JP5873364B2 - Light modulator and spatial light modulator - Google Patents

Light modulator and spatial light modulator Download PDF

Info

Publication number
JP5873364B2
JP5873364B2 JP2012061276A JP2012061276A JP5873364B2 JP 5873364 B2 JP5873364 B2 JP 5873364B2 JP 2012061276 A JP2012061276 A JP 2012061276A JP 2012061276 A JP2012061276 A JP 2012061276A JP 5873364 B2 JP5873364 B2 JP 5873364B2
Authority
JP
Japan
Prior art keywords
magnetization
light modulation
modulation element
electrode
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012061276A
Other languages
Japanese (ja)
Other versions
JP2013195590A (en
Inventor
町田 賢司
賢司 町田
秀和 金城
秀和 金城
加藤 大典
大典 加藤
賢一 青島
賢一 青島
久我 淳
淳 久我
菊池 宏
宏 菊池
清水 直樹
直樹 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Broadcasting Corp filed Critical Japan Broadcasting Corp
Priority to JP2012061276A priority Critical patent/JP5873364B2/en
Publication of JP2013195590A publication Critical patent/JP2013195590A/en
Application granted granted Critical
Publication of JP5873364B2 publication Critical patent/JP5873364B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は、入射した光を磁気光学効果により光の位相や振幅等を空間的に変調して出射する空間光変調器の光変調素子、およびこの光変調素子を用いた空間光変調器に関する。   The present invention relates to a light modulation element of a spatial light modulator that spatially modulates incident light by using a magneto-optic effect, and to a spatial light modulator using the light modulation element.

空間光変調器は、画素として光学素子(光変調素子)を用い、これをマトリクス状に2次元配列して光の位相や振幅等を空間的に変調するものであって、ホログラフィ装置等の露光装置、ディスプレイ技術、記録技術等の分野で広く利用されている。また、2次元で並列に光情報を処理することができることから光情報処理技術への応用も研究されている。空間光変調器として、従来より液晶が用いられ、表示装置として広く利用されているが、ホログラフィや光情報処理用としては、応答速度や画素の高精細性が不十分であるため、近年では、高速処理かつ画素の微細化の可能性が期待される磁気光学材料を用いた磁気光学式空間光変調器の開発が進められている。   A spatial light modulator uses an optical element (light modulation element) as a pixel and arranges it in a two-dimensional matrix to spatially modulate the phase, amplitude, etc. of light. Widely used in fields such as equipment, display technology, and recording technology. In addition, since optical information can be processed in two dimensions in parallel, its application to optical information processing technology is also being studied. As a spatial light modulator, liquid crystal has been conventionally used and widely used as a display device, but for holography and optical information processing, since response speed and high definition of pixels are insufficient, in recent years, Development of a magneto-optic spatial light modulator using a magneto-optic material that is expected to be capable of high-speed processing and pixel miniaturization is in progress.

磁気光学式空間光変調器(以下、空間光変調器)においては、磁気光学材料すなわち磁性体に入射した光が透過または反射する際にその偏光の向きを変化(旋光)させて出射する、ファラデー効果(反射の場合はカー効果)を利用している。すなわち、空間光変調器は、選択された画素(選択画素)における光変調素子の磁化方向とそれ以外の画素(非選択画素)における光変調素子の磁化方向を異なるものとして、選択画素から出射した光と非選択画素から出射した光で、その偏光の回転角(旋光角)に差を生じさせる。このような光変調素子の磁化方向を変化させる方法として、光変調素子に磁界を印加する磁界印加方式の他に、近年では光変調素子に電流を供給することでスピンを注入するスピン注入方式(例えば、特許文献1)がある。   In a magneto-optical spatial light modulator (hereinafter referred to as a spatial light modulator), when light incident on a magneto-optical material, that is, a magnetic material is transmitted or reflected, the direction of polarization is changed (rotation) and emitted. The effect (Kerr effect in the case of reflection) is used. That is, the spatial light modulator emits light from the selected pixel with the magnetization direction of the light modulation element in the selected pixel (selected pixel) different from the magnetization direction of the light modulation element in the other pixels (non-selected pixels). The light and the light emitted from the non-selected pixels cause a difference in the rotation angle (rotation angle) of the polarization. As a method of changing the magnetization direction of such a light modulation element, in addition to a magnetic field application method in which a magnetic field is applied to the light modulation element, in recent years, a spin injection method in which spin is injected by supplying a current to the light modulation element ( For example, there is Patent Document 1).

スピン注入方式の光変調素子は、具体的には、TMR(Tunnel MagnetoResistance:トンネル磁気抵抗効果)素子やCPP−GMR(Current Perpendicular to the Plane Giant MagnetoResistance:垂直通電型巨大磁気抵抗効果)素子等の、磁気抵抗ランダムアクセスメモリ(MRAM)にも適用されるスピン注入磁化反転素子を適用することができる。一例として、このような従来の光変調素子の断面図を図15に示す。図15に示すように、光変調素子101は、上下に一対の電極151,152を接続して膜面に垂直に電流を供給される。この電流により、光変調素子101はスピンを注入されて、MRAMの書込み(write)と同様に磁化自由層103の磁化方向を反転させることができる。そして、光変調素子101は、少なくとも一方の電極(図15では上部電極152)を透明電極材料で形成することで、入射した光を変調して出射する画素として機能する。このようなスピン注入磁化反転素子を適用した光変調素子は、磁界を発生させるために各光変調素子の外周に沿って電極(配線)を備える磁界印加方式よりもいっそうの微細化を可能とする。   Specifically, the spin injection type light modulation element is a TMR (Tunnel MagnetoResistance) element or a CPP-GMR (Current Perpendicular to the Plane Giant MagnetoResistance) element. A spin-injection magnetization reversal element that is also applied to a magnetoresistive random access memory (MRAM) can be applied. As an example, FIG. 15 shows a cross-sectional view of such a conventional light modulation element. As shown in FIG. 15, the light modulation element 101 is connected to a pair of electrodes 151 and 152 on the upper and lower sides and supplied with a current perpendicular to the film surface. With this current, the light modulation element 101 is injected with spin, and the magnetization direction of the magnetization free layer 103 can be reversed in the same manner as in the MRAM write. The light modulation element 101 functions as a pixel that modulates and emits incident light by forming at least one electrode (the upper electrode 152 in FIG. 15) from a transparent electrode material. An optical modulation element to which such a spin-injection magnetization reversal element is applied enables further miniaturization than a magnetic field application method in which electrodes (wirings) are provided along the outer periphery of each optical modulation element in order to generate a magnetic field. .

また、光変調素子の別の態様として、特許文献2に、細線加工された磁性体(磁性細線)を光変調素子とする空間光変調器が開示されている。これは、磁性細線においては、2以上の磁区が細線方向に区切られて形成され易く、これらの磁区を区切る磁壁が当該磁性細線に電流を細線方向に供給することにより移動するという磁壁移動を利用している。この空間光変調器は、詳しくは、画素毎に1本の磁性細線を面方向(画素の2次元配列面)に沿って設けて、その両端に接続した一対の電極にて細線方向に電流を供給すると、電流の向きとは反対方向へ磁壁が移動して、磁壁の移動前後の位置に挟まれた領域における磁化方向が反転するので、この領域を光の入射領域(有効領域)として反射光を取り出すことができる。   Further, as another aspect of the light modulation element, Patent Document 2 discloses a spatial light modulator that uses a thin line-processed magnetic body (magnetic fine wire) as a light modulation element. This is because in magnetic thin wires, two or more magnetic domains are easily formed in the thin line direction, and the domain walls that delimit these magnetic domains move by supplying current to the magnetic thin line in the thin line direction. doing. More specifically, this spatial light modulator is provided with one magnetic thin line for each pixel along the surface direction (two-dimensional array surface of the pixels), and a current is applied in the thin line direction by a pair of electrodes connected to both ends thereof. When supplied, the domain wall moves in the direction opposite to the direction of the current, and the magnetization direction in the area sandwiched between the positions before and after the domain wall movement is reversed, so this area is reflected light as the light incident area (effective area). Can be taken out.

特許第4829850号公報Japanese Patent No. 4829850 特開2010−20114号公報JP 2010-20114 A

特許文献1,2に記載された光変調素子には、それぞれ以下の点で改良の余地がある。特許文献1の光変調素子に適用されたスピン注入磁化反転素子は、電流を供給するための電極が上下に接続されるので、光変調素子として光を入出射するためには、光の入出射側に、光を透過する透明電極材料を適用しなくてはならない。透明電極材料は、金属電極材料と比べて導電性に大きく劣るため、特により多数の光変調素子をマトリクス状に配列した高精細の空間光変調器になるほど中央部で動作が遅れる虞がある。このような空間光変調器を動作させるために大電流を供給する必要があり、省電力化の点で改良の余地がある。さらにスピン注入磁化反転素子は一辺300nm程度以下としないと好適に動作(スピン注入磁化反転)し難いため、配線ピッチに対する光変調素子のサイズが小さくなり、その結果、画素において光変調される有効領域の割合(画素の開口率)が低くなる。   The light modulation elements described in Patent Documents 1 and 2 have room for improvement in the following points. In the spin-injection magnetization switching element applied to the light modulation element of Patent Document 1, since electrodes for supplying a current are connected vertically, in order to enter and output light as a light modulation element, light input / output On the side, a transparent electrode material that transmits light must be applied. Since the transparent electrode material is greatly inferior in conductivity as compared with the metal electrode material, there is a possibility that the operation is delayed in the central portion as the high-definition spatial light modulator has a larger number of light modulation elements arranged in a matrix. In order to operate such a spatial light modulator, it is necessary to supply a large current, and there is room for improvement in terms of power saving. Furthermore, since it is difficult for the spin injection magnetization reversal element to operate properly (spin injection magnetization reversal) unless the side is about 300 nm or less, the size of the light modulation element with respect to the wiring pitch is reduced. Ratio (pixel aperture ratio) becomes low.

一方、特許文献2の光変調素子に適用された磁性細線は、接続する一対の電極の両方を金属電極材料で形成することができるが、磁壁を挟んで開口領域における磁化方向と異なる磁化方向の磁区が形成されている。したがって、磁性細線において画素情報として取り出せる光は、中央部の磁壁の移動前後の位置に挟まれた領域からの反射光に限定され、画素の開口率には限界がある。   On the other hand, in the magnetic thin wire applied to the light modulation element of Patent Document 2, both of the pair of electrodes to be connected can be formed of a metal electrode material, but the magnetization direction is different from the magnetization direction in the opening region across the domain wall. Magnetic domains are formed. Therefore, the light that can be extracted as pixel information in the magnetic thin line is limited to the reflected light from the region sandwiched between the positions of the central domain wall before and after the movement, and the aperture ratio of the pixel is limited.

さらに、空間光変調器は、画素のそれぞれの光変調素子が設定にしたがった光変調をするか、すなわち書込み通りの磁化方向を示しているかを電気的に検知するエラー検出が可能であることが望ましい。例えば、図15に示すスピン注入磁化反転素子を適用した光変調素子101は、磁化固定層111と磁化自由層103との磁化方向が同じ(平行:P、図15(a)参照)であるときの抵抗R101Pよりも、反対(反平行:AP、図15(b)参照)であるときの抵抗R101APの方が大きい。そこで、特許文献1に記載された空間光変調器は、MRAMにおける読出し(read)と同様に、光変調素子101にスピン注入磁化反転しない程度の電流を供給して、電極151,152間の電圧を測定することで磁化自由層103の磁化方向を検知することができる。これに対して、磁性細線は磁壁が移動しても抵抗がほとんど変化しないため、特許文献2に記載された空間光変調器では書込みエラー検出が困難である。 Furthermore, the spatial light modulator may be capable of error detection that electrically detects whether each light modulation element of the pixel performs light modulation according to the setting, that is, indicates the magnetization direction as written. desirable. For example, in the light modulation element 101 to which the spin injection magnetization reversal element shown in FIG. 15 is applied, the magnetization directions of the magnetization fixed layer 111 and the magnetization free layer 103 are the same (parallel: P, see FIG. 15A). than the resistance R101 P of the opposite: greater resistance R101 towards AP when a (antiparallel AP, Fig 15 (b) refer). Therefore, the spatial light modulator described in Patent Document 1 supplies a current that does not cause spin injection magnetization reversal to the light modulation element 101 and reads the voltage between the electrodes 151 and 152 in the same manner as the read in the MRAM. By measuring the magnetization direction of the magnetization free layer 103. On the other hand, since the resistance of the magnetic thin wire hardly changes even when the domain wall moves, it is difficult for the spatial light modulator described in Patent Document 2 to detect the write error.

本発明は前記問題点に鑑み創案されたもので、空間光変調器の画素としたときに、配線に透明電極材料を用いず、また画素の開口率を十分に保持しつつ微細化し、さらに書込みエラー検出が容易となる光変調素子、およびこれを用いた空間光変調器を提供することが課題である。   The present invention was devised in view of the above problems, and when a pixel of a spatial light modulator is used, a transparent electrode material is not used for wiring, and the pixel aperture ratio is sufficiently maintained and further miniaturized and further written. It is an object to provide an optical modulation element that facilitates error detection and a spatial light modulator using the same.

本願発明者らは、図16に断面図で示すデュアルピン構造のスピン注入磁化反転素子101A(例えば特開2010−60748号公報参照)について、1つの磁化自由層103の上下に配置していた磁化固定層111,112を2つ共、磁化自由層103の同じ側の面に、面方向に離間して積層することにより、磁化自由層を底部として断面視U字型の電流経路を形成する並設デュアルピン構造のスピン注入磁化反転素子からなる光変調素子を開発した。デュアルピン構造のスピン注入磁化反転素子は、磁化自由層を共有するように2つのスピン注入磁化反転素子を接続した構造であり、一対の電極を前記U字の両端の2つの磁化固定層に接続すればスピン注入磁化反転動作をさせることができる。そのため、並設デュアルピン構造としたスピン注入磁化反転素子を適用した光変調素子は、電極を透過させずに前記U字の底部の磁化自由層に光を入射することができ、一対の電極の両方を金属電極材料で形成することができる。また、光変調素子の面積を従来のスピン注入磁化反転素子の2倍に拡張することができ、画素の有効領域を広くすることができる。   The inventors of the present application have used the dual pin structure spin-inversion magnetization switching element 101A (see, for example, Japanese Patent Application Laid-Open No. 2010-60748) shown in a sectional view in FIG. The two fixed layers 111 and 112 are stacked on the same side surface of the magnetization free layer 103 so as to be spaced apart from each other in the plane direction, thereby forming a U-shaped current path in cross section with the magnetization free layer as a bottom. We have developed a light modulation device consisting of a spin-injection magnetization reversal device with a dual pin structure. A spin-injection magnetization reversal element having a dual pin structure has a structure in which two spin-injection magnetization reversal elements are connected so as to share a magnetization free layer, and a pair of electrodes are connected to two magnetization fixed layers at both ends of the U-shape. Then, the spin injection magnetization reversal operation can be performed. Therefore, a light modulation element using a spin injection magnetization reversal element having a parallel dual pin structure can enter light into the magnetization free layer at the bottom of the U-shape without transmitting through the electrodes. Both can be formed of a metal electrode material. Further, the area of the light modulation element can be expanded to twice that of the conventional spin injection magnetization reversal element, and the effective area of the pixel can be widened.

一方で、デュアルピン構造のスピン注入磁化反転素子は、磁化自由層の磁化方向が常に2つの磁化固定層の一方に平行で他方に反平行であるため、含まれる2つのスピン注入磁化反転素子の合成抵抗である全体の抵抗が一定となり、書込みエラー検出が困難となる。そこで、本願発明者らは、前記の並設デュアルピン構造のスピン注入磁化反転素子を、その1つのスピン注入磁化反転素子を共有化するように2個連結することで、磁化反転により両端間の抵抗が変化するようにして、書込みエラー検出を可能とすることに想到した。   On the other hand, in the spin-injection magnetization reversal element having a dual pin structure, the magnetization direction of the magnetization free layer is always parallel to one of the two magnetization fixed layers and antiparallel to the other, The overall resistance, which is the combined resistance, becomes constant, making it difficult to detect write errors. Therefore, the inventors of the present application connect the two spin-injection magnetization reversal elements having the above-mentioned parallel dual pin structure so as to share the one spin-injection magnetization reversal element. It was conceived that the write error can be detected by changing the resistance.

すなわち、本発明に係る光変調素子は、基板上に、磁化固定層、中間層、および磁化自由層の順に積層したスピン注入磁化反転素子構造を備え、前記磁化自由層が積層された側から入射した光をその偏光の向きを変化させて反射して出射するものである。そして、前記磁化固定層は、第1磁化固定層と、第3磁化固定層と、前記第1磁化固定層と前記第3磁化固定層との間に配置された第2磁化固定層と、を面方向に離間して、前記磁化自由層の下にそれぞれ前記中間層を挟んで有し、前記第1磁化固定層と前記第2磁化固定層とは互いに反平行な方向の磁化に固定され、前記第3磁化固定層は前記第1磁化固定層と同じ方向の磁化に固定され、前記第1磁化固定層および前記第3磁化固定層に一対の電極の一方を接続し、前記第2磁化固定層に前記一対の電極の他方を接続して電流を供給されることにより、前記磁化自由層の磁化方向が変化する構成とした。   That is, the light modulation element according to the present invention has a spin-injection magnetization reversal element structure in which a magnetization fixed layer, an intermediate layer, and a magnetization free layer are laminated in this order on a substrate, and is incident from the side on which the magnetization free layer is laminated. The reflected light is reflected and emitted by changing the direction of the polarized light. The magnetization fixed layer includes a first magnetization fixed layer, a third magnetization fixed layer, and a second magnetization fixed layer disposed between the first magnetization fixed layer and the third magnetization fixed layer. The first magnetization pinned layer and the second magnetization pinned layer are fixed to magnetizations in directions parallel to each other, spaced apart in the plane direction and sandwiching the intermediate layer under the magnetization free layer, respectively. The third magnetization fixed layer is fixed to magnetization in the same direction as the first magnetization fixed layer, one of a pair of electrodes is connected to the first magnetization fixed layer and the third magnetization fixed layer, and the second magnetization fixed layer By connecting the other of the pair of electrodes to the layer and supplying a current, the magnetization direction of the magnetization free layer is changed.

かかる構成により、光変調素子は2つ分のスピン注入磁化反転素子の面積として大きくすることができ、さらに電極を接続する2つの磁化固定層がいずれも光の入射側に配置されないため、磁化反転動作させるための電流を供給する電極に透明電極材料を適用しなくてよい。また、光変調素子は、3つのスピン注入磁化反転素子構造で構成されることにより、うち2つの磁化固定層の磁化方向を平行に固定して、これら2つのスピン注入磁化反転素子構造の合成抵抗が、磁化自由層の磁化反転により変化する。このような光変調素子は、これら平行な磁化方向に固定された2つの磁化固定層に接続した電極間での抵抗を測定することにより、磁化自由層の磁化方向を検出することができる。   With this configuration, the light modulation element can be enlarged as the area of two spin-injection magnetization reversal elements, and furthermore, no two magnetization fixed layers connecting the electrodes are arranged on the light incident side, so that the magnetization reversal The transparent electrode material need not be applied to the electrode that supplies the current for operation. Further, the light modulation element is composed of three spin-injection magnetization reversal element structures, so that the magnetization directions of two magnetization fixed layers are fixed in parallel, and the combined resistance of these two spin-injection magnetization reversal element structures. Changes due to the magnetization reversal of the magnetization free layer. Such a light modulation element can detect the magnetization direction of the magnetization free layer by measuring the resistance between the electrodes connected to the two magnetization fixed layers fixed in the parallel magnetization directions.

さらに、光変調素子は、第2磁化固定層が、第1磁化固定層および第3磁化固定層と保磁力が異なることが好ましい。あるいは、光変調素子は、第1磁化固定層および第3磁化固定層と、第2磁化固定層と、の少なくとも一方が、交換結合した磁性膜を備えた多層構造であることが好ましい。
かかる構成により、光変調素子における3つの磁化固定層の1つを他の2つと反平行な磁化方向に固定することが容易となる。
Further, in the light modulation element, it is preferable that the second magnetization fixed layer has a different coercive force from the first magnetization fixed layer and the third magnetization fixed layer. Alternatively, the light modulation element preferably has a multilayer structure in which at least one of the first magnetization fixed layer, the third magnetization fixed layer, and the second magnetization fixed layer includes a magnetic film exchange-coupled.
With this configuration, it becomes easy to fix one of the three magnetization fixed layers in the light modulation element in the magnetization direction antiparallel to the other two.

前記の光変調素子は、3つの磁化固定層のそれぞれに電極を接続して、空間光変調器の画素とすることができる。すなわち、本発明に係る空間光変調器は、基板とこの基板上に2次元配列された複数の画素とを備えて、上方から前記複数の画素に入射した光を反射させて出射し、前記画素が、前記の光変調素子、ならびに前記光変調素子の前記第1磁化固定層に接続された第1電極、前記第2磁化固定層に接続された第2電極、および前記第3磁化固定層に接続された第3電極を備える。そして、空間光変調器は、前記複数の画素から1つ以上の画素を選択し、この選択した画素の光変調素子の磁化自由層の磁化方向を異なる2方向のいずれにするかをさらに選択する画素選択手段と、この画素選択手段が選択した画素の光変調素子に前記第1電極および前記第3電極を一対の電極の一方とし、前記第2電極を一対の電極の他方として電流を供給して、前記光変調素子の磁化自由層の磁化方向を前記画素選択手段が選択した方向にする電流供給手段と、この電流供給手段が電流を供給した前記光変調素子の磁化自由層の磁化方向が、前記画素選択手段により選択された方向であることを判定する画素判定を、前記光変調素子の抵抗の変化を検知することにより行う画素判定手段と、を備える構成とした。また、空間光変調器は、前記画素が光変調素子の2以上を、第1電極、第2電極、および第3電極に並列に接続して備えてもよい。 The light modulation element can be a pixel of a spatial light modulator by connecting an electrode to each of the three magnetization fixed layers. That is, the spatial light modulator according to the present invention includes a substrate and a plurality of pixels two-dimensionally arranged on the substrate, reflects light emitted from above to the plurality of pixels, and emits the reflected light. Are connected to the light modulation element, the first electrode connected to the first magnetization fixed layer of the light modulation element, the second electrode connected to the second magnetization fixed layer, and the third magnetization fixed layer. A third electrode connected is provided. Then, the spatial light modulator selects one or more pixels from the plurality of pixels, and further selects one of two different directions of magnetization of the magnetization free layer of the light modulation element of the selected pixel. A current is supplied to the pixel selection unit and the light modulation element of the pixel selected by the pixel selection unit using the first electrode and the third electrode as one of the pair of electrodes and the second electrode as the other of the pair of electrodes. Current supply means for setting the magnetization direction of the magnetization free layer of the light modulation element to the direction selected by the pixel selection means, and the magnetization direction of the magnetization free layer of the light modulation element to which the current supply means supplies current. And a pixel determination unit that performs pixel determination to determine the direction selected by the pixel selection unit by detecting a change in resistance of the light modulation element. In the spatial light modulator, the pixel may include two or more light modulation elements connected in parallel to the first electrode, the second electrode, and the third electrode.

さらに、空間光変調器は、前記画素選択手段が選択した画素の前記光変調素子に所定の大きさの電流を供給する副電流供給手段を備える構成としてもよい。この空間光変調器においては、前記画素判定手段が、前記副電流供給手段に電流を供給されている前記光変調素子に接続された前記第1電極と前記第3電極との間の電圧の値を、前記磁化自由層の磁化方向が前記画素選択手段により選択された方向であるときの前記光変調素子の抵抗に基づいて予め設定された閾値と比較することにより、前記画素判定を行う。   Furthermore, the spatial light modulator may include a sub-current supply unit that supplies a predetermined current to the light modulation element of the pixel selected by the pixel selection unit. In this spatial light modulator, the pixel determination means has a voltage value between the first electrode and the third electrode connected to the light modulation element to which a current is supplied to the sub-current supply means. Is compared with a threshold value set in advance based on the resistance of the light modulation element when the magnetization direction of the magnetization free layer is the direction selected by the pixel selection means.

かかる構成により、空間光変調器は、3つのスピン注入磁化反転素子構造で構成され、光の入射側に電極を接続しない光変調素子を画素に備えるため、開口率の高い画素に、光を電極で遮られることなく入射することができる。そして、空間光変調器は、画素選択手段が画素を選択して、電流供給手段から光変調素子に電流を供給させると、中央の1つとその両側2つとの計3つのスピン注入磁化反転素子構造のそれぞれの磁化固定層に接続された電極を介してスピン注入されるために、共有された磁化自由層をスピン注入磁化反転させて、画素毎に電流の向きに応じた所望の磁化方向にすることができる。さらに、空間光変調器は、画素判定手段が、光変調素子の磁化自由層が電流供給手段により所望の磁化方向に正常に磁化反転していたかを診断することができる。具体的には、空間光変調器は、画素選択手段が画素を選択して、平行な磁化方向に固定された2つの磁化固定層に接続したそれぞれの電極を介して副電流供給手段から光変調素子にスピン注入磁化反転動作をしない所定の大きさの電流を供給させると、光変調素子の抵抗によって電圧が特定の範囲で変化するので、画素判定手段がこの電圧の値を予め設定した閾値と比較することにより、磁化自由層がいずれの磁化方向であるかを判定することができる。   With this configuration, the spatial light modulator is configured with three spin-injection magnetization reversal element structures, and the pixel includes a light modulation element that does not connect the electrode to the light incident side. Therefore, the light is applied to the pixel with a high aperture ratio. It can enter without being blocked by. The spatial light modulator has a total of three spin-injection magnetization reversal element structures, one at the center and two at both sides thereof, when the pixel selection means selects a pixel and supplies current from the current supply means to the light modulation element. In order to be spin-injected via the electrodes connected to the respective magnetization fixed layers, the shared magnetization free layer is reversed by spin-injection magnetization so as to obtain a desired magnetization direction corresponding to the direction of current for each pixel. be able to. Furthermore, the spatial light modulator can diagnose whether the pixel determination unit has normally reversed the magnetization of the magnetization free layer of the light modulation element in the desired magnetization direction by the current supply unit. Specifically, in the spatial light modulator, the pixel selection unit selects a pixel and performs light modulation from the sub-current supply unit via the respective electrodes connected to two magnetization fixed layers fixed in parallel magnetization directions. If a current of a predetermined magnitude that does not perform the spin injection magnetization reversal operation is supplied to the element, the voltage changes within a specific range due to the resistance of the light modulation element. Therefore, the pixel determination means sets the voltage value to a preset threshold value. By comparing, it is possible to determine which magnetization direction the magnetization free layer has.

さらに、空間光変調器は、前記第1磁化固定層と前記第1電極との間、または前記第3磁化固定層と前記第3電極との間に、電気的接続を接続解除自在とする選択素子を備えることが好ましい。かかる構成により、空間光変調器は、非選択の画素の光変調素子への電流の漏れが抑えられるので、画素判定手段による診断が容易になる。   Further, the spatial light modulator may be configured such that electrical connection between the first magnetization fixed layer and the first electrode, or between the third magnetization fixed layer and the third electrode can be disconnected. It is preferable to provide an element. With this configuration, the spatial light modulator can suppress current leakage to the light modulation element of the non-selected pixel, and thus diagnosis by the pixel determination unit is facilitated.

あるいは、空間光変調器は、前記画素が、前記第1磁化固定層と前記第1電極との間、前記第2磁化固定層と前記第2電極との間、および前記第3磁化固定層と前記第3電極との間から選択される2箇所に、電気的接続を接続解除自在とする選択素子を備えることが好ましい。かかる構成により、空間光変調器は、非選択の画素において、光変調素子が2以上の電極に接続しないので、かかる光変調素子を経由して電流が漏れることがなく、画素判定手段による診断がいっそう容易になり、また光変調素子の磁化反転動作のための電流が高効率化する。   Alternatively, the spatial light modulator may be configured such that the pixel includes the first magnetization fixed layer and the first electrode, the second magnetization fixed layer and the second electrode, and the third magnetization fixed layer. It is preferable that a selection element that can freely disconnect the electrical connection is provided at two locations selected from between the third electrode and the third electrode. With this configuration, the spatial light modulator does not connect the light modulation element to two or more electrodes in non-selected pixels, so that current does not leak through the light modulation element, and diagnosis by the pixel determination unit is possible. Further, the current for the magnetization reversal operation of the light modulation element is increased in efficiency.

本発明に係る光変調素子によれば、面積が拡張しても好適に磁化反転動作をし、また空間光変調器の画素に用いる際に、接続する電極に透明電極材料を使用しなくてよいので、空間光変調器の画素の開口率を高くしつつ、微細化することが容易となる。また、本発明に係る光変調素子によれば、磁化反転動作により抵抗が変化するので、空間光変調器の画素に用いて、磁化反転動作のための電極を利用しての画素判定(書込みエラー検出)が可能となる。   According to the light modulation element of the present invention, the magnetization reversal operation can be suitably performed even when the area is expanded, and the transparent electrode material need not be used for the electrode to be connected when used for the pixel of the spatial light modulator. Therefore, it is easy to miniaturize while increasing the aperture ratio of the pixels of the spatial light modulator. Also, according to the light modulation element of the present invention, the resistance changes due to the magnetization reversal operation. Therefore, the pixel determination (write error) using the electrode for the magnetization reversal operation is used for the pixel of the spatial light modulator. Detection).

本発明に係る空間光変調器によれば、前記の光変調素子を画素に用いて、金属電極材料のみですべての配線を形成することができるので、高精細かつ省電力とすることができ、さらに画素の開口率を高くして、高コントラストとすることができる。さらに、本発明に係る空間光変調器によれば、駆動用の配線を利用して、MRAMと同様の読出し動作を行うことができ、すべての画素のそれぞれについて書込みエラー検出が可能となる。   According to the spatial light modulator according to the present invention, since all the wiring can be formed using only the metal electrode material by using the light modulation element in a pixel, high definition and power saving can be achieved. Furthermore, the aperture ratio of the pixel can be increased to achieve high contrast. Further, according to the spatial light modulator according to the present invention, it is possible to perform a read operation similar to that of the MRAM by using a driving wiring, and it is possible to detect a write error for each of all pixels.

本発明に係る光変調素子を用いた空間光変調器の平面図であり、本発明の第1実施形態に係る空間光変調器の構成を説明する模式図である。It is a top view of the spatial light modulator using the light modulation element which concerns on this invention, and is a schematic diagram explaining the structure of the spatial light modulator which concerns on 1st Embodiment of this invention. 本発明に係る光変調素子の断面構造を説明する模式図であり、図1のA−A部分断面図に相当する。It is a schematic diagram explaining the cross-sectional structure of the light modulation element which concerns on this invention, and is equivalent to the AA fragmentary sectional view of FIG. 本発明に係る光変調素子の平面視形状を説明する模式図であり、(a)は図1の拡大図に相当し、(b)、(c)は変形例に係る光変調素子の平面図である。It is a schematic diagram explaining the planar view shape of the light modulation element which concerns on this invention, (a) is equivalent to the enlarged view of FIG. 1, (b), (c) is a top view of the light modulation element which concerns on a modification. It is. 本発明に係る光変調素子の断面図で、磁化反転動作を説明する模式図である。It is sectional drawing of the light modulation element which concerns on this invention, and is a schematic diagram explaining magnetization reversal operation | movement. 本発明に係る光変調素子の断面図で、光変調の動作および抵抗の変化を説明する模式図である。It is sectional drawing of the light modulation element which concerns on this invention, and is a schematic diagram explaining the operation | movement of light modulation, and the change of resistance. 本発明に係る空間光変調器を用いた表示装置の模式図であり、図1のA−A断面図に相当する。It is a schematic diagram of the display apparatus using the spatial light modulator which concerns on this invention, and is equivalent to AA sectional drawing of FIG. 本発明の第1実施形態に係る空間光変調器の等価回路図である。1 is an equivalent circuit diagram of a spatial light modulator according to a first embodiment of the present invention. 本発明に係る空間光変調器の製造方法を説明する模式図であり、(a)〜(d)は図1のA−A部分断面図に相当する。It is a schematic diagram explaining the manufacturing method of the spatial light modulator which concerns on this invention, (a)-(d) is equivalent to the AA fragmentary sectional view of FIG. 本発明に係る空間光変調器の製造方法を説明する模式図であり、(a)〜(e)は図1のA−A部分断面図に相当する。It is a schematic diagram explaining the manufacturing method of the spatial light modulator which concerns on this invention, (a)-(e) is corresponded in the AA fragmentary sectional view of FIG. 本発明の第2実施形態に係る空間光変調器の画素の構成を説明する平面図である。It is a top view explaining the structure of the pixel of the spatial light modulator which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る空間光変調器の等価回路図である。FIG. 5 is an equivalent circuit diagram of a spatial light modulator according to a third embodiment of the present invention. 本発明の第3実施形態の変形例に係る空間光変調器の等価回路図である。It is the equivalent circuit schematic of the spatial light modulator which concerns on the modification of 3rd Embodiment of this invention. 本発明の第3実施形態の第2変形例に係る空間光変調器の等価回路図である。It is the equivalent circuit schematic of the spatial light modulator which concerns on the 2nd modification of 3rd Embodiment of this invention. 本発明の第3実施形態の第2変形例および第4実施形態に係る空間光変調器の画素アレイの模式図であり、(a)は平面図であり、(b)は第4実施形態の断面図で、(a)のB−B断面図に相当する。It is the schematic of the pixel array of the 2nd modification of 3rd Embodiment of this invention, and the spatial light modulator which concerns on 4th Embodiment, (a) is a top view, (b) is 4th Embodiment. It is sectional drawing and is equivalent to BB sectional drawing of (a). スピン注入磁化反転素子を用いた従来の光変調素子の断面図で、磁化反転および光変調の動作を説明する模式図である。It is sectional drawing of the conventional light modulation element using a spin injection magnetization reversal element, and is a schematic diagram explaining the operation | movement of magnetization reversal and light modulation. デュアルピン構造のスピン注入磁化反転素子を用いた従来の光変調素子の断面図で、磁化反転動作を説明する模式図である。It is a cross-sectional view of a conventional light modulation element using a spin-injection magnetization reversal element having a dual pin structure and is a schematic diagram for explaining the magnetization reversal operation.

以下、本発明に係る光変調素子および空間光変調器を実現するための形態について図面を参照して説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for realizing a light modulation element and a spatial light modulator according to the present invention will be described with reference to the drawings.

[光変調素子]
本発明に係る光変調素子は、図1に示す空間光変調器10の画素8(空間光変調器による表示の最小単位での情報(明/暗)を表示する手段を指す。)として用いられて、上方から入射した光を反射して異なる2値の光(偏光成分)に変調して上方へ出射する。
[Light modulation element]
The light modulation element according to the present invention is used as the pixel 8 of the spatial light modulator 10 shown in FIG. 1 (refers to means for displaying information (light / dark) in the minimum unit of display by the spatial light modulator). Then, the light incident from above is reflected, modulated into different binary light (polarized component), and emitted upward.

図2に示すように、光変調素子1は、3つの磁化固定層11,12,13(第1磁化固定層、第2磁化固定層、第3磁化固定層)と、3つの中間層21,22,23と、1つの磁化自由層3と、を積層して備える。この光変調素子1は、3つの磁化固定層11,12,13を互いに離間して面方向に並べて最下層に形成し、第1磁化固定層11上に中間層21を、第2磁化固定層12上に中間層22を、第3磁化固定層13上に中間層23を、それぞれ積層し、3つの中間層21,22,23およびその隙間も含めた全体に1つの磁化自由層3を積層して備える。詳しくは、面方向において、第1磁化固定層11および中間層21と、第3磁化固定層13および中間層23と、の間に、第2磁化固定層12および中間層22が配置される。光変調素子1は、さらに、磁化自由層3の上に、保護膜3aを積層して備える。図3(a)において、網掛けを付した領域が磁化固定層11,12,13の設けられた部位である。この光変調素子1は、ここでは断面視が右90°に回転したE字型である。図2に示す光変調素子1は、第1電極(電極)51、第2電極(電極)52、第3電極(電極)53上に積層するように、3つの磁化固定層11,12,13を接続して形成される。また、詳しくは後記するように、表層にMOSFET(金属酸化膜半導体電界効果トランジスタ)が形成された基板7上に、電極51,52,53および光変調素子1が形成されている。   As shown in FIG. 2, the light modulation element 1 includes three magnetization fixed layers 11, 12, and 13 (first magnetization fixed layer, second magnetization fixed layer, and third magnetization fixed layer), and three intermediate layers 21, 22 and 23 and one magnetization free layer 3 are stacked. The light modulation element 1 includes three magnetization fixed layers 11, 12, and 13 that are spaced apart from each other and arranged in the plane direction to form the lowermost layer. An intermediate layer 21 is formed on the first magnetization fixed layer 11, and a second magnetization fixed layer is formed. The intermediate layer 22 is stacked on the third magnetization fixed layer 13, and the intermediate layer 23 is stacked on the third magnetization fixed layer 13, and the three intermediate layers 21, 22, and 23 and one magnetization free layer 3 are stacked in total including the gaps. Prepare. Specifically, the second magnetization fixed layer 12 and the intermediate layer 22 are disposed between the first magnetization fixed layer 11 and the intermediate layer 21 and the third magnetization fixed layer 13 and the intermediate layer 23 in the plane direction. The light modulation element 1 further includes a protective film 3 a laminated on the magnetization free layer 3. In FIG. 3A, shaded regions are portions where the magnetization fixed layers 11, 12, and 13 are provided. Here, the light modulation element 1 has an E shape in which the cross-sectional view is rotated 90 ° to the right. The light modulation element 1 shown in FIG. 2 has three magnetization fixed layers 11, 12, 13 so as to be stacked on a first electrode (electrode) 51, a second electrode (electrode) 52, and a third electrode (electrode) 53. It is formed by connecting. Further, as will be described in detail later, electrodes 51, 52, 53 and the light modulation element 1 are formed on a substrate 7 on which a MOSFET (metal oxide semiconductor field effect transistor) is formed on the surface layer.

平面視においては、図1および図3(a)に示すように、光変調素子1は正方形(矩形)である。したがって、磁化自由層3は光変調素子1と同じ正方形である。一方、中間層21,22,23および磁化固定層11,12,13は、光変調素子1を縦に3分割したように、長辺が光変調素子1(磁化自由層3)と同じ長さの長方形であり、それぞれ短辺方向(図1、図2における横方向)に3つの部位を離間して並べられている。以下、本明細書においては、別途記載のない限り、中間層21,22,23は、平面視における形状および配置が磁化固定層11,12,13と一致するものとして説明を省略する。平面視における大きさについては、光変調素子1が後記する磁化反転動作を好適に行うために、磁化固定層11,13の合計、および磁化固定層12のそれぞれが、300nm×400nm相当の面積以下であることが好ましく、一般的なスピン注入磁化反転素子の一個の大きさである300nm×100nm程度相当の面積であることがさらに好ましい。一方、光変調素子1の全体の、すなわち磁化自由層3の面積は特に規定されず、磁化固定層11,12,13の各面積の合計よりも膜面方向に拡張されても、後記するように磁化反転させることができる。具体的には、光変調素子1は、空間光変調器の画素アレイ(図1参照)として2次元配列されたときに、隣り合う光変調素子1,1同士が間隔を設けて絶縁されていればよい。本実施形態に係る光変調素子1は、磁化固定層11,13が同じ形状とし、したがって、磁化固定層12が、磁化固定層11,13の2倍の短辺方向長とする。   In plan view, as shown in FIGS. 1 and 3A, the light modulation element 1 is a square (rectangular). Therefore, the magnetization free layer 3 is the same square as the light modulation element 1. On the other hand, the intermediate layers 21, 22, 23 and the magnetization fixed layers 11, 12, 13 have the same long side as the light modulation element 1 (magnetization free layer 3), as the light modulation element 1 is divided into three vertically. These three rectangles are arranged in such a manner that three portions are spaced apart from each other in the short side direction (lateral direction in FIGS. 1 and 2). Hereinafter, in the present specification, unless otherwise described, the intermediate layers 21, 22, and 23 are not described because the shapes and arrangements in plan view coincide with the magnetization fixed layers 11, 12, and 13. Regarding the size in plan view, the total of the magnetization fixed layers 11 and 13 and the magnetization fixed layer 12 each have an area equivalent to 300 nm × 400 nm or less in order to suitably perform the magnetization reversal operation described later by the light modulation element 1. It is preferable that the area is equivalent to about 300 nm × 100 nm, which is one size of a general spin-injection magnetization switching element. On the other hand, the entire area of the light modulation element 1, that is, the area of the magnetization free layer 3 is not particularly defined, and will be described later even if it is expanded in the film surface direction with respect to the total area of the magnetization fixed layers 11, 12, and 13. Can be reversed. Specifically, when the light modulation element 1 is two-dimensionally arranged as a pixel array of a spatial light modulator (see FIG. 1), the adjacent light modulation elements 1 and 1 are insulated with a gap therebetween. That's fine. In the light modulation element 1 according to this embodiment, the magnetization fixed layers 11 and 13 have the same shape, and therefore the magnetization fixed layer 12 has a length in the short side direction twice that of the magnetization fixed layers 11 and 13.

光変調素子1は、3つのスピン注入磁化反転素子を、磁化自由層を共有して接続した構造である。すなわち、光変調素子1は、第1磁化固定層11、中間層21、磁化自由層3からなるスピン注入磁化反転素子構造(以下、適宜、第1素子構造MR1と称する)と、第2磁化固定層12、中間層22、磁化自由層3からなるスピン注入磁化反転素子構造(以下、適宜、第2素子構造MR2と称する)と、第3磁化固定層13、中間層23、磁化自由層3からなるスピン注入磁化反転素子構造(以下、適宜、第3素子構造MR3と称する)を備えるといえる(図4(a)参照)。なお、磁化固定層11,12,13、素子構造MR1,MR2,MR3、および電極51,52,53に付される「第1」、「第2」、「第3」は、互いを識別し易くするためのものであり、位置関係や何らかの順位付けを規定するものではない。   The light modulation element 1 has a structure in which three spin-injection magnetization reversal elements are connected by sharing a magnetization free layer. That is, the light modulation element 1 includes a spin-injection magnetization reversal element structure (hereinafter, appropriately referred to as a first element structure MR1) including a first magnetization fixed layer 11, an intermediate layer 21, and a magnetization free layer 3, and a second magnetization fixed. A spin-injection magnetization reversal element structure (hereinafter, appropriately referred to as a second element structure MR2) comprising a layer 12, an intermediate layer 22, and a magnetization free layer 3, and a third magnetization fixed layer 13, an intermediate layer 23, and a magnetization free layer 3. It can be said that a spin-injection magnetization reversal element structure (hereinafter, referred to as a third element structure MR3 as appropriate) is provided (see FIG. 4A). The “first”, “second”, and “third” attached to the magnetization fixed layers 11, 12, 13, the element structures MR 1, MR 2, MR 3 and the electrodes 51, 52, 53 distinguish each other. It is intended to make it easier, and does not prescribe the positional relationship or any ranking.

素子構造MR1,MR2,MR3は、磁化が一方向に固定された磁化固定層11,12,13および磁化の方向が回転可能な磁化自由層3を、非磁性または絶縁体である中間層21,22,23を挟んで備えたCPP−GMR(Current Perpendicular to the Plane Giant Magneto-Resistance:垂直通電型巨大磁気抵抗効果)素子やTMR(Tunnel MagnetoResistance:トンネル磁気抵抗効果)素子等のスピン注入磁化反転素子構造である。特に、磁化固定層11,13の磁化方向が平行である素子構造MR1,MR3は、抵抗変化率の高いTMR素子であることが好ましい。さらに、光変調素子1は、光変調素子1の製造時におけるダメージからこれらの層を保護するために、最上層に保護膜3aが設けられている。以下、光変調素子を構成する各要素について、詳細に説明する。   The element structures MR1, MR2, and MR3 include magnetization fixed layers 11, 12, and 13 in which magnetization is fixed in one direction and a magnetization free layer 3 in which the magnetization direction is rotatable, an intermediate layer 21 that is nonmagnetic or insulating, Spin injection magnetization reversal elements such as CPP-GMR (Current Perpendicular to Plane Giant Magneto-Resistance) elements and TMR (Tunnel MagnetoResistance) elements provided with 22 and 23 sandwiched therebetween Structure. In particular, the element structures MR1 and MR3 in which the magnetization directions of the magnetization fixed layers 11 and 13 are parallel are preferably TMR elements having a high resistance change rate. Further, the light modulation element 1 is provided with a protective film 3a on the uppermost layer in order to protect these layers from damage during manufacture of the light modulation element 1. Hereafter, each element which comprises a light modulation element is demonstrated in detail.

(磁化固定層)
磁化固定層11,12,13は磁性体であり、後記するように、磁化方向がそれぞれ固定されている。このような磁化固定層11,12,13は、CPP−GMR素子やTMR素子に用いられる公知の磁性材料にて構成することができ、特に、磁化自由層3の極カー効果で旋光角θkが大きくなる垂直磁気異方性材料を適用することが好ましい。具体的には、Fe,Co,Ni等の遷移金属とPd,Ptのような貴金属とを繰り返し積層したCo/Pd多層膜のような多層膜、Tb−Fe−Co,Gd−Fe等の希土類金属と遷移金属との合金(RE−TM合金)、L10系の規則合金としたFePt, FePd等が挙げられる。
(Magnetic pinned layer)
The magnetization fixed layers 11, 12, and 13 are magnetic bodies, and the magnetization directions are fixed as will be described later. Such magnetization fixed layers 11, 12, and 13 can be made of a known magnetic material used for a CPP-GMR element or a TMR element. In particular, the rotation angle θk is set by the polar Kerr effect of the magnetization free layer 3. It is preferable to apply a perpendicular magnetic anisotropy material that increases. Specifically, a multilayer film such as a Co / Pd multilayer film in which transition metals such as Fe, Co, and Ni and noble metals such as Pd and Pt are repeatedly stacked, and a rare earth such as Tb—Fe—Co and Gd—Fe. an alloy of the metal and the transition metal (RE-TM alloy), FePt was L1 0 type ordered alloys, FePd, and the like.

また、磁化自由層3の磁化方向が回転しても磁化固定層11,12,13の磁化が固定されているように、磁化固定層11,12,13は、その保磁力Hcp1,Hcp2,Hcp3が磁化自由層3の保磁力Hcfよりも十分に大きくなるように、それぞれの材料を選択したり、磁化自由層3よりも厚く形成される。具体的には、磁化固定層11,12,13の厚さは3〜50nmの範囲において設計されることが好ましい。 Further, the magnetization fixed layers 11, 12, 13 have their coercive forces Hcp 1 , Hcp 2 so that the magnetization of the magnetization fixed layers 11, 12, 13 is fixed even when the magnetization direction of the magnetization free layer 3 rotates. , Hcp 3 is selected so that the coercive force Hcf of the magnetization free layer 3 is sufficiently larger than that of the magnetization free layer 3, and is formed thicker than the magnetization free layer 3. Specifically, the thickness of the magnetization fixed layers 11, 12, and 13 is preferably designed in the range of 3 to 50 nm.

光変調素子1において、磁化固定層11,13は同じ(平行)方向の磁化に固定され、磁化固定層12は磁化固定層11,13と反対(反平行)方向の磁化に固定される。このような磁化方向とする初期設定を容易にするために、磁化固定層11,12,13は、保磁力Hcp1,Hcp2,Hcp3が磁化自由層3の保磁力Hcfよりも大きいことに加えて、保磁力Hcp1と保磁力Hcp3が互いに略一致する大きさで、かつ保磁力Hcp2と異なる大きさになるように設計されることが好ましい。ここでは、第2磁化固定層12の保磁力Hcp2がより大きい、すなわちHcf<<Hcp1=Hcp3<Hcp2とする。本実施形態に係る光変調素子1は、平面視において磁化固定層12が磁化固定層11,13の2倍の面積であるので、第2磁化固定層12の保磁力Hcp2が比較的大きくなる傾向があるが、さらに、磁化固定層11,12,13(磁化固定層11,13と磁化固定層12)を、互いに異なる材料や厚さとしてもよい。 In the light modulation element 1, the magnetization fixed layers 11 and 13 are fixed to the magnetization in the same (parallel) direction, and the magnetization fixed layer 12 is fixed to the magnetization in the opposite (antiparallel) direction to the magnetization fixed layers 11 and 13. In order to facilitate the initial setting of such a magnetization direction, the magnetization fixed layers 11, 12, and 13 have coercive forces Hcp 1 , Hcp 2 , and Hcp 3 larger than the coercive force Hcf of the magnetization free layer 3. In addition, it is preferable that the coercive force Hcp 1 and the coercive force Hcp 3 are designed so as to be substantially the same as each other and different from the coercive force Hcp 2 . Here, the coercive force Hcp 2 of the second magnetization fixed layer 12 is larger, that is, Hcf << Hcp 1 = Hcp 3 <Hcp 2 . In the light modulation element 1 according to the present embodiment, the coercive force Hcp 2 of the second magnetization fixed layer 12 is relatively large because the magnetization fixed layer 12 has an area twice that of the magnetization fixed layers 11 and 13 in plan view. Although there is a tendency, the magnetization fixed layers 11, 12, and 13 (the magnetization fixed layers 11 and 13 and the magnetization fixed layer 12) may be made of different materials and thicknesses.

(磁化自由層)
磁化自由層3は磁性体であり、磁化固定層11,12,13が磁化方向を固定されているのに対し、磁化自由層3はスピン注入によって磁化を容易に反転(180°回転)させることができ、磁化固定層11,13および磁化固定層12のいずれか一方と同じ磁化方向を示す。磁化自由層3は前記の公知の磁性材料にて構成することができ、磁化固定層11,12,13と同様に、垂直磁気異方性材料を適用することが好ましい。特に、磁化自由層3は、光変調素子1(空間光変調器の画素)への入射光の波長において磁気光学効果の大きい材料を選択することがより好ましい。例えば、短波長域(400nm近傍)はCo/Pt多層膜、長波長域(700nm近傍)はGd−Fe合金が好適である。
(Magnetization free layer)
The magnetization free layer 3 is a magnetic material, and the magnetization fixed layers 11, 12, and 13 have fixed magnetization directions, whereas the magnetization free layer 3 easily reverses magnetization (rotates 180 °) by spin injection. And shows the same magnetization direction as any one of the magnetization fixed layers 11 and 13 and the magnetization fixed layer 12. The magnetization free layer 3 can be made of the above-mentioned known magnetic material, and it is preferable to apply a perpendicular magnetic anisotropic material, like the magnetization fixed layers 11, 12, and 13. In particular, it is more preferable to select a material having a large magneto-optic effect at the wavelength of light incident on the light modulation element 1 (pixel of the spatial light modulator) for the magnetization free layer 3. For example, a Co / Pt multilayer film is suitable for the short wavelength region (near 400 nm), and a Gd—Fe alloy is suitable for the long wavelength region (near 700 nm).

また、前記した通り、磁化自由層3は、保磁力Hcfが磁化固定層11,12,13の保磁力Hcp1,Hcp2,Hcp3よりも小さくなるように、材料を選択したり、磁化固定層11,12,13よりも薄く形成される。具体的には、磁化自由層3の厚さは1〜20nmの範囲において設計されることが好ましい。 Further, as described above, the magnetization free layer 3 is made of a material selected or fixed in magnetization so that the coercive force Hcf is smaller than the coercive forces Hcp 1 , Hcp 2 , and Hcp 3 of the magnetization fixed layers 11, 12, and 13. It is formed thinner than the layers 11, 12, and 13. Specifically, the thickness of the magnetization free layer 3 is preferably designed in the range of 1 to 20 nm.

(中間層)
中間層21,22,23は、それぞれ磁化固定層11,12,13上に、磁化自由層3との間に設けられる。中間層21,22,23は、素子構造MR1,MR2,MR3がTMR素子であれば、MgO,Al23,HfO2のような絶縁体や、Mg/MgO/Mgのような絶縁体を含む積層膜からなり、その厚さは0.6〜2nm程度とすることが好ましく、1nm以下とすることがさらに好ましい。また、中間層21,22,23は、素子構造MR1,MR2,MR3がCPP−GMR素子であれば、Cu,Ag,Al,Auのような非磁性金属やZnO等の半導体からなり、その厚さは1〜10nmとすることが好ましい。特に中間層21,22,23(以下、区別しない場合に、適宜、中間層2と称する)は、Agを適用して厚さ6nm以上とした場合、光変調素子1に入射した光を高反射率で反射するため、出射する光の量が多くなってコントラストが向上するので好ましい。
(Middle layer)
The intermediate layers 21, 22, and 23 are provided on the magnetization fixed layers 11, 12, and 13, respectively, and between the magnetization free layer 3. If the element structures MR1, MR2, MR3 are TMR elements, the intermediate layers 21, 22, 23 are made of an insulator such as MgO, Al 2 O 3 , HfO 2 or an insulator such as Mg / MgO / Mg. The thickness is preferably about 0.6 to 2 nm, more preferably 1 nm or less. Further, if the element structures MR1, MR2, and MR3 are CPP-GMR elements, the intermediate layers 21, 22, and 23 are made of a nonmagnetic metal such as Cu, Ag, Al, or Au, or a semiconductor such as ZnO, and its thickness. The thickness is preferably 1 to 10 nm. In particular, the intermediate layers 21, 22, and 23 (hereinafter referred to as the intermediate layer 2 as appropriate when not distinguished from each other) are highly reflective for light incident on the light modulation element 1 when Ag is applied to a thickness of 6 nm or more. Since the light is reflected at a high rate, the amount of emitted light is increased and the contrast is improved, which is preferable.

(保護膜)
保護膜3aは、光変調素子1の製造時におけるダメージから磁化自由層3等の各層を保護するために、最上層に設けられている。保護膜3aは、Ta,Ru,Cuの単層、またはCu/Ta,Cu/Ruの2層等から構成される。なお、前記の2層構造とする場合は、いずれもCuを内側(下層)とする。保護膜3aの厚さは、1nm未満であると連続した膜を形成し難く、一方、10nmを超えて厚くしても、製造工程において磁化自由層3等を保護する効果がそれ以上には向上しない上、光の透過が妨げられるので好ましくない。したがって、保護膜3aの厚さは1〜10nmとすることが好ましい。
(Protective film)
The protective film 3a is provided on the uppermost layer in order to protect each layer such as the magnetization free layer 3 from damage during manufacture of the light modulation element 1. The protective film 3a is composed of a single layer of Ta, Ru, Cu, or two layers of Cu / Ta, Cu / Ru. In addition, when setting it as the said 2 layer structure, all make Cu inside (lower layer). If the thickness of the protective film 3a is less than 1 nm, it is difficult to form a continuous film. On the other hand, even if the thickness exceeds 10 nm, the effect of protecting the magnetization free layer 3 and the like in the manufacturing process is further improved. In addition, the transmission of light is hindered, which is not preferable. Therefore, the thickness of the protective film 3a is preferably 1 to 10 nm.

(光変調素子の磁化反転動作)
次に、本実施形態における光変調素子の磁化反転の動作を、図4を参照して説明する。なお、図4において保護膜3aは図示を省略する。光変調素子1において、第1磁化固定層11および第3磁化固定層13は上向きに、第2磁化固定層12は下向きに、それぞれ磁化が固定されている。また、光変調素子1は、第1電極51および第3電極53が電源95の同極に接続され、異極(対極)に第2電極52が接続される。
(Magnetic reversal operation of the light modulator)
Next, the magnetization reversal operation of the light modulation element in this embodiment will be described with reference to FIG. In FIG. 4, the protective film 3a is not shown. In the light modulation element 1, the first magnetization fixed layer 11 and the third magnetization fixed layer 13 are fixed upward, and the second magnetization fixed layer 12 is fixed downward. In the light modulation element 1, the first electrode 51 and the third electrode 53 are connected to the same polarity of the power source 95, and the second electrode 52 is connected to a different polarity (counter electrode).

まず、磁化自由層3を図4(a)に示す下向きの磁化から、図4(c)に示す上向きの磁化に反転させる光変調素子1の動作を説明する。図4(b)に示すように、電源95から電流−IWを供給して、第1磁化固定層11に接続した第1電極51および第3磁化固定層13に接続した第3電極53を「−」に、第2磁化固定層12に接続した第2電極52を「+」にして、第1磁化固定層11、第3磁化固定層13のそれぞれの側から電子を注入する。すると、第1磁化固定層11により当該第1磁化固定層11の磁化と逆方向の下向きのスピンを持つ電子d2が弁別されて、上向きのスピンを持つ電子d1のみが第1電極51から第1磁化固定層11に注入され、さらにその上の磁化自由層3に中間層21を介して注入される。同様に、第3磁化固定層13により当該第3磁化固定層13の磁化と逆方向の下向きのスピンを持つ電子d2が弁別されて、上向きのスピンを持つ電子d1のみが第3電極53から第3磁化固定層13に注入され、さらにその上の磁化自由層3に中間層23を介して注入される。磁化自由層3においては、電子d1の上向きスピンによるスピントルクが作用することによって当該磁化自由層3の内部電子のスピンが反転し、磁化固定層11,13それぞれの直上の領域から磁化が上向きへと反転する。さらに、磁化自由層3に注入された電子d1は、磁化が逆方向の第2磁化固定層12により弁別されるために磁化自由層3に留まり、その結果、図4(c)に示すように、磁化自由層3は、磁化固定層11,13および磁化固定層12に積層した領域だけでなく、磁化固定層11と磁化固定層12、磁化固定層13と磁化固定層12の2つの領域に挟まれたそれぞれの領域も含めて、すなわち全体が、第1磁化固定層11,13の磁化方向と同じ上向きの磁化を示す状態に変化(磁化反転)する。 First, the operation of the light modulation element 1 for reversing the magnetization free layer 3 from the downward magnetization shown in FIG. 4A to the upward magnetization shown in FIG. 4C will be described. As shown in FIG. 4B, the current −I W is supplied from the power source 95 to connect the first electrode 51 connected to the first magnetization fixed layer 11 and the third electrode 53 connected to the third magnetization fixed layer 13. In “−”, the second electrode 52 connected to the second magnetization fixed layer 12 is set to “+”, and electrons are injected from each side of the first magnetization fixed layer 11 and the third magnetization fixed layer 13. Then, the first magnetization pinned layer 11 discriminates the electron d 2 having a downward spin opposite to the magnetization of the first magnetization pinned layer 11, and only the electron d 1 having an upward spin from the first electrode 51. It is injected into the first magnetization fixed layer 11 and further injected into the magnetization free layer 3 thereabove via the intermediate layer 21. Similarly, the third magnetization fixed layer 13 discriminates the electron d 2 having a downward spin opposite to the magnetization of the third magnetization fixed layer 13, and only the electron d 1 having an upward spin has the third electrode 53. To the third magnetization fixed layer 13 and further injected into the magnetization free layer 3 thereon via the intermediate layer 23. In the magnetization free layer 3, the spin of internal electrons of the magnetization free layer 3 is reversed by the spin torque due to the upward spin of the electron d 1 , and the magnetization is upward from the region immediately above each of the magnetization fixed layers 11 and 13. Invert to. Further, the electrons d 1 injected into the magnetization free layer 3 remain in the magnetization free layer 3 because the magnetization is discriminated by the second magnetization fixed layer 12 in the reverse direction, and as a result, as shown in FIG. In addition, the magnetization free layer 3 is not only a region laminated on the magnetization fixed layers 11 and 13 and the magnetization fixed layer 12, but also two regions of the magnetization fixed layer 11 and the magnetization fixed layer 12, and the magnetization fixed layer 13 and the magnetization fixed layer 12. In other words, the entire region including the respective regions sandwiched between the first and second magnetization fixed layers 11 and 13 changes to a state showing the upward magnetization (magnetization reversal).

次に、磁化自由層3を図4(c)に示す上向きの磁化から、図4(a)に示す下向きの磁化に反転させる光変調素子1の動作を説明する。前記の図4(b)に示す動作とは反対に、図4(d)に示すように、電源95から電流+IWを供給して、第1電極51および第3電極53を「+」に、第2電極52を「−」にして第2磁化固定層12側から電子を注入する。すると、磁化自由層3には第2磁化固定層12から下向きのスピンを持つ電子d2のみが中間層22を介して注入され、電子d2の下向きスピンによるスピントルクが作用することによって当該磁化自由層3の内部電子のスピンが反転し、第2磁化固定層12の直上の領域から磁化が下向きへと反転する。さらに、磁化自由層3に注入された電子d2は、第1磁化固定層11および第3磁化固定層13へ向かうように図4(d)において左右に拡がるが、これら磁化が逆方向の磁化固定層11,13により弁別されて留まり、その結果、磁化自由層3は、図4(a)に示すように、全体が第2磁化固定層12の磁化方向と同じ下向きの磁化を示す状態に変化(磁化反転)する。 Next, the operation of the light modulation element 1 for reversing the magnetization free layer 3 from the upward magnetization shown in FIG. 4C to the downward magnetization shown in FIG. 4A will be described. Contrary to the operation shown in FIG. 4B, as shown in FIG. 4D, the current + I W is supplied from the power source 95, and the first electrode 51 and the third electrode 53 are set to “+”. Then, the second electrode 52 is set to “−”, and electrons are injected from the second magnetization fixed layer 12 side. Then, only the electron d 2 having a downward spin from the second magnetization fixed layer 12 is injected into the magnetization free layer 3 through the intermediate layer 22, and the magnetization due to the spin torque due to the downward spin of the electron d 2 acts. The spin of the internal electrons in the free layer 3 is reversed, and the magnetization is reversed downward from the region immediately above the second magnetization fixed layer 12. Furthermore, the electrons d 2 injected into the magnetization free layer 3 spread left and right in FIG. 4D so as to go to the first magnetization fixed layer 11 and the third magnetization fixed layer 13, but these magnetizations are in opposite directions. As a result, as shown in FIG. 4A, the magnetization free layer 3 is in a state where the whole exhibits the same downward magnetization as the magnetization direction of the second magnetization fixed layer 12. Change (magnetization reversal).

このように、本実施形態における光変調素子1は、同じ側(上側)の面に中間層21,22,23を挟んで磁化自由層3を積層した3つの磁化固定層11,12,13のそれぞれに電極51,52,53を接続し、両端の電極51,53と間の電極52とに電流−IW(または+IW)を供給することで、図4において左右対称な2つの断面視アーチ型の電流経路が形成されて、磁化自由層3の磁化方向を変化させる(磁化反転させる)ことができる。言い換えると、光変調素子1は、並設デュアルピン構造のスピン注入磁化反転素子の1つのスピン注入磁化反転素子を二分割して素子構造MR1,MR3とし、もう1つのスピン注入磁化反転素子をそのまま素子構造MR2としたものである。したがって、本実施形態における光変調素子1は、素子構造MR1,MR3の合計および素子構造MR2のそれぞれを、スピン注入磁化反転に好適な小さな面積として、共有される磁化自由層3において電流が流れる膜面方向に磁壁が移動して磁化反転するので、この磁化自由層3を大きな面積に形成することができる。また、光変調素子1は、磁化固定層11,12および磁化固定層13,12のそれぞれ2つ分の磁化固定層によるスピン注入駆動のため、磁化反転動作が安定したものとなる。なお、電流−IW,+IWの大きさ|IW|は、光変調素子1の磁化自由層3を磁化反転させる電流(磁化反転電流)ISTS以上であればよい。この磁化反転電流ISTSは、電流密度が光変調素子1の3つのスピン注入磁化反転素子構造MR1,MR2,MR3の磁化反転電流密度であり、素子構造MR1,MR2,MR3の各層の材料や厚さ等によって決定される。 As described above, the light modulation element 1 according to the present embodiment includes the three magnetization fixed layers 11, 12, and 13 in which the magnetization free layers 3 are stacked on the same side (upper) surface with the intermediate layers 21, 22, and 23 interposed therebetween. The electrodes 51, 52, 53 are connected to each other, and a current -I W (or + I W ) is supplied to the electrodes 52 between the electrodes 51, 53 at both ends, whereby two cross-sectional views symmetrical in FIG. An arch-shaped current path is formed, and the magnetization direction of the magnetization free layer 3 can be changed (magnetization reversed). In other words, in the light modulation element 1, the spin injection magnetization reversal element of the parallel dual-pin structure spin splitting magnetization reversal element is divided into two element structures MR1 and MR3, and the other spin injection magnetization reversal element is used as it is. This is an element structure MR2. Therefore, the light modulation element 1 in the present embodiment is a film in which a current flows in the shared magnetization free layer 3 with the total of the element structures MR1 and MR3 and the element structure MR2 each having a small area suitable for spin injection magnetization reversal. Since the domain wall moves in the plane direction and magnetization is reversed, the magnetization free layer 3 can be formed in a large area. Further, the light modulation element 1 has a stable magnetization reversal operation because of the spin injection drive by the magnetization fixed layers corresponding to the magnetization fixed layers 11 and 12 and the magnetization fixed layers 13 and 12, respectively. The magnitudes | I W | of the currents −I W and + I W may be equal to or greater than the current (magnetization reversal current) I STS that reverses the magnetization of the magnetization free layer 3 of the light modulation element 1. This magnetization reversal current I STS is the magnetization reversal current density of the three spin-injection magnetization reversal element structures MR1, MR2, MR3 of the light modulation element 1, and the material and thickness of each layer of the element structures MR1, MR2, MR3. It is determined by etc.

なお、図4(a)、(c)にそれぞれ示すように、光変調素子1は、磁化自由層3が下向きの磁化を示すときに電流+IWを供給されたり、反対に磁化自由層3が上向きの磁化を示すときに電流−IWを供給されても、磁化自由層3の磁化方向は変化しない。また、光変調素子1は、磁化自由層3の磁化方向が上または下に一様であるときに電流供給を停止されても、磁化自由層3自体の保磁力Hcfにより磁化方向が変化することはない。したがって、光変調素子1の駆動電流として、パルス電流のように磁化方向を反転させる電流値(≧ISTS)に一時的に到達する電流を用いることができる。 4A and 4C, the light modulation element 1 is supplied with a current + I W when the magnetization free layer 3 exhibits downward magnetization, or on the contrary, the magnetization free layer 3 Even if the current −I W is supplied when showing upward magnetization, the magnetization direction of the magnetization free layer 3 does not change. Further, in the light modulation element 1, even when the current supply is stopped when the magnetization direction of the magnetization free layer 3 is uniform upward or downward, the magnetization direction changes due to the coercive force Hcf of the magnetization free layer 3 itself. There is no. Therefore, a current that temporarily reaches a current value (≧ I STS ) that reverses the magnetization direction, such as a pulse current, can be used as the drive current of the light modulation element 1.

(光変調素子の光変調動作)
次に、光変調素子1の光変調の動作を、図5を参照して説明する。光変調素子1に入射した光が磁性体である磁化自由層3で反射すると、磁気光学効果により、光はその偏光の向きが変化(旋光)して出射する。さらに、磁性体の磁化方向が180°異なると、当該磁性体の磁気光学効果による旋光の向きは反転する。したがって、図5(a)、(b)にそれぞれ示す、磁化自由層3の磁化方向が互いに180°異なる光変調素子1における旋光角は−θk,+θkで、互いに逆方向に偏光面が回転する。このように、光変調素子1は、その出射光の偏光の向きを、供給される電流IWの向き(正負)に応じて変化させることで後記の空間光変調器等の画素として機能する。なお、旋光角−θk,+θkは、光変調素子1での1回の反射による旋光(カー回転)に限られず、例えば多重反射により累積された角度も含める。
(Light modulation operation of light modulation element)
Next, the light modulation operation of the light modulation element 1 will be described with reference to FIG. When the light incident on the light modulation element 1 is reflected by the magnetization free layer 3 that is a magnetic material, the direction of polarization of the light changes (rotates) due to the magneto-optic effect, and the light is emitted. Further, if the magnetization direction of the magnetic material is different by 180 °, the direction of optical rotation due to the magneto-optical effect of the magnetic material is reversed. Therefore, the optical rotation angles in the optical modulation elements 1 shown in FIGS. 5A and 5B, in which the magnetization directions of the magnetization free layer 3 are 180 ° different from each other, are −θk and + θk, and the planes of polarization rotate in opposite directions. . As described above, the light modulation element 1 functions as a pixel of a spatial light modulator or the like described later by changing the direction of polarization of the emitted light in accordance with the direction (positive / negative) of the supplied current I W. The optical rotation angles −θk and + θk are not limited to optical rotation (Kerr rotation) by one reflection at the light modulation element 1, and include, for example, angles accumulated by multiple reflection.

本発明に係る光変調素子は、前記した通り、空間光変調器の画素として2次元配列されて設けられる。ここで、多数の画素が2次元状に規則的に配列された構造を有する空間光変調器は、平行な波面を有して直進する光が各画素に入射すると、当該画素の端部でその光の進む方向が曲げられ(回折現象)、出射した光による干渉効果(波の強め合いと弱め合い)によって、光の強め合う方向が複数本に分離する。この回折現象により、入射光の直進方向に対して回折角φnの角度に曲げられた±1次、±2次、・・・、±n次の回折光が生じる(nは、0または自然数)。回折角φnは入射光の波長λおよび画素ピッチpに依存する。なお、空間光変調器をホログラフィ装置に応用する際には、一般的には1次回折光が用いられる。n=0における0次回折光は、反射型の空間光変調器においては、入射角と同一角度で反射する反射光と等価である(透過型の空間光変調器の場合は、入射光の直進方向と同一方向の透過光と等価である)。したがって、本明細書において、光変調素子(空間光変調器の画素)から出射した反射光(出射光)とは、前記のn次回折光も含まれるものとして説明する。この回折光においても、磁性体(磁化自由層)の磁化方向に応じて、ファラデー効果またはカー効果による偏光の向きの変化(旋光)が生じる。 As described above, the light modulation elements according to the present invention are provided in a two-dimensional array as pixels of the spatial light modulator. Here, a spatial light modulator having a structure in which a large number of pixels are regularly arranged in a two-dimensional manner, when light traveling straight and having a parallel wavefront is incident on each pixel, the spatial light modulator at the end of the pixel. The direction in which the light travels is bent (diffraction phenomenon), and the direction in which the light is strengthened is separated into multiple lines by the interference effect (wave strengthening and weakening) due to the emitted light. Due to this diffraction phenomenon, diffracted light of ± 1st order, ± 2nd order,..., ± nth order that is bent to an angle of diffraction angle φ n with respect to the straight direction of incident light is generated (n is 0 or a natural number ). The diffraction angle φ n depends on the wavelength λ of incident light and the pixel pitch p. Note that first-order diffracted light is generally used when applying a spatial light modulator to a holographic device. The 0th-order diffracted light at n = 0 is equivalent to reflected light that is reflected at the same angle as the incident angle in the reflective spatial light modulator (in the case of a transmissive spatial light modulator, the rectilinear direction of the incident light). Is equivalent to transmitted light in the same direction). Therefore, in the present specification, the description will be made assuming that the reflected light (emitted light) emitted from the light modulation element (pixel of the spatial light modulator) includes the n-th order diffracted light. Also in this diffracted light, a change in polarization direction (optical rotation) due to the Faraday effect or the Kerr effect occurs depending on the magnetization direction of the magnetic material (magnetization free layer).

本発明に係る光変調素子1は、磁化自由層3の側すなわち上方から光を入射され、反射させて上方へ出射する。したがって、磁化固定層11,12,13の下に設けられる電極51,52,53は、光を透過させる必要がないので、低抵抗の金属材料を適用することができる(後記の空間光変調器の実施形態において説明する)。さらに、光変調素子1は、当該光変調素子1を形成する前に、基板7に高温プロセスで形成されるMOSFET等からなる選択素子を接続して画素8とすることができる。   The light modulation element 1 according to the present invention receives light from the side of the magnetization free layer 3, that is, from above, reflects it, and emits it upward. Therefore, the electrodes 51, 52, and 53 provided under the magnetization fixed layers 11, 12, and 13 do not need to transmit light, and thus a low-resistance metal material can be applied (a spatial light modulator described later). Will be described in the embodiment). Furthermore, before the light modulation element 1 is formed, the light modulation element 1 can be a pixel 8 by connecting a selection element made of a MOSFET or the like formed by a high temperature process to the substrate 7.

(光変調素子の抵抗変化)
次に、本実施形態における光変調素子の磁化反転による抵抗の変化を、図5を参照して説明する。図5(a)、(b)のそれぞれに示す光変調素子1は、図4(a)、(c)に示す光変調素子1と同じ磁化状態である。なお、詳しくは後記するが、図5において、光変調素子1に副電源96から供給されている電流ITSTは、磁化反転電流ISTSよりも小さく、光変調素子1の磁化状態を変化させるものではない。光変調素子1は、前記した通り3つのスピン注入磁化反転素子構造MR1,MR2,MR3を備えている(図4(a)参照)。
(Resistance change of light modulation element)
Next, a change in resistance due to the magnetization reversal of the light modulation element in the present embodiment will be described with reference to FIG. The light modulation element 1 shown in each of FIGS. 5A and 5B is in the same magnetization state as the light modulation element 1 shown in FIGS. 4A and 4C. Although details will be described later, in FIG. 5, the current I TST supplied to the optical modulation element 1 from the sub power supply 96 is smaller than the magnetization reversal current I STS and changes the magnetization state of the optical modulation element 1. is not. As described above, the light modulation element 1 includes the three spin-injection magnetization reversal element structures MR1, MR2, and MR3 (see FIG. 4A).

図5(a)に示す光変調素子1は、磁化自由層3の磁化方向が下向きで第1磁化固定層11と磁化方向が反平行、すなわち第1素子構造MR1の磁化が反平行(AP)(図15(b)参照)である。このときの第1素子構造MR1の抵抗をR1APと表す。そして、このとき、磁化自由層3は第3磁化固定層13とも磁化方向が反平行、すなわち第3素子構造MR3の磁化が反平行(AP)であり、このときの第3素子構造MR3の抵抗をR3APと表す。同時に、図5(a)に示す光変調素子1は、磁化自由層3が第2磁化固定層12と磁化方向が平行、すなわち第2素子構造MR2の磁化が平行(P)(図15(a)参照)である。このときの第2素子構造MR2の抵抗をR2Pと表す。 In the light modulation element 1 shown in FIG. 5A, the magnetization direction of the magnetization free layer 3 is downward and the magnetization direction of the first magnetization fixed layer 11 is antiparallel, that is, the magnetization of the first element structure MR1 is antiparallel (AP). (See FIG. 15B). The resistance of the first element structure MR1 at this time is expressed as R1 AP. At this time, the magnetization direction of the magnetization free layer 3 and the third magnetization fixed layer 13 is antiparallel, that is, the magnetization of the third element structure MR3 is antiparallel (AP), and the resistance of the third element structure MR3 at this time Is represented as R3 AP . At the same time, in the light modulation element 1 shown in FIG. 5A, the magnetization free layer 3 has a magnetization direction parallel to the second magnetization fixed layer 12, that is, the magnetization of the second element structure MR2 is parallel (P) (FIG. 15A ))). The resistance of the second element structure MR2 in this case represented as R2 P.

一方、図5(b)に示す光変調素子1は、磁化自由層3の磁化方向が上向きで第1磁化固定層11および第3磁化固定層13と磁化方向が平行であり、この磁化が平行(P)である第1素子構造MR1の抵抗をR1P、第3素子構造MR3の抵抗をR3Pと表す。同時に、図5(b)に示す光変調素子1は、磁化自由層3が第2磁化固定層12と磁化方向が反平行であり、この磁化が反平行(AP)である第2素子構造MR2の抵抗をR2APと表す。 On the other hand, in the light modulation element 1 shown in FIG. 5B, the magnetization direction of the magnetization free layer 3 is upward, the magnetization directions of the first magnetization fixed layer 11 and the third magnetization fixed layer 13 are parallel, and this magnetization is parallel. The resistance of the first element structure MR1 which is (P) is represented as R1 P , and the resistance of the third element structure MR3 is represented as R3 P. At the same time, the light modulation element 1 shown in FIG. 5B has a second element structure MR2 in which the magnetization free layer 3 is antiparallel to the second magnetization fixed layer 12 and the magnetization direction is antiparallel (AP). Is represented by R2AP.

磁化が平行、反平行のときのスピン注入磁化反転素子の抵抗は、面積、各層の材料や厚さ等によって決定されるので、素子構造MR1,MR2,MR3の材料、さらに素子構造MR1,MR3の形状等が同一に形成されている、あるいはその差異が抵抗に与える影響が小さく、素子構造MR2の平面視の面積が素子構造MR1,MR3の2倍である場合、下式(1)〜(4)で近似的に表すことができる。ここで、RP,RAPは、素子構造MR1,MR3の各抵抗を標準化して表したものである。
P=R1P=R3P ・・・(1)
AP=R1AP=R3AP ・・・(2)
P/2=R2P ・・・(3)
AP/2=R2AP ・・・(4)
The resistance of the spin-injection magnetization reversal element when the magnetization is parallel or antiparallel is determined by the area, the material and thickness of each layer, etc. Therefore, the material of the element structure MR1, MR2, MR3, and further the element structure MR1, MR3 When the shape or the like is the same, or the influence of the difference on the resistance is small and the area of the element structure MR2 in plan view is twice that of the element structures MR1 and MR3, the following expressions (1) to (4) ). Here, R P and R AP represent standardized resistances of the element structures MR1 and MR3.
R P = R 1 P = R 3 P (1)
R AP = R 1 AP = R 3 AP (2)
R P / 2 = R2 P (3)
R AP / 2 = R2 AP (4)

光変調素子1について、磁化反転動作における電源95との接続(図4参照)と同様に、電極52と互いに導通させた電極51,53との間で測定される抵抗は、並列に接続された素子構造MR1,MR3の合成抵抗と素子構造MR2の抵抗との和である。素子構造MR1,MR3は、磁化の平行、反平行の状態が同じであるので、これらの合成抵抗はRP/2、RAP/2である。したがって、素子構造MR1,MR3の磁化が平行であるときに反平行となり、反平行であるときに平行となる素子構造MR2と、素子構造MR1,MR3の合成抵抗との和は磁化自由層3の磁化反転で変化しない。 For the light modulation element 1, the resistance measured between the electrode 52 and the electrodes 51 and 53 that are electrically connected to each other is connected in parallel as in the connection with the power supply 95 in the magnetization reversal operation (see FIG. 4). This is the sum of the combined resistance of the element structures MR1 and MR3 and the resistance of the element structure MR2. Since the element structures MR1 and MR3 have the same magnetization parallel and antiparallel states, their combined resistances are R P / 2 and R AP / 2. Therefore, the sum of the element structure MR2 which becomes antiparallel when the magnetizations of the element structures MR1 and MR3 are parallel and becomes parallel when the magnetizations are antiparallel and the combined resistance of the element structures MR1 and MR3 is the sum of the magnetization free layer 3 Does not change due to magnetization reversal.

これに対して、光変調素子1において、磁化の平行、反平行の状態が同じである素子構造MR1,MR3の合成抵抗は、磁化自由層3の磁化反転により変化する。具体的には、第2電極52を開放(open)状態として、素子構造MR1,MR3の磁化固定層11,13に接続された電極51と電極53との間で測定される抵抗は、素子構造MR1,MR3の各抵抗の和であり、次のように変化する。   On the other hand, in the light modulation element 1, the combined resistance of the element structures MR1 and MR3 in which the magnetization parallel and antiparallel states are the same changes due to the magnetization reversal of the magnetization free layer 3. Specifically, the resistance measured between the electrode 51 and the electrode 53 connected to the magnetization fixed layers 11 and 13 of the element structures MR1 and MR3 with the second electrode 52 in an open state is the element structure It is the sum of the resistances of MR1 and MR3 and changes as follows.

図5(a)に示す光変調素子1について、電極51,53間で測定される抵抗R13Dは、下式(5)で表される。同様に、図5(b)に示す光変調素子1について、電極51,53間で測定される抵抗R13Uは、下式(6)で表される。
R13D=R1AP+R3AP=2RAP ・・・(5)
R13U=R1P+R3P=2RP ・・・(6)
For the light modulation element 1 shown in FIG. 5A, the resistance R13 D measured between the electrodes 51 and 53 is expressed by the following equation (5). Similarly, for the light modulation element 1 shown in FIG. 5B, the resistance R13 U measured between the electrodes 51 and 53 is expressed by the following equation (6).
R13 D = R1 AP + R3 AP = 2R AP (5)
R13 U = R1 P + R3 P = 2R P (6)

スピン注入磁化反転素子は、磁化が反平行の方が平行よりも抵抗が大きい。光変調素子1のスピン注入磁化反転素子構造MR1,MR3の1つあたりの磁化反転による抵抗の変化量(RAP−RP)を、ΔR(>0)と表す。すると、式(5)、(6)より、電極51,53間で測定される光変調素子1の抵抗R13D,R13Uの変化量ΔR13は、下式(7)で表されることになる。
ΔR13=R13D−R13U=2RAP−2RP=2ΔR ・・・(7)
The spin-injection magnetization reversal element has higher resistance when the magnetization is antiparallel than when parallel. The amount of change in resistance (R AP −R P ) due to magnetization reversal per one of the spin-injection magnetization reversal element structures MR1 and MR3 of the light modulation element 1 is represented by ΔR (> 0). Then, from the equations (5) and (6), the variation ΔR13 of the resistances R13 D and R13 U of the light modulation element 1 measured between the electrodes 51 and 53 is expressed by the following equation (7). .
ΔR13 = R13 D −R13 U = 2R AP −2R P = 2ΔR (7)

このように、光変調素子1は、磁化自由層を共有するスピン注入磁化反転素子構造を3つ備えて、うち2つすなわち素子構造MR1,MR3を磁化の平行、反平行が同じとなるように磁化固定層11,13の磁化を同じ(平行な)方向に固定することで、磁化反転動作においては電源95の同極に接続していた電極51,53間の抵抗が、図15に示すような一般的なスピン注入磁化反転素子と同様に、磁化反転動作により変化する。そして、その変化量は、素子構造MR1,MR3の1つの抵抗の変化量ΔRの2倍である。そして、この抵抗の変化量は、光変調素子1の3つのスピン注入磁化反転素子構造MR1,MR2,MR3のそれぞれの面積あたりの抵抗およびその変化量に差を設ける必要がないので、材料等を特に異なるものを選択することなく、設計や製造が複雑化しない。   As described above, the light modulation element 1 includes three spin-injection magnetization reversal element structures sharing a magnetization free layer, and two of them, that is, the element structures MR1 and MR3, have the same magnetization parallel and antiparallel. By fixing the magnetizations of the magnetization fixed layers 11 and 13 in the same (parallel) direction, the resistance between the electrodes 51 and 53 connected to the same polarity of the power supply 95 in the magnetization reversal operation is as shown in FIG. In the same manner as a general spin-injection magnetization reversal element, the magnetization reversal operation changes. The amount of change is twice the amount of change ΔR of one resistance of the element structures MR1 and MR3. The amount of change in resistance does not require a difference in the resistance per area of the three spin injection magnetization reversal element structures MR1, MR2, and MR3 of the light modulation element 1 and the amount of change thereof. Design and manufacturing are not complicated without particularly selecting different ones.

光変調素子1は、電極51,53間で測定される抵抗であれば磁化反転動作により変化し、第2電極52をopen状態とせずに電極51,53の一方に接続して抵抗を測定することもできる。例えば、同極に接続した電極52,53と、第1電極51との間で測定される抵抗は、並列に接続された素子構造MR2,MR3の合成抵抗と第1素子構造MR1の抵抗との和である。素子構造MR2は、磁化の平行、反平行の状態が素子構造MR1,MR3と異なり(図5参照)、さらに前記の式(1)〜(4)が成立する場合、その抵抗は素子構造MR1,MR3の1/2であり、すなわち磁化反転による変化量は1/2である。したがって、並列に接続された素子構造MR2,MR3の合成抵抗は、その変化量が第3素子構造MR3単独よりは小さいが、第1素子構造MR1の抵抗と同じように上昇、下降する。このことから、電極52,53と第1電極51との間で測定される抵抗の変化量ΔR123は、素子構造MR1の1個の抵抗の変化量よりも大きく、すなわちΔR123>ΔRである。   If the light modulation element 1 is a resistance measured between the electrodes 51 and 53, it is changed by the magnetization reversal operation, and the resistance is measured by connecting the second electrode 52 to one of the electrodes 51 and 53 without setting the open state. You can also. For example, the resistance measured between the electrodes 52 and 53 connected to the same polarity and the first electrode 51 is the combined resistance of the element structures MR2 and MR3 connected in parallel and the resistance of the first element structure MR1. It is sum. The element structure MR2 differs from the element structures MR1 and MR3 in the parallel and antiparallel states of magnetization (see FIG. 5), and when the above equations (1) to (4) are satisfied, the resistance of the element structure MR1 is It is 1/2 of MR3, that is, the amount of change due to magnetization reversal is 1/2. Accordingly, the combined resistance of the element structures MR2 and MR3 connected in parallel increases and decreases in the same manner as the resistance of the first element structure MR1, although the amount of change is smaller than that of the third element structure MR3 alone. From this, the resistance change ΔR123 measured between the electrodes 52, 53 and the first electrode 51 is larger than one resistance change of the element structure MR1, that is, ΔR123> ΔR.

光変調素子1は、電極51,53の一方をopen状態として、電極53,52間または電極51,52間で抵抗を測定することもできる。この場合に測定される抵抗は、第2素子構造MR2の抵抗と第1素子構造MR1または第3素子構造MR3の抵抗との和であるから、前記の式(1)〜(4)が成立する場合、磁化反転による変化量はΔR/2である。
光変調素子1の抵抗値の測定方法の詳細は、空間光変調器の書込みエラー検出(画素判定)方法の説明にて後記する。
The light modulation element 1 can also measure the resistance between the electrodes 53 and 52 or between the electrodes 51 and 52 with one of the electrodes 51 and 53 in an open state. Since the resistance measured in this case is the sum of the resistance of the second element structure MR2 and the resistance of the first element structure MR1 or the third element structure MR3, the above equations (1) to (4) are established. In this case, the amount of change due to magnetization reversal is ΔR / 2.
Details of the method of measuring the resistance value of the light modulation element 1 will be described later in the description of the write error detection (pixel determination) method of the spatial light modulator.

光変調素子1の別の実施形態として、磁化固定層11,13と磁化固定層12とは、保磁力Hcp1(Hcp3),Hcp2に差を設けることに代えて、少なくとも一方を、交換結合した磁性膜を備えた多層構造としてもよい。具体的には、磁化固定層11,12,13は、Ru等の磁気交換結合膜を挟んで、Co−Fe膜、またはTb−Fe−Co/Co−Fe等の積層膜にさらに積層された3、4層程度の多層構造としてもよい。例えば、下(電極51,52,53の側)から、Tb−Fe−Co等の保磁力の大きな垂直磁化膜に、Co−Fe/Ru/Co−Feの3層構造を積層したTb−Fe−Co/Co−Fe/Ru/Co−Feの4層構造とすることができる。このような多層構造において、磁気交換結合膜を挟んだ磁性膜同士は、磁気交換結合膜の厚さによって、互いに反平行な、または平行な磁化方向を示す。 As another embodiment of the light modulation element 1, the magnetization fixed layers 11 and 13 and the magnetization fixed layer 12 are exchanged at least one of them instead of providing a difference in coercive force Hcp 1 (Hcp 3 ) and Hcp 2. A multilayer structure including a combined magnetic film may be used. Specifically, the magnetization fixed layers 11, 12, and 13 are further laminated on a Co—Fe film or a laminated film such as Tb—Fe—Co / Co—Fe with a magnetic exchange coupling film such as Ru interposed therebetween. A multilayer structure of about 3 or 4 layers may be used. For example, from the bottom (side of the electrodes 51, 52, 53), Tb—Fe in which a three-layer structure of Co—Fe / Ru / Co—Fe is stacked on a perpendicular magnetization film having a large coercive force such as Tb—Fe—Co. A four-layer structure of -Co / Co-Fe / Ru / Co-Fe can be formed. In such a multilayer structure, the magnetic films sandwiching the magnetic exchange coupling film exhibit anti-parallel or parallel magnetization directions depending on the thickness of the magnetic exchange coupling film.

例えば、磁化固定層11,13はCo−Fe(5nm)の単層とし、磁化固定層12は下(第2電極52の側)から、Co−Fe(5nm)/Ru(0.7nm)/Co−Fe(2nm)の3層構造とする。なお、( )内は厚さを示す。このような光変調素子1に磁界を印加すると、磁化固定層11,12,13のそれぞれにおける5nm厚さのCo−Fe膜の磁化方向が印加磁界の向きに揃い、磁化固定層12の中間層22側の2nm厚さのCo−Fe膜の磁化方向が反平行な磁化方向となる。あるいは磁化固定層11,12,13のすべてに磁気交換結合膜を設けた場合、磁化固定層12は前記と同じ3層構造とし、磁化固定層11,13は下(電極51,53の側)から、Co−Fe(2nm)/Ru(0.7nm)/Co−Fe(5nm)の各層の厚さを変えた3層構造とする。このような光変調素子1に磁界を印加した場合も、磁界の向きに5nm厚さのCo−Fe膜の磁化方向が揃い、Ru膜を隔てた2nm厚さのCo−Fe膜の磁化方向が反平行な磁化方向となるため、磁化固定層11,13と磁化固定層12のそれぞれの中間層2の側のCo−Fe膜の磁化方向が互いに反平行となる。磁化固定層11,13および磁化固定層12の少なくとも一方がこのような多層構造であることにより、磁化固定層11,13と磁化固定層12(多層構造における中間層2の側の磁性膜)を互いに反対方向の磁化に容易に初期設定することができる。このような光変調素子1についても、前記に説明したように磁化自由層3が磁化反転して、光変調動作をし、また抵抗が変化するので、空間光変調器10の画素8に設けることができる。   For example, the magnetization fixed layers 11 and 13 are single layers of Co—Fe (5 nm), and the magnetization fixed layer 12 is Co—Fe (5 nm) / Ru (0.7 nm) / from the bottom (second electrode 52 side). A three-layer structure of Co—Fe (2 nm) is adopted. In addition, () shows thickness. When a magnetic field is applied to such a light modulation element 1, the magnetization direction of the 5 nm thick Co—Fe film in each of the magnetization fixed layers 11, 12, 13 is aligned with the direction of the applied magnetic field, and the intermediate layer of the magnetization fixed layer 12 The magnetization direction of the Co-Fe film having a thickness of 2 nm on the 22 side is an antiparallel magnetization direction. Alternatively, when a magnetic exchange coupling film is provided on all the magnetization fixed layers 11, 12, and 13, the magnetization fixed layer 12 has the same three-layer structure as described above, and the magnetization fixed layers 11 and 13 are below (on the sides of the electrodes 51 and 53). Thus, a three-layer structure in which the thickness of each layer of Co—Fe (2 nm) / Ru (0.7 nm) / Co—Fe (5 nm) is changed is adopted. Even when a magnetic field is applied to such a light modulation element 1, the magnetization direction of the Co-Fe film having a thickness of 5 nm is aligned in the direction of the magnetic field, and the magnetization direction of the Co-Fe film having a thickness of 2 nm across the Ru film is Since the magnetization directions are antiparallel, the magnetization directions of the Co—Fe film on the intermediate layer 2 side of each of the magnetization fixed layers 11 and 13 and the magnetization fixed layer 12 are antiparallel to each other. Since at least one of the magnetization fixed layers 11 and 13 and the magnetization fixed layer 12 has such a multilayer structure, the magnetization fixed layers 11 and 13 and the magnetization fixed layer 12 (magnetic film on the side of the intermediate layer 2 in the multilayer structure) are formed. Initialization can be easily set to magnetizations in opposite directions. Such a light modulation element 1 is also provided in the pixel 8 of the spatial light modulator 10 because the magnetization free layer 3 undergoes magnetization reversal to perform a light modulation operation and the resistance changes as described above. Can do.

さらに光変調素子1の別の実施形態として、磁化固定層11,12,13、および磁化自由層3は、面内磁気異方性材料で形成されてもよい。具体的には、Ni,Fe,Coのような遷移金属や、Ni−Fe,Ni−Fe−Mo,Co−Cr,Co−Fe,Co−Fe−B,Co−Fe−Si,Co−Fe−Ge等の遷移金属合金、あるいはCo−Pt等の遷移金属と貴金属との合金が挙げられる。あるいはMn−Bi合金、Mn/Bi多層膜、Pt−Mn−Sb合金、Pt/Mn−Sb多層膜等の磁気光学効果の大きなMn含有磁性合金を用いることができる。さらに磁化固定層11,13および磁化固定層12について、少なくとも一方を交換結合した磁性膜を備えた多層構造とする場合は、例えば、下(電極51,52,53の側)からIr−Mn/Co−Fe/Ru/Co−Feの4層構造とすることができる。最下層のIr−Mnに代えて、Fe−Mn,Pt−Mn等の反強磁性材料を適用することもできる。   Further, as another embodiment of the light modulation element 1, the magnetization fixed layers 11, 12, 13 and the magnetization free layer 3 may be formed of an in-plane magnetic anisotropic material. Specifically, transition metals such as Ni, Fe, Co, Ni-Fe, Ni-Fe-Mo, Co-Cr, Co-Fe, Co-Fe-B, Co-Fe-Si, Co-Fe Examples thereof include transition metal alloys such as —Ge or alloys of transition metals such as Co—Pt and noble metals. Alternatively, a Mn-containing magnetic alloy having a large magneto-optical effect such as a Mn—Bi alloy, a Mn / Bi multilayer film, a Pt—Mn—Sb alloy, or a Pt / Mn—Sb multilayer film can be used. Further, in the case where the magnetization fixed layers 11 and 13 and the magnetization fixed layer 12 have a multilayer structure including a magnetic film in which at least one of them is exchange-coupled, for example, Ir-Mn / A four-layer structure of Co—Fe / Ru / Co—Fe can be formed. Instead of the lowermost layer Ir—Mn, an antiferromagnetic material such as Fe—Mn or Pt—Mn can be applied.

このような面内磁気異方性とした磁化固定層11,13と磁化固定層12は、面内方向における一方向とその反対方向に磁化を固定され、例えば図1および図3(a)に示す平面視形状の光変調素子1においては、長方形の当該磁化固定層11,12,13の長辺方向(図1における縦方向)に固定されることが好ましい。このような光変調素子1は、垂直磁気異方性の場合と同様に、磁化反転により、磁化自由層3が磁化固定層11,12のいずれか一方と平行で他方と反平行の磁化方向を示し、また、磁化反転動作に伴い電極51,53間の抵抗が変化する(図示省略)。   The magnetization fixed layers 11 and 13 and the magnetization fixed layer 12 having such in-plane magnetic anisotropy have magnetization fixed in one direction in the in-plane direction and the opposite direction. For example, as shown in FIG. 1 and FIG. In the light modulation element 1 having a planar shape shown in the figure, it is preferably fixed in the long side direction (vertical direction in FIG. 1) of the rectangular magnetization fixed layers 11, 12 and 13. As in the case of perpendicular magnetic anisotropy, such a light modulation element 1 has a magnetization direction in which the magnetization free layer 3 is parallel to one of the magnetization fixed layers 11 and 12 and antiparallel to the other by magnetization reversal. In addition, the resistance between the electrodes 51 and 53 changes with the magnetization reversal operation (not shown).

図4を参照して説明した通り、光変調素子1の素子構造MR1,MR2,MR3はバイポーラ(双極性)駆動によりスピン注入磁化反転するが、ユニポーラ(単極性)駆動式のスピン注入磁化反転素子構造を適用してもよい。一例として、大塚雄太他、「ユニポーラ電流によるスピン注入磁化反転」、2012年春季第59回応用物理学関係連合講演会予稿集、17p−B4−8、2012年2月、に記載された、磁化自由層に特定のフェリ磁性体材料を適用したスピン注入磁化反転素子が挙げられる。かかるスピン注入磁化反転素子を素子構造MR1,MR2,MR3に適用することにより、光変調素子1(1D)は、2値の大きさの電流を一方向に供給することで、磁化自由層の磁化方向を下向きから上向き、上向きから下向きの両方向の磁化反転動作が可能である(図示省略)。   As described with reference to FIG. 4, the element structures MR1, MR2 and MR3 of the light modulation element 1 undergo spin injection magnetization reversal by bipolar (bipolar) drive, but unipolar drive type spin injection magnetization reversal elements. A structure may be applied. As an example, the magnetization described in Yuta Otsuka et al., “Spin-injection magnetization reversal by unipolar current”, Proceedings of the 59th Joint Lecture on Applied Physics in Spring 2012, 17p-B4-8, February 2012. Examples thereof include a spin-injection magnetization reversal element in which a specific ferrimagnetic material is applied to the free layer. By applying such a spin-injection magnetization reversal element to the element structures MR1, MR2, MR3, the light modulation element 1 (1D) supplies a binary current in one direction, so that the magnetization of the magnetization free layer is magnetized. A magnetization reversal operation in both directions from downward to upward and upward to downward is possible (not shown).

光変調素子1は、図1および図3(a)にて平面視形状を正方形としたが、これに限られない。さらに、磁化固定層11,12,13(素子構造MR1,MR2,MR3)の配置と形状も縦3分割の同一形状の長方形に限られない。以下、図3(b)、(c)を参照して、変形例に係る光変調素子について説明する。なお、図3(b)、(c)において、網掛けを付した領域が磁化固定層11,12,13の設けられた部位である。例えば、図3(b)に示す変形例に係る光変調素子1Bは、平面(底面)視において、正方形の対角の2つの角のそれぞれを含む直角三角形に、磁化固定層11,13が形成されている。そして、磁化固定層11,13間に、磁化固定層12が残りの2つの角を含んだ細長い六角形に形成されている。言い換えると、光変調素子1Bは、正方形を斜め45°の線に沿って3分割して、磁化固定層11,12,13を設けたものである。   The light modulation element 1 has a square shape in plan view in FIGS. 1 and 3A, but is not limited thereto. Furthermore, the arrangement and shape of the magnetization fixed layers 11, 12 and 13 (element structures MR 1, MR 2 and MR 3) are not limited to the same rectangular shape divided into three vertical parts. Hereinafter, the light modulation element according to the modification will be described with reference to FIGS. In FIGS. 3B and 3C, shaded regions are portions where the magnetization fixed layers 11, 12, and 13 are provided. For example, in the light modulation element 1B according to the modification shown in FIG. 3B, the magnetization fixed layers 11 and 13 are formed in right triangles including two corners of a square when viewed in plan (bottom). Has been. Between the magnetization fixed layers 11 and 13, the magnetization fixed layer 12 is formed in an elongated hexagonal shape including the remaining two corners. In other words, the light modulation element 1B is obtained by dividing the square into three along an oblique 45 ° line and providing the magnetization fixed layers 11, 12, and 13.

また、光変調素子1は、磁化固定層11,12,13(素子構造MR1,MR2,MR3)を一方向に並べて配置されなくてもよい。例えば、図3(c)に示す変形例に係る光変調素子1Cは、平面(底面)視において、長方形の磁化固定層11,13が、間に磁化固定層12を設けずに、並べて配置されている。そして、磁化固定層12は、磁化固定層11,13の並び方向(図3(c)における左右方向)に直交する側に対向して配置され、磁化固定層11,13を含む全幅の長さであって、かつ磁化固定層11,13の合計に相当する面積の長方形に形成されている。光変調素子1B,1Cは、このような平面視形状であっても、前記実施形態と同様に、電極51,53と電極52から電流を供給されて磁化反転動作をし、それに伴い電極51,53間の抵抗が変化する。このように、本発明に係る光変調素子は、素子構造MR1,MR2,MR3のスピン注入磁化反転により、当該光変調素子が入射光を光変調する領域(ここでは全体)において磁化自由層3の磁化方向を反転させることができればよい。なお、光変調素子1Cにおいては、素子構造MR1,MR3間の磁化自由層3の一部に電子が注入されず磁化反転しない領域が生じ得るが、入射光の回折限界未満の幅(長さ)であれば、光変調への影響はないといえる。   Further, the light modulation element 1 does not have to be arranged with the magnetization fixed layers 11, 12, and 13 (element structures MR1, MR2, and MR3) arranged in one direction. For example, in the light modulation element 1C according to the modification shown in FIG. 3C, in the plan (bottom) view, rectangular magnetization fixed layers 11 and 13 are arranged side by side without providing the magnetization fixed layer 12 therebetween. ing. The magnetization fixed layer 12 is arranged to face the side orthogonal to the direction in which the magnetization fixed layers 11 and 13 are arranged (the left-right direction in FIG. 3C), and has a full width including the magnetization fixed layers 11 and 13. In addition, it is formed in a rectangular shape having an area corresponding to the total of the magnetization fixed layers 11 and 13. Even if the light modulation elements 1B and 1C have such a planar view shape, the current is supplied from the electrodes 51 and 53 and the electrode 52 to perform the magnetization reversal operation, and accordingly the electrodes 51, The resistance between 53 changes. As described above, the light modulation element according to the present invention has the magnetization free layer 3 in the region (here, the whole) in which the light modulation element modulates the incident light by the spin injection magnetization reversal of the element structures MR1, MR2, and MR3. It is only necessary to reverse the magnetization direction. In the light modulation element 1C, a region where electrons are not injected and magnetization is not reversed is generated in a part of the magnetization free layer 3 between the element structures MR1 and MR3, but the width (length) is less than the diffraction limit of incident light. If so, it can be said that there is no influence on the light modulation.

光変調素子1は、中間層21,22,23を、磁化固定層11,12,13と同一形状として互いに離間させて設けているがこれに限られず、離間させずに設けることもできる。詳しくは、隣り合う2つの中間層2,2、すなわち中間層21,22の両方、または中間層23,22の両方が絶縁体のみからなる場合は、このような隣り合う2つの中間層2,2同士が接触していてもよく、特に同じ絶縁体材料からなるのであれば、磁化自由層3と同様に一体に設けてもよい(図示省略)。   In the light modulation element 1, the intermediate layers 21, 22, and 23 are provided in the same shape as the magnetization fixed layers 11, 12, and 13 so as to be separated from each other, but the present invention is not limited thereto, and may be provided without being separated. Specifically, when two adjacent intermediate layers 2 and 2, that is, both of the intermediate layers 21 and 22, or both of the intermediate layers 23 and 22 are made of only an insulator, such two adjacent intermediate layers 2 and 2 are arranged. The two may be in contact with each other, and may be provided integrally (not shown) in the same manner as the magnetization free layer 3 as long as they are made of the same insulator material.

以上のように、本発明に係る光変調素子は、2つ分の磁化固定層により磁化反転動作が安定し、かつ全体の面積を大きくすることができるので、空間光変調器の画素に備えてその開口率を高くすることができる。さらに、本発明に係る光変調素子は、磁化反転により特定の電極間の抵抗が変化する磁気抵抗効果素子であるので、磁化自由層の磁化方向を検知することが容易で、空間光変調器等の画素としてのみならず、従来のスピン注入磁化反転素子と同様に、MRAM用のメモリ素子に適用することができる。   As described above, the light modulation element according to the present invention has a magnetization reversal operation stabilized by two magnetization fixed layers and can increase the entire area. The aperture ratio can be increased. Furthermore, since the light modulation element according to the present invention is a magnetoresistive effect element in which the resistance between specific electrodes changes due to magnetization reversal, it is easy to detect the magnetization direction of the magnetization free layer, such as a spatial light modulator. The present invention can be applied not only to the above-mentioned pixels but also to a memory element for MRAM in the same manner as a conventional spin transfer magnetization switching element.

[空間光変調器]
(第1実施形態)
次に、前記の本発明に係る光変調素子を画素に備える空間光変調器について、図面を参照してその実施形態を説明する。
図1に示すように、本発明の第1実施形態に係る空間光変調器10は、基板7と、基板7上に2次元アレイ状に配列された画素8からなる画素アレイ80と、画素アレイ80から1つ以上の画素8を選択して駆動する電流制御部90を備える。画素8においては、基板7上に電極51,52,55,58および第3電極53(図2、図6参照)が配され、さらにその上に光変調素子1が配される。空間光変調器10の光の入射面は上面(平面)であり、空間光変調器10は、画素8(画素アレイ80)に上方から入射した光を変調して上方へ出射する反射型の空間光変調器である(図6参照)。
[Spatial light modulator]
(First embodiment)
Next, an embodiment of the spatial light modulator including the light modulation element according to the present invention in a pixel will be described with reference to the drawings.
As shown in FIG. 1, the spatial light modulator 10 according to the first embodiment of the present invention includes a substrate 7, a pixel array 80 including pixels 8 arranged in a two-dimensional array on the substrate 7, and a pixel array. A current control unit 90 that selects and drives one or more pixels 8 from 80 is provided. In the pixel 8, electrodes 51, 52, 55, 58 and a third electrode 53 (see FIGS. 2 and 6) are disposed on the substrate 7, and the light modulation element 1 is further disposed thereon. The light incident surface of the spatial light modulator 10 is an upper surface (planar), and the spatial light modulator 10 modulates light incident on the pixel 8 (pixel array 80) from above and emits the light upward. This is an optical modulator (see FIG. 6).

本実施形態では、画素アレイ80は、説明を簡潔にするために、4行×4列の16個の画素8からなる構成で例示される。画素アレイ80は、平面視でY方向(図1における縦方向)に延設された各4本の第1電極51および素子選択電極58と、平面視で電極51,58と直交するX方向(図1における横方向)に延設された各4本の第2電極52およびY2電極55と、を備える。さらに、本実施形態に係る空間光変調器10の画素8は、基板7の表層に形成されたトランジスタ4(図3(a)参照)を備え、素子選択電極58、Y2電極55、および第3電極53に接続される。詳しくは後記するように、画素アレイ80は、選択トランジスタ型のMRAMに類似した構造を有する。   In the present embodiment, the pixel array 80 is exemplified by a configuration including 16 pixels 8 of 4 rows × 4 columns for the sake of brevity. The pixel array 80 includes four first electrodes 51 and element selection electrodes 58 extending in the Y direction (vertical direction in FIG. 1) in plan view, and the X direction (in the plane view, orthogonal to the electrodes 51 and 58). Each of the four second electrodes 52 and the Y2 electrode 55 is provided so as to extend in the horizontal direction in FIG. Furthermore, the pixel 8 of the spatial light modulator 10 according to the present embodiment includes the transistor 4 (see FIG. 3A) formed on the surface layer of the substrate 7, and includes an element selection electrode 58, a Y2 electrode 55, and a third electrode. Connected to the electrode 53. As will be described in detail later, the pixel array 80 has a structure similar to a select transistor type MRAM.

ここで、トランジスタ4は、図3(a)に示すように、平面視において上下左右対称に形成されたMOSFETからなる。このような構成とすることで、左右方向(X方向)においてはソース4sが、上下方向(Y方向)においてはゲート4gが、それぞれ対向する2つのトランジスタ4,4において共有され、画素8が微細化される。このようなトランジスタ4の配列に合わせて、画素アレイ80は、X,Y方向において、画素8を1つおきに左右上下反転させて配列する。したがって、画素アレイ80において、光変調素子1は、トランジスタ4と接続されるために、磁化固定層11,12,13の並び方向をX方向にして配置され、かつ、1つおきに左右反転させて配列されている。そして、左右に隣り合う光変調素子1,1において、第1磁化固定層11,11同士、第2磁化固定層12,12同士が対向する構成となる。画素アレイ80における光変調素子1およびトランジスタ4の配置は、それぞれの大きさや形状に応じて設計されればよく、例えば光変調素子1が平面視における向きを揃えて配列されてもよい(図14参照)。なお、図3(a)は、2行×2列の4個の画素8におけるトランジスタ4、および1個の光変調素子1のみを示し、また、電極51,52,53,55,58は、トランジスタ4に直接に接続される部分以外は二点鎖線で示す。   Here, as shown in FIG. 3A, the transistor 4 is composed of MOSFETs formed symmetrically in the vertical and horizontal directions in plan view. With such a configuration, the source 4s in the left-right direction (X direction) and the gate 4g in the up-down direction (Y direction) are shared by the two transistors 4 and 4 facing each other, and the pixel 8 is fine. It becomes. In accordance with the arrangement of the transistors 4, the pixel array 80 is arranged by inverting the pixels 8 every other pixel 8 in the X and Y directions. Therefore, in the pixel array 80, the light modulation element 1 is arranged with the alignment direction of the magnetization fixed layers 11, 12, and 13 in the X direction and is reversed left and right every other one in order to be connected to the transistor 4. Are arranged. In the light modulation elements 1 and 1 adjacent to the left and right, the first magnetization fixed layers 11 and 11 and the second magnetization fixed layers 12 and 12 face each other. The arrangement of the light modulation elements 1 and the transistors 4 in the pixel array 80 may be designed according to the size and shape of each, and for example, the light modulation elements 1 may be arranged with their orientations in plan view aligned (FIG. 14). reference). 3A shows only the transistor 4 and the one light modulation element 1 in the four pixels 8 of 2 rows × 2 columns, and the electrodes 51, 52, 53, 55, 58 are A portion other than a portion directly connected to the transistor 4 is indicated by a two-dot chain line.

前記した通り、空間光変調器10の画素8に設けられた光変調素子1は、同一面に離間して形成された磁化固定層11,12,13のそれぞれに電極51,52,53を接続される。また、画素アレイ80において、光変調素子1は、磁化固定層11,12,13の並び方向をX方向にして配置されている。そのため、この並び方向に直交するY方向に延設されて第1磁化固定層11に接続する第1電極51は、隣の(右側のまたは左隣の光変調素子1の)第2磁化固定層12または第3磁化固定層13に接触しない程度の幅の帯状の配線に形成され、図2に示すように、光変調素子1の底面に直接に接続する高さ位置に設けられる。   As described above, in the light modulation element 1 provided in the pixel 8 of the spatial light modulator 10, the electrodes 51, 52, and 53 are connected to the magnetization fixed layers 11, 12, and 13 formed separately on the same surface. Is done. Further, in the pixel array 80, the light modulation element 1 is arranged with the arrangement direction of the magnetization fixed layers 11, 12, and 13 being the X direction. Therefore, the first electrode 51 extending in the Y direction orthogonal to the arrangement direction and connected to the first magnetization fixed layer 11 is adjacent to the second magnetization fixed layer (on the right or left adjacent light modulation element 1). 12 or the third magnetization fixed layer 13 is formed in a strip-like wiring having a width that does not come into contact with the third magnetization fixed layer 13, and is provided at a height position that is directly connected to the bottom surface of the light modulation element 1, as shown in FIG.

また、X方向に延設されて第2磁化固定層12に接続する第2電極52は、第1磁化固定層11と第1電極51との接続を妨げないように、かつ第1電極51および第3電極53と短絡しないように、図2に示すように、帯状の配線部分(配線部52a)が第1電極51の下(光変調素子1から離れた側)に層間絶縁層(絶縁部材6)を挟んで設けられる。そして、図3(a)に示すように、磁化固定層12の直下に当該磁化固定層12(光変調素子1)の底面に接続する接続部52cが形成され、層間接続部52b(コンタクト)で配線部52aに接続する。なお、図1において、第2電極52は配線部52aのみを示し、また第3電極53は図示を省略する。   The second electrode 52 extending in the X direction and connected to the second magnetization fixed layer 12 does not hinder the connection between the first magnetization fixed layer 11 and the first electrode 51, and the first electrode 51 and As shown in FIG. 2, the strip-shaped wiring portion (wiring portion 52 a) is disposed below the first electrode 51 (on the side away from the light modulation element 1) so that the third electrode 53 is not short-circuited. 6). As shown in FIG. 3A, a connection portion 52c connected to the bottom surface of the magnetization fixed layer 12 (light modulation element 1) is formed immediately below the magnetization fixed layer 12, and an interlayer connection portion 52b (contact) is formed. Connect to the wiring section 52a. In FIG. 1, the second electrode 52 shows only the wiring part 52a, and the third electrode 53 is not shown.

一方、第3磁化固定層13に接続する第3電極53は、トランジスタ4のドレイン4dに接続するために、第2磁化固定層12と第2電極52の接続を妨げないように、かつ電極51,52と短絡しないように、接続部53c2が、第3磁化固定層13と同じまたは光変調素子1の外側へ拡げた平面視形状に形成されて、第1電極51および第2電極52の接続部52cと同じ高さ位置に設けられて磁化固定層12(光変調素子1)の底面に接続される。第3電極53は、この接続部53c2から基板7へ向けて、層間接続部53bおよび中継接続部53dを経由して、接続部53c1でドレイン4dに接続する。   On the other hand, the third electrode 53 connected to the third magnetization fixed layer 13 is connected to the drain 4d of the transistor 4 so that the connection between the second magnetization fixed layer 12 and the second electrode 52 is not hindered, and the electrode 51 , 52 is connected to the first electrode 51 and the second electrode 52 so that the connection portion 53c2 is formed in the same shape as the third magnetization fixed layer 13 or in a plan view shape that extends outward of the light modulation element 1. It is provided at the same height as the portion 52c and is connected to the bottom surface of the magnetization fixed layer 12 (light modulation element 1). The third electrode 53 is connected to the drain 4d at the connection portion 53c1 from the connection portion 53c2 toward the substrate 7 via the interlayer connection portion 53b and the relay connection portion 53d.

トランジスタ4のゲート4gに接続される素子選択電極58は、第1電極51と平行にY方向に延設されるため、配線部58aが第1電極51と同じ高さ位置に設けられ、層間接続部58bおよび中継接続部58dを経由して、接続部58cでゲート4gに接続する。また、トランジスタ4のソース4sに接続されるY2電極55は、第2電極52の配線部52aと平行にX方向に延設されるため、配線部55aが配線部52aと同じ高さ位置に設けられ、接続部55cでソース4sに接続する。なお、図2および図6において、Y2電極55は、Y電極52の配線部52aの奥に隠れる位置であるので、図示を省略する。また、図6において、トランジスタ4は図示を省略する。   Since the element selection electrode 58 connected to the gate 4g of the transistor 4 extends in the Y direction in parallel with the first electrode 51, the wiring part 58a is provided at the same height as the first electrode 51, and the interlayer connection The connection portion 58c connects to the gate 4g via the portion 58b and the relay connection portion 58d. Further, since the Y2 electrode 55 connected to the source 4s of the transistor 4 extends in the X direction in parallel with the wiring portion 52a of the second electrode 52, the wiring portion 55a is provided at the same height as the wiring portion 52a. And connected to the source 4s by the connecting portion 55c. 2 and 6, the Y2 electrode 55 is a position hidden behind the wiring portion 52a of the Y electrode 52, and is not shown. In FIG. 6, the transistor 4 is not shown.

このように、画素アレイ80において、電極51,58と電極52,55とは互いに直交して、列単位、行単位で画素8に共有されて設けられる。そして、光変調素子1の磁化反転動作(書込み)においては、第1電極51、第2電極52、およびY2電極55が電源95に接続される。そのため、適宜、第1電極51をX電極51、第2電極52をY1電極52と称する。一方、磁化反転動作に伴う抵抗の変化の読出し(書込みエラー検出)においては、第1電極51およびY2電極55が副電源96に接続される。また、書込み、読出しの両方において、素子選択電極58からの電流の供給でON状態となったトランジスタ4により、第3電極53がY2電極55に接続する。   Thus, in the pixel array 80, the electrodes 51 and 58 and the electrodes 52 and 55 are provided orthogonally to each other and shared by the pixels 8 in units of columns and rows. In the magnetization reversal operation (writing) of the light modulation element 1, the first electrode 51, the second electrode 52, and the Y2 electrode 55 are connected to the power supply 95. Therefore, the first electrode 51 and the second electrode 52 are appropriately called the X electrode 51 and the Y1 electrode 52, respectively. On the other hand, in reading the resistance change accompanying the magnetization reversal operation (writing error detection), the first electrode 51 and the Y2 electrode 55 are connected to the sub power source 96. Further, in both writing and reading, the third electrode 53 is connected to the Y2 electrode 55 by the transistor 4 that is turned on by the supply of current from the element selection electrode 58.

X電極51、Y1電極52(配線部52a)、およびY2電極55(配線部55a)は、それぞれ光変調素子1の磁化反転動作のための電流−IW,+IWを流すために、適切な幅および厚さ(高さ)に形成される。本実施形態においては、磁化固定層11,13よりも面積の広い第2磁化固定層12に接続されるY1電極52の配線部52aが、X電極51、およびトランジスタ4を介して磁化固定層13に接続されるY2電極55よりも幅太に形成される。一方、素子選択電極58(配線部58a)は、X電極51およびY2電極55(配線部55a)と同じ幅で形成されているが、これに限られず、光変調素子1の磁化反転動作のための電流−IW,+IWを流さない素子選択電極58は、電極51,52よりも細く形成されてもよい。さらに、画素アレイ80は、隣り合う光変調素子1,1間、電極51,58間、電極52,55間、および電極51,58と電極52,55との層間に、すなわち図2において空白で表された領域に、絶縁部材6が形成されている。 The X electrode 51, the Y1 electrode 52 (wiring part 52a), and the Y2 electrode 55 (wiring part 55a) are respectively appropriate for flowing currents −I W and + I W for the magnetization reversal operation of the light modulation element 1. Formed in width and thickness (height). In the present embodiment, the wiring portion 52 a of the Y1 electrode 52 connected to the second magnetization fixed layer 12 having a larger area than the magnetization fixed layers 11 and 13 is connected to the magnetization fixed layer 13 via the X electrode 51 and the transistor 4. It is formed wider than the Y2 electrode 55 connected to the. On the other hand, the element selection electrode 58 (wiring part 58a) is formed with the same width as the X electrode 51 and the Y2 electrode 55 (wiring part 55a), but is not limited to this, and for the magnetization reversal operation of the light modulation element 1. The element selection electrode 58 that does not pass the currents −I W and + I W may be formed thinner than the electrodes 51 and 52. Further, the pixel array 80 is blank between the adjacent light modulation elements 1 and 1, between the electrodes 51 and 58, between the electrodes 52 and 55, and between the electrodes 51 and 58 and the electrodes 52 and 55, that is, in FIG. An insulating member 6 is formed in the represented area.

(光変調素子)
光変調素子1は、既に説明した構成であり、説明を省略する。なお、画素アレイ80に設けられたすべての光変調素子1は、ここでは、第1磁化固定層11および第3磁化固定層13を上向きに、第2磁化固定層12を下向きに固定されている(図6参照)。また、磁化自由層3は、磁化方向が上向きのときには+θk、磁化方向が下向きのときには−θkの角度で、入射した光の偏光の向きを回転させる(図5参照)。なお、光変調素子1は、電極51,52,53への密着性を得るために、また、中間層21,22,23および磁化固定層11,12,13の厚さが同じでない場合にその上に形成される磁化自由層3の段差を解消するために、電極51,52,53との間(磁化固定層11,12,13の下)に金属薄膜からなる下地膜を備えてもよい(図示省略)。このような下地膜は、Ta,Ru,Cu等の非磁性金属材料で、厚さ1〜10nmとすることが好ましい。下地膜は、厚さが1nm未満であると連続した膜を形成し難く、一方、10nmを超えても効果がそれ以上には向上しない。
(Light modulation element)
The light modulation element 1 has the configuration already described, and a description thereof is omitted. Here, all the light modulation elements 1 provided in the pixel array 80 are fixed with the first magnetization fixed layer 11 and the third magnetization fixed layer 13 facing upward and the second magnetization fixed layer 12 facing downward. (See FIG. 6). The magnetization free layer 3 rotates the polarization direction of incident light by an angle of + θk when the magnetization direction is upward and −θk when the magnetization direction is downward (see FIG. 5). The light modulation element 1 is used in order to obtain adhesion to the electrodes 51, 52, 53, and when the intermediate layers 21, 22, 23 and the magnetization fixed layers 11, 12, 13 are not the same in thickness. In order to eliminate the step of the magnetization free layer 3 formed thereon, a base film made of a metal thin film may be provided between the electrodes 51, 52, 53 (under the magnetization fixed layers 11, 12, 13). (Not shown). Such a base film is preferably made of a nonmagnetic metal material such as Ta, Ru, or Cu and has a thickness of 1 to 10 nm. If the thickness of the underlying film is less than 1 nm, it is difficult to form a continuous film. On the other hand, if the thickness exceeds 10 nm, the effect is not further improved.

(電極)
電極51,52,53,55,58は、いずれも光変調素子1(磁化自由層3)に対して光の入出射側の反対側に配置されるので、光を遮ることがなく、低抵抗の金属材料で形成することができる。したがって、電極51,52,53は、例えば、Cu,Al,Au,Ag,Ta,Cr等の金属やその合金のような一般的な金属電極材料で形成される。そして、スパッタリング法等の公知の方法により成膜、フォトリソグラフィ、およびエッチングまたはリフトオフ法等によりストライプ状等の所望の形状に加工される。
(electrode)
Since the electrodes 51, 52, 53, 55, and 58 are all disposed on the opposite side of the light incident / exit side with respect to the light modulation element 1 (magnetization free layer 3), they do not block light and have low resistance. The metal material can be formed. Therefore, the electrodes 51, 52, and 53 are formed of a general metal electrode material such as a metal such as Cu, Al, Au, Ag, Ta, or Cr, or an alloy thereof. Then, it is processed into a desired shape such as a stripe shape by a known method such as a sputtering method, by film formation, photolithography, etching, lift-off method, or the like.

(基板)
基板7は、画素8を2次元配列するための土台であり、光変調素子1を製造するための広義の基板である。さらに、本実施形態に係る空間光変調器10は画素8にトランジスタ4を備えるために、基板7はMOSFETの材料に用いられるSi(シリコン)基板が好適である。あるいは、ガラス等のその他の公知の基板を用い、結晶Si膜を成膜して、MOSFETを形成してもよい。
(substrate)
The substrate 7 is a base for two-dimensionally arranging the pixels 8, and is a broad substrate for manufacturing the light modulation element 1. Furthermore, since the spatial light modulator 10 according to this embodiment includes the transistor 4 in the pixel 8, the substrate 7 is preferably a Si (silicon) substrate used as a material for the MOSFET. Alternatively, the MOSFET may be formed by using another known substrate such as glass and forming a crystalline Si film.

(絶縁部材)
絶縁部材6は、光変調素子1における磁化固定層11,12間および中間層21,22間(素子構造MR1,MR2間)、磁化固定層12,13間および中間層22,23間(素子構造MR2,MR3間)、ならびに隣り合う光変調素子1,1間、電極51,58間、電極52,55間、さらに電極51,58と電極52,55の層間を、それぞれ絶縁するために設けられる。絶縁部材6は、例えばSiO2やAl23等の酸化膜やSi34等の公知の絶縁材料を適用することができる。
(Insulating material)
The insulating member 6 is formed between the magnetization fixed layers 11 and 12 and the intermediate layers 21 and 22 (between the element structures MR1 and MR2), between the magnetization fixed layers 12 and 13 and between the intermediate layers 22 and 23 (element structure). MR2 and MR3), between the adjacent light modulation elements 1 and 1, between the electrodes 51 and 58, between the electrodes 52 and 55, and between the electrodes 51 and 58 and the electrodes 52 and 55, respectively. . For the insulating member 6, for example, an oxide film such as SiO 2 or Al 2 O 3 or a known insulating material such as Si 3 N 4 can be applied.

画素アレイ80は、光変調素子1上に、Si−N(シリコン窒化物)、ZnO(酸化亜鉛)、HfO2(酸化ハフニウム)、ZrO(酸化ジルコニウム)等の高屈折率の誘電体(絶縁体)層を設けて、さらにその上にSiO2等の低屈折率の誘電体層を積層してもよい。あるいは、光変調素子1上にSiO2,Si−N等の誘電体(絶縁体)層を成膜し、その上にITO(酸化インジウムスズ)、IZO(インジウム酸化亜鉛)等の高屈折率の透明酸化物半導体(透明導電体)層を形成してもよい。あるいは、前記透明酸化物半導体(導電体)層と前記誘電体(絶縁体)層とを、交互に積層した多層膜等を形成してもよい(図示省略)。光変調素子1(磁化自由層3)で反射した光が高屈折率の誘電体層(または透明導電体)と低屈折率の誘電体層との界面で反射して、再び光変調素子1に入射するという動作を繰り返すため、光が画素アレイ80から出射するまでに、光変調素子1で何回も旋光を繰り返して旋光角が累積されて大きくなり、明暗のコントラストが向上する。 The pixel array 80 has a high refractive index dielectric (insulation) such as Si—N (silicon nitride), ZnO (zinc oxide), HfO 2 (hafnium oxide), ZrO 2 (zirconium oxide) on the light modulation element 1. Body) layer, and a low refractive index dielectric layer such as SiO 2 may be further laminated thereon. Alternatively, a dielectric (insulator) layer such as SiO 2 or Si—N is formed on the light modulation element 1, and a high refractive index such as ITO (indium tin oxide) or IZO (indium zinc oxide) is formed thereon. A transparent oxide semiconductor (transparent conductor) layer may be formed. Alternatively, a multilayer film or the like in which the transparent oxide semiconductor (conductor) layer and the dielectric (insulator) layer are alternately stacked may be formed (not shown). The light reflected by the light modulation element 1 (magnetization free layer 3) is reflected at the interface between the high refractive index dielectric layer (or transparent conductor) and the low refractive index dielectric layer, and is again reflected on the light modulation element 1. Since the operation of entering is repeated, the light rotation is repeated many times by the light modulation element 1 until the light is emitted from the pixel array 80, and the rotation angle is accumulated and increased, thereby improving the contrast between light and dark.

(電流制御部)
図1に示すように、電流制御部90は、X電極51を選択するX電極選択部91と、Y1電極52を選択するY1電極選択部92と、Y2電極55を選択するY2電極選択部93と、素子選択電極58を選択する素子選択部98と、電極51,55および電極52に電流を供給する電源(電流供給手段)95と、この電源95、前記の電極選択部91,92,93、および素子選択部98を制御する画素選択部(画素選択手段)94と、を備える。これらはそれぞれ以下に説明する動作が可能な公知の装置を適用することができる。さらに、電流制御部90は、電極51,55に電流を供給する副電源(副電流供給手段)96と、画素の書込みエラー検出を行う判定部(画素判定手段)97と、を備える。副電源96は、後記するように、供給する電流の大きさが異なる以外は電源95と同様の装置を適用することができる。判定部97は、電圧比較器97aおよび検査部97bで構成され、後記するように、電圧比較器97aはMRAMにおける公知の読出し回路を、検査部97bは演算処理を行ういわゆるCPUを、それぞれ適用することができる。
(Current controller)
As shown in FIG. 1, the current control unit 90 includes an X electrode selection unit 91 that selects the X electrode 51, a Y1 electrode selection unit 92 that selects the Y1 electrode 52, and a Y2 electrode selection unit 93 that selects the Y2 electrode 55. An element selection unit 98 that selects the element selection electrode 58; a power source (current supply means) 95 that supplies current to the electrodes 51, 55 and the electrode 52; and the power source 95, the electrode selection units 91, 92, and 93. And a pixel selection section (pixel selection means) 94 for controlling the element selection section 98. A known device capable of the operations described below can be applied to each of these. Further, the current control unit 90 includes a sub power source (sub current supply unit) 96 that supplies current to the electrodes 51 and 55 and a determination unit (pixel determination unit) 97 that detects a pixel writing error. As will be described later, a device similar to the power source 95 can be applied to the sub power source 96 except that the magnitude of the supplied current is different. The determination unit 97 includes a voltage comparator 97a and an inspection unit 97b. As will be described later, the voltage comparator 97a applies a known read circuit in the MRAM, and the inspection unit 97b applies a so-called CPU that performs arithmetic processing. be able to.

画素選択部94は、例えば図示しない外部からの信号に基づいて、画素アレイ80の特定の1つ以上の画素8を選択し、選択した画素8の画素アレイ80におけるX,Y座標に基づいて電極選択部91,92,93に電極51,52,55を選択させ、かつ素子選択部98に素子選択電極58を選択させ、さらに電源95が供給する電流の向きを選択する。そして図7に示すように、画素選択部94からの命令(図中、94の丸数字で表す)により、X電極選択部91はX電極51の1つ以上を選択し、Y2電極選択部93はY2電極55の1つ以上を選択し、Y1電極選択部92はY電極52の1つ以上を選択し、選択した電極51,55を同極に、電極52を異極にして、電源95を接続する(図4参照)。同時に、素子選択部98は、選択されたX電極51と同じ列の画素8の素子選択電極58を選択して、トランジスタ4をON状態にして、第3電極53をY2電極55に接続する。電源95は、選択した画素8に備えられる光変調素子1を磁化反転させるために適正な電圧・電流を供給する公知の電源で、直流パルス電流を正負反転可能に供給することができる。そして、電源95は、画素選択部94が選択した正または負の電流(+IW/−IW)を、接続された電極51,55(53)および電極52を介して光変調素子1に供給する。空間光変調器10は、このような構成により、画素アレイ80から所望の画素8が選択され、この画素8の光変調素子1に、所定の大きさのパルス電流が選択された向きに供給されて、磁化自由層3を所望の磁化方向にする。光変調素子1の磁化反転動作は、図4を参照して説明した通りである。選択された画素8の光変調素子1の磁化反転動作により当該光変調素子1の磁化自由層3の磁化方向が変化することで、この選択された画素8に入射した光を選択的に所望の偏光の向きに変調して出射することができる(後記の空間光変調器の光変調動作(図6参照)にて、詳細に説明する)。 The pixel selection unit 94 selects one or more specific pixels 8 of the pixel array 80 based on, for example, an external signal (not shown), and electrodes based on the X and Y coordinates in the pixel array 80 of the selected pixel 8. The selection units 91, 92, and 93 are made to select the electrodes 51, 52, and 55, the element selection unit 98 is made to select the element selection electrode 58, and the direction of the current supplied by the power source 95 is selected. Then, as shown in FIG. 7, the X electrode selection unit 91 selects one or more of the X electrodes 51 according to a command from the pixel selection unit 94 (represented by the circled number 94 in the figure), and the Y2 electrode selection unit 93. Selects one or more of the Y2 electrodes 55, the Y1 electrode selection unit 92 selects one or more of the Y electrodes 52, makes the selected electrodes 51, 55 have the same polarity, and the electrodes 52 have different polarities, and supplies a power source 95. Are connected (see FIG. 4). At the same time, the element selection unit 98 selects the element selection electrode 58 of the pixel 8 in the same column as the selected X electrode 51, turns on the transistor 4, and connects the third electrode 53 to the Y2 electrode 55. The power source 95 is a known power source that supplies an appropriate voltage / current for reversing the magnetization of the light modulation element 1 provided in the selected pixel 8, and can supply a DC pulse current so that it can be inverted. The power supply 95 supplies the positive or negative current (+ I W / −I W ) selected by the pixel selection unit 94 to the light modulation element 1 via the connected electrodes 51 and 55 (53) and the electrode 52. To do. With such a configuration, the spatial light modulator 10 selects a desired pixel 8 from the pixel array 80 and supplies a pulse current of a predetermined magnitude to the light modulation element 1 of the pixel 8 in the selected direction. Thus, the magnetization free layer 3 is set to a desired magnetization direction. The magnetization reversal operation of the light modulation element 1 is as described with reference to FIG. The magnetization reversal operation of the light modulation element 1 of the selected pixel 8 changes the magnetization direction of the magnetization free layer 3 of the light modulation element 1, so that the light incident on the selected pixel 8 can be selectively selected. The light can be emitted after being modulated in the direction of polarization (described in detail in the light modulation operation of the spatial light modulator described later (see FIG. 6)).

さらに画素選択部94は、電源95に代えて副電源96を、X電極51とY2電極55とに異極同士(一対)にして接続させて、光変調素子1の磁化反転電流ISTSよりも小さい所定の電流ITSTを供給させることができる。このとき、磁化反転動作時と同様に、第3電極53がY2電極55に接続される。判定部97において、電圧比較器97aは、副電源96と並列に接続され、光変調素子1に電流ITSTが供給されているときの電極51,55間すなわち電極51,53間の電圧を参照電位(閾値)Vrefと比較して、結果を検査部97b(図7では図示省略)に出力する。この比較結果は、光変調素子1の磁化自由層3の現実の磁化方向を示すものであり、検査部97bは、比較結果が示す磁化方向が画素選択部94が選択した磁化方向であるかを照合する書込みエラー検出を行う。電圧比較器97aは、電極51,55間の電圧を入力されて、参照電位Vrefと比較して高いか低いかを1か0で出力する差動センスアンプSA(図7参照)や、参照電位Vrefの出力回路(図示省略)を備え、MRAMにおける公知の読出し回路を適用することができる。また、電圧比較器97aは、精度を向上させるために、電極51,53からの電圧を増幅する増幅器を経由して接続されたり、差動センスアンプSAに閾値Vrefとの差分を増幅させる回路を備えたりしてもよい(図示省略)。空間光変調器10の書込みエラー検出方法は、後記にて詳細に説明する。 Further, the pixel selection unit 94 connects the sub power source 96 in place of the power source 95 to the X electrode 51 and the Y2 electrode 55 as a pair of different polarities (a pair), so that the magnetization selection current I STS of the light modulation element 1 is greater than A small predetermined current I TST can be supplied. At this time, the third electrode 53 is connected to the Y2 electrode 55 as in the magnetization reversal operation. In the determination unit 97, the voltage comparator 97 a is connected in parallel with the sub power source 96 and refers to the voltage between the electrodes 51 and 55, that is, the voltage between the electrodes 51 and 53 when the current I TST is supplied to the light modulation element 1. Compared with the potential (threshold value) Vref, the result is output to the inspection unit 97b (not shown in FIG. 7). This comparison result indicates the actual magnetization direction of the magnetization free layer 3 of the light modulation element 1, and the inspection unit 97b determines whether the magnetization direction indicated by the comparison result is the magnetization direction selected by the pixel selection unit 94. Write error detection to be verified. The voltage comparator 97a receives a voltage between the electrodes 51 and 55, and outputs a differential sense amplifier SA (see FIG. 7) that outputs 1 or 0 higher or lower than the reference potential Vref, or a reference potential. A Vref output circuit (not shown) is provided, and a known read circuit in the MRAM can be applied. In order to improve accuracy, the voltage comparator 97a is connected via an amplifier that amplifies the voltage from the electrodes 51 and 53, or a circuit that amplifies the difference from the threshold Vref in the differential sense amplifier SA. It may be provided (not shown). The write error detection method of the spatial light modulator 10 will be described in detail later.

[空間光変調器の製造方法]
本実施形態に係る空間光変調器10の画素アレイ80は、選択トランジスタ型のMRAMに類似した構造を有することから、かかるMRAMと同様に公知の方法で製造することができる。すなわち、はじめに基板7にMOSFETでトランジスタ4を形成し、トランジスタ4および光変調素子1と接続する電極を形成し、電極51,52,53に接続するように光変調素子1を形成して製造される。
[Method of manufacturing spatial light modulator]
Since the pixel array 80 of the spatial light modulator 10 according to the present embodiment has a structure similar to a select transistor type MRAM, it can be manufactured by a known method in the same manner as the MRAM. That is, it is manufactured by first forming the transistor 4 on the substrate 7 by MOSFET, forming the electrode connected to the transistor 4 and the light modulation element 1, and forming the light modulation element 1 to be connected to the electrodes 51, 52, 53. The

(トランジスタの形成)
MOSFETの形成は、基板7としてp型シリコン(Si)基板を適用し、公知の方法で行うことができる。基板7(Si)に、隣り合うソース4s,4s間、ドレイン4d,4d間を絶縁するSiO2の埋込みを行い、表面に薄い酸化膜(SiO2膜)を形成し、その上にpoly−Si膜を成膜してゲート4gを形成する。n型不純物イオンを注入して、ソース4sおよびドレイン4dとする(図2および図3(a)参照)。
(Formation of transistors)
The MOSFET can be formed by a known method using a p-type silicon (Si) substrate as the substrate 7. The substrate 7 (Si) is embedded with SiO 2 that insulates between the adjacent sources 4s and 4s and between the drains 4d and 4d, and a thin oxide film (SiO 2 film) is formed on the surface, and poly-Si is formed thereon. A film is formed to form the gate 4g. N-type impurity ions are implanted to form the source 4s and the drain 4d (see FIGS. 2 and 3A).

(電極の形成)
フォトリソグラフィやエッチング、リフトオフ法等を用いて、トランジスタ4を形成した基板7上に、トランジスタ4のソース4s、ドレイン4d、ゲート4gにそれぞれ接続する電極55,53,58、ならびにX電極51およびY1電極52を形成し、これらの電極同士の間を絶縁部材6で埋め、さらにその表面と電極51,52,53の表面すなわち光変調素子1との接続面を面一にする(図8(a)参照)。
(Formation of electrodes)
The electrodes 55, 53, 58 connected to the source 4s, the drain 4d, and the gate 4g of the transistor 4, and the X electrodes 51 and Y1 are formed on the substrate 7 on which the transistor 4 is formed using photolithography, etching, lift-off method, or the like. An electrode 52 is formed, and the space between these electrodes is filled with an insulating member 6, and the surface thereof and the surfaces of the electrodes 51, 52, 53, that is, the connection surfaces of the light modulation elements 1 are flush with each other (FIG. )reference).

以下、図8(a)に示す基板7上に設けられた電極および絶縁部材6上に、光変調素子1を形成して画素アレイ80を製造する方法の一例を、図8および図9を参照して説明する。なお、図8(b)〜(d)および図9の各断面図においては、電極52,53における各接続部52c,53c2(図2参照)以外、素子選択電極58、および基板7(トランジスタ4)は図示を省略する。   Hereinafter, an example of a method of manufacturing the pixel array 80 by forming the light modulation element 1 on the electrode and the insulating member 6 provided on the substrate 7 shown in FIG. To explain. 8B to 8D and FIG. 9, in addition to the connection portions 52c and 53c2 (see FIG. 2) of the electrodes 52 and 53, the element selection electrode 58 and the substrate 7 (transistor 4). ) Is not shown.

(光変調素子の形成)
電極51,52,53および絶縁部材6上に、磁化固定層11,12,13および中間層2をそれぞれ形成する材料(図中、各層と同じ符号で示す。以下同。)、ならびに仮保護膜C1を連続して成膜する。ここで、仮保護膜とは、保護膜3aと同様に、製造時におけるダメージから中間層2等の層を保護するために一時的に設けられる膜であり、Ru等の前記保護膜3aの材料として挙げたものが適用できる。仮保護膜C1の厚さは特に規定されず、例えばレジスト形成時の現像液の中間層2への含浸等によるダメージを防止できればよく、10nm程度とすることが好ましい。また、仮保護膜C1の材料として中間層2を形成する材料を適用することができ、すなわち仮保護膜C1に代えて、中間層2を形成する材料を光変調素子1完成時よりも厚く成膜すればよい。
(Formation of light modulation element)
Materials for forming the magnetization fixed layers 11, 12, 13 and the intermediate layer 2 on the electrodes 51, 52, 53 and the insulating member 6 (indicated by the same reference numerals as those of the respective layers in the figure, the same applies hereinafter), and a temporary protective film C1 is continuously formed. Here, like the protective film 3a, the temporary protective film is a film temporarily provided to protect layers such as the intermediate layer 2 from damage during manufacturing, and the material of the protective film 3a such as Ru. The following can be applied. The thickness of the temporary protective film C1 is not particularly limited, and may be, for example, about 10 nm as long as damage caused by impregnation of the developing solution into the intermediate layer 2 during resist formation can be prevented. Further, a material for forming the intermediate layer 2 can be applied as the material of the temporary protective film C1, that is, the material for forming the intermediate layer 2 is made thicker than that at the completion of the light modulation element 1 instead of the temporary protective film C1. A film may be used.

仮保護膜C1の上に、図8(b)に示すように、光変調素子1のそれぞれの素子構造MR1,MR2間および素子構造MR3,MR2間の領域を空けたレジストパターンを形成する。そして、イオンビームミリング法によるエッチングで、図8(c)に示すように、仮保護膜C1から中間層2、磁化固定層11,12,13までを除去して、絶縁部材6を露出させる。次に、図8(d)に示すように絶縁膜(絶縁部材6)および仮保護膜C2を成膜して、図9(a)に示すようにレジストを絶縁膜等ごと除去する(リフトオフ)。そして、仮保護膜C1,C2をエッチングにて除去して、中間層2(21,22,23)および絶縁部材6を露出させる。仮保護膜C2は、仮保護膜C1と同じ材料を適用し、また、当該仮保護膜C2の成膜時における仮保護膜C1の残厚に合わせた厚さとすることが好ましい。このような仮保護膜C2を設けたことにより、中間層2上の仮保護膜C1とエッチングレートが均等になり、その結果、図9(b)に示すように、光変調素子1における2つのスピン注入磁化反転素子構造同士の間が分離し、絶縁部材6で面一に埋められる。   On the temporary protective film C1, as shown in FIG. 8B, a resist pattern is formed with a space between the element structures MR1 and MR2 and between the element structures MR3 and MR2 of the light modulation element 1. Then, by etching using an ion beam milling method, as shown in FIG. 8C, the intermediate layer 2 and the magnetization fixed layers 11, 12, and 13 are removed from the temporary protective film C1, and the insulating member 6 is exposed. Next, an insulating film (insulating member 6) and a temporary protective film C2 are formed as shown in FIG. 8D, and the resist is removed together with the insulating film as shown in FIG. 9A (lift-off). . Then, the temporary protective films C1 and C2 are removed by etching to expose the intermediate layer 2 (21, 22, 23) and the insulating member 6. The temporary protective film C2 is preferably made of the same material as the temporary protective film C1, and has a thickness that matches the remaining thickness of the temporary protective film C1 when the temporary protective film C2 is formed. By providing such a temporary protective film C2, the etching rate becomes uniform with the temporary protective film C1 on the intermediate layer 2, and as a result, as shown in FIG. The spin injection magnetization reversal element structures are separated from each other and are filled with the insulating member 6 in a flush manner.

次に、磁化自由層3、保護膜3aをそれぞれ形成する材料を連続して成膜する。その上に、図9(c)に示すように、光変調素子1の平面視形状のレジストパターンを形成する。エッチングで、図9(d)に示すように、保護膜3aから磁化自由層3、中間層2、磁化固定層11,12,13までを除去してその下の絶縁部材6を露出させる。次に、図9(e)に示すように絶縁膜(絶縁部材6)を成膜して、レジストを絶縁膜ごと除去する(リフトオフ)。これにより、電極51,52,53上に接続された3つのスピン注入磁化反転素子構造MR1,MR2,MR3を備えた光変調素子1が形成され、上面(保護膜3a表面)までが面一に絶縁部材6で埋められる。さらにその上に絶縁膜を形成してもよい(図示省略)。   Next, the materials for forming the magnetization free layer 3 and the protective film 3a are successively formed. A resist pattern having a planar view shape of the light modulation element 1 is formed thereon as shown in FIG. As shown in FIG. 9D, etching removes the magnetization free layer 3, the intermediate layer 2, and the magnetization fixed layers 11, 12, and 13 from the protective film 3a to expose the insulating member 6 therebelow. Next, as shown in FIG. 9E, an insulating film (insulating member 6) is formed, and the resist is removed together with the insulating film (lift-off). As a result, the light modulation element 1 including the three spin injection magnetization reversal element structures MR1, MR2, and MR3 connected on the electrodes 51, 52, and 53 is formed, and the top surface (the surface of the protective film 3a) is flush with the surface. Filled with insulating member 6. Further, an insulating film may be formed thereon (not shown).

このような製造方法によれば、トランジスタ4、3つのスピン注入磁化反転素子構造を備えた光変調素子1、光変調素子1に接続する電極51,52,53、およびトランジスタ4に接続する電極55,58を備えた画素8が2次元配列された画素アレイ80を、基板7上に形成することができる。   According to such a manufacturing method, the transistor 4, the light modulation element 1 having the three spin-injection magnetization reversal element structures, the electrodes 51, 52 and 53 connected to the light modulation element 1, and the electrode 55 connected to the transistor 4. , 58 and the pixel array 80 in which the pixels 8 are two-dimensionally arranged can be formed on the substrate 7.

(光変調素子の初期設定)
前記した通り、画素アレイ80のすべての画素8の光変調素子1は、第1磁化固定層11および第3磁化固定層13が上向きに、第2磁化固定層12が下向きに、それぞれ磁化が固定されている必要がある。磁化固定層11,12,13は電源95からの電流供給では磁化反転しないため、次の方法で光変調素子1の初期設定を行う。
(Initial setting of light modulator)
As described above, in the light modulation elements 1 of all the pixels 8 of the pixel array 80, the first magnetization fixed layer 11 and the third magnetization fixed layer 13 are upward, the second magnetization fixed layer 12 is downward, and the magnetization is fixed. Need to be. Since the magnetization fixed layers 11, 12, and 13 do not undergo magnetization reversal when a current is supplied from the power supply 95, the optical modulation element 1 is initialized by the following method.

本実施形態に係る光変調素子1は、第1磁化固定層11および第3磁化固定層13の保磁力Hcp1,Hcp3よりも第2磁化固定層12の保磁力Hcp2が大きい(Hcp1≒Hcp3<Hcp2)。そこで、まず、画素アレイ80に、Hcp2よりも大きい下向きの外部磁界を印加して、すべての磁化固定層11,12,13の磁化を下向きにする。次に、Hcp2よりも小さくかつHcp1,Hcp3よりも大きい上向きの外部磁界を印加して、第1磁化固定層11および第3磁化固定層13の磁化を上向きにする。なお、この2段階の磁界印加は、完成した(製造後の)画素アレイ80に限られず、画素アレイ80の製造工程途中において磁化固定層11,12,13用の磁性膜材料を成膜した後以降であれば、どの段階であっても実施できる。 Light modulation element 1 according to this embodiment, the coercive force Hcp 1 of the first magnetization fixed layer 11 and the third magnetization fixed layer 13, the coercivity Hcp 2 of the second magnetization fixing layer 12 is larger than Hcp 3 (Hcp 1 ≒ Hcp 3 <Hcp 2 ). Therefore, first, a downward external magnetic field larger than Hcp 2 is applied to the pixel array 80 so that the magnetizations of all the magnetization fixed layers 11, 12 and 13 are directed downward. Next, an upward external magnetic field smaller than Hcp 2 and larger than Hcp 1 and Hcp 3 is applied to make the magnetizations of the first magnetization fixed layer 11 and the third magnetization fixed layer 13 upward. The two-step magnetic field application is not limited to the completed (after manufacturing) pixel array 80, but after the magnetic film material for the magnetization fixed layers 11, 12, and 13 is formed during the manufacturing process of the pixel array 80. Thereafter, it can be carried out at any stage.

また、磁化固定層11,13および磁化固定層12の少なくとも一方が、交換結合した磁性膜を備えた多層構造である光変調素子1の場合は、磁化固定層11,12,13のすべての保磁力(Hcp1,Hcp2,Hcp3)を超える外部磁界を印加しながら、真空中で200℃程度の熱処理をすることにより、前記磁界印加の1回(1段階)で光変調素子1の初期設定を行うことができる。 In the case of the light modulation element 1 having a multilayer structure in which at least one of the magnetization fixed layers 11 and 13 and the magnetization fixed layer 12 includes a magnetic film exchange-coupled, all the magnetization fixed layers 11, 12, and 13 are maintained. While applying an external magnetic field exceeding the magnetic force (Hcp 1 , Hcp 2 , Hcp 3 ), heat treatment is performed at about 200 ° C. in a vacuum, so that the initial stage of the light modulation element 1 can be achieved by one application of the magnetic field (one step). Settings can be made.

[空間光変調器の光変調動作]
本発明に係る空間光変調器の光変調動作を、図6を参照して、この空間光変調器を用いた表示装置にて説明する。表示装置は、前記した従来のスピン注入磁化反転素子を光変調素子としたもの(特許文献1参照)と同様の構成とすればよい。本実施形態に係る空間光変調器10は反射型であり、また、光変調素子1は金属電極であるX電極51やY電極52等の上に設けられ、その光変調部となる磁化自由層3は垂直磁気異方性材料からなり磁化方向が上向きまたは下向きを示すため、表示装置は以下の構成とすることが好ましい。空間光変調器10の画素アレイ80の上方には、画素アレイ80に向けて光(レーザー光)を照射する光源等を備える光学系OPSと、光学系OPSから照射された光を画素アレイ80に入射する前に1つの偏光成分の光(以下、入射光)にする偏光子(偏光フィルタ)PFiと、この上方から画素アレイ80に入射した入射光が画素アレイ80で反射して出射した出射光から特定の偏光成分の光を遮光する偏光子(偏光フィルタ)PFoと、偏光子PFoを透過した光を検出する検出器PDとが配置される。なお、図6において、空間光変調器10は、電流制御部90を省略して、画素アレイ80のみを示す。
[Light modulation operation of spatial light modulator]
The light modulation operation of the spatial light modulator according to the present invention will be described with reference to FIG. 6 using a display device using this spatial light modulator. The display device may have the same configuration as that of the conventional spin-injection magnetization reversal element as a light modulation element (see Patent Document 1). The spatial light modulator 10 according to the present embodiment is a reflection type, and the light modulation element 1 is provided on an X electrode 51, a Y electrode 52, or the like, which is a metal electrode, and a magnetization free layer serving as the light modulation unit. Since 3 is made of a perpendicular magnetic anisotropic material and the magnetization direction is upward or downward, the display device preferably has the following configuration. Above the pixel array 80 of the spatial light modulator 10, an optical system OPS having a light source or the like that irradiates light (laser light) toward the pixel array 80, and the light emitted from the optical system OPS to the pixel array 80. A polarizer (polarizing filter) PFi that makes light of one polarization component (hereinafter referred to as incident light) before entering, and outgoing light that is incident on the pixel array 80 from above and reflected by the pixel array 80 and emitted. A polarizer (polarization filter) PFo that shields light of a specific polarization component and a detector PD that detects light transmitted through the polarizer PFo are disposed. In FIG. 6, the spatial light modulator 10 omits the current control unit 90 and shows only the pixel array 80.

光学系OPSは、例えばレーザー光源、およびこれに光学的に接続されてレーザー光を画素アレイ80の全面に照射する大きさに拡大するビーム拡大器、さらに拡大されたレーザー光を平行光にするレンズで構成される(図示省略)。光学系OPSから照射された光(レーザー光)は様々な偏光成分を含んでいるため、この光を画素アレイ80の手前の偏光子PFiを透過させて、1つの偏光成分の光にする。偏光子PFi,PFoはそれぞれ偏光板等であり、検出器PDはスクリーン等の画像表示手段である。   The optical system OPS includes, for example, a laser light source, a beam expander that is optically connected to the laser light source and expands the laser light onto the entire surface of the pixel array 80, and a lens that converts the expanded laser light into parallel light. (Not shown). Since the light (laser light) emitted from the optical system OPS contains various polarization components, this light is transmitted through the polarizer PFi in front of the pixel array 80 to be one polarization component light. The polarizers PFi and Pfo are polarizing plates, respectively, and the detector PD is an image display means such as a screen.

光学系OPSは、平行光としたレーザー光を、画素アレイ80へ照射する。ここで、光変調素子1の磁化自由層3の磁気光学効果は、光の入射角が磁化自由層3の磁化方向に平行に近いほど大きい。したがって、入射角は膜面に垂直すなわち0°とすることが光変調度を最大とする上で望ましいが、このようにすると、出射光の光路が入射光の光路と一致する。そこで、入射角を少し傾斜させて、偏光子PFoおよび検出器PD、光学系OPSおよび偏光子PFiが、それぞれ入射光および出射光の光路を遮らない配置となるようにする。具体的には、入射光の入射角は30°以下とすることが好ましい。レーザー光は偏光子PFiを透過して1つの偏光成分の入射光となり、画素アレイ80の上方からすべての画素8に向けて入射する。入射光は、それぞれの画素8の光変調素子1で反射して、当該画素8から出射光として出射する。   The optical system OPS irradiates the pixel array 80 with a parallel laser beam. Here, the magneto-optical effect of the magnetization free layer 3 of the light modulation element 1 increases as the incident angle of light becomes closer to the magnetization direction of the magnetization free layer 3. Therefore, it is desirable that the incident angle be perpendicular to the film surface, that is, 0 °, in order to maximize the degree of light modulation. However, in this case, the optical path of the emitted light coincides with the optical path of the incident light. Therefore, the incident angle is slightly inclined so that the polarizer PF0, the detector PD, the optical system OPS, and the polarizer PFi are arranged so as not to block the optical paths of the incident light and the outgoing light, respectively. Specifically, the incident angle of incident light is preferably set to 30 ° or less. The laser light passes through the polarizer PFi and becomes incident light of one polarization component, and is incident on all the pixels 8 from above the pixel array 80. Incident light is reflected by the light modulation element 1 of each pixel 8 and is emitted from the pixel 8 as outgoing light.

出射光は偏光子PFoによって特定の1つの偏光成分の光、ここでは入射光に対して+θk旋光した光が遮光され、偏光子PFoを透過した光が検出器PDに入射する。したがって、光変調素子1の磁化自由層3の磁化方向が上向きである画素8からの出射光は偏光子PFoで遮光されるため、この画素8は暗く(黒く)、検出器PDに表示される。一方、入射光に対して−θk旋光した光すなわち光変調素子1の磁化自由層3の磁化方向が下向きである画素8からの出射光は、偏光子PFoを透過して検出器PDに到達するため、この画素8は明るく(白く)検出器PDに表示される。   Outgoing light is light of a specific polarization component by the polarizer PFo, here, light that has been rotated by θθ relative to the incident light is shielded, and light that has passed through the polarizer PFo enters the detector PD. Accordingly, since the light emitted from the pixel 8 whose magnetization direction of the magnetization free layer 3 of the light modulation element 1 is upward is blocked by the polarizer PFo, the pixel 8 is dark (black) and is displayed on the detector PD. . On the other hand, light that has been rotated by −θk with respect to incident light, that is, light emitted from the pixel 8 in which the magnetization direction of the magnetization free layer 3 of the light modulation element 1 is downward passes through the polarizer PFo and reaches the detector PD. Therefore, this pixel 8 is displayed brightly (white) on the detector PD.

このように、本発明に係る空間光変調器10は、画素8毎に明/暗(白/黒)を切り分けられ、各画素8に供給する電流の向き(+IW/−IW)を切り換えれば明/暗が切り換わる。なお、空間光変調器10の初期状態としては、例えば全体が白く表示されるように、すべての画素8の光変調素子1の磁化自由層3の磁化方向が下向きにするべく、電源95からすべての画素8に電流+IWを供給すればよい(図4(d)、(a)参照)。 As described above, the spatial light modulator 10 according to the present invention switches between light / dark (white / black) for each pixel 8 and switches the direction of current supplied to each pixel 8 (+ I W / −I W ). Light / dark will switch. The initial state of the spatial light modulator 10 is all from the power source 95 so that the magnetization direction of the magnetization free layer 3 of the light modulation elements 1 of all the pixels 8 is downward, for example, so that the whole is displayed white. The current + I W may be supplied to the pixel 8 (see FIGS. 4D and 4A).

[空間光変調器の画素の書込みエラー検出方法]
図7に示すように、本発明に係る空間光変調器を等価回路図で表す(画素アレイは2行×2列の画素のみを示す)と、光変調素子1の第1素子構造MR1と第3素子構造MR3との合成抵抗が1つの磁気抵抗効果素子として表されるので、第1電極(X電極)51がビット線、素子選択電極58がワード線となり、画素アレイ80は選択トランジスタ型のMRAMに類似した回路構造であるといえる。したがって、本発明に係る空間光変調器は、MRAMと同様の読出し動作を行って、選択した画素について光変調素子の磁化反転動作(書込み)が正常になされたかを検査することができる。空間光変調器の画素の書込みエラー検出方法を、図1、図5、および適宜図4を参照して説明する。
まず、光変調素子1に接続した電極51,53間の電圧と磁化自由層3の磁化方向との関係について説明する。
[Method for detecting pixel write error in spatial light modulator]
As shown in FIG. 7, when the spatial light modulator according to the present invention is represented by an equivalent circuit diagram (a pixel array shows only pixels of 2 rows × 2 columns), the first element structure MR1 of the light modulation element 1 and the first element structure MR1 Since the combined resistance with the three-element structure MR3 is expressed as one magnetoresistive element, the first electrode (X electrode) 51 is a bit line, the element selection electrode 58 is a word line, and the pixel array 80 is a selection transistor type. It can be said that the circuit structure is similar to MRAM. Therefore, the spatial light modulator according to the present invention can check whether the magnetization reversal operation (writing) of the light modulation element has been normally performed for the selected pixel by performing a reading operation similar to that of the MRAM. A method for detecting a write error in a pixel of the spatial light modulator will be described with reference to FIGS. 1 and 5 and FIG. 4 as appropriate.
First, the relationship between the voltage between the electrodes 51 and 53 connected to the light modulation element 1 and the magnetization direction of the magnetization free layer 3 will be described.

(光変調素子における磁化自由層の磁化方向と電圧との関係)
図5(a)、(b)に示すように、光変調素子1に副電源96から所定の大きさの電流ITSTを供給しているとき、副電源96と並列に接続された電圧計で計測される電圧は、光変調素子1の抵抗に比例する。このとき光変調素子1に供給する電流(抵抗測定用電流)ITSTは、磁化自由層3の磁化方向を変化させない、すなわち光変調素子1の磁化反転電流ISTSよりも小さい。また、図5においては、抵抗測定用電流ITSTを、第1電極51を「+」にして供給しているが、電流の向きは問わず、また、光変調素子1の磁化反転動作のための電流−IW,+IWと異なり電流の向きは一方向でよい。このように、光変調素子1は、磁化反転電流ISTSよりも小さい電流を供給されても、磁化自由層3の磁化方向は変化しない。そして、このような一定の電流ITSTを光変調素子1に供給して計測される電圧は、光変調素子1の磁化自由層3の磁化方向により変化する。
(Relationship between magnetization direction and voltage of magnetization free layer in light modulator)
As shown in FIGS. 5A and 5B, when a current ITST having a predetermined magnitude is supplied from the sub power source 96 to the light modulation element 1, a voltmeter connected in parallel with the sub power source 96 is used. The measured voltage is proportional to the resistance of the light modulation element 1. At this time, the current (resistance measurement current) I TST supplied to the light modulation element 1 does not change the magnetization direction of the magnetization free layer 3, that is, is smaller than the magnetization reversal current I STS of the light modulation element 1. In FIG. 5, the resistance measurement current I TST is supplied with the first electrode 51 set to “+”, but the direction of the current is not limited, and for the magnetization reversal operation of the light modulation element 1. Unlike the currents −I W and + I W , the direction of the current may be one direction. Thus, even if the light modulation element 1 is supplied with a current smaller than the magnetization reversal current I STS , the magnetization direction of the magnetization free layer 3 does not change. The voltage measured by supplying such a constant current I TST to the light modulation element 1 varies depending on the magnetization direction of the magnetization free layer 3 of the light modulation element 1.

図5(a)に示すように、磁化自由層3が下向きの磁化を示している光変調素子1は、電極51,53間の抵抗の値がR13Dであるので、電圧の値VDがITST・R13Dとなる。反対に、図5(b)に示すように、磁化自由層3が上向きの磁化を示している光変調素子1は、電極51,53間の抵抗の値がR13Uであるので、電圧の値VUがITST・R13Uとなる。前記した通り、光変調素子1は、磁化自由層3が下向きの磁化を示しているときの方が電極51,53間の抵抗が高く、前記の式(5)〜(7)よりR13D>R13Uであり、したがってVD>VUとなる。すなわち、副電源96と並列に接続された、言い換えると電極51,53に接続された電圧計で計測した電圧の値から、光変調素子1の磁化自由層3の磁化が上向きか下向きかを検知することができる。例えば、電圧VD,VUのそれぞれの許容範囲における限界値として、閾値VrefL,VrefH(VU<VrefL<VrefH<VD)を設定する。計測した電圧の値がVrefH以上であれば磁化自由層3の磁化は下向きであり、VrefL以下であれば磁化自由層3の磁化は上向きであると検知することができる。したがって、光変調素子1は、電極51,53間の抵抗の変化量ΔR13が大きいほど、磁化反転により変化する電圧VD,VUの差が大きく、閾値VrefL,VrefHによる磁化自由層3の磁化方向の検知が容易かつ正確となる。 As shown in FIG. 5A, in the light modulation element 1 in which the magnetization free layer 3 exhibits downward magnetization, the resistance value between the electrodes 51 and 53 is R13 D , so that the voltage value V D is I TST · R13 D. On the other hand, as shown in FIG. 5B, the light modulation element 1 in which the magnetization free layer 3 exhibits upward magnetization has a voltage value of R13 U because the resistance value between the electrodes 51 and 53 is R13U. V U becomes I TST · R13 U. As described above, in the light modulation element 1, the resistance between the electrodes 51 and 53 is higher when the magnetization free layer 3 exhibits downward magnetization. From the above equations (5) to (7), R13 D > R13 U , so V D > V U. That is, whether the magnetization of the magnetization free layer 3 of the light modulation element 1 is upward or downward is detected from the value of the voltage measured by a voltmeter connected in parallel with the sub power source 96, in other words, connected to the electrodes 51 and 53. can do. For example, threshold values Vref L and Vref H (V U <Vref L <Vref H <V D ) are set as limit values in the allowable ranges of the voltages V D and V U. If the measured voltage value is Vref H or more, the magnetization of the magnetization free layer 3 can be detected downward, and if it is Vref L or less, it can be detected that the magnetization of the magnetization free layer 3 is upward. Therefore, in the light modulation element 1, the larger the resistance change ΔR13 between the electrodes 51 and 53, the larger the difference between the voltages V D and V U that change due to magnetization reversal, and the magnetization free layer 3 by the thresholds Vref L and Vref H. Detection of the magnetization direction is easy and accurate.

(画素の書込みエラーの検出方法)
また、光変調素子1の第3電極53は、選択した画素8においてY2電極55に接続される。これらのことから、空間光変調器10は、選択した画素8について、光変調素子1の電極51,55間の電圧を閾値VrefL,VrefHと比較して、当該光変調素子1の磁化自由層3の磁化方向を検知し、光変調素子1の磁化自由層3の磁化方向を上向き、下向きのいずれにするかという画素選択部94による磁化反転動作の選択方向と照合することにより、磁化反転動作が正常に行われたかを検査することができる。ここでは、書込みエラーの検出は、選択された画素8の光変調素子1に対して磁化反転動作を行った直後に、当該画素8に対して行うものとして説明する。
(Pixel writing error detection method)
The third electrode 53 of the light modulation element 1 is connected to the Y2 electrode 55 in the selected pixel 8. For these reasons, the spatial light modulator 10 compares the voltage between the electrodes 51 and 55 of the light modulation element 1 with the threshold values Vref L and Vref H for the selected pixel 8, thereby freeing the magnetization of the light modulation element 1. By detecting the magnetization direction of the layer 3 and collating it with the selection direction of the magnetization reversal operation by the pixel selection unit 94 to determine whether the magnetization direction of the magnetization free layer 3 of the light modulation element 1 is upward or downward, the magnetization reversal It is possible to check whether the operation is normally performed. Here, description will be made assuming that the detection of the write error is performed on the pixel 8 immediately after the magnetization reversal operation is performed on the light modulation element 1 of the selected pixel 8.

光変調素子1は、電極51,55(53)と電極52に接続した電源95が画素選択部94からの命令により電流+IWを供給することで、図4(a)に示すように磁化自由層3が下向きの磁化を示している。ここで、画素選択部94は、光変調素子1の磁化反転動作のための電源95への電流供給指示の際に、磁化自由層3の磁化を下向きにすることを判定部97に通知している(図1参照)。そして、電源95からの電流+IWの供給後(供給停止後)に、画素選択部94からの命令により、この光変調素子1の電極51,55および電極52と電源95との接続を、電極51,55と副電源96との接続に切り替え、図5(a)に示すように、副電源96から抵抗測定用電流ITSTを供給する。 In the light modulation element 1, the power source 95 connected to the electrodes 51, 55 (53) and the electrode 52 supplies a current + I W according to a command from the pixel selection unit 94, thereby freeing magnetization as shown in FIG. Layer 3 shows downward magnetization. Here, the pixel selection unit 94 notifies the determination unit 97 that the magnetization of the magnetization free layer 3 is directed downward when instructing the current supply to the power source 95 for the magnetization reversal operation of the light modulation element 1. (See FIG. 1). Then, after supplying the current + I W from the power source 95 (after the supply is stopped), the connection between the electrodes 51 and 55 and the electrode 52 of the light modulation element 1 and the power source 95 is set in accordance with a command from the pixel selecting unit 94. 51 and 55 are switched to the connection between the sub power supply 96 and the resistance measurement current I TST is supplied from the sub power supply 96 as shown in FIG.

判定部97は、画素選択部94から入力された磁化反転動作の選択方向:下向きに基づき、予め、電圧比較器97aが比較の基準とする参照電位(閾値)をVrefHに設定し、さらに、検査部97bがこの閾値VrefH以上であれば合格(PASS)であると判定するように設定する。そして、副電源96による抵抗測定用電流ITSTの供給開始に合わせて、判定部97において、電圧比較器97aが電極51,55間の電圧を閾値VrefHと比較して、VrefH以上であるか否かの結果を検査部97bへ出力する。電極51,55間の電圧の値がVrefH以上であれば、図5(a)に示す通り、磁化自由層3の磁化は下向きであり、光変調素子1の磁化反転動作が正常に行われたことがわかる。一方、電圧の値がVrefH未満である場合、光変調素子1の磁化反転動作が適切になされていない(FAIL)、すなわち書込みエラーであることがわかる。 The determination unit 97 previously sets the reference potential (threshold value) that the voltage comparator 97a uses as a reference for comparison to Vref H based on the selection direction of the magnetization reversal operation input from the pixel selection unit 94: downward, and inspection unit 97b is set to determine that a pass (pASS) if more than the threshold value Vref H. Then, in accordance with the start of the supply of the resistance measurement current I TST by the sub power supply 96, in the determination unit 97, the voltage comparator 97a compares the voltage between the electrodes 51 and 55 with the threshold value Vref H and is equal to or higher than Vref H. Is output to the inspection unit 97b. If the value of the voltage between the electrodes 51 and 55 is Vref H or more, as shown in FIG. 5A, the magnetization of the magnetization free layer 3 is downward and the magnetization reversal operation of the light modulation element 1 is normally performed. I understand that. On the other hand, if the value of the voltage is less than Vref H, the magnetization reversal operation of the optical modulation element 1 is not properly done (FAIL), ie it can be seen that a write error.

反対に、図4(c)に示すように電源95から電流−IWを供給されて磁化自由層3の磁化を上向きにした場合も、同様に接続を切り替えて、図5(b)に示すように副電源96から抵抗測定用電流ITSTを供給する。このとき、判定部97は、画素選択部94から入力された磁化反転動作の選択方向:上向きに基づき、予め、参照電位(閾値)をVrefLに設定し、検査部97bがこの閾値VrefL以下であれば合格(PASS)であると判定するように設定する。電圧比較器97aが電極51,55間の電圧の値を閾値VrefLと比較した結果、電圧の値がVrefL以下であれば、図5(b)に示す通り、磁化自由層3の磁化は上向きであり、光変調素子1の磁化反転動作が正常に行われたことがわかる。一方、電圧の値がVrefL超である場合、光変調素子1の磁化反転動作が適切になされていない(FAIL)、すなわち書込みエラーであることがわかる。 On the other hand, as shown in FIG. 4C, when the current -I W is supplied from the power source 95 and the magnetization of the magnetization free layer 3 is directed upward, the connection is switched in the same manner, as shown in FIG. As described above, the resistance measurement current I TST is supplied from the auxiliary power source 96. At this time, the determination unit 97 sets the reference potential (threshold value) to Vref L in advance based on the selection direction of the magnetization reversal operation input from the pixel selection unit 94: upward, and the inspection unit 97b has the threshold Vref L or less. If so, it is set so as to be determined as passing (PASS). If the voltage comparator 97a compares the voltage value between the electrodes 51 and 55 with the threshold value Vref L and the voltage value is less than or equal to Vref L , the magnetization of the magnetization free layer 3 is as shown in FIG. It can be seen that the magnetization reversal operation of the light modulation element 1 was normally performed. On the other hand, when the voltage value exceeds Vref L , it can be seen that the magnetization reversal operation of the light modulation element 1 is not properly performed (FAIL), that is, a write error.

そして、判定部97の検査部97bは、光変調素子1の磁化反転動作が正常に行われたと判定した場合は、画素選択部94に次の動作、すなわち別の画素8の選択および書込み、または同じ画素8への次の書込みに移行するように命令する。反対に、検査部97bは、書込みエラーを検出した場合は、画素選択部94に同じ画素8に対する先の磁化反転動作を再び実行するように命令する(図1参照)。このように、判定部97による判定を行いながら、画素選択部94による磁化反転動作(書込み)を行うことで、空間光変調器10は、画素アレイ80のすべての画素8で正確に表示することができる。なお、閾値VrefL,VrefHの設定、および判定部97の検査部97bによる判定方法や画素選択部94への命令等を行うためのプログラムは、例えば電流制御部90に内蔵された記憶装置(図示省略)に予め記憶すればよい。 If the inspection unit 97b of the determination unit 97 determines that the magnetization reversal operation of the light modulation element 1 has been performed normally, the pixel selection unit 94 performs the next operation, that is, selection and writing of another pixel 8, or Command to move to next write to same pixel 8. On the other hand, when detecting a write error, the inspection unit 97b instructs the pixel selection unit 94 to execute the previous magnetization reversal operation on the same pixel 8 again (see FIG. 1). In this way, the spatial light modulator 10 can accurately display in all the pixels 8 of the pixel array 80 by performing the magnetization reversal operation (writing) by the pixel selection unit 94 while performing the determination by the determination unit 97. Can do. Note that a program for setting threshold values Vref L and Vref H , a determination method by the inspection unit 97b of the determination unit 97, a command to the pixel selection unit 94, and the like is stored in, for example, a storage device ( (Not shown) may be stored in advance.

本実施形態に係る空間光変調器10は、書込みエラー検出において、非選択の画素8の光変調素子1が、第3電極53がopen状態であるので第3電極53との間(第3素子構造MR3)には漏れ電流が流れない。これにより、選択された画素8の光変調素子1の抵抗は、非選択状態にある他の画素8の光変調素子1による抵抗成分の影響が抑えられ、磁化反転による抵抗の変化量が大きくなくても高低の判別が可能となる。   In the spatial light modulator 10 according to the present embodiment, in the write error detection, the light modulation element 1 of the non-selected pixel 8 is between the third electrode 53 (the third element 53) because the third electrode 53 is in the open state. No leakage current flows in the structure MR3). As a result, the resistance of the light modulation element 1 of the selected pixel 8 is suppressed from the influence of the resistance component due to the light modulation element 1 of the other pixel 8 in the non-selected state, and the amount of change in resistance due to magnetization reversal is not large. However, it is possible to distinguish between high and low.

(書込みエラー検出方法の別の実施形態)
光変調素子1の磁化自由層3の磁化方向を検知するための電圧の閾値は、VrefL=VrefHとして1値(Vref)のみを設定してもよい(VU<Vref<VD)。すなわち、判定部97は、電極51,55間の電圧の値が閾値Vrefよりも大きいか小さいかにより、磁化自由層3の磁化が下向きか上向きかを検知する。詳しくは、電圧比較器97aが比較の基準とする参照電位(閾値)はVrefに固定され、判定部97は、画素選択部94から入力された磁化反転動作の選択方向に基づき、検査部97bがこの閾値Vrefよりも大きい場合と小さい場合とのいずれを合格(PASS)とするかを設定すればよい。また、電圧の閾値として、電圧VD,VUのそれぞれの限界値の一方のみ、すなわち電圧VDの下限値VrefHと電圧VUの上限値VrefLではなく、電圧VD,VUのそれぞれの許容範囲の下限値および上限値の計4値を設定して、より厳密に判定を行ってもよい。
(Another embodiment of write error detection method)
As a voltage threshold for detecting the magnetization direction of the magnetization free layer 3 of the light modulation element 1, only one value (Vref) may be set as Vref L = Vref H (V U <Vref <V D ). That is, the determination unit 97 detects whether the magnetization of the magnetization free layer 3 is downward or upward depending on whether the voltage value between the electrodes 51 and 55 is larger or smaller than the threshold value Vref. Specifically, the reference potential (threshold value) used as a reference for comparison by the voltage comparator 97a is fixed to Vref, and the determination unit 97 determines whether the inspection unit 97b is based on the selection direction of the magnetization reversal operation input from the pixel selection unit 94. What is necessary is just to set whether the case where it is larger than this threshold value Vref and the case where it is smaller is set to pass (PASS). Further, as the voltage threshold, only one of the limit values of the voltages V D and V U , that is, not the lower limit value Vref H of the voltage V D and the upper limit value Vref L of the voltage V U , but the voltage V D , V U The determination may be made more strictly by setting a total of four values, the lower limit value and the upper limit value of each allowable range.

また、前記した方法では、画素選択部94が画素8を選択して書込みを行う度に、判定部97が当該画素8に対して書込みエラー検出を行うという動作を繰り返すが、これに限られない。例えば、画素アレイ80のすべての画素8への書込みを完了したら、これらすべての画素8に対して順番に書込みエラー検出をすることもできる。   Further, in the above-described method, every time the pixel selection unit 94 selects the pixel 8 and performs writing, the determination unit 97 repeats the operation of detecting the writing error for the pixel 8, but is not limited thereto. . For example, when writing to all the pixels 8 in the pixel array 80 is completed, the writing error can be detected in order for all the pixels 8.

また、2以上の画素8を同時に選択して、それぞれの光変調素子1に対して同一の磁化反転動作を行った場合に、これらの画素8について一括して書込みエラー検出を行ってもよい。同時に選択された2以上の画素8の光変調素子1は副電源96に並列に接続されているので、合成抵抗に基づいた電圧の閾値を予め設定または判定部97が算出することができ、1個の光変調素子1の場合と同様の方法で書込みエラー検出を行うことができる。この場合、判定部97は、選択された画素8のすべての光変調素子1について磁化反転動作が正常に行われたか、1以上のいずれかの光変調素子1について書込みエラーであるか、のどちらかであることを判定することができる。   In addition, when two or more pixels 8 are selected at the same time and the same magnetization reversal operation is performed on each of the light modulation elements 1, the write error detection may be performed on these pixels 8 collectively. Since the light modulation elements 1 of two or more pixels 8 selected at the same time are connected in parallel to the sub-power supply 96, the threshold value of the voltage based on the combined resistance can be preset or calculated by the determination unit 97. Write error detection can be performed in the same manner as in the case of the individual light modulation elements 1. In this case, the determination unit 97 determines whether the magnetization reversal operation has been normally performed for all the light modulation elements 1 of the selected pixel 8 or a write error has occurred for any one or more of the light modulation elements 1. Can be determined.

空間光変調器10は、X電極51への電流ITSTの供給時に、すべてのY1電極52を副電源96の「−」側に接続してもよい(図示省略)。書込みエラー検出において、選択されたX電極51を経由して副電源96から光変調素子1に供給された電流ITSTは、第2磁化固定層12からY1電極52へも流れ、このY電極52を共有する非選択の画素8の光変調素子1に流入する。そして、選択された画素8とX電極51またはY1電極52を共有する非選択の画素8の光変調素子1を経由して、選択されたX電極51に合流する。このように、第3磁化固定層13(第3素子構造MR3)にトランジスタ4を接続していても、Y1電極52により、非選択の画素8の光変調素子1を流れる漏れ電流の回路が形成され、選択された画素8の光変調素子1の抵抗にある程度影響を与える。 The spatial light modulator 10 may connect all the Y1 electrodes 52 to the “−” side of the sub-power supply 96 when supplying the current I TST to the X electrode 51 (not shown). In the write error detection, the current I TST supplied from the sub power source 96 to the light modulation element 1 via the selected X electrode 51 also flows from the second magnetization fixed layer 12 to the Y1 electrode 52, and this Y electrode 52 Into the light modulation element 1 of the non-selected pixel 8 sharing the same. Then, the light is combined with the selected X electrode 51 via the light modulation element 1 of the non-selected pixel 8 that shares the selected pixel 8 with the X electrode 51 or the Y1 electrode 52. As described above, even when the transistor 4 is connected to the third magnetization fixed layer 13 (third element structure MR3), the Y1 electrode 52 forms a circuit of leakage current that flows through the light modulation element 1 of the non-selected pixel 8. This affects the resistance of the light modulation element 1 of the selected pixel 8 to some extent.

これに対して、Y1電極52を副電源96の「−」側に接続すると、漏れ電流は、非選択の画素8の光変調素子1の抵抗に影響されずに副電源96の「−」に流れる。なお、このとき、選択された画素8の光変調素子1は、電極52,53が共に副電源96の「−」側に接続されて、すなわち同極に接続された状態になるので、前記したように、素子構造MR1,MR3の各抵抗の変化量の和よりも小さく、第1素子構造MR1の抵抗の1個の変化量よりは大きい変化量が測定される。したがって、第2電極(Y1電極)52がopen状態での測定と比較して抵抗の変化量が小さくなるが、それ以上に漏れ電流による影響が大きい場合には、書込みエラー検出の精度が向上する。   On the other hand, when the Y1 electrode 52 is connected to the “−” side of the sub power source 96, the leakage current is not affected by the resistance of the light modulation element 1 of the non-selected pixel 8 and becomes “−” of the sub power source 96. Flowing. At this time, the light modulation element 1 of the selected pixel 8 is in a state where the electrodes 52 and 53 are both connected to the “−” side of the sub power source 96, that is, connected to the same polarity. As described above, a change amount smaller than the sum of the change amounts of the resistances of the element structures MR1 and MR3 and larger than one change amount of the resistance of the first element structure MR1 is measured. Therefore, although the amount of change in resistance is smaller than that in the case where the second electrode (Y1 electrode) 52 is open, the accuracy of write error detection is improved when the influence of leakage current is greater than that. .

空間光変調器10は、トランジスタ4を、光変調素子1の第3磁化固定層13(第3素子構造MR3)に代えて第1磁化固定層11(第1素子構造MR1)の方に接続しても、同様の効果が得られる。この場合、トランジスタは、ドレインが光変調素子1の第1磁化固定層11に、ソースがX電極51に、ゲートがX電極51と平面視で直交する配線(素子選択電極58に相当する)に、それぞれ接続される。   The spatial light modulator 10 connects the transistor 4 to the first magnetization fixed layer 11 (first element structure MR1) instead of the third magnetization fixed layer 13 (third element structure MR3) of the light modulation element 1. However, the same effect can be obtained. In this case, the transistor has a drain connected to the first magnetization fixed layer 11 of the light modulation element 1, a source connected to the X electrode 51, and a gate orthogonal to the X electrode 51 in a plan view (corresponding to the element selection electrode 58). , Each connected.

以上のように、第1実施形態に係る空間光変調器によれば、面積の大きな光変調素子により画素の有効領域を広くして開口率を高くしつつ、従来のスピン注入磁化反転素子を光変調素子とした空間光変調器と同様に、駆動用配線を用いて書込みエラー検出が可能であり、さらに画素に選択素子を備えたことにより、非選択画素の光変調素子への漏れ電流が低減するので、光変調素子の抵抗変化量が小さくても書込みエラー検出が可能となり、応答速度を高速化することができる。   As described above, according to the spatial light modulator according to the first embodiment, the conventional spin-injection magnetization reversal element is optically enlarged while the effective area of the pixel is widened by the light modulation element having a large area to increase the aperture ratio. Similar to the spatial light modulator used as a modulation element, it is possible to detect write errors using drive wiring, and the selection element in the pixel reduces leakage current to the light modulation element in non-selected pixels. Therefore, even if the resistance change amount of the light modulation element is small, the write error can be detected and the response speed can be increased.

(第2実施形態)
次に、図10を参照して、本発明の第2実施形態に係る空間光変調器について説明する。なお、本実施形態および後記第3実施形態においては、第1実施形態(図1〜6参照)と同一の要素については同じ符号を付し、説明を省略する。
(Second Embodiment)
Next, a spatial light modulator according to the second embodiment of the present invention will be described with reference to FIG. In addition, in this embodiment and 3rd Embodiment mentioned later, the same code | symbol is attached | subjected about the element same as 1st Embodiment (refer FIGS. 1-6), and description is abbreviate | omitted.

第1実施形態に係る空間光変調器10は、1つの画素8に1個の光変調素子1を備える構成であったがこれに限られず、1画素に2個以上の光変調素子を備えてもよい。すなわち、図11に示すように、第2実施形態に係る空間光変調器の画素8Aは、3個の光変調素子1Aを備える。図10において、図3(a)と同様に、網掛けを付した領域が磁化固定層11,12,13の設けられた部位である。光変調素子1Aは、X方向(図10における横方向)に拡張した平面視横長の長方形であること以外は、第1実施形態に係る空間光変調器10の光変調素子1と同一の構造である。そして、画素8Aにおいて、3個の光変調素子1Aは、当該光変調素子1Aの短辺方向(Y方向)に並べられて、同一の組の電極51,52,53に並列に接続される。なお、図10においては、Y2電極55および素子選択電極58は図示を省略するが、第1実施形態(図1、図3(a)参照)と同様に、トランジスタ4に接続するように設ければよい。このような画素8Aは、第1実施形態と同様に基板7上に2次元配列されて画素アレイとなり、電流制御部90で動作させることができる。画素アレイおよび電流制御部90は、第1実施形態と同様の構成であるので、図示および説明を省略する。   The spatial light modulator 10 according to the first embodiment has a configuration in which one pixel 8 includes one light modulation element 1, but is not limited thereto, and one pixel includes two or more light modulation elements. Also good. That is, as shown in FIG. 11, the pixel 8A of the spatial light modulator according to the second embodiment includes three light modulation elements 1A. In FIG. 10, similarly to FIG. 3A, shaded regions are portions where the magnetization fixed layers 11, 12, and 13 are provided. The light modulation element 1A has the same structure as that of the light modulation element 1 of the spatial light modulator 10 according to the first embodiment, except that the light modulation element 1A is a horizontally long rectangle in plan view extended in the X direction (lateral direction in FIG. 10). is there. In the pixel 8A, the three light modulation elements 1A are arranged in the short side direction (Y direction) of the light modulation element 1A and connected in parallel to the same set of electrodes 51, 52, and 53. In FIG. 10, the Y2 electrode 55 and the element selection electrode 58 are not shown, but are provided so as to be connected to the transistor 4 as in the first embodiment (see FIGS. 1 and 3A). That's fine. Such pixels 8 </ b> A are two-dimensionally arranged on the substrate 7 to form a pixel array as in the first embodiment, and can be operated by the current control unit 90. Since the pixel array and current control unit 90 have the same configuration as in the first embodiment, illustration and description thereof are omitted.

以上のように、第2実施形態に係る空間光変調器によれば、画素サイズを大きくしても、光変調素子の1個のサイズが十分に小さいので好適に磁化反転し、開口率の高い画素とすることができる。   As described above, according to the spatial light modulator according to the second embodiment, even if the pixel size is increased, one size of the light modulation element is sufficiently small, so that the magnetization is appropriately reversed and the aperture ratio is high. It can be a pixel.

(第3実施形態)
次に、図11を参照して、本発明の第3実施形態に係る空間光変調器について説明する。なお、本実施形態においては、第1実施形態(図1〜7参照)と同一の要素については同じ符号を付し、説明を省略する。
(Third embodiment)
Next, a spatial light modulator according to the third embodiment of the present invention will be described with reference to FIG. In the present embodiment, the same elements as those in the first embodiment (see FIGS. 1 to 7) are denoted by the same reference numerals, and description thereof is omitted.

本発明に係る空間光変調器の画素は、磁化固定層11,12,13から選択される2箇所に選択素子を接続してもよい。図11に示すように、第3実施形態に係る空間光変調器10Bは、画素8Bについて、トランジスタ4を、第3磁化固定層13(第3素子構造MR3)にだけでなく、第1磁化固定層11(第1素子構造MR1)にも接続して備える。この第1磁化固定層11に接続したトランジスタ41(4)は、第3磁化固定層13に接続したトランジスタ43(4)と同じ構成であり、ドレイン4dが第1磁化固定層11に、ソース4sがX電極51Aに、ゲート4gがトランジスタ43と共通の素子選択電極58Aに、それぞれ接続される。本実施形態に係る空間光変調器10Bは、第3磁化固定層13に接続したトランジスタ43のソース4sとゲート4gにそれぞれ接続した電極55A,58Aを、XY入れ替えて電極55AをX電極51Aに平行に延設しているため、トランジスタ41,43の各ゲート4gに供給する電流を共有して、画素アレイ80Bの配線を低減することができる。   In the pixel of the spatial light modulator according to the present invention, selection elements may be connected to two locations selected from the magnetization fixed layers 11, 12, and 13. As shown in FIG. 11, in the spatial light modulator 10B according to the third embodiment, not only the transistor 4 but also the third magnetization fixed layer 13 (third element structure MR3) is not fixed to the pixel 8B. It is also connected to the layer 11 (first element structure MR1). The transistor 41 (4) connected to the first magnetization fixed layer 11 has the same configuration as the transistor 43 (4) connected to the third magnetization fixed layer 13, and the drain 4d is connected to the first magnetization fixed layer 11 and the source 4s. Are connected to the X electrode 51A, and the gate 4g is connected to the element selection electrode 58A common to the transistor 43, respectively. In the spatial light modulator 10B according to the present embodiment, the electrodes 55A and 58A connected to the source 4s and the gate 4g of the transistor 43 connected to the third magnetization fixed layer 13 are replaced with XY, and the electrode 55A is parallel to the X electrode 51A. Therefore, the current supplied to the gates 4g of the transistors 41 and 43 can be shared, and the wiring of the pixel array 80B can be reduced.

選択素子を光変調素子1の2箇所に接続することで、非選択の画素8Bにおいては、磁化固定層11,12,13のうちの2箇所以上で他の画素8Bと共通する電極(配線)52,51A,55Aに接続されない。したがって、空間光変調器10Bは、磁化反転動作および書込みエラー検出において、非選択の画素8Bの光変調素子1に漏れ電流が流れない。   By connecting the selection element to two places of the light modulation element 1, in the non-selected pixel 8B, an electrode (wiring) that is common to the other pixels 8B in two or more of the magnetization fixed layers 11, 12, and 13 It is not connected to 52, 51A, 55A. Therefore, in the spatial light modulator 10B, no leakage current flows through the light modulation element 1 of the non-selected pixel 8B in the magnetization reversal operation and the write error detection.

本発明に係る空間光変調器の画素は、選択素子としてダイオードを接続してもよい。図12に示すように、第3実施形態の変形例に係る空間光変調器10Cは、第1実施形態に係る空間光変調器10(図7参照)と同様に、画素8Cに1個のトランジスタ43を第3磁化固定層53(第3素子構造MR3)に接続して備え、さらに第1磁化固定層51(第1素子構造MR1)にはダイオード4A1を接続して備える。   In the pixel of the spatial light modulator according to the present invention, a diode may be connected as a selection element. As shown in FIG. 12, the spatial light modulator 10C according to the modified example of the third embodiment is similar to the spatial light modulator 10 according to the first embodiment (see FIG. 7), and includes one transistor in the pixel 8C. 43 is connected to the third magnetization fixed layer 53 (third element structure MR3), and a diode 4A1 is further connected to the first magnetization fixed layer 51 (first element structure MR1).

本変形例に係る空間光変調器10Cは、ユニポーラ駆動式の光変調素子1D(素子構造MR1,MR2)を備え、電源95Aにより第1電極51および第3電極53から第2電極52への一方向にのみ電流を供給して、磁化反転させる(図示省略)。そのため、ダイオード4A1は、アノードに第1電極51Aを、カソードに光変調素子1Dの第1磁化固定層51を接続する。あるいは、空間光変調器10Cは、電源95からの電流供給による磁化反転動作では、光変調素子1に、第1電極51および第3電極53から第2電極52への一方向にのみ電流を供給して、磁化自由層3の磁化方向を下向きにする(図4(a)、(d)参照)。磁化自由層3の磁化方向を上向きにする場合は、例えば画素8C(画素アレイ80C)への磁界印加により反転させることができる。   The spatial light modulator 10C according to the present modification includes a unipolar drive type light modulation element 1D (element structure MR1, MR2), and one power source 95A is used to connect the first electrode 51 and the third electrode 53 to the second electrode 52. Current is supplied only in the direction to reverse magnetization (not shown). Therefore, the diode 4A1 has the anode connected to the first electrode 51A and the cathode connected to the first magnetization fixed layer 51 of the light modulation element 1D. Alternatively, the spatial light modulator 10C supplies current to the light modulation element 1 only in one direction from the first electrode 51 and the third electrode 53 to the second electrode 52 in the magnetization reversal operation by supplying current from the power supply 95. Then, the magnetization direction of the magnetization free layer 3 is set downward (see FIGS. 4A and 4D). When making the magnetization direction of the magnetization free layer 3 upward, it can be reversed by applying a magnetic field to the pixel 8C (pixel array 80C), for example.

空間光変調器10Cは、2個の選択素子のうちの1個がダイオードであっても、非選択の画素8Cの光変調素子1Dを経由して電流が流れることを防止する。詳しくは、図12における最も左上の画素8Cに、太破線で示すような磁化反転動作のための電流を供給したとき、ダイオード4A1を設けることにより、破線で示すような漏れ電流が流れる回路を生じない。空間光変調器10Cは、特に、2個の選択素子のうちの1個に平面視サイズの小さいダイオードを適用することで、画素が大型化を抑制することができる。   The spatial light modulator 10C prevents a current from flowing through the light modulation element 1D of the non-selected pixel 8C even if one of the two selection elements is a diode. Specifically, when a current for magnetization reversal operation as shown by a thick broken line is supplied to the uppermost pixel 8C in FIG. 12, a circuit in which a leakage current as shown by a broken line flows is generated by providing the diode 4A1. Absent. In the spatial light modulator 10C, in particular, by applying a diode having a small size in plan view to one of the two selection elements, an increase in the size of the pixel can be suppressed.

さらに、図13に示すように、第3実施形態の別の変形例(第2変形例)に係る空間光変調器10Dは、ユニポーラ駆動式の光変調素子1Dの第1磁化固定層51(第1素子構造MR1)および第2磁化固定層52(第2素子構造MR2)に、それぞれダイオード4A1,4A2を接続して備える。光変調素子1Dは、図12に示す空間光変調器10Cと同様に、第1電極51Aおよび第3電極53Aから第2電極52Aへの一方向にのみ電流を供給して、磁化反転させる。そのため、ダイオード4A1は、アノードに第1電極51Aを、カソードに光変調素子1Dの第1磁化固定層51を接続し、ダイオード4A2は、アノードに第2磁化固定層52を、カソードに第2電極52Aを接続する。   Furthermore, as shown in FIG. 13, a spatial light modulator 10D according to another modification (second modification) of the third embodiment includes a first magnetization fixed layer 51 (first modification) of a unipolar drive type light modulation element 1D. The diodes 4A1 and 4A2 are connected to the one-element structure MR1) and the second magnetization fixed layer 52 (second element structure MR2), respectively. Similar to the spatial light modulator 10C shown in FIG. 12, the light modulation element 1D supplies a current only in one direction from the first electrode 51A and the third electrode 53A to the second electrode 52A to reverse the magnetization. Therefore, the diode 4A1 has the anode connected to the first electrode 51A and the cathode connected to the first magnetization fixed layer 51 of the light modulation element 1D. The diode 4A2 has the anode connected to the second magnetization fixed layer 52 and the cathode connected to the second electrode. 52A is connected.

本変形例に係る空間光変調器10Dは、磁化反転動作においては、電極51A,52A,53Aのすべてを電源95Aに接続し、さらに非選択の画素8Dについても、第1電極51A(第1磁化固定層11)および第3電極53A(第3磁化固定層13)の2方向から光変調素子1Dに電流が流れ得る。そのため、空間光変調器10Dの画素アレイ80Dは、電極51A,52A,53Aが互いに独立して光変調素子1Dに接続するように、図14(a)に示すように、電極51A,52Aは、第1実施形態に係る空間光変調器10と同様にXY方向に直交させて延設され、第3電極53Aは電極51A,52Aの両方に対して非平行になるように、画素アレイ80Dの対角線方向に延設される。   In the spatial light modulator 10D according to this modification, in the magnetization reversal operation, all of the electrodes 51A, 52A, 53A are connected to the power source 95A, and the first electrode 51A (first magnetization) is also applied to the non-selected pixel 8D. Current can flow from the two directions of the fixed layer 11) and the third electrode 53A (third magnetization fixed layer 13) to the light modulation element 1D. Therefore, in the pixel array 80D of the spatial light modulator 10D, as shown in FIG. 14A, the electrodes 51A, 52A, 53A are connected to the light modulation element 1D independently of each other. Similarly to the spatial light modulator 10 according to the first embodiment, the diagonal line of the pixel array 80D is extended so as to be orthogonal to the XY direction, and the third electrode 53A is not parallel to both the electrodes 51A and 52A. It extends in the direction.

図14(a)に示すように、画素アレイ80Dは、平面視でY方向に延設された4本の第1電極51Aと、平面視で第1電極51と直交するX方向に延設された4本の第2電極52Aと、対角線方向(以下、Z方向と称する)に延設された7本の第3電極53Aと、を備える。このように、画素アレイ80Dにおいて、電極51A,52A,53は、互いに非平行な配線となるように、列単位、行単位、対角線方向の並び単位で画素8Dに共有されて設けられる。そのため、本実施形態では、適宜、第1電極51AをX電極51A、第2電極52AをY電極52A、第3電極53AをZ電極53Aと称する。なお、すべての画素8Dを選択するために、X電極51、Y電極52は、第1実施形態と同様にそれぞれ画素アレイ80における列数、行数と同じ本数を備えればよいが、Z電極53Aは(列数+行数−1)の本数を備える。また、画素アレイ80Dに設けられたすべての光変調素子1は、平面視における向きを揃え、図14(a)において左側に第1磁化固定層11が、右側に第2磁化固定層12がそれぞれ配置されている。   As shown in FIG. 14A, the pixel array 80D includes four first electrodes 51A that extend in the Y direction in plan view, and an X direction that is orthogonal to the first electrode 51 in plan view. And four second electrodes 52A and seven third electrodes 53A extending in a diagonal direction (hereinafter referred to as Z direction). Thus, in the pixel array 80D, the electrodes 51A, 52A, and 53 are provided so as to be shared by the pixels 8D in column units, row units, and diagonal units so as to be non-parallel wirings. Therefore, in the present embodiment, the first electrode 51A is appropriately referred to as an X electrode 51A, the second electrode 52A is referred to as a Y electrode 52A, and the third electrode 53A is referred to as a Z electrode 53A. In order to select all the pixels 8D, the X electrodes 51 and the Y electrodes 52 may have the same number as the number of columns and rows in the pixel array 80 as in the first embodiment. 53A has the number of (column number + number of rows-1). Further, all the light modulation elements 1 provided in the pixel array 80D have the same orientation in plan view, and in FIG. 14A, the first magnetization fixed layer 11 on the left side and the second magnetization fixed layer 12 on the right side respectively. Has been placed.

空間光変調器10Dは、2個の選択素子が共にダイオードであっても、非選択の画素8Dの光変調素子1Dを経由して電流が流れることを防止する。詳しくは、図13における最も左上の画素8Dに、太破線で示すような磁化反転動作のための電流を供給したとき、ダイオード4A1,4A2を設けることにより、破線で示すような漏れ電流が流れる回路を生じない。空間光変調器10Dは、選択素子のすべてに平面視サイズの小さいダイオードを適用することで、1画素に2個の選択素子を備えても画素が大型化せず、またトランジスタのように、ゲートへの電流供給のための配線を設ける必要がない。   The spatial light modulator 10D prevents current from flowing through the light modulation element 1D of the non-selected pixel 8D even if the two selection elements are both diodes. Specifically, when a current for magnetization reversal operation as shown by a thick broken line is supplied to the upper left pixel 8D in FIG. 13, a circuit in which a leakage current as shown by a broken line flows by providing the diodes 4A1 and 4A2 Does not occur. In the spatial light modulator 10D, a diode having a small size in plan view is applied to all of the selection elements, so that even if two selection elements are provided in one pixel, the size of the pixel does not increase. It is not necessary to provide wiring for supplying current to the power source.

以上のように、第3実施形態およびその変形例に係る空間光変調器によれば、書込みエラー検出、磁化反転動作の両方において、非選択画素の光変調素子へ電流が漏れないので、書込みエラー検出においては応答速度をいっそう高速化することができ、磁化反転動作においては、漏れ電流による損失が抑えられるので省電力化することができる。   As described above, according to the spatial light modulator according to the third embodiment and the modification thereof, the current does not leak to the light modulation element of the non-selected pixel in both the write error detection and the magnetization reversal operation. In the detection, the response speed can be further increased. In the magnetization reversal operation, the loss due to the leakage current can be suppressed, so that the power can be saved.

(第4実施形態)
本発明に係る空間光変調器は、画素に選択素子を備えずに、光変調素子1の磁化固定層11,12,13(素子構造MR1,MR2、MR3)のすべてを直接に電源95や副電源96に接続してもよい。以下、図14を参照して、本発明の第4実施形態に係る空間光変調器について説明する。本実施形態においては、第1実施形態および第3実施形態の第2変形例(図1〜7,13参照)と同一の要素については同じ符号を付し、説明を省略する。また、図14(b)において、保護膜3aは図示を省略する。
(Fourth embodiment)
In the spatial light modulator according to the present invention, the pixel is not provided with a selection element, and all of the magnetization fixed layers 11, 12, and 13 (element structures MR1, MR2, and MR3) of the light modulation element 1 are directly connected to the power supply 95 and the sub-light modulator. A power source 96 may be connected. Hereinafter, a spatial light modulator according to the fourth embodiment of the present invention will be described with reference to FIG. In the present embodiment, the same elements as those in the second modified example (see FIGS. 1 to 7 and 13) of the first embodiment and the third embodiment are denoted by the same reference numerals, and the description thereof is omitted. In FIG. 14B, the protective film 3a is not shown.

本発明に係る光変調素子1は、前記した通り、磁化反転動作においては、電源95に、電極51,53Aを同極に、異極に第2電極52が接続され、一方、磁化反転動作に伴う抵抗の変化の読出しにおいては、第1電極51と第3電極53Aが副電源96の異極同士に接続されて、第2電極52をopen状態にする。本実施形態に係る空間光変調器の画素アレイ80Eにおいて、画素8E(光変調素子1)毎に前記の接続を可能とするために、電極51,52,53Aは互いに独立して光変調素子1に接続するように、互いに非平行な配線に、すなわち図14(a)に示すように設けられる。したがって、本実施形態に係る空間光変調器の画素アレイ80Eは、図13に示す回路からダイオード4A1,4A2を除いてそれぞれの両端を直接に接続した構造となり、第1電極(X電極)51がビット線、第3電極(Z電極)53Aがワード線となって、クロスポイント型のMRAMと同じ回路構造となる。   As described above, in the light inversion operation according to the present invention, in the magnetization reversal operation, the electrodes 51 and 53A are connected to the same polarity and the second electrode 52 is connected to the opposite polarity, while the magnetization reversal operation is performed. In the reading of the accompanying resistance change, the first electrode 51 and the third electrode 53A are connected to different polarities of the sub power supply 96, and the second electrode 52 is set in the open state. In the pixel array 80E of the spatial light modulator according to the present embodiment, the electrodes 51, 52, and 53A are independent of each other in order to enable the connection for each pixel 8E (light modulation element 1). Are connected to wirings that are non-parallel to each other, that is, as shown in FIG. Therefore, the pixel array 80E of the spatial light modulator according to this embodiment has a structure in which both ends are directly connected to the circuit shown in FIG. 13 except for the diodes 4A1 and 4A2, and the first electrode (X electrode) 51 is provided. The bit line and the third electrode (Z electrode) 53A serve as a word line and have the same circuit structure as the cross-point type MRAM.

このような空間光変調器においては、画素アレイ80Eは、画素8Eに面積を要するトランジスタを設ける必要がないので、画素のいっそうの微細化が可能であり、図14(a)、(b)に示すように、基板7Aと電極51,52,53Aの3種類の配線と、光変調素子1と、絶縁部材6のみからなる簡易な構造となる。本実施形態に係る空間光変調器は、磁化反転動作においては電源95から電流+IW,−IWを電極51,53AおよびY電極52にて、書込みエラー検出においては副電源96から電流ITSTをX電極51およびZ電極53Aにて、それぞれ選択素子を経由することなく光変調素子1に直接に供給する(図5参照)。なお、このような構成とすることで、書込みエラー検出において、非選択の画素8Dの光変調素子1に漏れ電流が流れ、光変調素子1(画素8E)の搭載個数が多いほど検出される1個の光変調素子1の抵抗変化量が実際の値よりも小さくなることから、抵抗変化量が大きくなるように光変調素子1が設計されていることが好ましい。 In such a spatial light modulator, in the pixel array 80E, it is not necessary to provide a transistor that requires an area in the pixel 8E, so that the pixels can be further miniaturized. FIGS. 14 (a) and 14 (b) As shown in the figure, a simple structure consisting of only three types of wiring, that is, the substrate 7A and the electrodes 51, 52, and 53A, the light modulation element 1, and the insulating member 6 is obtained. In the spatial light modulator according to the present embodiment, the currents + I W and −I W from the power source 95 are applied to the electrodes 51, 53A and the Y electrode 52 in the magnetization reversal operation, and the current I TST is supplied from the sub power source 96 in the write error detection. Are directly supplied to the light modulation element 1 by the X electrode 51 and the Z electrode 53A without passing through the selection elements, respectively (see FIG. 5). With such a configuration, in writing error detection, a leakage current flows through the light modulation element 1 of the non-selected pixel 8D, and the detection is performed as the number of mounted light modulation elements 1 (pixel 8E) increases. Since the resistance change amount of each light modulation element 1 is smaller than an actual value, it is preferable that the light modulation element 1 is designed so that the resistance change amount is increased.

本実施形態に係る空間光変調器は、書込みエラー検出において、すべてのY電極52および非選択の画素8DにおけるZ電極53Aを、を第3磁化固定層13(Z電極53A)の接続先である副電源96の「−」側に接続してもよい。これにより、漏れ電流が低減される。   In the spatial light modulator according to the present embodiment, all the Y electrodes 52 and the Z electrodes 53A in the non-selected pixels 8D are connected to the third magnetization fixed layer 13 (Z electrode 53A) in the write error detection. The sub power supply 96 may be connected to the “−” side. Thereby, leakage current is reduced.

以上のように、第4実施形態に係る空間光変調器によれば、トランジスタのような面積の大きい選択素子を備えることなく書込みエラー検出が可能であるので、画素を、有効領域を広くしつつ、いっそう微細化することができ、さらに簡易な構造となる。   As described above, according to the spatial light modulator according to the fourth embodiment, since it is possible to detect a write error without including a selection element having a large area such as a transistor, it is possible to increase the effective area of the pixel. Further miniaturization can be achieved, resulting in a simpler structure.

以上、本発明の光変調素子および空間光変調器を実施するための各実施形態について述べてきたが、本発明はこれらの実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。   As mentioned above, although each embodiment for implementing the light modulation element and the spatial light modulator of the present invention has been described, the present invention is not limited to these embodiments, and various modifications can be made within the scope of the claims. Can be changed.

10,10B,10C,10D 空間光変調器
1,1A,1B,1C,1D 光変調素子
11 第1磁化固定層
12 第2磁化固定層
13 第3磁化固定層
21,22,23,2 中間層
3 磁化自由層
51,51A 第1電極、X電極(電極)
52,52A 第2電極、Y1電極(電極)
53,53A 第3電極(電極)
7,7A 基板
80,80B,80C,80D,80E 画素アレイ
8,8A,8B,8C,8D,8E 画素
90 電流制御部
94 画素選択部(画素選択手段)
95,95A 電源(電流供給手段)
96 副電源(副電流供給手段)
97 判定部(画素判定手段)
10, 10B, 10C, 10D Spatial light modulator 1, 1A, 1B, 1C, 1D light modulator 11 First magnetization fixed layer 12 Second magnetization fixed layer 13 Third magnetization fixed layer 21, 22, 23, 2 Intermediate layer 3 Magnetization free layer 51, 51A 1st electrode, X electrode (electrode)
52, 52A Second electrode, Y1 electrode (electrode)
53, 53A Third electrode (electrode)
7, 7A substrate 80, 80B, 80C, 80D, 80E pixel array 8, 8A, 8B, 8C, 8D, 8E pixel 90 current control unit 94 pixel selection unit (pixel selection means)
95,95A power supply (current supply means)
96 Sub power supply (sub current supply means)
97 determination unit (pixel determination means)

Claims (8)

基板上に、磁化固定層、中間層、および磁化自由層の順に積層したスピン注入磁化反転素子構造を備え、前記磁化自由層が積層された側から入射した光をその偏光の向きを変化させて反射して出射する光変調素子であって、
前記磁化固定層は、第1磁化固定層と、第3磁化固定層と、前記第1磁化固定層と前記第3磁化固定層との間に配置された第2磁化固定層と、を面方向に離間して、前記磁化自由層の下にそれぞれ前記中間層を挟んで有し、
前記第1磁化固定層と前記第2磁化固定層とは互いに反平行な方向の磁化に固定され、前記第3磁化固定層は前記第1磁化固定層と同じ方向の磁化に固定され、
前記第1磁化固定層および前記第3磁化固定層に一対の電極の一方を接続し、前記第2磁化固定層に前記一対の電極の他方を接続して電流を供給されることにより、前記磁化自由層の磁化方向が変化することを特徴とする光変調素子。
A spin-injection magnetization reversal element structure in which a magnetization fixed layer, an intermediate layer, and a magnetization free layer are laminated in this order on a substrate, and the direction of polarization of light incident from the side on which the magnetization free layer is laminated is changed. A light modulation element that reflects and emits light,
The magnetization fixed layer includes a first magnetization fixed layer, a third magnetization fixed layer, and a second magnetization fixed layer disposed between the first magnetization fixed layer and the third magnetization fixed layer in a plane direction. And having the intermediate layer sandwiched between the magnetization free layers,
The first magnetization pinned layer and the second magnetization pinned layer are pinned to magnetization in antiparallel directions, the third magnetization pinned layer is pinned to magnetization in the same direction as the first magnetization pinned layer,
By connecting one of a pair of electrodes to the first magnetization fixed layer and the third magnetization fixed layer and connecting the other of the pair of electrodes to the second magnetization fixed layer, and supplying a current, the magnetization An optical modulation element characterized in that the magnetization direction of the free layer changes.
前記第2磁化固定層は、前記第1磁化固定層および前記第3磁化固定層と保磁力が異なることを特徴とする請求項1に記載の光変調素子   2. The light modulation element according to claim 1, wherein the second magnetization fixed layer has a coercive force different from that of the first magnetization fixed layer and the third magnetization fixed layer. 前記第1磁化固定層および前記第3磁化固定層と、前記第2磁化固定層と、の少なくとも一方は、交換結合した磁性膜を備えた多層構造であることを特徴とする請求項1に記載の光変調素子。   The at least one of the first magnetization fixed layer, the third magnetization fixed layer, and the second magnetization fixed layer has a multilayer structure including a magnetic film exchange-coupled. Light modulation element. 基板と前記基板上に2次元配列された複数の画素とを備えて、上方から前記複数の画素に入射した光を反射させて出射する空間光変調器において、前記画素が、請求項1ないし請求項3のいずれか一項に記載の光変調素子、ならびに前記光変調素子の前記第1磁化固定層に接続された第1電極、前記第2磁化固定層に接続された第2電極、および前記第3磁化固定層に接続された第3電極を備え、
前記複数の画素から1つ以上の画素を選択し、前記選択した画素について、前記光変調素子の磁化自由層の磁化方向を異なる2方向のいずれにするかをさらに選択する画素選択手段と、
前記画素選択手段が選択した画素の前記光変調素子に、前記第1電極および前記第3電極を一対の電極の一方とし、前記第2電極を一対の電極の他方として電流を供給して、前記光変調素子の磁化自由層の磁化方向を前記画素選択手段が選択した方向にする電流供給手段と、
前記電流供給手段が電流を供給した前記光変調素子の磁化自由層の磁化方向が、前記画素選択手段により選択された方向であることを判定する画素判定を、前記光変調素子の抵抗の変化を検知することにより行う画素判定手段と、を備えることを特徴とする空間光変調器。
A spatial light modulator that includes a substrate and a plurality of pixels that are two-dimensionally arranged on the substrate, and reflects and emits light incident on the plurality of pixels from above. Item 4. The light modulation element according to any one of Items 3, the first electrode connected to the first magnetization fixed layer of the light modulation element, the second electrode connected to the second magnetization fixed layer, and the A third electrode connected to the third magnetization fixed layer;
Pixel selection means for selecting one or more pixels from the plurality of pixels and further selecting which of the two different directions of magnetization directions of the magnetization free layer of the light modulation element for the selected pixels;
Supplying the current to the light modulation element of the pixel selected by the pixel selection means with the first electrode and the third electrode as one of a pair of electrodes and the second electrode as the other of the pair of electrodes; Current supply means for setting the magnetization direction of the magnetization free layer of the light modulation element to the direction selected by the pixel selection means;
The pixel determination for determining that the magnetization direction of the magnetization free layer of the light modulation element to which the current supply means has supplied current is the direction selected by the pixel selection means, and a change in the resistance of the light modulation element. A spatial light modulator comprising: a pixel determination unit that performs detection.
前記画素選択手段が選択した画素の前記光変調素子に所定の大きさの電流を供給する副電流供給手段をさらに備え、
前記画素判定手段は、前記副電流供給手段に電流を供給されている前記光変調素子に接続された前記第1電極と前記第3電極との間の電圧の値を、前記磁化自由層の磁化方向が前記画素選択手段により選択された方向であるときの前記光変調素子の抵抗に基づいて予め設定された閾値と比較することにより、前記画素判定を行うことを特徴とする請求項4に記載の空間光変調器。
Sub-current supply means for supplying a current of a predetermined magnitude to the light modulation element of the pixel selected by the pixel selection means,
The pixel determination unit calculates a value of a voltage between the first electrode and the third electrode connected to the light modulation element supplied with a current to the sub-current supply unit, as a magnetization of the magnetization free layer. The pixel determination is performed by comparing with a threshold set in advance based on a resistance of the light modulation element when the direction is a direction selected by the pixel selection unit. Spatial light modulator.
前記画素は、前記第1磁化固定層と前記第1電極との間、または前記第3磁化固定層と前記第3電極との間に、電気的接続を接続解除自在とする選択素子を備えることを特徴とする請求項4または請求項5に記載の空間光変調器。   The pixel includes a selection element that can freely disconnect electrical connection between the first magnetization fixed layer and the first electrode or between the third magnetization fixed layer and the third electrode. The spatial light modulator according to claim 4 or 5, characterized in that: 前記画素は、前記第1磁化固定層と前記第1電極との間、前記第2磁化固定層と前記第2電極との間、および前記第3磁化固定層と前記第3電極との間から選択される2箇所に、電気的接続を接続解除自在とする選択素子を備えることを特徴とする請求項4または請求項5に記載の空間光変調器。   The pixel is between the first magnetization fixed layer and the first electrode, between the second magnetization fixed layer and the second electrode, and between the third magnetization fixed layer and the third electrode. The spatial light modulator according to claim 4 or 5, further comprising a selection element that allows electrical connection to be freely disconnected at two selected locations. 前記画素は、前記光変調素子の2以上を、前記第1電極、前記第2電極、および前記第3電極に並列に接続して備えることを特徴とする請求項4ないし請求項7のいずれか一項に記載の空間光変調器。   8. The pixel according to claim 4, wherein the pixel includes two or more of the light modulation elements connected in parallel to the first electrode, the second electrode, and the third electrode. The spatial light modulator according to one item.
JP2012061276A 2012-03-17 2012-03-17 Light modulator and spatial light modulator Active JP5873364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012061276A JP5873364B2 (en) 2012-03-17 2012-03-17 Light modulator and spatial light modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012061276A JP5873364B2 (en) 2012-03-17 2012-03-17 Light modulator and spatial light modulator

Publications (2)

Publication Number Publication Date
JP2013195590A JP2013195590A (en) 2013-09-30
JP5873364B2 true JP5873364B2 (en) 2016-03-01

Family

ID=49394632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012061276A Active JP5873364B2 (en) 2012-03-17 2012-03-17 Light modulator and spatial light modulator

Country Status (1)

Country Link
JP (1) JP5873364B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7301253B1 (en) 2022-10-19 2023-06-30 三菱電機株式会社 Carbon dioxide recovery method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269885A (en) * 2005-03-25 2006-10-05 Sony Corp Spin injection type magnetoresistance effect element
JP4987616B2 (en) * 2006-08-31 2012-07-25 株式会社東芝 Magnetic random access memory and resistive random access memory
WO2009019948A1 (en) * 2007-08-08 2009-02-12 Nec Corporation Magnetic recorder and magnetization fixing method
JP5238619B2 (en) * 2009-06-12 2013-07-17 日本放送協会 Magneto-optic spatial light modulator and manufacturing method thereof
JP2012028489A (en) * 2010-07-22 2012-02-09 Nec Corp Magnetic storage device
JP5567969B2 (en) * 2010-10-01 2014-08-06 日本放送協会 Light modulator and spatial light modulator using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7301253B1 (en) 2022-10-19 2023-06-30 三菱電機株式会社 Carbon dioxide recovery method

Also Published As

Publication number Publication date
JP2013195590A (en) 2013-09-30

Similar Documents

Publication Publication Date Title
JP6029020B2 (en) Magnetic memory element and magnetic memory
KR20200005657A (en) Magneto-random random access memory array and its operation method
JP5201539B2 (en) Magnetic random access memory
KR102369657B1 (en) Magnetoresistance Elements and Electronic Devices
JP2005191032A (en) Magnetic storage device and method of writing magnetic information
US6724651B2 (en) Nonvolatile solid-state memory and method of driving the same
JP2012078579A (en) Light modulation element and spatial light modulator using the same
JP5238619B2 (en) Magneto-optic spatial light modulator and manufacturing method thereof
TWI422083B (en) Magnetic memory lattice and magnetic random access memory
JP5836858B2 (en) Light modulator and spatial light modulator
JP6017190B2 (en) Manufacturing method of light modulation element
JP5873363B2 (en) Light modulator and spatial light modulator
WO2007111318A1 (en) Magnetic random access memory and operation method thereof
US20220006004A1 (en) Magnetic recording array, neuromorphic device, and method of controlling magnetic recording array
JP5873364B2 (en) Light modulator and spatial light modulator
JP6017165B2 (en) Spatial light modulator
JP5836857B2 (en) Light modulator and spatial light modulator
JP2010232374A (en) Magnetoresistive element, and magnetic random access memory and spatial light modulator using the same
JP5836856B2 (en) Light modulator and spatial light modulator
JP5836855B2 (en) Light modulator and spatial light modulator
JP6694275B2 (en) NONVOLATILE MEMORY, ITS DRIVING METHOD, AND STORAGE DEVICE
JP5679690B2 (en) Spin injection magnetization reversal device, magnetic random access memory and spatial light modulator using the same
JP2004296858A (en) Magnetic memory element and magnetic memory device
JP2003318368A (en) Magnetic memory device and method of driving the same
JP6546745B2 (en) Light modulation element and spatial light modulator

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160115

R150 Certificate of patent or registration of utility model

Ref document number: 5873364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250