.
The economizer 6 is configured by disposing a demister 12 (see FIG. 1) on an upper part of a container-like storage unit that stores liquid refrigerant. The demister separates droplets contained in the refrigerant, and the droplets are in a container shape. It is collected in the storage part.
However, since the liquid refrigerant stays in the economizer 6 at the start of operation of the refrigerator, the liquid level of the liquid refrigerant reaches the lower end or near the lower end of the demister, and the gas-liquid separation function of the demister may be impaired.

そこで、本発明者らは、図1に示すように構成されたターボ冷凍機を用いてエコノマイザ6の液面レベルを液面計LVにより計測しながら起動・停止実験を繰り返し行ったものである。この時、多段ターボ圧縮機TCの二段目圧縮機2に設置された温度センサT1により圧縮機の入口冷媒温度を計測するとともにエコノマイザ6と多段ターボ圧縮機TCとを接続する流路11に設けた覗き窓から冷媒液滴のキャリーオーバの有無を観測した。エコノマイザ6の液面レベルは冷凍機の運転開始から所定時間後、例えば1〜2分後に定常のレベルに達する。そのため、液面レベルは運転開始後1〜2分後に計測を開始する。   Therefore, the present inventors have repeatedly performed start / stop experiments while measuring the liquid level of the economizer 6 with a liquid level gauge LV using a turbo refrigerator configured as shown in FIG. At this time, the temperature sensor T1 installed in the second stage compressor 2 of the multistage turbo compressor TC measures the refrigerant temperature at the inlet of the compressor, and is provided in the flow path 11 connecting the economizer 6 and the multistage turbo compressor TC. The presence or absence of carryover of refrigerant droplets was observed from the observation window. The liquid level of the economizer 6 reaches a steady level after a predetermined time from the start of operation of the refrigerator, for example, 1 to 2 minutes. Therefore, measurement of the liquid level starts 1 to 2 minutes after the start of operation.

このように、温度センサT1による圧縮機の入口冷媒温度の計測と覗き窓からの冷媒液滴のキャリーオーバの有無の観測とを行うことにより、エコノマイザ6の液面レベルからデミスタの下端までの距離が100mm以上あれば、冷媒液滴のキャリーオーバはないことを確認した。すなわち、エコノマイザ6の液面レベルからデミスタの下端までの距離が100mmであるときのエコノマイザ6の液位を上限液位と定義すれば、エコノマイザ6の液位が上限液位以下であれば、制御弁7を開く制御を行うことにより、エコノマイザ6から多段ターボ圧縮機TCの多段圧縮段の中間部分への冷媒液滴のキャリーオーバを防止することができる。   Thus, the distance from the liquid level of the economizer 6 to the lower end of the demister is measured by measuring the refrigerant temperature at the inlet of the compressor by the temperature sensor T1 and observing the presence or absence of carryover of refrigerant droplets from the viewing window. It was confirmed that there was no carryover of the refrigerant droplets when the thickness was 100 mm or more. That is, if the liquid level of the economizer 6 when the distance from the liquid level of the economizer 6 to the lower end of the demister is 100 mm is defined as the upper limit liquid level, the control is performed if the liquid level of the economizer 6 is equal to or lower than the upper limit liquid level. By performing control to open the valve 7, it is possible to prevent carryover of refrigerant droplets from the economizer 6 to the intermediate portion of the multistage compression stage of the multistage turbo compressor TC.

3)冷凍機の運転開始後に制御弁7を開いて二段圧縮単段エコノマイザサイクルを用いた定常運転中に温度センサT1の計測値がハンチングを起こした場合に、制御弁7を閉じる。
冷凍機の運転開始後に1)または2)の条件が整い、制御弁7を開いてエコノマイザサイクルを生かして定常運転を行っている時においても、デミスタの不具合等によりエコノマイザ6における気液分離機能が充分に発揮できず、冷媒液滴が多段ターボ圧縮機TCの中間段にキャリーオーバされる場合がある。その場合には、二段目圧縮機2の入口部に設置された温度センサT1の計測値がハンチングを起こすので、速やかに制御弁7を閉じる。
3) The control valve 7 is opened after the start of operation of the refrigerator, and the control valve 7 is closed when the measured value of the temperature sensor T1 causes hunting during steady operation using the two-stage compression single-stage economizer cycle.
Even when the conditions of 1) or 2) are met after the start of the operation of the refrigerator and the control valve 7 is opened and the steady operation is performed by utilizing the economizer cycle, the gas-liquid separation function in the economizer 6 is caused by a malfunction of the demister. In some cases, the refrigerant droplets cannot be sufficiently exhibited and carry over to the intermediate stage of the multistage turbo compressor TC. In that case, since the measured value of the temperature sensor T1 installed at the inlet of the second stage compressor 2 causes hunting, the control valve 7 is quickly closed.

図2(a),(b),(c)は、ターボ冷凍機の運転開始時および運転中に上記1)〜3)の制御方法に基づいて制御装置20により実施される制御手順を示すフローチャートである。
図2(a)は、上記1)の制御方法を用いたターボ冷凍機の運転開始時の制御手順を示すフローチャートである。図2(a)に示すように、ターボ冷凍機の運転を開始し、その後、凝縮器4と蒸発器5の圧力差(ΔP)が所定圧力以上になったか否かを判断する。圧力差(ΔP)が所定圧力以上である場合には、制御弁7を開き、エコノマイザサイクルの使用を開始する。この場合、所定圧力とは、冷媒の種類によって異なるが、R134aの場合には0.2MPaである。圧力差(ΔP)が所定圧力未満である場合には、運転開始から所定時間経過したか否かを判断する。運転開始から所定時間経過した場合には、制御弁7を開き、エコノマイザサイクルの使用を開始する。ここで、所定時間とは、例えば、30分であり、実験によって求めた時間である。運転開始から所定時間経過していない場合には、圧力差(ΔP)の判断ステップに戻る。
FIGS. 2A, 2B, and 2C are flowcharts showing a control procedure performed by the control device 20 based on the control methods 1) to 3) when the turbo chiller is started and during operation. It is.
FIG. 2A is a flowchart showing a control procedure at the start of operation of the centrifugal chiller using the control method of 1). As shown in FIG. 2A, the operation of the turbo chiller is started, and then it is determined whether or not the pressure difference (ΔP) between the condenser 4 and the evaporator 5 has become equal to or higher than a predetermined pressure. When the pressure difference (ΔP) is equal to or higher than the predetermined pressure, the control valve 7 is opened and the use of the economizer cycle is started. In this case, the predetermined pressure differs depending on the type of refrigerant, but in the case of R134a, it is 0.2 MPa. When the pressure difference (ΔP) is less than the predetermined pressure, it is determined whether or not a predetermined time has elapsed since the start of operation. When a predetermined time has elapsed from the start of operation, the control valve 7 is opened and the use of the economizer cycle is started. Here, the predetermined time is, for example, 30 minutes and is a time obtained by experiment. If the predetermined time has not elapsed since the start of operation, the process returns to the pressure difference (ΔP) determination step.

通常、ターボ冷凍機の運転開始後、短時間(1〜数分間)で圧力差(ΔP)は所定圧力(0.2MPa)以上になる。しかしながら、冷却水の温度が低すぎる場合などの例外的な条件下では、圧力差(ΔP)が所定圧力に達しない場合がある。この場合、冷凍負荷つまり冷媒循環量自体が少ないため、制御弁7を開いてエコノマイザサイクルを使用しても、エコノマイザ6から多段ターボ圧縮機TCに冷媒液滴がキャリーオーバされる可能性はきわめて低い。そこで、冷凍機の運転開始から所定時間経過(例えば、30分経過)した場合には、制御弁7を開き、エコノマイザサイクルの使用を開始する。   Usually, the pressure difference (ΔP) becomes a predetermined pressure (0.2 MPa) or more in a short time (1 to several minutes) after the operation of the turbo refrigerator is started. However, under exceptional conditions such as when the temperature of the cooling water is too low, the pressure difference (ΔP) may not reach the predetermined pressure. In this case, since the refrigeration load, that is, the refrigerant circulation amount itself is small, even when the control valve 7 is opened and the economizer cycle is used, the possibility that refrigerant droplets carry over from the economizer 6 to the multistage turbo compressor TC is extremely low. . Therefore, when a predetermined time has elapsed (for example, 30 minutes have elapsed) since the start of operation of the refrigerator, the control valve 7 is opened and the use of the economizer cycle is started.

図2(b)は、上記2)の制御方法を用いたターボ冷凍機の運転開始時の制御手順を示すフローチャートである。図2(b)に示すように、ターボ冷凍機の運転を開始して所定時間経過したら、エコノマイザ6の液位が前記上限液位以下であるか否かを判断する。エコノマイザ6の液位が上限液位以下である場合には、制御弁7を開き、エコノマイザサイクルの使用を開始する。エコノマイザ6の液位が上限液位を越えている場合には、凝縮器4と蒸発器5の圧力差(ΔP)が所定圧力以上になったか否かを判断する。圧力差(ΔP)が所定圧力以上である場合には、制御弁7を開き、エコノマイザサイクルの使用を開始する。この場合、所定圧力とは、冷媒の種類によって異なるが、R134aの場合には0.2MPaである。これは、エコノマイザ6の液位が高い場合でも凝縮器4と蒸発器5との圧力差が充分にあれば、冷媒液滴が多段ターボ圧縮機TCにキャリーオーバされる恐れがないからである。これに対して、圧力差(ΔP)が所定圧力未満である場合には、エコノマイザ6の液位判断のステップに戻る。   FIG. 2B is a flowchart showing a control procedure at the start of operation of the centrifugal chiller using the control method of 2). As shown in FIG. 2 (b), when a predetermined time has elapsed since the operation of the turbo refrigerator was started, it is determined whether or not the liquid level of the economizer 6 is equal to or lower than the upper limit liquid level. When the level of the economizer 6 is equal to or lower than the upper limit level, the control valve 7 is opened and the use of the economizer cycle is started. When the liquid level of the economizer 6 exceeds the upper limit liquid level, it is determined whether or not the pressure difference (ΔP) between the condenser 4 and the evaporator 5 exceeds a predetermined pressure. When the pressure difference (ΔP) is equal to or higher than the predetermined pressure, the control valve 7 is opened and the use of the economizer cycle is started. In this case, the predetermined pressure differs depending on the type of refrigerant, but in the case of R134a, it is 0.2 MPa. This is because even if the level of the economizer 6 is high, if there is a sufficient pressure difference between the condenser 4 and the evaporator 5, there is no possibility that the refrigerant droplets are carried over to the multistage turbo compressor TC. On the other hand, when the pressure difference (ΔP) is less than the predetermined pressure, the process returns to the level determination step of the economizer 6.

図2(c)は、上記3)の制御方法を用いたターボ冷凍機の運転中の制御手順を示すフローチャートである。冷凍機の運転開始後に図2(a)または図2(b)に示す条件が整い、制御弁7を開いてエコノマイザサイクルを生かして定常運転を行っている時においても、デミスタの不具合等によりエコノマイザ6における気液分離機能が充分に発揮できず、冷媒液滴が多段ターボ圧縮機TCの中間段にキャリーオーバされる場合がある。そこで、図2(c)に示すように、ターボ冷凍機の運転中、多段ターボ圧縮機TCの入口部に設置された温度センサT1の計測値がハンチングを起こしたか否かを判定し、ハンチングを起こした場合には制御弁7を閉じ、冷媒液滴のキャリーオーバを速やかに止める。そして、制御弁7を閉じたときに、凝縮器4と蒸発器5の圧力差(ΔP1)を測定するとともにエコノマイザ6の液位(H1)を測定する。その後、凝縮器4と蒸発器5の圧力差(ΔP2)が制御弁7を閉じたときの圧力差(ΔP1)より所定圧力(例えば、0.05MPa)以上高くなっているか否か又はエコノマイザ6の液位(H2)が制御弁7を閉じたときのエコノマイザ6の液位(H1)より所定高さ(例えば、20mm)以上低くなっているか否かを判定する。すなわち、次式の判定を行う。
ΔP2≧ΔP1+0.05MPa ・・・・・(1)
H2≦H1−20mm ・・・・・(2)
(1)式または(2)式を満たした場合には、エコノマイザ6から多段ターボ圧縮機TCへの冷媒液滴のキャリーオーバの恐れがなくなったため、制御弁7を開く。(1)式および(2)式のいずれも満たさない場合には、制御弁を閉止し続ける。
FIG.2 (c) is a flowchart which shows the control procedure in the driving | operation of the turbo refrigerator using the control method of said 3). Even when the conditions shown in FIG. 2 (a) or FIG. 2 (b) are satisfied after the start of the operation of the refrigerator and the control valve 7 is opened and the steady operation is performed by utilizing the economizer cycle, the economizer is caused by a malfunction of the demister. 6 may not sufficiently exhibit the gas-liquid separation function, and refrigerant droplets may be carried over to the intermediate stage of the multi-stage turbo compressor TC. Therefore, as shown in FIG. 2 (c), during the operation of the centrifugal chiller, it is determined whether the measured value of the temperature sensor T1 installed at the inlet of the multi-stage turbo compressor TC has caused hunting. When it occurs, the control valve 7 is closed, and the carryover of the refrigerant droplet is quickly stopped. When the control valve 7 is closed, the pressure difference (ΔP1) between the condenser 4 and the evaporator 5 is measured and the liquid level (H1) of the economizer 6 is measured. Thereafter, whether the pressure difference (ΔP2) between the condenser 4 and the evaporator 5 is higher than a pressure difference (ΔP1) when the control valve 7 is closed by a predetermined pressure (for example, 0.05 MPa) or not, or whether the economizer 6 It is determined whether or not the liquid level (H2) is lower than the liquid level (H1) of the economizer 6 when the control valve 7 is closed by a predetermined height (for example, 20 mm) or more. That is, the following equation is determined.
ΔP2 ≧ ΔP1 + 0.05 MPa (1)
H2 ≦ H1-20mm (2)
When the expression (1) or (2) is satisfied, the control valve 7 is opened because there is no risk of carryover of refrigerant droplets from the economizer 6 to the multistage turbo compressor TC. If neither the expression (1) nor the expression (2) is satisfied, the control valve is kept closed.

これまで本発明の実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術思想の範囲内において、種々の異なる形態で実施されてよいことは勿論である。   Although the embodiment of the present invention has been described so far, the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention may be implemented in various different forms within the scope of the technical idea.

1 一段目圧縮機
2 二段目圧縮機
3 圧縮機モータ
4 凝縮器
5 蒸発器
6 エコノマイザ
7 制御弁
8 膨張機構
10,11 流路
20 制御装置
LV 液面計
P1,P2 圧力センサ
T1 温度センサ
TC 多段ターボ圧縮機
DESCRIPTION OF SYMBOLS 1 1st stage compressor 2 2nd stage compressor 3 Compressor motor 4 Condenser 5 Evaporator 6 Economizer 7 Control valve 8 Expansion mechanism 10,11 Flow path 20 Control apparatus LV Level gauge P1, P2 Pressure sensor T1 Temperature sensor TC Multistage turbo compressor

Claims (4)

被冷却流体から熱を奪って冷媒が蒸発し冷凍効果を発揮する蒸発器と、冷媒を多段の羽根車によって圧縮する多段ターボ圧縮機と、圧縮された冷媒ガスを冷却流体で冷却して凝縮させる凝縮器と、凝縮した冷媒液の一部を蒸発させて蒸発した冷媒ガスを前記多段ターボ圧縮機の多段圧縮段の中間部分に供給する中間冷却器であるエコノマイザとを備えたターボ冷凍機において、
前記エコノマイザと前記多段ターボ圧縮機の多段圧縮段の中間部分とを連通する流路に設けられ、前記流路を開閉する制御弁と、
前記エコノマイザの液位を計測する液位計測手段と、
前記液位計測手段で得た液位に基づいて前記制御弁の開閉制御を行う制御装置とを備え、
前記制御装置は、冷凍機の運転開始時には前記制御弁を閉じておき、運転開始から所定時間経過後に前記エコノマイザの液位が所定高さ以下である場合に前記制御弁を開く制御を行い、
前記制御装置は、冷凍機の運転開始から所定時間経過後に前記エコノマイザの液位が前記所定高さを越えている場合であっても、前記凝縮器と前記蒸発器の圧力差が所定圧力以上であれば前記制御弁を開く制御を行うことを特徴とするターボ冷凍機。
An evaporator that draws heat from the fluid to be cooled and evaporates the refrigerant to exert a refrigeration effect, a multi-stage turbo compressor that compresses the refrigerant with a multi-stage impeller, and cools and compresses the compressed refrigerant gas with the cooling fluid In a turbo chiller comprising a condenser and an economizer that is an intermediate cooler that evaporates a part of the condensed refrigerant liquid and supplies the evaporated refrigerant gas to an intermediate portion of the multistage compression stage of the multistage turbo compressor,
A control valve provided in a flow path communicating the economizer and an intermediate portion of the multi-stage compression stage of the multi-stage turbo compressor, and opening and closing the flow path;
A liquid level measuring means for measuring the level of the economizer;
A control device that performs opening and closing control of the control valve based on the liquid level obtained by the liquid level measuring means,
Wherein the control device, leave at the beginning operation of the refrigerator closing the control valve, have row control to open the control valve when the liquid level of the economizer from the start of operation after a predetermined period of time is equal to or less than a predetermined height,
The control device is configured such that the pressure difference between the condenser and the evaporator is not less than a predetermined pressure even when the liquid level of the economizer exceeds the predetermined height after a predetermined time has elapsed since the start of operation of the refrigerator. turbo refrigerator according to claim row Ukoto control to open the control valve, if any.
前記液位計測手段は、液面計からなることを特徴とする請求項記載のターボ冷凍機。 The liquid level measuring means, a turbo refrigerator according to claim 1, characterized in that it consists of the liquid level gauge. 被冷却流体から熱を奪って冷媒が蒸発し冷凍効果を発揮する蒸発器と、冷媒を多段の羽根車によって圧縮する多段ターボ圧縮機と、圧縮された冷媒ガスを冷却流体で冷却して凝縮させる凝縮器と、凝縮した冷媒液の一部を蒸発させて蒸発した冷媒ガスを前記多段ターボ圧縮機の多段圧縮段の中間部分に供給する中間冷却器であるエコノマイザと、前記エコノマイザと前記多段ターボ圧縮機の多段圧縮段の中間部分とを連通する流路に設けられ前記流路を開閉する制御弁とを備えたターボ冷凍機の制御方法であって、
冷凍機の運転開始時には前記制御弁を閉じておき、運転開始から所定時間経過後に前記エコノマイザの液位が所定高さ以下である場合に前記制御弁を開き、
冷凍機の運転開始から所定時間経過後に前記エコノマイザの液位が前記所定高さを越えている場合であっても、前記凝縮器と前記蒸発器の圧力差が所定圧力以上であれば前記制御弁を開くことを特徴とするターボ冷凍機の制御方法。
An evaporator that draws heat from the fluid to be cooled and evaporates the refrigerant to exert a refrigeration effect, a multi-stage turbo compressor that compresses the refrigerant with a multi-stage impeller, and cools and compresses the compressed refrigerant gas with the cooling fluid A condenser, an economizer as an intermediate cooler for evaporating a part of the condensed refrigerant liquid and supplying the evaporated refrigerant gas to an intermediate portion of the multistage compression stage of the multistage turbo compressor, the economizer and the multistage turbo compression A turbo chiller control method comprising a control valve provided in a flow path communicating with an intermediate portion of a multi-stage compression stage of a machine and a control valve for opening and closing the flow path,
At the start operation of the refrigerator kept closed with the control valve,-out said control valve when the liquid level of the economizer from the start of operation after a predetermined period of time is equal to or less than the predetermined height open,
Even if the liquid level of the economizer exceeds the predetermined height after the elapse of a predetermined time since the start of operation of the refrigerator, the control valve if the pressure difference between the condenser and the evaporator is equal to or higher than a predetermined pressure. the method of the turbo chiller, wherein the open Kukoto.
前記エコノマイザの液位は、液面計により計測することを特徴とする請求項記載のターボ冷凍機の制御方法。 The turbo refrigerator control method according to claim 3 , wherein the level of the economizer is measured by a liquid level gauge.
JP2012056231A 2012-03-13 2012-03-13 Turbo refrigerator and control method thereof Active JP5878046B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012056231A JP5878046B2 (en) 2012-03-13 2012-03-13 Turbo refrigerator and control method thereof
CN201320113337.4U CN203203287U (en) 2012-03-13 2013-03-13 Turbine refrigerating machine
CN201310079486.8A CN103307795B (en) 2012-03-13 2013-03-13 Turborefrigerator and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012056231A JP5878046B2 (en) 2012-03-13 2012-03-13 Turbo refrigerator and control method thereof

Publications (2)

Publication Number Publication Date
JP2013190151A JP2013190151A (en) 2013-09-26
JP5878046B2 true JP5878046B2 (en) 2016-03-08

Family

ID=49133298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012056231A Active JP5878046B2 (en) 2012-03-13 2012-03-13 Turbo refrigerator and control method thereof

Country Status (2)

Country Link
JP (1) JP5878046B2 (en)
CN (2) CN103307795B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5878046B2 (en) * 2012-03-13 2016-03-08 荏原冷熱システム株式会社 Turbo refrigerator and control method thereof
JP2015105783A (en) * 2013-11-29 2015-06-08 荏原冷熱システム株式会社 Turbo refrigerator
JP2015194302A (en) * 2014-03-31 2015-11-05 荏原冷熱システム株式会社 turbo refrigerator
JP2015194301A (en) * 2014-03-31 2015-11-05 荏原冷熱システム株式会社 turbo refrigerator
JP2015194300A (en) * 2014-03-31 2015-11-05 荏原冷熱システム株式会社 turbo refrigerator
CN106766306A (en) * 2016-11-29 2017-05-31 天津商业大学 A kind of double stage compresses hot pump in low temp system
CN106958957A (en) * 2017-03-31 2017-07-18 丁金虎 The centrifugal frequency-changeable compressor group of three-level and control method
FR3072160B1 (en) * 2017-10-09 2019-10-04 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude REFRIGERATION DEVICE AND METHOD
US11754344B2 (en) * 2018-01-19 2023-09-12 Sumitomo Precision Products Co., Ltd. Boiling cooler
US11768014B2 (en) 2019-07-01 2023-09-26 Carrier Corporation Surge protection for a multistage compressor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56142359A (en) * 1980-04-09 1981-11-06 Hitachi Ltd Turbo refrigerating machine
JPH04313647A (en) * 1991-04-10 1992-11-05 Matsushita Electric Ind Co Ltd Heat pump type air conditioner
JPH08152210A (en) * 1994-11-29 1996-06-11 Hitachi Ltd Refrigerating apparatus
JPH0979667A (en) * 1995-09-19 1997-03-28 Denso Corp Gas injection type refrigerating cycle equipment
JPH09303885A (en) * 1996-05-08 1997-11-28 Mitsubishi Heavy Ind Ltd Refrigerating and air conditioning device
WO2005119141A1 (en) * 2004-05-28 2005-12-15 York International Corporation System and method for controlling an economizer circuit
CN1299084C (en) * 2004-07-01 2007-02-07 清华大学 Double temperature cold water unit for air conditioning system
JP2009150594A (en) * 2007-12-19 2009-07-09 Mitsubishi Heavy Ind Ltd Refrigeration device
EP2075519B1 (en) * 2007-12-26 2017-11-15 LG Electronics Inc. Air Conditoning system
JP5642448B2 (en) * 2010-08-02 2014-12-17 三菱重工業株式会社 Flow rate estimation device, heat source unit, and flow rate estimation method
JP5878046B2 (en) * 2012-03-13 2016-03-08 荏原冷熱システム株式会社 Turbo refrigerator and control method thereof

Also Published As

Publication number Publication date
CN203203287U (en) 2013-09-18
CN103307795B (en) 2016-11-16
JP2013190151A (en) 2013-09-26
CN103307795A (en) 2013-09-18

Similar Documents

Publication Publication Date Title
JP5878046B2 (en) Turbo refrigerator and control method thereof
EP2339266B1 (en) Refrigerating apparatus
KR101220583B1 (en) Freezing device
KR101220707B1 (en) Freezing device
WO2013073064A1 (en) Refrigeration unit
KR101220741B1 (en) Freezing device
KR101220663B1 (en) Freezing device
JP5759076B2 (en) Refrigeration equipment
KR101190317B1 (en) Freezing device
KR101332478B1 (en) Freezing device
JP6097109B2 (en) Turbo refrigerator
JP2014089021A (en) Freezing apparatus
JP5502460B2 (en) Refrigeration equipment
KR101268207B1 (en) Freezing device
JP5914806B2 (en) Refrigeration equipment
JP6001997B2 (en) Turbo refrigerator
JP2012102970A (en) Refrigerating cycle device
JP2014159950A (en) Freezer
JP2017172923A (en) Refrigerating device
KR20160101414A (en) Cooling system using Liquid Pressure Amplification pump
US20230251003A1 (en) Refrigeration apparatus
EP3872419A1 (en) Refrigeration apparatus
JP2016205643A (en) Cooling device
JP2011137556A (en) Refrigerating apparatus
JP2007101179A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160127

R150 Certificate of patent or registration of utility model

Ref document number: 5878046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250