JPH0979667A - Gas injection type refrigerating cycle equipment - Google Patents

Gas injection type refrigerating cycle equipment

Info

Publication number
JPH0979667A
JPH0979667A JP7240249A JP24024995A JPH0979667A JP H0979667 A JPH0979667 A JP H0979667A JP 7240249 A JP7240249 A JP 7240249A JP 24024995 A JP24024995 A JP 24024995A JP H0979667 A JPH0979667 A JP H0979667A
Authority
JP
Japan
Prior art keywords
gas
temperature
refrigerant
compressor
gas injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7240249A
Other languages
Japanese (ja)
Inventor
Kunio Iritani
邦夫 入谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP7240249A priority Critical patent/JPH0979667A/en
Publication of JPH0979667A publication Critical patent/JPH0979667A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves

Abstract

PROBLEM TO BE SOLVED: To surely prevent a return of liquid from gas injection piping by a reliable and simple construction. SOLUTION: A control valve 6 provided for gas injection piping 5 and controlling the amount of injection of gas refrigerant is constituted of a temperature type expansion valve and a temperature-sensitive tube 68 of this temperature type expansion valve is disposed at a position located on the gas injection piping 5 and in the vicinity of a compressor 1 where it is subjected to a thermal effect of the compressor. At the time of a steady-state operation of a cycle, according to this constitution, the temperature-sensitive tube 68 senses a higher temperature than the one of saturated refrigerant gas due to the thermal effect of the compressor 1 and the temperature type expansion valve is fully opened. At a transitional time such as a starting time, on the other hand, the temperature-sensitive tube 68 senses the temperature of the saturated refrigerant gas due to mixing-in of a liquid refrigerant into the gas injection piping 5, the temperature type expansion valve is fully closed and thereby a return of the liquid refrigerant is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はガスインジェクショ
ン配管からの液戻りによる液圧縮を防止するようにした
ガスインジェクション式冷凍サイクル装置に関するもの
で、車両空調用として好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas injection type refrigeration cycle device which prevents liquid compression due to liquid return from a gas injection pipe, and is suitable for vehicle air conditioning.

【0002】[0002]

【従来の技術】従来、特開平2−37259号公報に
は、ガスインジェクション式冷凍サイクルにおいて、ガ
スインジェクション配管に制御弁を設け、この制御弁を
圧縮機始動時には閉弁し、始動後一定時間経過してか
ら、制御弁を開弁することにより、ガスインジェクショ
ン配管からの液戻りを防止して、圧縮機の液圧縮を防止
するようにしたものが提案されている。
2. Description of the Related Art Conventionally, Japanese Patent Laid-Open No. 2-37259 discloses a gas injection type refrigeration cycle in which a control valve is provided in a gas injection pipe, the control valve is closed at the time of starting the compressor, and a certain time has elapsed after the start. Then, it is proposed that the control valve is opened to prevent the liquid from returning from the gas injection pipe to prevent the liquid from being compressed in the compressor.

【0003】[0003]

【発明が解決しようとする課題】しかし、冷凍サイクル
では、始動時の熱負荷等の運転条件の変動により、圧縮
機への液戻り時間が変動するため、圧縮機始動後、単純
に、一定時間経過してから、制御弁を開弁する構成で
は、必ずしも圧縮機への液戻りが発生しているときの
み、制御弁が閉弁するとは限らず、設定時間が短すぎる
と、圧縮機への液戻りが発生し、また設定時間が長すぎ
ると、ガスインジェクションの停止に基づく効率の悪い
運転時間が長くなるという問題があった。
However, in the refrigeration cycle, since the liquid return time to the compressor fluctuates due to fluctuations in operating conditions such as heat load at the time of starting, after the compressor is started, a simple fixed time is required. With the configuration in which the control valve is opened after the passage of time, the control valve does not always close only when the liquid return to the compressor occurs, and if the set time is too short, the If liquid return occurs and the set time is too long, there is a problem that the inefficient operation time due to the stop of gas injection becomes long.

【0004】さらに、上記従来技術では、圧縮機始動
後、単純に、一定時間経過してから、制御弁を開弁する
構成であるので、圧縮機始動後における運転モードの切
替時(例えば、冷暖房能力の大幅変更時等)に発生する
液戻りには全く対応できない。同様に、車両用冷凍サイ
クルにおいて、車両の振動により気液分離器から急激に
液冷媒が流出することにより発生する液戻りに対して
も、全く対応できない。
Further, in the above-mentioned prior art, since the control valve is simply opened after a certain period of time has elapsed after the compressor has been started, when the operation mode is switched after the compressor has been started (for example, cooling and heating). It is not possible to deal with the liquid return that occurs when the capacity is changed drastically. Similarly, in the vehicle refrigeration cycle, it is not possible to deal with the liquid return that occurs when the liquid refrigerant suddenly flows out from the gas-liquid separator due to the vibration of the vehicle.

【0005】本発明は上記点に鑑みてなされたもので、
ガスインジェクション式冷凍サイクル装置において、ガ
スインジェクション配管からの液戻りを、信頼性のある
簡単な構成で確実に防止することを目的とする。
The present invention has been made in view of the above points,
An object of the present invention is to reliably prevent liquid return from a gas injection pipe in a gas injection type refrigeration cycle device with a reliable and simple configuration.

【0006】[0006]

【発明の概要】本発明は上記目的を達成するため、以下
の技術的手段を採用する。すなわち、請求項1記載の発
明では、ガスインジェクション式冷凍サイクル装置にお
いて、ガスインジェクション配管(5)に設けられ、ガ
ス冷媒のインジェクション量を制御する制御弁(6)
を、ガスインジェクション配管(5)上に配置した感温
筒(68)により感知される温度に応じて弁開度が調整
される温度式膨張弁により構成するとともに、サイクル
定常運転時には前記感温筒(68)が飽和冷媒ガスの温
度より高い温度を感知して前記温度式膨張弁が全開する
ようにしたことを特徴としている。
SUMMARY OF THE INVENTION To achieve the above object, the present invention employs the following technical means. That is, according to the invention of claim 1, in the gas injection type refrigeration cycle apparatus, a control valve (6) provided in the gas injection pipe (5) for controlling the injection amount of the gas refrigerant.
Is constituted by a temperature type expansion valve whose valve opening is adjusted according to the temperature sensed by a temperature sensing cylinder (68) arranged on the gas injection pipe (5), and the temperature sensing cylinder is operated during a steady cycle operation. (68) is characterized in that the temperature type expansion valve is fully opened by sensing a temperature higher than the temperature of the saturated refrigerant gas.

【0007】請求項2記載の発明では、感温筒(68)
が、ガスインジェクション配管(5)上で、かつ圧縮機
(1)の熱影響を受ける圧縮機近傍の位置に配置され、
前記圧縮機(1)からの熱影響により前記感温筒(6
8)が飽和冷媒ガスの温度より高い温度を感知するよう
にしたことを特徴としている。請求項1、2記載の発明
によれば、サイクル定常時においては、気液分離器内の
液面が適正な位置で安定しているため、ガスインジェク
ション配管を通ってインジェクションされる冷媒は飽和
ガスである。しかし、感温筒は飽和ガスの温度より高い
温度を感知すにようにしてあるため、温度式膨張弁は全
開状態となる。
According to the second aspect of the present invention, the temperature sensitive tube (68) is provided.
On the gas injection pipe (5) and in the vicinity of the compressor affected by the heat of the compressor (1),
Due to the influence of heat from the compressor (1), the temperature sensitive tube (6
8) is characterized in that the temperature higher than the temperature of the saturated refrigerant gas is sensed. According to the invention described in claims 1 and 2, since the liquid level in the gas-liquid separator is stable at an appropriate position during the steady cycle, the refrigerant injected through the gas injection pipe is saturated gas. Is. However, since the temperature sensing tube is designed to detect a temperature higher than the temperature of the saturated gas, the temperature type expansion valve is fully opened.

【0008】これにより、制御弁(温度式膨張弁)にお
いて冷媒がほとんど減圧されることなく、必要インジェ
クション量の冷媒が圧縮機にインジェクションされ、正
規のガスインジェクション効果を発揮できる。一方、圧
縮機起動時や、冷暖房能力の大幅変更時といった過渡時
においては、気液分離器内の液面が急上昇したりするこ
とがある。このような場合には、ガスインジェクション
配管を通って圧縮機にインジェクションされる冷媒に
は、ガスのみでなく、液が流入することになる。
As a result, the required amount of refrigerant is injected into the compressor with almost no pressure reduction of the refrigerant in the control valve (thermal expansion valve), and a normal gas injection effect can be exhibited. On the other hand, the liquid level in the gas-liquid separator may suddenly rise during a transition such as when the compressor is started or when the cooling / heating capacity is significantly changed. In such a case, not only gas but liquid will flow into the refrigerant injected into the compressor through the gas injection pipe.

【0009】この結果、感温筒は、液冷媒の混入により
飽和ガス冷媒の温度に近い温度を感知することになり、
感温筒の内部圧力が前述の定常時の場合より低下する。
これにより、前述した温度式膨張弁の作動特性の設定か
ら、弁開度が減少し始め、全閉となる。これにより、上
記過渡時において、液冷媒が圧縮機1にインジェクショ
ンされるのを防止できるので、液圧縮による圧縮機1の
信頼性低下が生じるのを防止できる。
As a result, the temperature sensitive tube senses a temperature close to that of the saturated gas refrigerant due to the mixing of the liquid refrigerant,
The internal pressure of the temperature sensing cylinder becomes lower than that in the steady state described above.
As a result, the valve opening degree starts to decrease from the setting of the operating characteristics of the temperature type expansion valve described above, and the valve is fully closed. This prevents the liquid refrigerant from being injected into the compressor 1 during the above-mentioned transition, and thus can prevent the reliability of the compressor 1 from being lowered due to the liquid compression.

【0010】特に、本発明では、制御弁を構成する温度
式膨張弁が、上記したように、インジェクションされる
冷媒に液が混入しているか否かを直接判定して弁開度を
調整しているから、どのような過渡時においても、液の
混入を感知して閉弁することができ、そのため液戻りを
確実に防止できる。しかも、温度式膨張弁という、電気
回路部のない比較的簡単な機械部品のみにより制御弁を
構成できるので、制御弁の信頼性が高く、かつ安価に製
作できるという効果もある。
In particular, according to the present invention, as described above, the temperature type expansion valve constituting the control valve adjusts the valve opening degree by directly judging whether or not liquid is mixed in the injected refrigerant. Therefore, it is possible to detect the mixing of the liquid and close the valve at any transition time, and therefore it is possible to reliably prevent the liquid from returning. In addition, since the control valve can be configured only by a relatively simple mechanical component having no electric circuit portion, which is a temperature type expansion valve, there is an effect that the control valve is highly reliable and can be manufactured at low cost.

【0011】さらに、 請求項2記載の発明では、感温
筒(68)が、定常時に、飽和冷媒ガスの温度より高い
温度を感知するための熱源として、圧縮機からの熱影響
をそのまま利用しているから、より一層構造の簡単化を
図ることができる。
Further, in the invention according to claim 2, the temperature sensing cylinder (68) uses the heat effect from the compressor as it is as a heat source for sensing a temperature higher than the temperature of the saturated refrigerant gas in a steady state. Therefore, the structure can be further simplified.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態を図に
基づいて説明する。図1は空調用冷凍サイクル装置であ
って、1は冷媒を圧縮して吐出する圧縮機で、例えばス
クロール型圧縮機であり、電気モータにより回転駆動さ
れる電動式のものである。2はこの圧縮機1から吐出さ
れたガス冷媒を冷却し凝縮する凝縮器で、冷却ファン2
aにより送風される冷却空気により冷却される。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a refrigeration cycle apparatus for air conditioning, and 1 is a compressor that compresses and discharges a refrigerant, for example, a scroll compressor, which is an electric type that is rotationally driven by an electric motor. Reference numeral 2 denotes a condenser for cooling and condensing the gas refrigerant discharged from the compressor 1, which is a cooling fan 2
It is cooled by the cooling air blown by a.

【0013】3はこの凝縮器2から出た冷媒を中間圧ま
で減圧する第1減圧器で、例えば電気式膨張弁、あるい
はキャピラリチューブ、オリフィスのごとき固定絞りか
らなる。4はこの第1減圧器3で減圧された中間圧冷媒
の気液を分離する気液分離器で、円筒タンク形状からな
る。5はガスインジェクション配管で、その一端(入口
部)は気液分離器4で分離されたガス冷媒を導入するよ
うに気液分離器4内上部のガス冷媒空間に開口してい
る。このガスインジェクション配管5の他端(出口部)
は圧縮機1の圧縮途中にガス冷媒を戻す(インジェクシ
ョンする)ため、圧縮機1の圧縮室のうち、圧縮途中と
なる部位に開口している。
Reference numeral 3 denotes a first pressure reducer for reducing the pressure of the refrigerant discharged from the condenser 2 to an intermediate pressure, which is composed of, for example, an electric expansion valve, a capillary tube, or a fixed throttle such as an orifice. Reference numeral 4 denotes a gas-liquid separator that separates the gas-liquid of the intermediate pressure refrigerant decompressed by the first pressure reducer 3 and has a cylindrical tank shape. Reference numeral 5 is a gas injection pipe, and one end (inlet) of the gas injection pipe is open to the gas refrigerant space in the upper part of the gas-liquid separator 4 so as to introduce the gas refrigerant separated by the gas-liquid separator 4. The other end (outlet) of this gas injection pipe 5
Since the gas refrigerant is returned (injected) during the compression of the compressor 1, is opened in a portion of the compression chamber of the compressor 1 in the middle of compression.

【0014】また、ガスインジェクション配管5の途中
には圧縮機1へのガスインジェクション量を制御する制
御弁6が設置されており、さらにガスインジェクション
配管5の出口流路部(圧縮機1内に位置している)に
は、圧縮機1内のガス冷媒が気液分離器4側へ逆流する
のを防止するための逆止弁1aが設置されている。7は
気液分離器4で分離された液冷媒を減圧する第2減圧器
で、例えば電気式膨張弁、あるいは温度式膨張弁からな
り、蒸発器8出口での冷媒の過熱度が所定値となるよう
に冷媒流量を調整するものである。蒸発器8は空調用フ
ァン8aにより送風される空調空気と、第2減圧器7で
減圧された気液2相冷媒とを熱交換させて、冷媒を蒸発
させ、その蒸発潜熱により空調空気を冷却する。
A control valve 6 for controlling the amount of gas injection into the compressor 1 is installed in the middle of the gas injection pipe 5, and the outlet flow path portion of the gas injection pipe 5 (located in the compressor 1) Is provided with a check valve 1a for preventing the gas refrigerant in the compressor 1 from flowing back to the gas-liquid separator 4 side. Reference numeral 7 is a second pressure reducer for reducing the pressure of the liquid refrigerant separated by the gas-liquid separator 4, and is composed of, for example, an electric expansion valve or a temperature expansion valve, and the degree of superheat of the refrigerant at the outlet of the evaporator 8 has a predetermined value. The refrigerant flow rate is adjusted so that The evaporator 8 exchanges heat between the conditioned air blown by the air conditioning fan 8a and the gas-liquid two-phase refrigerant decompressed by the second decompressor 7 to evaporate the refrigerant and cool the conditioned air by the latent heat of evaporation. To do.

【0015】9は空調用電子制御装置で、インバータ1
0を介して圧縮機1の駆動用モータの回転数を制御した
り、送風ファン2a、8aや、第1、第2減圧器3、7
を構成する電気式膨張弁等を制御するものである。本発
明の特徴とする制御弁6は温度式膨張弁にて構成されて
おり、この温度式膨張弁は図2に示すごとき構成であ
り、60はそのハウジングであり、その内部には弁体6
1により開閉される弁口62が形成されている。この弁
体61は作動棒63を介してダイヤフラム64に連結さ
れている。このダイヤフラム64の上下には第1、第2
の圧力室65、66が形成されており、第1の圧力室6
5にはキャピラリチューブ67を介して感温筒68内の
冷媒圧力P1が作用するようになっている。
Reference numeral 9 denotes an air-conditioning electronic control unit, which is an inverter 1
0 to control the rotation speed of the drive motor of the compressor 1, the blower fans 2a and 8a, and the first and second pressure reducers 3 and 7.
It controls the electric expansion valve and the like constituting the above. The control valve 6, which is a feature of the present invention, is composed of a thermal expansion valve. This thermal expansion valve has a structure as shown in FIG. 2, 60 is its housing, and the valve body 6 is inside thereof.
A valve opening 62 that is opened and closed by 1 is formed. The valve body 61 is connected to a diaphragm 64 via an actuation rod 63. Above and below this diaphragm 64, the first and second
Pressure chambers 65 and 66 of the first pressure chamber 6 are formed.
The pressure P1 of the refrigerant in the temperature-sensitive cylinder 68 acts on 5 through the capillary tube 67.

【0016】また、第2の圧力室66には弁口62下流
側のガスインジェクション配管5内の冷媒圧力P2が作
用するようになっている。さらに、弁体61にはコイル
スプリング69の押圧力P3が作用しているので、弁体
61の弁開度は、開弁方向に作用する圧力P1と、閉弁
方向に作用する圧力P2+P3との釣り合いで調整され
る。
The pressure P2 of the refrigerant in the gas injection pipe 5 on the downstream side of the valve port 62 acts on the second pressure chamber 66. Further, since the pressing force P3 of the coil spring 69 acts on the valve body 61, the valve opening degree of the valve body 61 is the pressure P1 acting in the valve opening direction and the pressure P2 + P3 acting in the valve closing direction. Adjusted in proportion.

【0017】感温筒68内には冷凍サイクル内と同一の
冷媒が封入されており、感温筒68は、ガスインジェク
ション配管5のうち、圧縮機1近傍の、圧縮機1からの
熱影響を受ける部位に配設され、適宜のクランプ等の固
定手段(図示せず)によりガスインジェクション配管5
に密着固定されている。また、感温筒68の外表面は断
熱材68aで被覆して外気からの熱影響を減少するよう
にしてある。
The same refrigerant as in the refrigeration cycle is enclosed in the temperature sensing cylinder 68, and the temperature sensing cylinder 68 is protected from the heat effect from the compressor 1 in the vicinity of the compressor 1 in the gas injection pipe 5. The gas injection pipe 5 is provided at a receiving portion and is fixed by a suitable fixing means (not shown) such as a clamp.
Is fixedly attached. Further, the outer surface of the temperature sensitive tube 68 is covered with a heat insulating material 68a to reduce the influence of heat from the outside air.

【0018】また、温度式膨張弁の作動特性の設定とし
ては、感温筒68が飽和冷媒ガスの温度より高い温度を
感知したとき、弁体66が全開するようにしてある。次
に、上記構成において作動を説明する。まず、冷凍サイ
クルの定常時について述べると、圧縮機1から吐出され
た高温高圧の過熱ガス冷媒が凝縮器2に流入し、ここで
冷媒は送風ファン2aの送風空気と熱交換して凝縮す
る。次に、凝縮器2から流出した冷媒は第1減圧器3で
減圧されて、中間圧の気液2相状態となり、気液分離器
4内に流入する。
The operating characteristic of the temperature type expansion valve is set so that the valve element 66 is fully opened when the temperature sensing cylinder 68 senses a temperature higher than the temperature of the saturated refrigerant gas. Next, the operation of the above configuration will be described. First, in the steady state of the refrigeration cycle, the high-temperature and high-pressure superheated gas refrigerant discharged from the compressor 1 flows into the condenser 2, where the refrigerant exchanges heat with the blown air of the blower fan 2a and is condensed. Next, the refrigerant flowing out of the condenser 2 is decompressed by the first decompressor 3, becomes a gas-liquid two-phase state of intermediate pressure, and flows into the gas-liquid separator 4.

【0019】ここで、冷媒は飽和ガス冷媒と飽和液冷媒
とに分離され、液冷媒は気液分離器4底部の出口から流
出し、第2減圧器7で再度減圧されて低圧の気液2相状
態となり、蒸発器8に流入する。この蒸発器8で冷媒が
送風ファン8aにより送風される空気から吸熱して蒸発
してガス冷媒となり、このガス冷媒は圧縮機1に吸入さ
れ、再度圧縮される。
Here, the refrigerant is separated into a saturated gas refrigerant and a saturated liquid refrigerant, the liquid refrigerant flows out from the outlet at the bottom of the gas-liquid separator 4, is decompressed again by the second decompressor 7, and the low-pressure gas-liquid 2 is discharged. It enters a phase state and flows into the evaporator 8. In the evaporator 8, the refrigerant absorbs heat from the air blown by the blower fan 8a and evaporates to become a gas refrigerant, which is sucked into the compressor 1 and compressed again.

【0020】一方、気液分離器4で分離されたガス冷媒
は、気液分離器4の上部からガスインジェクション配管
5に流出し、制御弁6および逆止弁1aを通って、圧縮
機1の圧縮室の圧縮過程途中の部位にインジェクション
される。このとき、サイクル定常時においては、気液分
離器4内の液面が適正な位置で安定しているため、ガス
インジェクション配管5を通ってインジェクションされ
る冷媒は飽和ガスである。そして、感温筒68は断熱材
68aにより被覆されて外気と断熱された状態にあるた
め、圧縮機1からの熱影響(熱の伝導)を受けて飽和ガ
スの温度より高い温度を感知することになる。
On the other hand, the gas refrigerant separated by the gas-liquid separator 4 flows out from the upper part of the gas-liquid separator 4 into the gas injection pipe 5, passes through the control valve 6 and the check valve 1a, and passes through the compressor 1. It is injected into a part of the compression chamber during the compression process. At this time, when the cycle is steady, the liquid level in the gas-liquid separator 4 is stable at an appropriate position, so that the refrigerant injected through the gas injection pipe 5 is a saturated gas. Since the temperature sensitive tube 68 is covered with the heat insulating material 68a and is insulated from the outside air, it is necessary to sense a temperature higher than the temperature of the saturated gas under the influence of heat (heat conduction) from the compressor 1. become.

【0021】ここで、制御弁6を構成する温度式膨張弁
の作動特性は、感温筒68が飽和冷媒ガスの温度より高
い温度を感知したとき、弁体61が全開するように設定
してあるため、この弁体61は全開状態となる。この弁
体61の全開状態では、弁口62の開口面積が必要イン
ジェクション量に見合った開口面積となるように設定し
てあるので、制御弁6において冷媒がほとんど減圧する
ことなく、必要インジェクション量の冷媒が圧縮機1に
インジェクションされる。
Here, the operating characteristic of the temperature type expansion valve constituting the control valve 6 is set so that the valve body 61 is fully opened when the temperature sensing cylinder 68 senses a temperature higher than the temperature of the saturated refrigerant gas. Therefore, the valve body 61 is in a fully opened state. In the fully opened state of the valve body 61, the opening area of the valve opening 62 is set to be an opening area commensurate with the required injection amount. Therefore, the refrigerant is hardly decompressed in the control valve 6, and the required injection amount The refrigerant is injected into the compressor 1.

【0022】一方、圧縮機起動時や、冷暖房能力の大幅
変更時といった過渡時においては、気液分離器4内の液
面が急上昇したりすることがある。このような場合に
は、ガスインジェクション配管5を通って圧縮機1にイ
ンジェクションされる冷媒には、ガスのみでなく、液が
流入することになる。この結果、感温筒68は、圧縮機
1からの熱影響を受けても、液冷媒の混入により飽和ガ
ス冷媒の温度に近い温度を感知することになり、感温筒
68の内部圧力P1は、前述の定常時の場合より低下す
る。これにより、前述した温度式膨張弁の作動特性の設
定から、弁体61の開度が減少し始め、全閉となる。
On the other hand, the liquid level in the gas-liquid separator 4 may suddenly rise during a transition such as when the compressor is started or when the cooling and heating capacity is significantly changed. In such a case, not only gas but liquid will flow into the refrigerant injected into the compressor 1 through the gas injection pipe 5. As a result, the temperature-sensitive cylinder 68 senses a temperature close to the temperature of the saturated gas refrigerant due to the mixing of the liquid refrigerant even if it is affected by the heat from the compressor 1, and the internal pressure P1 of the temperature-sensitive cylinder 68 is , Which is lower than the above-mentioned steady state. As a result, the opening degree of the valve body 61 starts to decrease from the setting of the operating characteristics of the temperature type expansion valve described above, and the valve body 61 is fully closed.

【0023】これにより、上記過渡時において、液冷媒
が圧縮機1にインジェクションされるのを防止できるの
で、液圧縮による圧縮機1の信頼性低下が生じるのを防
止できる。特に、制御弁6を構成する温度式膨張弁は、
上記したように、インジェクションされる冷媒に液が混
入しているか否かを直接判定して弁体61の開度を調整
しているから、どのような過渡時においても、液の混入
を感知して閉弁することができ、そのため液戻りを確実
に防止できる。
This makes it possible to prevent the liquid refrigerant from being injected into the compressor 1 during the above-mentioned transition, so that it is possible to prevent the reliability of the compressor 1 from being lowered due to the liquid compression. In particular, the thermal expansion valve that constitutes the control valve 6 is
As described above, since the opening degree of the valve body 61 is adjusted by directly judging whether or not the liquid is mixed in the injected refrigerant, it is possible to detect the liquid mixing in any transient time. It is possible to close the valve, and thus to reliably prevent liquid return.

【0024】なお、図1では本発明の特徴を簡潔に示す
ために、冷媒流れを反転しない通常の冷凍サイクルにつ
いて説明したが、冷媒流れを反転するヒートポンプサイ
クル例えば電気自動車の空調用ヒートポンプサイクルに
対して本発明を適用できることは勿論である。この場
合、ヒートポンプサイクルは冷房、暖房の他に除湿機能
等の多くの運転モードを設定できるヒートポンプサイク
ルであってもよい。
Although a normal refrigeration cycle in which the refrigerant flow is not reversed has been described in FIG. 1 in order to briefly show the features of the present invention, a heat pump cycle in which the refrigerant flow is reversed, for example, for a heat pump cycle for air conditioning of an electric vehicle. Of course, the present invention can be applied. In this case, the heat pump cycle may be a heat pump cycle capable of setting many operation modes such as dehumidifying function in addition to cooling and heating.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態を示す冷凍サイクル図であ
る。
FIG. 1 is a refrigeration cycle diagram showing an embodiment of the present invention.

【図2】図1における制御弁6を構成する温度式膨張弁
の概要を示す断面図である。
2 is a cross-sectional view showing an outline of a thermal expansion valve that constitutes a control valve 6 in FIG.

【符号の説明】[Explanation of symbols]

1…圧縮機、2…凝縮器、3…第1減圧器、4…気液分
離器、5…ガスインジェクション配管、6…制御弁(温
度式膨張弁)、7…第2減圧器、8…蒸発器、61…弁
体、62…弁口、68…感温筒。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Condenser, 3 ... 1st decompressor, 4 ... Gas-liquid separator, 5 ... Gas injection piping, 6 ... Control valve (temperature type expansion valve), 7 ... 2nd decompressor, 8 ... Evaporator, 61 ... Valve body, 62 ... Valve mouth, 68 ... Temperature sensitive tube.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 冷媒を圧縮して吐出する圧縮機(1)
と、 この圧縮機(1)から吐出されたガス冷媒を冷却し凝縮
する凝縮器(2)と、 この凝縮器(2)から出た冷媒を中間圧まで減圧する第
1減圧器(3)と、この第1減圧器(3)で減圧された
中間圧冷媒の気液を分離する気液分離器(4)と、 この気液分離器(4)で分離されたガス冷媒を前記圧縮
機(1)の圧縮途中に戻すガスインジェクション配管
(5)と、 前記気液分離器(4)で分離された液冷媒を減圧する第
2減圧器(7)と、この第2減圧器(7)で減圧された
冷媒を蒸発させる蒸発器(8)とを備えるガスインジェ
クション式冷凍サイクル装置において、 前記ガスインジェクション配管(5)に、前記圧縮機
(1)の圧縮途中に戻すガス冷媒のインジェクション量
を制御する制御弁(6)を設け、 この制御弁(6)を、前記ガスインジェクション配管
(5)上に配置した感温筒(68)により感知される温
度に応じて弁開度が調整される温度式膨張弁により構成
するとともに、サイクル定常運転時には前記感温筒(6
8)が飽和冷媒ガスの温度より高い温度を感知して前記
温度式膨張弁が全開するようにしたことを特徴とするガ
スインジェクション式冷凍サイクル装置。
A compressor for compressing and discharging a refrigerant (1)
A condenser (2) for cooling and condensing the gas refrigerant discharged from the compressor (1), and a first pressure reducer (3) for depressurizing the refrigerant discharged from the condenser (2) to an intermediate pressure. , A gas-liquid separator (4) for separating the gas-liquid of the intermediate pressure refrigerant decompressed by the first pressure reducer (3) and the gas refrigerant separated by the gas-liquid separator (4) into the compressor ( 1) a gas injection pipe (5) for returning to the middle of compression, a second pressure reducer (7) for reducing the pressure of the liquid refrigerant separated by the gas-liquid separator (4), and a second pressure reducer (7) A gas injection type refrigeration cycle device comprising: an evaporator (8) for evaporating a decompressed refrigerant, wherein the gas injection pipe (5) controls an injection amount of a gas refrigerant to be returned to the middle of compression of the compressor (1). A control valve (6) for The temperature-sensing cylinder (68) arranged on the gas injection pipe (5) has a valve opening adjusted according to the temperature sensed by the temperature-sensing cylinder (68). 6
8) The gas injection type refrigeration cycle apparatus, wherein the temperature type expansion valve is fully opened by sensing a temperature higher than the temperature of the saturated refrigerant gas.
【請求項2】 前記感温筒(68)は、前記ガスインジ
ェクション配管(5)上で、かつ前記圧縮機(1)の熱
影響を受ける圧縮機近傍の位置に配置され、前記圧縮機
(1)からの熱影響により前記感温筒(68)が飽和冷
媒ガスの温度より高い温度を感知するようにしたことを
特徴とする請求項1に記載のガスインジェクション式冷
凍サイクル装置。
2. The temperature sensing cylinder (68) is arranged on the gas injection pipe (5) and in the vicinity of the compressor affected by the heat of the compressor (1). 2. The gas injection type refrigeration cycle apparatus according to claim 1, wherein the temperature sensing cylinder (68) senses a temperature higher than the temperature of the saturated refrigerant gas due to the heat effect from (1).
JP7240249A 1995-09-19 1995-09-19 Gas injection type refrigerating cycle equipment Pending JPH0979667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7240249A JPH0979667A (en) 1995-09-19 1995-09-19 Gas injection type refrigerating cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7240249A JPH0979667A (en) 1995-09-19 1995-09-19 Gas injection type refrigerating cycle equipment

Publications (1)

Publication Number Publication Date
JPH0979667A true JPH0979667A (en) 1997-03-28

Family

ID=17056684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7240249A Pending JPH0979667A (en) 1995-09-19 1995-09-19 Gas injection type refrigerating cycle equipment

Country Status (1)

Country Link
JP (1) JPH0979667A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008275201A (en) * 2007-04-26 2008-11-13 Mitsubishi Electric Corp Refrigerating air-conditioning device
KR100947606B1 (en) * 2007-12-26 2010-04-01 엘지전자 주식회사 Air conditioning system
JP2013190151A (en) * 2012-03-13 2013-09-26 Ebara Refrigeration Equipment & Systems Co Ltd Turbo refrigerator and control method thereof
KR101329753B1 (en) * 2007-12-26 2013-11-14 엘지전자 주식회사 Air conditioning system
US20140026605A1 (en) * 2011-05-23 2014-01-30 Mitsubishi Electric Corporation Air-conditioning apparatus
KR101416934B1 (en) * 2007-12-26 2014-07-08 엘지전자 주식회사 Air conditioning system
WO2016103684A1 (en) * 2014-12-26 2016-06-30 ダイキン工業株式会社 Regenerative air conditioner
JP2020085269A (en) * 2018-11-16 2020-06-04 パナソニックIpマネジメント株式会社 Refrigeration cycle device
US11320170B2 (en) 2017-10-16 2022-05-03 Denso Corporation Heat pump cycle

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008275201A (en) * 2007-04-26 2008-11-13 Mitsubishi Electric Corp Refrigerating air-conditioning device
KR100947606B1 (en) * 2007-12-26 2010-04-01 엘지전자 주식회사 Air conditioning system
KR101329753B1 (en) * 2007-12-26 2013-11-14 엘지전자 주식회사 Air conditioning system
KR101416934B1 (en) * 2007-12-26 2014-07-08 엘지전자 주식회사 Air conditioning system
US20140026605A1 (en) * 2011-05-23 2014-01-30 Mitsubishi Electric Corporation Air-conditioning apparatus
US9494348B2 (en) * 2011-05-23 2016-11-15 Mitsubishi Electric Corporation Air-conditioning apparatus
JP2013190151A (en) * 2012-03-13 2013-09-26 Ebara Refrigeration Equipment & Systems Co Ltd Turbo refrigerator and control method thereof
WO2016103684A1 (en) * 2014-12-26 2016-06-30 ダイキン工業株式会社 Regenerative air conditioner
JP2016125721A (en) * 2014-12-26 2016-07-11 ダイキン工業株式会社 Heat storage type air conditioner
US11320170B2 (en) 2017-10-16 2022-05-03 Denso Corporation Heat pump cycle
JP2020085269A (en) * 2018-11-16 2020-06-04 パナソニックIpマネジメント株式会社 Refrigeration cycle device

Similar Documents

Publication Publication Date Title
US9494356B2 (en) Condensing unit having fluid injection
JP4600212B2 (en) Supercritical refrigeration cycle equipment
JPH071954A (en) Air-conditioning device for electric automobile
US6910343B2 (en) Vapor-compression refrigerant cycle with ejector
JP4408413B2 (en) Refrigeration apparatus and air conditioner using the same
JP2007183020A (en) Capacity variable air conditioner
JPH09229497A (en) Refrigerating cycle
JPH0979667A (en) Gas injection type refrigerating cycle equipment
JPH10288411A (en) Vapor pressure compression type refrigerating cycle
JP2964705B2 (en) Air conditioner
JPH0527018B2 (en)
JP3257044B2 (en) Injection type refrigeration equipment
JP4661696B2 (en) Supercritical refrigeration cycle
JP4301546B2 (en) Refrigeration equipment
JPH0989389A (en) Refrigerating cycle apparatus
JP2008164256A (en) Refrigerating cycle device
JP2003042585A (en) Air conditioner
JP3924935B2 (en) Thermal expansion valve
JP2006177598A (en) Refrigerating cycle device
JP3326835B2 (en) Refrigeration cycle
JP2000074513A (en) Supercritical refrigerating cycle
JP2005075102A (en) Air conditioner for vehicle
JP4051760B2 (en) Refrigeration cycle equipment
KR100308374B1 (en) Compressor protection device of air conditioner
JPH05223359A (en) Freezing cycle