JP2015194301A - turbo refrigerator - Google Patents

turbo refrigerator Download PDF

Info

Publication number
JP2015194301A
JP2015194301A JP2014072680A JP2014072680A JP2015194301A JP 2015194301 A JP2015194301 A JP 2015194301A JP 2014072680 A JP2014072680 A JP 2014072680A JP 2014072680 A JP2014072680 A JP 2014072680A JP 2015194301 A JP2015194301 A JP 2015194301A
Authority
JP
Japan
Prior art keywords
expansion valve
economizer
condenser
refrigerant
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014072680A
Other languages
Japanese (ja)
Inventor
遠藤 哲也
Tetsuya Endo
哲也 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Refrigeration Equipment and Systems Co Ltd
Original Assignee
Ebara Refrigeration Equipment and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Refrigeration Equipment and Systems Co Ltd filed Critical Ebara Refrigeration Equipment and Systems Co Ltd
Priority to JP2014072680A priority Critical patent/JP2015194301A/en
Priority to CN201510136558.7A priority patent/CN104949368A/en
Publication of JP2015194301A publication Critical patent/JP2015194301A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a turbo refrigerator which can avoid drop in controllability of an electric expansion valve and which avoids cost increase caused by installing a plurality of expansion valves.SOLUTION: A turbo refrigerator 1 includes: an evaporator 3 in which a refrigerant evaporates by depriving a fluid to be cooled of heat and refrigeration effect is exhibited; a multistage turbo compressor 1 which compresses the refrigerant by a multistage impeller 11; a condenser 2 which cools a compressed refrigerant gas by a cooling liquid and condenses it; and an economizer 4, which is an intermediate cooler, for supplying the refrigerant gas generated by evaporating a part of the condensed refrigerant liquid to an intermediate portion of multistage compression stages of the multistage turbo compressor 1. In a refrigerant pipeline 5 for leading the refrigerant from the condenser 2 to the economizer 4, an orifice 6 and an expansion valve 7 are installed in the order of the orifice 6, the expansion valve 7. In the refrigerant pipeline 5 for leading the refrigerant from the economizer 4 to the evaporator 3, an orifice 9 and an expansion valve 10 are installed in the order of the orifice 9, the expansion valve 10.

Description

本発明は、ターボ冷凍機に係り、特にターボ冷凍機の膨張機構に関するものである。   The present invention relates to a turbo refrigerator, and more particularly to an expansion mechanism of a turbo refrigerator.

従来、冷凍空調装置などに利用されるターボ冷凍機は、冷媒を封入したクローズドシステムで構成され、冷水(被冷却流体)から熱を奪って冷媒が蒸発して冷凍効果を発揮する蒸発器と、前記蒸発器で蒸発した冷媒ガスを圧縮して高圧の冷媒ガスにする圧縮機と、高圧の冷媒ガスを冷却水(冷却流体)で冷却して凝縮させる凝縮器と、前記凝縮した冷媒を減圧して膨張させる膨張弁(膨張機構)とを、冷媒配管によって連結して構成されている。そして、圧縮機として冷媒ガスを多段の羽根車によって多段に圧縮する多段圧縮機を用いた場合は、凝縮器と蒸発器の間の冷媒配管中に設置した中間冷却器であるエコノマイザで生じる冷媒ガスを圧縮機の中間段(多段の羽根車の中間部分)に導入することが行われている。   Conventionally, a turbo refrigerator used in a refrigeration air conditioner or the like is configured by a closed system in which a refrigerant is enclosed, an evaporator that takes heat from cold water (fluid to be cooled) and evaporates the refrigerant to exert a refrigeration effect; A compressor that compresses the refrigerant gas evaporated in the evaporator to form a high-pressure refrigerant gas; a condenser that cools and condenses the high-pressure refrigerant gas with cooling water (cooling fluid); and depressurizes the condensed refrigerant. An expansion valve (expansion mechanism) that is expanded by being connected by a refrigerant pipe. When a multistage compressor that compresses refrigerant gas in multiple stages with a multistage impeller is used as the compressor, the refrigerant gas generated in the economizer that is an intermediate cooler installed in the refrigerant pipe between the condenser and the evaporator Is introduced into an intermediate stage of the compressor (intermediate part of a multistage impeller).

ターボ冷凍機において、凝縮器からエコノマイザおよびエコノマイザから蒸発器の膨張機構には、固定オリフィス、フロート弁、電動弁などが用いられている。
冷凍サイクルにおいて、冷凍能力に寄与しない冷媒ガスが圧縮機にて圧縮されると余剰な動力を消費されるため、冷凍機の効率低下に繋がる。
従来、電動弁を膨張機構として採用し、膨張弁の一次側の缶胴(凝縮器、エコノマイザ)の液面を確保して、膨張機構の一次側を液封することによりガスバイパスを回避している。
In the centrifugal chiller, a fixed orifice, a float valve, a motor operated valve, and the like are used for the expansion mechanism from the condenser to the economizer and from the economizer to the evaporator.
In the refrigeration cycle, when refrigerant gas that does not contribute to the refrigeration capacity is compressed by the compressor, excess power is consumed, leading to a reduction in efficiency of the refrigerator.
Conventionally, an electric valve has been adopted as an expansion mechanism, ensuring the liquid level of the primary body of the expansion valve (condenser, economizer), and avoiding gas bypass by liquid-sealing the primary side of the expansion mechanism Yes.

膨張弁には、電動弁を用いられる場合が多いが、弁体の種類により、流量Cv値(流量係数)と開度の制御特性が変わる。
ターボ冷凍機の膨張弁として、採用されるのは、ボール弁、バタフライ弁が多いが、
低バルブ開度域では、バルブの操作量に対してのCv値(流量係数)の変化が小さくなる、いわゆる不感帯となり、前述のような精度を要求される液面制御には不適当である。
図6は、ボール弁やバタフライ弁のバルブ開度とCv値(流量係数)との関係を示すグラフである。図6に示すように、低バルブ開度域では、バルブの操作量に対してのCv値の変化が小さくなる、制御性不適合域である。そして、バルブ開度が比較的高い領域では、バルブ操作量に対してのCv値の変化が大きくなる、制御性良好域である。
Although an electric valve is often used as the expansion valve, the flow rate Cv value (flow rate coefficient) and the control characteristics of the opening degree change depending on the type of the valve body.
Most of the expansion valves for turbo chillers are ball valves and butterfly valves.
In the low valve opening range, a change in the Cv value (flow coefficient) with respect to the valve operation amount is small, which is a so-called dead zone, which is not suitable for liquid level control requiring the above-described accuracy.
FIG. 6 is a graph showing the relationship between the valve opening degree of the ball valve and the butterfly valve and the Cv value (flow coefficient). As shown in FIG. 6, the low valve opening range is a non-controllability range where the change in the Cv value with respect to the valve operation amount is small. And in the area | region where a valve opening degree is comparatively high, it is a controllability favorable area | region where the change of Cv value with respect to valve operation amount becomes large.

図6において、制御性良好域での使用を前提として、小口径の膨張弁を使用すると、冷水と冷却水の温度差が小さい低ヘッド条件において蒸発器への冷媒戻りが悪くなり、蒸発器の吸込み低圧が生じて、冷凍機の運転が継続できない場合がある。
そのため、大口径の膨張弁と小口径の膨張弁を並列に並べて冷凍負荷あるいは冷水・冷却水の温度条件により、膨張弁の切替制御などを行っていた。
In FIG. 6, if a small-diameter expansion valve is used on the premise that it is used in an area with good controllability, the return of the refrigerant to the evaporator becomes worse under low head conditions where the temperature difference between the cold water and the cooling water is small. There are cases where suction low pressure occurs and the operation of the refrigerator cannot be continued.
Therefore, a large-diameter expansion valve and a small-diameter expansion valve are juxtaposed in parallel, and expansion valve switching control is performed according to the temperature conditions of the refrigeration load or cold water / cooling water.

特許第4109997号公報Japanese Patent No. 41099997

上述した従来の技術では、以下の課題が生じていた。
1)電動式膨張弁の制御性の不適合領域があり、精度の高い液面制御ができない。
2)制御性を確保するため、大口径の膨張弁と小口径の膨張弁を複数並列設置する場合にはコストが増加するという問題がある。
The conventional techniques described above have the following problems.
1) There is an unsuitable area for controllability of the electric expansion valve, and liquid level control with high accuracy is not possible.
2) In order to ensure controllability, when a plurality of large-diameter expansion valves and small-diameter expansion valves are installed in parallel, there is a problem that the cost increases.

本発明は、上述の事情に鑑みなされたもので、電動式膨張弁の制御性の低下を回避することができ、また膨張弁を複数設置することによるコスト増加を回避したターボ冷凍機を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a turbo chiller that can avoid a decrease in controllability of an electric expansion valve and avoids an increase in cost due to the installation of a plurality of expansion valves. For the purpose.

上述の目的を達成するため、本発明のターボ冷凍機は、被冷却流体から熱を奪って冷媒が蒸発し冷凍効果を発揮する蒸発器と、冷媒を多段の羽根車によって圧縮する多段ターボ圧縮機と、圧縮された冷媒ガスを冷却流体で冷却して凝縮させる凝縮器と、凝縮した冷媒液の一部を蒸発させて蒸発した冷媒ガスを前記多段ターボ圧縮機の多段圧縮段の中間部分に供給する中間冷却器であるエコノマイザとを備えたターボ冷凍機において、前記凝縮器から前記エコノマイザに冷媒を導く冷媒配管にオリフィスと膨張弁とをオリフィス、膨張弁の順序で設置し、前記エコノマイザから前記蒸発器に冷媒を導く冷媒配管にオリフィスと膨張弁とをオリフィス、膨張弁の順序で設置したことを特徴とする。   In order to achieve the above-described object, a turbo refrigerator of the present invention includes an evaporator that takes heat from a fluid to be cooled and evaporates the refrigerant to exert a refrigeration effect, and a multistage turbo compressor that compresses the refrigerant using a multistage impeller. A condenser that cools and condenses the compressed refrigerant gas with a cooling fluid, and evaporates a part of the condensed refrigerant liquid to supply the evaporated refrigerant gas to an intermediate portion of the multistage compression stage of the multistage turbo compressor In the turbo chiller including an economizer that is an intermediate cooler, an orifice and an expansion valve are installed in the order of the orifice and the expansion valve in a refrigerant pipe that guides the refrigerant from the condenser to the economizer, and the evaporation from the economizer An orifice and an expansion valve are installed in the order of the orifice and the expansion valve in the refrigerant pipe for introducing the refrigerant to the vessel.

本発明によれば、凝縮器とエコノマイザ間の高段側においては、膨張弁の一次側に設けたオリフィスで、ベースとなる圧力損失を与えて冷媒循環量を制限し、下流にある膨張弁で凝縮器の液面制御を行う。このようにオリフィスを膨張弁の一次側に設けることで、膨張弁が開閉動作をする領域は、バルブ操作量に対してCv値(流量係数)が敏感に変化する制御性良好域にシフトし、制御応答性の低下という課題を解決できる。オリフィスと膨張弁により凝縮器において精度の高い液面制御を行うことで、冷凍サイクルのガスバイパス量を低減でき、冷凍機の効率低下を回避できる。また、エコノマイザと蒸発器間の低段側においても、同様に、膨張弁の一次側に設けたオリフィスで、ベースとなる圧力損失を与えて冷媒循環量を制限し、下流にある膨張弁でエコノマイザの液面制御を行う。このようにオリフィスと膨張弁によりエコノマイザにおいて精度の高い液面制御を行うことで、冷凍サイクルのガスバイパス量を低減でき、冷凍機の効率低下を回避できる。   According to the present invention, on the high stage side between the condenser and the economizer, the orifice provided on the primary side of the expansion valve provides a pressure loss as a base to limit the amount of refrigerant circulation, and the expansion valve located downstream. Control the liquid level of the condenser. By providing the orifice on the primary side of the expansion valve in this way, the region in which the expansion valve opens and closes shifts to a good controllability region in which the Cv value (flow coefficient) changes sensitively with respect to the valve operation amount. The problem of a decrease in control responsiveness can be solved. By performing the liquid level control with high accuracy in the condenser by the orifice and the expansion valve, the gas bypass amount of the refrigeration cycle can be reduced, and the efficiency of the refrigerator can be avoided. Similarly, on the lower stage side between the economizer and the evaporator, similarly, the orifice provided on the primary side of the expansion valve gives a pressure loss as a base to limit the refrigerant circulation amount, and the economizer is connected with the downstream expansion valve. Control the liquid level. Thus, by performing liquid level control with high accuracy in the economizer by the orifice and the expansion valve, the gas bypass amount of the refrigeration cycle can be reduced, and a decrease in efficiency of the refrigerator can be avoided.

本発明の好ましい態様によれば、前記オリフィスは固定オリフィスからなり、前記膨張弁は開度可変の電動式の膨張弁からなることを特徴とする。
本発明の好ましい態様によれば、前記凝縮器および前記エコノマイザにそれぞれ設置され、冷媒液面高さを測定する液面センサと、前記膨張弁の開度を制御する制御装置とを備え、前記制御装置は、前記凝縮器に設置された液面センサの測定値に基づいて前記凝縮器と前記エコノマイザの間の膨張弁の開度を制御し、前記エコノマイザに設置された液面センサの測定値に基づいて前記エコノマイザと前記蒸発器の間の膨張弁の開度を制御することを特徴とする。
According to a preferred aspect of the present invention, the orifice is a fixed orifice, and the expansion valve is an electric expansion valve having a variable opening.
According to a preferred aspect of the present invention, the control device includes a liquid level sensor that is installed in each of the condenser and the economizer and measures a refrigerant liquid level height, and a control device that controls the opening degree of the expansion valve. The apparatus controls the opening degree of the expansion valve between the condenser and the economizer based on the measurement value of the liquid level sensor installed in the condenser, and uses the measurement value of the liquid level sensor installed in the economizer. Based on this, the opening degree of the expansion valve between the economizer and the evaporator is controlled.

本発明の好ましい態様によれば、前記凝縮器および前記蒸発器にそれぞれ設置され、凝縮器の圧力および蒸発器の圧力を測定する圧力センサと、前記膨張弁の開度を制御する制御装置とを備え、前記制御装置は、前記圧力センサによって測定された凝縮器の圧力と蒸発器の圧力との圧力差に基づいて、前記凝縮器と前記エコノマイザの間の膨張弁の開度及び前記エコノマイザと前記蒸発器の間の膨張弁の開度を制御することを特徴とする。   According to a preferred aspect of the present invention, a pressure sensor that is installed in each of the condenser and the evaporator and measures the pressure of the condenser and the pressure of the evaporator, and a control device that controls the opening degree of the expansion valve are provided. And the control device includes an opening degree of an expansion valve between the condenser and the economizer, the economizer and the economizer based on a pressure difference between the condenser pressure and the evaporator pressure measured by the pressure sensor. The opening degree of the expansion valve between the evaporators is controlled.

本発明の好ましい態様によれば、凝縮器の圧力と蒸発器の圧力の圧力差と前記膨張弁の開度との関係を予め求め、この予め求めた関係を前記制御装置に記憶しておき、前記制御装置は、前記圧力センサによって測定された凝縮器の圧力と蒸発器の圧力の圧力差から前記予め求めた関係に基づいて、前記凝縮器と前記エコノマイザの間の膨張弁の開度及び前記エコノマイザと前記蒸発器の間の膨張弁の開度を決定することを特徴とする。   According to a preferred aspect of the present invention, a relationship between the pressure difference between the condenser pressure and the evaporator pressure and the opening degree of the expansion valve is obtained in advance, and the previously obtained relationship is stored in the control device, The control device, based on the relationship obtained in advance from the pressure difference between the condenser pressure and the evaporator pressure measured by the pressure sensor, the opening of the expansion valve between the condenser and the economizer, and the The opening degree of the expansion valve between the economizer and the evaporator is determined.

本発明は、以下に列挙する効果を奏する。
(1)凝縮器とエコノマイザの液面制御を精度良く行うことで、冷凍サイクルのガスバイパス量を低減でき、冷凍機の効率低下を回避できる。
(2)電動式膨張弁の制御応答性が悪い運転領域があるのを回避して、制御性が良好な運転領域とすることができる。
(3)制御応答性を確保するために膨張弁を複数並列設置することでコストが増加することを回避して、それぞれ単一の膨張弁で凝縮器とエコノマイザの液面制御を行うことができる。
The present invention has the following effects.
(1) By accurately controlling the liquid level of the condenser and the economizer, the gas bypass amount of the refrigeration cycle can be reduced, and the efficiency of the refrigerator can be avoided.
(2) It is possible to avoid an operation region where the control response of the electric expansion valve is poor and to make the operation region good in controllability.
(3) It is possible to control the liquid level of the condenser and the economizer with a single expansion valve by avoiding an increase in cost by installing a plurality of expansion valves in parallel to ensure control responsiveness. .

図1は、本発明に係るターボ冷凍機の第1の実施形態を示す模式図である。FIG. 1 is a schematic diagram showing a first embodiment of a turbo refrigerator according to the present invention. 図2は、オリフィスと膨張弁とを直列に接続した場合のモリエル線図である。FIG. 2 is a Mollier diagram when an orifice and an expansion valve are connected in series. 図3は、図1に示すターボ冷凍機に液面センサを設けた実施形態を示す模式図である。FIG. 3 is a schematic diagram showing an embodiment in which a liquid level sensor is provided in the turbo refrigerator shown in FIG. 図4は、図1に示すターボ冷凍機に圧力センサを設けた実施形態を示す模式図である。FIG. 4 is a schematic view showing an embodiment in which a pressure sensor is provided in the turbo refrigerator shown in FIG. 図5は、凝縮器と蒸発器の圧力差と膨張弁の開度との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the pressure difference between the condenser and the evaporator and the opening of the expansion valve. 図6は、ボール弁やバタフライ弁のバルブ開度とCv値(流量係数)との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the valve opening degree of the ball valve and the butterfly valve and the Cv value (flow coefficient).

以下、本発明に係るターボ冷凍機の実施形態を図1乃至図5を参照して説明する。図1乃至図5において、同一または相当する構成要素には、同一の符号を付して重複した説明を省略する。   Hereinafter, an embodiment of a turbo refrigerator according to the present invention will be described with reference to FIGS. 1 to 5. 1 to 5, the same or corresponding components are denoted by the same reference numerals, and redundant description is omitted.

図1は、本発明に係るターボ冷凍機の第1の実施形態を示す模式図である。図1に示すように、ターボ冷凍機は、冷媒を圧縮するターボ圧縮機1と、圧縮された冷媒ガスを冷却水(冷却流体)で冷却して凝縮させる凝縮器2と、冷水(被冷却流体)から熱を奪って冷媒が蒸発し冷凍効果を発揮する蒸発器3と、凝縮器2と蒸発器3との間に配置される中間冷却器であるエコノマイザ4とを備え、これら各機器を冷媒が循環する冷媒配管5によって連結して構成されている。   FIG. 1 is a schematic diagram showing a first embodiment of a turbo refrigerator according to the present invention. As shown in FIG. 1, a turbo refrigerator includes a turbo compressor 1 that compresses refrigerant, a condenser 2 that cools and compresses the compressed refrigerant gas with cooling water (cooling fluid), and cold water (cooled fluid). ), An evaporator 3 that evaporates the refrigerant and exerts a refrigeration effect, and an economizer 4 that is an intermediate cooler disposed between the condenser 2 and the evaporator 3. Are connected by a refrigerant pipe 5 that circulates.

図1に示す実施形態においては、ターボ圧縮機1は多段ターボ圧縮機から構成されており、多段ターボ圧縮機は二段ターボ圧縮機からなり、一段目羽根車11と、二段目羽根車12と、これらの羽根車11,12を回転させる圧縮機モータ13とから構成されている。一段目羽根車11の吸込側には、冷媒ガスの羽根車11,12への吸込流量を調整するサクションベーン14が設けられている。ターボ圧縮機1は、流路8によってエコノマイザ4と接続されており、エコノマイザ4で分離された冷媒ガスはターボ圧縮機1の多段の圧縮段(この例では2段)の中間部分(この例では一段目羽根車11と二段目羽根車12の間の部分)に導入されるようになっている。   In the embodiment shown in FIG. 1, the turbo compressor 1 is composed of a multi-stage turbo compressor, and the multi-stage turbo compressor is composed of a two-stage turbo compressor, and a first-stage impeller 11 and a second-stage impeller 12. And a compressor motor 13 that rotates these impellers 11 and 12. On the suction side of the first stage impeller 11, a suction vane 14 for adjusting the suction flow rate of the refrigerant gas to the impellers 11 and 12 is provided. The turbo compressor 1 is connected to the economizer 4 by a flow path 8, and the refrigerant gas separated by the economizer 4 is an intermediate portion (in this example, two stages) of the multi-stage compression stage (two stages in this example) of the turbo compressor 1. A portion between the first stage impeller 11 and the second stage impeller 12) is introduced.

図1に示すように構成されたターボ冷凍機の冷凍サイクルでは、ターボ圧縮機1と凝縮器2と蒸発器3とエコノマイザ4とを冷媒が循環し、蒸発器3で得られる冷熱源で冷水が製造されて負荷に対応し、冷凍サイクル内に取り込まれた蒸発器3からの熱量およびモータ13から供給されるターボ圧縮機1の仕事に相当する熱量が凝縮器2に供給される冷却水に放出される。一方、エコノマイザ4にて分離された冷媒ガスはターボ圧縮機1の多段圧縮段の中間部分に導入され、一段目圧縮機からの冷媒ガスと合流して二段目圧縮機により圧縮される。2段圧縮単段エコノマイザサイクルによれば、エコノマイザ4による冷凍効果部分が付加されるので、その分だけ冷凍効果が増加し、エコノマイザ4を設置しない場合に比べて冷凍効果の高効率化を図ることができる。   In the refrigeration cycle of the turbo chiller configured as shown in FIG. 1, the refrigerant circulates through the turbo compressor 1, the condenser 2, the evaporator 3, and the economizer 4, and chilled water is generated by the cold heat source obtained by the evaporator 3. The amount of heat from the evaporator 3 that is manufactured and corresponds to the load and taken into the refrigeration cycle and the amount of heat corresponding to the work of the turbo compressor 1 supplied from the motor 13 are released to the cooling water supplied to the condenser 2. Is done. On the other hand, the refrigerant gas separated by the economizer 4 is introduced into an intermediate portion of the multistage compression stage of the turbo compressor 1, merged with the refrigerant gas from the first stage compressor, and compressed by the second stage compressor. According to the two-stage compression single-stage economizer cycle, since the refrigeration effect portion by the economizer 4 is added, the refrigeration effect is increased by that amount, and the efficiency of the refrigeration effect is improved as compared with the case where the economizer 4 is not installed. Can do.

図1に示すように、凝縮器2とエコノマイザ4とを接続する冷媒配管5には、高段オリフィス6と電動式の高段膨張弁7が設けられている。また、エコノマイザ4と蒸発器3とを接続する冷媒配管5には、低段オリフィス9と電動式の低段膨張弁10が設けられている。オリフィス6,9は固定オリフィスからなり、膨張弁7,10は弁開度が可変の電動弁からなる。オリフィス6,9および膨張弁7,10について、「高段」と「低段」と称した理由は、凝縮器2とエコノマイザ4の間はエコノマイザ4と蒸発器3の間よりも圧力が高いので、圧力が高い側を「高段」、圧力が低い側を「低段」としたものである。   As shown in FIG. 1, a refrigerant pipe 5 connecting the condenser 2 and the economizer 4 is provided with a high stage orifice 6 and an electric high stage expansion valve 7. The refrigerant pipe 5 connecting the economizer 4 and the evaporator 3 is provided with a low stage orifice 9 and an electric low stage expansion valve 10. The orifices 6 and 9 are fixed orifices, and the expansion valves 7 and 10 are motorized valves with variable valve openings. The reason why the orifices 6 and 9 and the expansion valves 7 and 10 are referred to as “high stage” and “low stage” is that the pressure between the condenser 2 and the economizer 4 is higher than that between the economizer 4 and the evaporator 3. The high pressure side is the “high stage” and the low pressure side is the “low stage”.

図1に示すように構成することにより、高段側においては、高段膨張弁7の一次側に設けた高段オリフィス6で、ベースとなる圧力損失を与えて冷媒循環量を制限し、下流にある高段膨張弁7で凝縮器2の液面制御を行う。このように高段オリフィス6を高段膨張弁7の一次側に設けることで、高段膨張弁7が開閉動作をする領域は、バルブ操作量に対してCv値(流量係数)が敏感に変化する制御性良好域にシフトし、制御応答性の低下という課題を解決できる。高段オリフィス6と高段膨張弁7により凝縮器2において精度の高い液面制御を行うことで、冷凍サイクルのガスバイパス量を低減でき、冷凍機の効率低下を回避できる。   By configuring as shown in FIG. 1, on the high-stage side, the high-stage orifice 6 provided on the primary side of the high-stage expansion valve 7 gives a pressure loss as a base to limit the refrigerant circulation amount, and downstream The liquid level of the condenser 2 is controlled by the high stage expansion valve 7 located at the center. By providing the high stage orifice 6 on the primary side of the high stage expansion valve 7 in this way, the Cv value (flow coefficient) changes sensitively to the valve operation amount in the region where the high stage expansion valve 7 opens and closes. Shift to a good controllability range, and the problem of a decrease in control responsiveness can be solved. By performing high-precision liquid level control in the condenser 2 by the high-stage orifice 6 and the high-stage expansion valve 7, the gas bypass amount of the refrigeration cycle can be reduced, and a decrease in the efficiency of the refrigerator can be avoided.

また、低段側においても、同様に、低段膨張弁10の一次側に設けた低段オリフィス9で、ベースとなる圧力損失を与えて冷媒循環量を制限し、下流にある低段膨張弁10でエコノマイザ4の液面制御を行う。このように低段オリフィス9を低段膨張弁10の一次側に設けることで、低段膨張弁10が開閉動作をする領域は、バルブ操作量に対してCv値(流量係数)が敏感に変化する制御性良好域にシフトし、制御応答性の低下という課題を解決できる。低段オリフィス9と低段膨張弁10によりエコノマイザ4において精度の高い液面制御を行うことで、冷凍サイクルのガスバイパス量を低減でき、冷凍機の効率低下を回避できる。
また、図1に示すように、凝縮器2とエコノマイザ4間およびエコノマイザ4と蒸発器3の間に、それぞれオリフィスと膨張弁とを直列に設置することにより口径の異なる膨張弁を並列設置することも回避でき、冷凍機のコスト増加という課題も解決できる。
Similarly, on the low-stage side, similarly, the low-stage orifice 9 provided on the primary side of the low-stage expansion valve 10 gives a pressure loss as a base to limit the refrigerant circulation amount, and the low-stage expansion valve on the downstream side 10, the liquid level of the economizer 4 is controlled. By providing the low stage orifice 9 on the primary side of the low stage expansion valve 10 in this way, the Cv value (flow coefficient) changes sensitively to the valve operation amount in the region where the low stage expansion valve 10 opens and closes. Shift to a good controllability range, and the problem of a decrease in control response can be solved. By performing highly accurate liquid level control in the economizer 4 using the low stage orifice 9 and the low stage expansion valve 10, the amount of gas bypass in the refrigeration cycle can be reduced, and a decrease in efficiency of the refrigerator can be avoided.
Further, as shown in FIG. 1, an expansion valve having a different diameter is installed in parallel by installing an orifice and an expansion valve in series between the condenser 2 and the economizer 4 and between the economizer 4 and the evaporator 3. Can be avoided, and the problem of increased cost of the refrigerator can be solved.

図2は、オリフィスと膨張弁とを直列に接続した場合のモリエル線図である。図2に示すように、凝縮圧力からエコノマイザ圧力への膨張工程を高段オリフィス6および高段膨張弁7の2段階で行い、エコノマイザ圧力から蒸発圧力への膨張工程を低段オリフィス9および低段膨張弁10の2段階で行う。   FIG. 2 is a Mollier diagram when an orifice and an expansion valve are connected in series. As shown in FIG. 2, the expansion process from the condensing pressure to the economizer pressure is performed in two stages of the high stage orifice 6 and the high stage expansion valve 7, and the expansion process from the economizer pressure to the evaporating pressure is performed in the low stage orifice 9 and the low stage. This is performed in two stages of the expansion valve 10.

次に、上述のように構成されたターボ冷凍機の膨張機構の具体的な制御方法について説明する。
図3は、図1に示すターボ冷凍機に液面センサを設けた実施形態を示す模式図である。図3に示すように、本実施形態においては、凝縮器2とエコノマイザ4に、それぞれ液面センサ17,18を設けている。液面センサ17,18は、それぞれ制御装置20に接続されている。また、高段膨張弁7および低段膨張弁10も、それぞれ制御装置20に接続されている。
Next, a specific control method for the expansion mechanism of the turbo refrigerator configured as described above will be described.
FIG. 3 is a schematic diagram showing an embodiment in which a liquid level sensor is provided in the turbo refrigerator shown in FIG. As shown in FIG. 3, in the present embodiment, liquid level sensors 17 and 18 are provided in the condenser 2 and the economizer 4, respectively. The liquid level sensors 17 and 18 are each connected to the control device 20. The high stage expansion valve 7 and the low stage expansion valve 10 are also connected to the control device 20.

図3に示すように構成されたターボ冷凍機において、液面センサ17は凝縮器2の液面高さを測定し、測定値を制御装置20に入力する。制御装置20は、凝縮器2の液面が所定の高さになるように高段膨張弁7を開閉制御する。ここで所定の高さとは、凝縮器2においては、最下段の伝熱管が冷媒液に浸されない高さを指し、この液面高さになるように高段膨張弁7の開度の制御を行う。また、液面センサ18はエコノマイザ4の液面高さを測定し、測定値を制御装置20に入力する。制御装置20は、エコノマイザ4の液面が所定の高さになるように低段膨張弁10を開閉制御する。ここで所定の高さとは、エコノマイザ4においては、エコノマイザ4に設けた気液分離デミスタが冷媒液に浸されない高さを指し、この液面高さになるように低段膨張弁10の開度の制御を行う。   In the turbo chiller configured as shown in FIG. 3, the liquid level sensor 17 measures the liquid level of the condenser 2 and inputs the measured value to the control device 20. The control device 20 controls the opening and closing of the high stage expansion valve 7 so that the liquid level of the condenser 2 becomes a predetermined height. Here, the predetermined height in the condenser 2 refers to a height at which the lowermost heat transfer tube is not immersed in the refrigerant liquid, and the opening degree of the high stage expansion valve 7 is controlled so as to be the liquid level. Do. Further, the liquid level sensor 18 measures the liquid level height of the economizer 4 and inputs the measured value to the control device 20. The control device 20 controls the opening and closing of the low stage expansion valve 10 so that the liquid level of the economizer 4 becomes a predetermined height. Here, in the economizer 4, the predetermined height refers to a height at which the gas-liquid separation demister provided in the economizer 4 is not immersed in the refrigerant liquid, and the opening of the low-stage expansion valve 10 is set to this liquid level. Control.

このように、高段オリフィス6と高段膨張弁7により凝縮器2において精度の高い液面制御を行うことで、冷凍サイクルのガスバイパス量を低減でき、冷凍機の効率低下を回避できる。また、低段オリフィス9と低段膨張弁10によりエコノマイザ4において精度の高い液面制御を行うことで、冷凍サイクルのガスバイパス量を低減でき、冷凍機の効率低下を回避できる。   Thus, by performing the liquid level control with high accuracy in the condenser 2 by the high stage orifice 6 and the high stage expansion valve 7, it is possible to reduce the gas bypass amount of the refrigeration cycle and to avoid the efficiency reduction of the refrigerator. Further, by performing highly accurate liquid level control in the economizer 4 by the low stage orifice 9 and the low stage expansion valve 10, it is possible to reduce the gas bypass amount of the refrigeration cycle and avoid a decrease in efficiency of the refrigerator.

液面高さを連続出力する液面センサは高価であるため、簡便的に、凝縮器と蒸発器の圧力差で、膨張弁の開度を制御する手法を用いても良い。
図4は、図1に示すターボ冷凍機に圧力センサを設けた実施形態を示す模式図である。図4に示すように、凝縮器2と蒸発器3の圧力をそれぞれ検出する圧力センサ21,22を設けている。圧力センサ21,22は、それぞれ制御装置20に接続されている。また、高段膨張弁7および低段膨張弁10も、それぞれ制御装置20に接続されている。
Since the liquid level sensor that continuously outputs the liquid level is expensive, a method of simply controlling the opening degree of the expansion valve by the pressure difference between the condenser and the evaporator may be used.
FIG. 4 is a schematic view showing an embodiment in which a pressure sensor is provided in the turbo refrigerator shown in FIG. As shown in FIG. 4, pressure sensors 21 and 22 for detecting the pressures of the condenser 2 and the evaporator 3 are provided. The pressure sensors 21 and 22 are each connected to the control device 20. The high stage expansion valve 7 and the low stage expansion valve 10 are also connected to the control device 20.

図4に示すように構成されたターボ冷凍機において、圧力センサ21は凝縮器2の圧力Pcを測定し、測定値を制御装置20に入力する。また、圧力センサ22は蒸発器3の圧力Peを測定し、測定値を制御装置20に入力する。制御装置20は、凝縮器2と蒸発器3の圧力差(Pc−Pe)を演算し、予め与えたテーブルから外挿された膨張弁開度になるように制御を行う。   In the turbo refrigerator configured as shown in FIG. 4, the pressure sensor 21 measures the pressure Pc of the condenser 2 and inputs the measured value to the control device 20. The pressure sensor 22 measures the pressure Pe of the evaporator 3 and inputs the measured value to the control device 20. The control device 20 calculates the pressure difference (Pc−Pe) between the condenser 2 and the evaporator 3 and performs control so that the expansion valve opening degree is extrapolated from a previously given table.

図5は、凝縮器2と蒸発器3の圧力差(Pc−Pe)と膨張弁の開度との関係を示すグラフである。図5に示す圧力差(Pc−Pe)と膨張弁の開度との関係は、高段膨張弁7および低段膨張弁10のいずれにも当てはまる関係である。図5に示すような圧力差(Pc−Pe)と膨張弁開度との関係を予め求めておき、テーブル化して記憶しておく。ターボ冷凍機の運転中に、圧力センサ21,22は、それぞれ凝縮器2の圧力および蒸発器3の圧力を測定し、測定値を制御装置20へ入力する。制御装置20は、凝縮器2と蒸発器3の圧力差(Pc−Pe)を演算し、テーブル化して記憶された図5の関係に基づき、膨張弁(すなわち、高段膨張弁7および低段膨張弁10)の開度を制御する。
なお、制御装置にテーブルを記憶することなく、圧力センサ21の圧力Pcと圧力センサ22の圧力Peとの圧力差の電気信号に基づき、予め求めた圧力差と前記膨張弁の開度との関係をアナログ電子回路により構成し、膨張弁の開度を制御することもできる。
FIG. 5 is a graph showing the relationship between the pressure difference (Pc−Pe) between the condenser 2 and the evaporator 3 and the opening of the expansion valve. The relationship between the pressure difference (Pc−Pe) and the opening degree of the expansion valve shown in FIG. 5 applies to both the high stage expansion valve 7 and the low stage expansion valve 10. The relationship between the pressure difference (Pc−Pe) and the expansion valve opening as shown in FIG. 5 is obtained in advance and stored in a table. During the operation of the turbo refrigerator, the pressure sensors 21 and 22 measure the pressure of the condenser 2 and the pressure of the evaporator 3, respectively, and input the measured values to the control device 20. The control device 20 calculates the pressure difference (Pc−Pe) between the condenser 2 and the evaporator 3, and based on the relationship of FIG. 5 stored as a table, the expansion valve (that is, the high stage expansion valve 7 and the low stage expansion valve 7). The opening degree of the expansion valve 10) is controlled.
The relationship between the pressure difference obtained in advance and the opening of the expansion valve based on the electrical signal of the pressure difference between the pressure Pc of the pressure sensor 21 and the pressure Pe of the pressure sensor 22 without storing a table in the control device. Can be configured by an analog electronic circuit to control the opening degree of the expansion valve.

これまで本発明の実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術思想の範囲内において、種々の異なる形態で実施されてよいことは勿論である。   Although the embodiment of the present invention has been described so far, the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention may be implemented in various different forms within the scope of the technical idea.

1 ターボ圧縮機
2 凝縮器
3 蒸発器
4 エコノマイザ
5 冷媒配管
6 高段オリフィス
7 高段膨張弁
8 流路
9 低段オリフィス
10 低段膨張弁
11 一段目羽根車
12 二段目羽根車
13 圧縮機モータ
14 サクションベーン
16 油タンク
17 液面センサ
18 液面センサ
20 制御装置
21 圧力センサ
22 圧力センサ
DESCRIPTION OF SYMBOLS 1 Turbo compressor 2 Condenser 3 Evaporator 4 Economizer 5 Refrigerant piping 6 High stage orifice 7 High stage expansion valve 8 Flow path 9 Low stage orifice 10 Low stage expansion valve 11 First stage impeller 12 Second stage impeller 13 Compressor Motor 14 Suction vane 16 Oil tank 17 Liquid level sensor 18 Liquid level sensor 20 Control device 21 Pressure sensor 22 Pressure sensor

Claims (5)

被冷却流体から熱を奪って冷媒が蒸発し冷凍効果を発揮する蒸発器と、冷媒を多段の羽根車によって圧縮する多段ターボ圧縮機と、圧縮された冷媒ガスを冷却流体で冷却して凝縮させる凝縮器と、凝縮した冷媒液の一部を蒸発させて蒸発した冷媒ガスを前記多段ターボ圧縮機の多段圧縮段の中間部分に供給する中間冷却器であるエコノマイザとを備えたターボ冷凍機において、
前記凝縮器から前記エコノマイザに冷媒を導く冷媒配管にオリフィスと膨張弁とをオリフィス、膨張弁の順序で設置し、
前記エコノマイザから前記蒸発器に冷媒を導く冷媒配管にオリフィスと膨張弁とをオリフィス、膨張弁の順序で設置したことを特徴とするターボ冷凍機。
An evaporator that draws heat from the fluid to be cooled and evaporates the refrigerant to exert a refrigeration effect, a multi-stage turbo compressor that compresses the refrigerant with a multi-stage impeller, and cools and compresses the compressed refrigerant gas with the cooling fluid In a turbo chiller comprising a condenser and an economizer that is an intermediate cooler that evaporates a part of the condensed refrigerant liquid and supplies the evaporated refrigerant gas to an intermediate portion of the multistage compression stage of the multistage turbo compressor,
An orifice and an expansion valve are installed in the order of the orifice and the expansion valve in the refrigerant pipe for introducing the refrigerant from the condenser to the economizer,
A turbo chiller, wherein an orifice and an expansion valve are installed in the order of an orifice and an expansion valve in a refrigerant pipe for introducing a refrigerant from the economizer to the evaporator.
前記オリフィスは固定オリフィスからなり、前記膨張弁は開度可変の電動式の膨張弁からなることを特徴とする請求項1に記載のターボ冷凍機。   The turbo chiller according to claim 1, wherein the orifice is a fixed orifice, and the expansion valve is an electric expansion valve having a variable opening. 前記凝縮器および前記エコノマイザにそれぞれ設置され、冷媒液面高さを測定する液面センサと、
前記膨張弁の開度を制御する制御装置とを備え、
前記制御装置は、前記凝縮器に設置された液面センサの測定値に基づいて前記凝縮器と前記エコノマイザの間の膨張弁の開度を制御し、前記エコノマイザに設置された液面センサの測定値に基づいて前記エコノマイザと前記蒸発器の間の膨張弁の開度を制御することを特徴とする請求項1または2に記載のターボ冷凍機。
A liquid level sensor that is installed in each of the condenser and the economizer and measures a refrigerant liquid level,
A control device for controlling the opening of the expansion valve;
The control device controls an opening degree of an expansion valve between the condenser and the economizer based on a measurement value of a liquid level sensor installed in the condenser, and measures a liquid level sensor installed in the economizer. The turbo refrigerator according to claim 1 or 2, wherein an opening degree of an expansion valve between the economizer and the evaporator is controlled based on a value.
前記凝縮器および前記蒸発器にそれぞれ設置され、凝縮器の圧力および蒸発器の圧力を測定する圧力センサと、
前記膨張弁の開度を制御する制御装置とを備え、
前記制御装置は、前記圧力センサによって測定された凝縮器の圧力と蒸発器の圧力との圧力差に基づいて、前記凝縮器と前記エコノマイザの間の膨張弁の開度及び前記エコノマイザと前記蒸発器の間の膨張弁の開度を制御することを特徴とする請求項1または2に記載のターボ冷凍機。
A pressure sensor installed in the condenser and the evaporator, respectively, for measuring the pressure of the condenser and the pressure of the evaporator;
A control device for controlling the opening of the expansion valve;
The controller is configured to determine an opening degree of an expansion valve between the condenser and the economizer and the economizer and the evaporator based on a pressure difference between the condenser pressure and the evaporator pressure measured by the pressure sensor. The turbo chiller according to claim 1 or 2, wherein the opening degree of the expansion valve is controlled.
凝縮器の圧力と蒸発器の圧力の圧力差と前記膨張弁の開度との関係を予め求め、この予め求めた関係を前記制御装置に記憶しておき、
前記制御装置は、前記圧力センサによって測定された凝縮器の圧力と蒸発器の圧力の圧力差から前記予め求めた関係に基づいて、前記凝縮器と前記エコノマイザの間の膨張弁の開度及び前記エコノマイザと前記蒸発器の間の膨張弁の開度を決定することを特徴とする請求項4に記載のターボ冷凍機。
Predetermining the relationship between the pressure difference between the condenser pressure and the evaporator pressure and the opening of the expansion valve, and storing this preliminarily determined relationship in the control device,
The control device, based on the relationship obtained in advance from the pressure difference between the condenser pressure and the evaporator pressure measured by the pressure sensor, the opening of the expansion valve between the condenser and the economizer, and the The turbo refrigerator according to claim 4, wherein an opening degree of an expansion valve between an economizer and the evaporator is determined.
JP2014072680A 2014-03-31 2014-03-31 turbo refrigerator Pending JP2015194301A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014072680A JP2015194301A (en) 2014-03-31 2014-03-31 turbo refrigerator
CN201510136558.7A CN104949368A (en) 2014-03-31 2015-03-26 Turbine refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014072680A JP2015194301A (en) 2014-03-31 2014-03-31 turbo refrigerator

Publications (1)

Publication Number Publication Date
JP2015194301A true JP2015194301A (en) 2015-11-05

Family

ID=54164231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014072680A Pending JP2015194301A (en) 2014-03-31 2014-03-31 turbo refrigerator

Country Status (2)

Country Link
JP (1) JP2015194301A (en)
CN (1) CN104949368A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141720A1 (en) * 2016-02-19 2017-08-24 三菱重工サーマルシステムズ株式会社 Refrigerating machine and control method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102367790B1 (en) * 2019-12-31 2022-02-24 엘지전자 주식회사 Turbo chiller

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56105272A (en) * 1980-01-25 1981-08-21 Nippon Denso Co Refrigerator
JPS5795566A (en) * 1980-12-04 1982-06-14 Nippon Denso Co Refrigerating plant
JPH11344265A (en) * 1998-06-02 1999-12-14 Mitsubishi Heavy Ind Ltd Turbo freezer of multistage compression system
JP4109997B2 (en) * 2003-01-14 2008-07-02 日立アプライアンス株式会社 Turbo refrigerator
JP2009236428A (en) * 2008-03-27 2009-10-15 Ebara Refrigeration Equipment & Systems Co Ltd Compression type refrigerating machine
JP2011038742A (en) * 2009-08-17 2011-02-24 Ebara Refrigeration Equipment & Systems Co Ltd Compression refrigerating machine and method of operating the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1974171B1 (en) * 2006-09-29 2014-07-23 Carrier Corporation Refrigerant vapor compression system with flash tank receiver
US8671703B2 (en) * 2007-05-14 2014-03-18 Carrier Corporation Refrigerant vapor compression system with flash tank economizer
JP5554277B2 (en) * 2011-03-31 2014-07-23 三菱重工業株式会社 Heat medium flow rate estimation device, heat source machine, and heat medium flow rate estimation method
JP5878046B2 (en) * 2012-03-13 2016-03-08 荏原冷熱システム株式会社 Turbo refrigerator and control method thereof
CN202928232U (en) * 2012-11-01 2013-05-08 重庆美的通用制冷设备有限公司 Adjustable expansion throttling device and refrigeration system
CN103591740A (en) * 2013-12-06 2014-02-19 烟台蓝德空调工业有限责任公司 Throttling device for centrifugal heat pump unit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56105272A (en) * 1980-01-25 1981-08-21 Nippon Denso Co Refrigerator
JPS5795566A (en) * 1980-12-04 1982-06-14 Nippon Denso Co Refrigerating plant
JPH11344265A (en) * 1998-06-02 1999-12-14 Mitsubishi Heavy Ind Ltd Turbo freezer of multistage compression system
JP4109997B2 (en) * 2003-01-14 2008-07-02 日立アプライアンス株式会社 Turbo refrigerator
JP2009236428A (en) * 2008-03-27 2009-10-15 Ebara Refrigeration Equipment & Systems Co Ltd Compression type refrigerating machine
JP2011038742A (en) * 2009-08-17 2011-02-24 Ebara Refrigeration Equipment & Systems Co Ltd Compression refrigerating machine and method of operating the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141720A1 (en) * 2016-02-19 2017-08-24 三菱重工サーマルシステムズ株式会社 Refrigerating machine and control method therefor
JP2017146068A (en) * 2016-02-19 2017-08-24 三菱重工業株式会社 Refrigerating machine and its control method

Also Published As

Publication number Publication date
CN104949368A (en) 2015-09-30

Similar Documents

Publication Publication Date Title
CN106196787B (en) The control method and heat pump system of heat pump system
US7690211B2 (en) Refrigerating apparatus
WO2012132944A1 (en) Expansion valve control device, heat source machine, and expansion valve control method
AU2005327828A1 (en) Control of a refrigeration circuit with an internal heat exchanger
JP2014159923A (en) Turbo refrigerator
JP2013257121A (en) Refrigerating device
JP6340213B2 (en) Turbo refrigerator
JP2010007975A (en) Economizer cycle refrigerating apparatus
US20220252314A1 (en) Refrigeration cycle apparatus
JP2015178919A (en) Refrigeration device
JP2009186033A (en) Two-stage compression type refrigerating device
JP2006250440A (en) Air conditioning system
CN108131854B (en) Direct expansion type liquid supply multi-parallel screw low-temperature water chilling unit
JP2007232259A (en) Turbo refrigerating machine, and its hot gas bypassing method
JP2015194301A (en) turbo refrigerator
JP2014085048A (en) Turbo refrigerator
JP2014163624A (en) Turbo refrigerator
JP2016090102A (en) Control device for refrigeration cycle, refrigeration cycle and control method for refrigeration cycle
JP2011038711A (en) Turbo refrigerator
JP6001997B2 (en) Turbo refrigerator
US11162726B2 (en) Liquid detection system
JP5993332B2 (en) Turbo refrigerator
JP2012242053A (en) Refrigeration air conditioning system
WO2015121992A1 (en) Refrigeration cycle device
JP6630627B2 (en) Turbo refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180306