JP5836857B2 - Light modulator and spatial light modulator - Google Patents

Light modulator and spatial light modulator Download PDF

Info

Publication number
JP5836857B2
JP5836857B2 JP2012061279A JP2012061279A JP5836857B2 JP 5836857 B2 JP5836857 B2 JP 5836857B2 JP 2012061279 A JP2012061279 A JP 2012061279A JP 2012061279 A JP2012061279 A JP 2012061279A JP 5836857 B2 JP5836857 B2 JP 5836857B2
Authority
JP
Japan
Prior art keywords
magnetization
light modulation
modulation element
layer
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012061279A
Other languages
Japanese (ja)
Other versions
JP2013195593A (en
Inventor
町田 賢司
賢司 町田
賢一 青島
賢一 青島
久我 淳
淳 久我
加藤 大典
大典 加藤
秀和 金城
秀和 金城
菊池 宏
宏 菊池
清水 直樹
直樹 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Broadcasting Corp filed Critical Japan Broadcasting Corp
Priority to JP2012061279A priority Critical patent/JP5836857B2/en
Publication of JP2013195593A publication Critical patent/JP2013195593A/en
Application granted granted Critical
Publication of JP5836857B2 publication Critical patent/JP5836857B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Hall/Mr Elements (AREA)

Description

本発明は、入射した光を磁気光学効果により光の位相や振幅等を空間的に変調して出射する空間光変調器の光変調素子、およびこの光変調素子を用いた空間光変調器に関する。   The present invention relates to a light modulation element of a spatial light modulator that spatially modulates incident light by using a magneto-optic effect, and to a spatial light modulator using the light modulation element.

空間光変調器は、画素として光学素子(光変調素子)を用い、これをマトリクス状に2次元配列して光の位相や振幅等を空間的に変調するものであって、ホログラフィ装置等の露光装置、ディスプレイ技術、記録技術等の分野で広く利用されている。また、2次元で並列に光情報を処理することができることから光情報処理技術への応用も研究されている。空間光変調器として、従来より液晶が用いられ、表示装置として広く利用されているが、ホログラフィや光情報処理用としては、応答速度や画素の高精細性が不十分であるため、近年では、高速処理かつ画素の微細化の可能性が期待される磁気光学材料を用いた磁気光学式空間光変調器の開発が進められている。   A spatial light modulator uses an optical element (light modulation element) as a pixel and arranges it in a two-dimensional matrix to spatially modulate the phase, amplitude, etc. of light. Widely used in fields such as equipment, display technology, and recording technology. In addition, since optical information can be processed in two dimensions in parallel, its application to optical information processing technology is also being studied. As a spatial light modulator, liquid crystal has been conventionally used and widely used as a display device, but for holography and optical information processing, since response speed and high definition of pixels are insufficient, in recent years, Development of a magneto-optic spatial light modulator using a magneto-optic material that is expected to be capable of high-speed processing and pixel miniaturization is in progress.

磁気光学式空間光変調器(以下、空間光変調器)においては、磁気光学材料すなわち磁性体に入射した光が透過または反射する際にその偏光の向きを変化(旋光)させて出射する、ファラデー効果(反射の場合はカー効果)を利用している。すなわち、空間光変調器は、選択された画素(選択画素)における光変調素子の磁化方向とそれ以外の画素(非選択画素)における光変調素子の磁化方向を異なるものとして、選択画素から出射した光と非選択画素から出射した光で、その偏光の回転角(旋光角)に差を生じさせる。このような光変調素子の磁化方向を変化させる方法として、光変調素子に磁界を印加する磁界印加方式の他に、近年では光変調素子に電流を供給することでスピンを注入するスピン注入方式(例えば、特許文献1)がある。   In a magneto-optical spatial light modulator (hereinafter referred to as a spatial light modulator), when light incident on a magneto-optical material, that is, a magnetic material is transmitted or reflected, the direction of polarization is changed (rotation) and emitted. The effect (Kerr effect in the case of reflection) is used. That is, the spatial light modulator emits light from the selected pixel with the magnetization direction of the light modulation element in the selected pixel (selected pixel) different from the magnetization direction of the light modulation element in the other pixels (non-selected pixels). The light and the light emitted from the non-selected pixels cause a difference in the rotation angle (rotation angle) of the polarization. As a method of changing the magnetization direction of such a light modulation element, in addition to a magnetic field application method in which a magnetic field is applied to the light modulation element, in recent years, a spin injection method in which spin is injected by supplying a current to the light modulation element ( For example, there is Patent Document 1).

スピン注入方式の光変調素子は、具体的には、TMR(Tunnel MagnetoResistance:トンネル磁気抵抗効果)素子やCPP−GMR(Current Perpendicular to the Plane Giant MagnetoResistance:垂直通電型巨大磁気抵抗効果)素子等の、磁気抵抗ランダムアクセスメモリ(MRAM)にも適用されるスピン注入磁化反転素子を適用することができる。一例として、このような従来の光変調素子の断面図を図14に示す。図14に示すように、光変調素子101は、上下に一対の電極151,152を接続して膜面に垂直に電流を供給される。この電流により、光変調素子101はスピンを注入されて、MRAMの書込み(write)と同様に磁化自由層103の磁化方向を反転させることができる。そして、光変調素子101は、少なくとも一方の電極(図14では上部電極152)を透明電極材料で形成することで、入射した光を変調して出射する画素として機能する。このようなスピン注入磁化反転素子を適用した光変調素子は、磁界を発生させるために各光変調素子の外周に沿って電極(配線)を備える磁界印加方式よりもいっそうの微細化を可能とする。   Specifically, the spin injection type light modulation element is a TMR (Tunnel MagnetoResistance) element or a CPP-GMR (Current Perpendicular to the Plane Giant MagnetoResistance) element. A spin-injection magnetization reversal element that is also applied to a magnetoresistive random access memory (MRAM) can be applied. As an example, a cross-sectional view of such a conventional light modulation element is shown in FIG. As shown in FIG. 14, the light modulation element 101 is connected to a pair of electrodes 151 and 152 on the upper and lower sides and supplied with a current perpendicular to the film surface. With this current, the light modulation element 101 is injected with spin, and the magnetization direction of the magnetization free layer 103 can be reversed in the same manner as in the MRAM write. The light modulation element 101 functions as a pixel that modulates and emits incident light by forming at least one electrode (the upper electrode 152 in FIG. 14) from a transparent electrode material. An optical modulation element to which such a spin-injection magnetization reversal element is applied enables further miniaturization than a magnetic field application method in which electrodes (wirings) are provided along the outer periphery of each optical modulation element in order to generate a magnetic field. .

また、光変調素子の別の態様として、特許文献2に、細線加工された磁性体(磁性細線)を光変調素子とする空間光変調器が開示されている。これは、磁性細線においては、2以上の磁区が細線方向に区切られて形成され易く、これらの磁区を区切る磁壁が当該磁性細線に電流を細線方向に供給することにより移動するという磁壁移動を利用している。この空間光変調器は、詳しくは、画素毎に1本の磁性細線を面方向(画素の2次元配列面)に沿って設けて、その両端に接続した一対の電極にて細線方向に電流を供給すると、電流の向きとは反対方向へ磁壁が移動して、磁壁の移動前後の位置に挟まれた領域における磁化方向が反転するので、この領域を光の入射領域(有効領域)として反射光を取り出すことができる。   Further, as another aspect of the light modulation element, Patent Document 2 discloses a spatial light modulator that uses a thin line-processed magnetic body (magnetic fine wire) as a light modulation element. This is because in magnetic thin wires, two or more magnetic domains are easily formed in the thin line direction, and the domain walls that delimit these magnetic domains move by supplying current to the magnetic thin line in the thin line direction. doing. More specifically, this spatial light modulator is provided with one magnetic thin line for each pixel along the surface direction (two-dimensional array surface of the pixels), and a current is applied in the thin line direction by a pair of electrodes connected to both ends thereof. When supplied, the domain wall moves in the direction opposite to the direction of the current, and the magnetization direction in the area sandwiched between the positions before and after the domain wall movement is reversed, so this area is reflected light as the light incident area (effective area). Can be taken out.

特許第4829850号公報Japanese Patent No. 4829850 特開2010−20114号公報JP 2010-20114 A

特許文献1,2に記載された光変調素子には、それぞれ以下の点で改良の余地がある。特許文献1の光変調素子に適用されたスピン注入磁化反転素子は、電流を供給するための電極が上下に接続されるので、光変調素子として光を入出射するためには、光の入出射側に、光を透過する透明電極材料を適用しなくてはならない。透明電極材料は、金属電極材料と比べて導電性に大きく劣るため、特により多数の光変調素子をマトリクス状に配列した高精細の空間光変調器になるほど中央部で動作が遅れる虞がある。このような空間光変調器を動作させるために大電流を供給する必要があり、省電力化の点で改良の余地がある。さらにスピン注入磁化反転素子は一辺300nm程度以下としないと好適に動作(スピン注入磁化反転)し難いため、配線ピッチに対する光変調素子のサイズが小さくなり、その結果、画素において光変調される有効領域の割合(画素の開口率)が低くなる。   The light modulation elements described in Patent Documents 1 and 2 have room for improvement in the following points. In the spin-injection magnetization switching element applied to the light modulation element of Patent Document 1, since electrodes for supplying a current are connected vertically, in order to enter and output light as a light modulation element, light input / output On the side, a transparent electrode material that transmits light must be applied. Since the transparent electrode material is greatly inferior in conductivity as compared with the metal electrode material, there is a possibility that the operation is delayed in the central portion as the high-definition spatial light modulator has a larger number of light modulation elements arranged in a matrix. In order to operate such a spatial light modulator, it is necessary to supply a large current, and there is room for improvement in terms of power saving. Furthermore, since it is difficult for the spin injection magnetization reversal element to operate properly (spin injection magnetization reversal) unless the side is about 300 nm or less, the size of the light modulation element with respect to the wiring pitch is reduced. As a result, the effective region in which light modulation is performed in the pixel Ratio (pixel aperture ratio) becomes low.

一方、特許文献2の光変調素子に適用された磁性細線は、接続する一対の電極の両方を金属電極材料で形成することができるが、磁壁を挟んで開口領域における磁化方向と異なる磁化方向の磁区が形成されている。したがって、磁性細線において画素情報として取り出せる光は、中央部の磁壁の移動前後の位置に挟まれた領域からの反射光に限定され、画素の開口率には限界がある。   On the other hand, in the magnetic thin wire applied to the light modulation element of Patent Document 2, both of the pair of electrodes to be connected can be formed of a metal electrode material, but the magnetization direction is different from the magnetization direction in the opening region across the domain wall. Magnetic domains are formed. Therefore, the light that can be extracted as pixel information in the magnetic thin line is limited to the reflected light from the region sandwiched between the positions of the central domain wall before and after the movement, and the aperture ratio of the pixel is limited.

さらに、空間光変調器は、画素のそれぞれの光変調素子が設定にしたがった光変調をするか、すなわち書込み通りの磁化方向を示しているかを電気的に検知するエラー検出が可能であることが望ましい。例えば、図14に示すスピン注入磁化反転素子を適用した光変調素子101は、磁化固定層111と磁化自由層103との磁化方向が同じ(平行:P、図14(a)参照)であるときの抵抗R101Pよりも、反対(反平行:AP、図14(b)参照)であるときの抵抗R101APの方が大きい。そこで、特許文献1に記載された空間光変調器は、MRAMにおける読出し(read)と同様に、光変調素子101にスピン注入磁化反転しない程度の電流を供給して、電極151,152間の電圧を測定することで磁化自由層103の磁化方向を検知することができる。これに対して、磁性細線は磁壁が移動しても抵抗がほとんど変化しないため、特許文献2に記載された空間光変調器では書込みエラー検出が困難である。 Furthermore, the spatial light modulator may be capable of error detection that electrically detects whether each light modulation element of the pixel performs light modulation according to the setting, that is, indicates the magnetization direction as written. desirable. For example, in the light modulation element 101 to which the spin injection magnetization reversal element shown in FIG. 14 is applied, the magnetization direction of the magnetization fixed layer 111 and the magnetization free layer 103 is the same (parallel: P, see FIG. 14A). than the resistance R101 P of the opposite: greater resistance R101 towards AP when a (antiparallel AP, Fig 14 (b) refer). Therefore, the spatial light modulator described in Patent Document 1 supplies a current that does not cause spin injection magnetization reversal to the light modulation element 101 and reads the voltage between the electrodes 151 and 152 in the same manner as the read in the MRAM. By measuring the magnetization direction of the magnetization free layer 103. On the other hand, since the resistance of the magnetic thin wire hardly changes even when the domain wall moves, it is difficult for the spatial light modulator described in Patent Document 2 to detect the write error.

本発明は前記問題点に鑑み創案されたもので、空間光変調器の画素としたときに、配線に透明電極材料を用いず、また画素の開口率を十分に保持しつつ微細化し、さらに書込みエラー検出が容易となる光変調素子、およびこれを用いた空間光変調器を提供することが課題である。   The present invention was devised in view of the above problems, and when a pixel of a spatial light modulator is used, a transparent electrode material is not used for wiring, and the pixel aperture ratio is sufficiently maintained and further miniaturized and further written. It is an object to provide an optical modulation element that facilitates error detection and a spatial light modulator using the same.

本願発明者らは、図15に断面図で示すデュアルピン構造のスピン注入磁化反転素子101A(例えば特開2010−60748号公報参照)について、1つの磁化自由層103の上下に配置していた磁化固定層111,112を2つ共、磁化自由層103の同じ側の面に、面方向に離間して積層することにより、磁化自由層を底部として断面視U字型の電流経路を形成する並設デュアルピン構造のスピン注入磁化反転素子からなる光変調素子を開発した。デュアルピン構造のスピン注入磁化反転素子は、磁化自由層を共有するように2つのスピン注入磁化反転素子を接続した構造であり、一対の電極を前記U字の両端の2つの磁化固定層に接続すればスピン注入磁化反転動作をさせることができる。そのため、並設デュアルピン構造としたスピン注入磁化反転素子を適用した光変調素子は、電極を透過させずに前記U字の底部の磁化自由層に光を入射することができ、一対の電極の両方を金属電極材料で形成することができる。また、光変調素子の面積を従来のスピン注入磁化反転素子の2倍に拡張することができ、画素の有効領域を広くすることができる。   The inventors of the present application have used the dual pin structure spin injection magnetization reversal element 101A (see, for example, Japanese Patent Application Laid-Open No. 2010-60748) shown in a sectional view in FIG. The two fixed layers 111 and 112 are stacked on the same side surface of the magnetization free layer 103 so as to be spaced apart from each other in the plane direction, thereby forming a U-shaped current path in cross section with the magnetization free layer as a bottom. We have developed a light modulation device consisting of a spin-injection magnetization reversal device with a dual pin structure. A spin-injection magnetization reversal element having a dual pin structure has a structure in which two spin-injection magnetization reversal elements are connected so as to share a magnetization free layer, and a pair of electrodes are connected to two magnetization fixed layers at both ends of the U-shape. Then, the spin injection magnetization reversal operation can be performed. Therefore, a light modulation element using a spin injection magnetization reversal element having a parallel dual pin structure can enter light into the magnetization free layer at the bottom of the U-shape without transmitting through the electrodes. Both can be formed of a metal electrode material. Further, the area of the light modulation element can be expanded to twice that of the conventional spin injection magnetization reversal element, and the effective area of the pixel can be widened.

一方で、デュアルピン構造のスピン注入磁化反転素子は、磁化自由層の磁化方向が常に2つの磁化固定層の一方に平行で他方に反平行であるため、含まれる2つのスピン注入磁化反転素子の構造が同一であれば全体の抵抗が一定となり、書込みエラー検出が困難となる。そこで、本願発明者らは、前記2つのスピン注入磁化反転素子を互いに異なる構造とすることで抵抗が変化するようにして、書込みエラー検出を可能とすることに想到した。   On the other hand, in the spin-injection magnetization reversal element having a dual pin structure, the magnetization direction of the magnetization free layer is always parallel to one of the two magnetization fixed layers and antiparallel to the other, If the structure is the same, the overall resistance is constant, making it difficult to detect write errors. Accordingly, the inventors of the present application have conceived that the write error can be detected by changing the resistance of the two spin-injection magnetization reversal elements from each other.

すなわち、本発明に係る光変調素子は、基板上に、磁化自由層、中間層、および磁化固定層の順に積層したスピン注入磁化反転素子構造を備え、前記磁化自由層が積層された側から入射した光をその偏光の向きを変化させて反射して出射するものである。そして、前記磁化固定層は、面方向に離間して互いに反平行な方向の磁化に固定された第1磁化固定層と第2磁化固定層を前記磁化自由層の上に有し、前記中間層は、前記第1磁化固定層を積層された中間層と前記第2磁化固定層を積層された中間層とを分離して有して互いに抵抗が異なり、光変調素子は、前記第1磁化固定層と前記第2磁化固定層とに一対の電極を接続して電流を供給されることにより、前記磁化自由層の磁化方向が変化する構成とした。   That is, the light modulation element according to the present invention includes a spin-injection magnetization reversal element structure in which a magnetization free layer, an intermediate layer, and a magnetization fixed layer are sequentially laminated on a substrate, and is incident from the side on which the magnetization free layer is laminated. The reflected light is reflected and emitted by changing the direction of the polarized light. The magnetization pinned layer has a first magnetization pinned layer and a second magnetization pinned layer which are spaced apart in the plane direction and pinned in magnetizations in antiparallel directions on the magnetization free layer, and the intermediate layer Has an intermediate layer on which the first magnetization fixed layer is stacked and an intermediate layer on which the second magnetization fixed layer is stacked, and has different resistances, and the light modulation element has the first magnetization fixed A magnetization direction of the magnetization free layer is changed by connecting a pair of electrodes to the layer and the second magnetization fixed layer and supplying a current.

かかる構成により、光変調素子は2つ分のスピン注入磁化反転素子の面積として大きくすることができ、さらに電極を接続する2つの磁化固定層がいずれも光の入射側に配置されないため、磁化反転動作させるための電流を供給する電極に透明電極材料を適用しなくてよい。また、光変調素子は、含まれる2つのスピン注入磁化反転素子構造が、その中間層の抵抗が異なることで抵抗変化率が互いに異なるため、磁化自由層の磁化反転により当該光変調素子の全体の抵抗値が変化する。したがって、光変調素子は、磁化反転動作のために接続された一対の電極間での抵抗を測定することにより、磁化自由層の磁化方向を検出することができる。   With this configuration, the light modulation element can be enlarged as the area of two spin-injection magnetization reversal elements, and furthermore, no two magnetization fixed layers connecting the electrodes are arranged on the light incident side, so that the magnetization reversal The transparent electrode material need not be applied to the electrode that supplies the current for operation. In addition, since the optical modulation element includes two spin-injection magnetization reversal element structures that have different resistance change rates due to different resistances of the intermediate layer, the entire optical modulation element of the light modulation element is affected by the magnetization reversal of the magnetization free layer. The resistance value changes. Therefore, the light modulation element can detect the magnetization direction of the magnetization free layer by measuring the resistance between the pair of electrodes connected for the magnetization reversal operation.

さらに、光変調素子は、2つの中間層の少なくとも一方がトンネル障壁層であることが好ましい。
かかる構成により、光変調素子は、2つのスピン注入磁化反転素子構造の少なくとも一方が、抵抗変化率が比較的大きく、かつ抵抗変化率が中間層の抵抗に依存するTMR素子となるため、磁化自由層の磁化反転による抵抗値の変化が顕著になり、書込みエラー検出がいっそう容易となる。
Furthermore, in the light modulation element, it is preferable that at least one of the two intermediate layers is a tunnel barrier layer.
With this configuration, the light modulation element is a TMR element in which at least one of the two spin-injection magnetization reversal element structures has a relatively large resistance change rate and the resistance change rate depends on the resistance of the intermediate layer. The change in the resistance value due to the magnetization reversal of the layer becomes remarkable, and the write error detection becomes easier.

さらに、光変調素子は、第1磁化固定層と第2磁化固定層が互いに保磁力が異なることが好ましい。あるいは、光変調素子は、第1磁化固定層と第2磁化固定層の少なくとも一方が、交換結合した磁性膜を備えた多層構造であることが好ましい。
かかる構成により、光変調素子における2つの磁化固定層を互いに反平行な磁化方向に固定することが容易となる。
Further, in the light modulation element, it is preferable that the first magnetization fixed layer and the second magnetization fixed layer have different coercive forces. Alternatively, the light modulation element preferably has a multilayer structure including a magnetic film in which at least one of the first magnetization fixed layer and the second magnetization fixed layer is exchange-coupled.
With this configuration, it becomes easy to fix the two magnetization fixed layers in the light modulation element in the magnetization directions antiparallel to each other.

前記の光変調素子は、一対の電極を接続して、空間光変調器の画素とすることができる。すなわち、本発明に係る空間光変調器は、光を透過する基板とこの基板上に2次元配列された複数の画素とを備えて、前記基板を透過して前記複数の画素に入射した光を反射させて出射し、前記画素が、前記の光変調素子およびこの光変調素子の第1磁化固定層と前記第2磁化固定層とに接続された一対の電極を備える。そして、空間光変調器は、前記複数の画素から1つ以上の画素を選択し、この選択した画素について、光変調素子の磁化自由層の磁化方向を異なる2方向のいずれにするかをさらに選択する画素選択手段と、この画素選択手段が選択した画素の光変調素子に電流を供給して、前記光変調素子の磁化自由層の磁化方向を前記画素選択手段が選択した方向にする電流供給手段と、この電流供給手段が電流を供給した前記光変調素子の磁化自由層の磁化方向が、前記画素選択手段により選択された方向であることを判定する画素判定を、前記光変調素子の抵抗の変化を検知することにより行う画素判定手段と、を備える構成とした。また、空間光変調器は、前記画素が光変調素子の2以上を一対の電極に並列に接続して備えてもよい。   The light modulation element can be a pixel of a spatial light modulator by connecting a pair of electrodes. That is, the spatial light modulator according to the present invention includes a substrate that transmits light and a plurality of pixels that are two-dimensionally arranged on the substrate, and transmits light incident on the plurality of pixels through the substrate. The pixel is provided with a pair of electrodes connected to the light modulation element and the first magnetization fixed layer and the second magnetization fixed layer of the light modulation element. Then, the spatial light modulator selects one or more pixels from the plurality of pixels, and further selects one of two different directions of magnetization directions of the magnetization free layer of the light modulation element for the selected pixels. And a current supply means for supplying a current to the light modulation element of the pixel selected by the pixel selection means so that the magnetization direction of the magnetization free layer of the light modulation element is selected by the pixel selection means And pixel determination for determining that the magnetization direction of the magnetization free layer of the light modulation element to which the current supply means has supplied current is the direction selected by the pixel selection means, and the resistance of the light modulation element And a pixel determination unit that detects the change. In the spatial light modulator, the pixel may include two or more light modulation elements connected in parallel to a pair of electrodes.

さらに、空間光変調器は、前記画素選択手段が選択した画素の前記光変調素子に所定の大きさの電流を供給する副電流供給手段を備える構成としてもよい。この空間光変調器においては、前記画素判定手段が、前記副電流供給手段に電流を供給されている前記光変調素子に接続された前記一対の電極間の電圧の値を、前記磁化自由層の磁化方向が前記画素選択手段により選択された方向であるときの前記光変調素子の抵抗に基づいて予め設定された閾値と比較することにより、前記画素判定を行う。   Furthermore, the spatial light modulator may include a sub-current supply unit that supplies a predetermined current to the light modulation element of the pixel selected by the pixel selection unit. In this spatial light modulator, the pixel determination unit calculates a voltage value between the pair of electrodes connected to the light modulation element to which a current is supplied to the sub-current supply unit. The pixel determination is performed by comparing with a threshold value set in advance based on the resistance of the light modulation element when the magnetization direction is the direction selected by the pixel selection means.

かかる構成により、空間光変調器は、2つのスピン注入磁化反転素子構造で構成され、光の入射側に電極を接続しない光変調素子を画素に備えるため、開口率が高い画素に、光を電極で遮られることなく入射することができる。そして、空間光変調器は、画素選択手段が画素を選択して、電流供給手段から光変調素子に電流を供給させると、前記2つのスピン注入磁化反転素子構造のそれぞれの磁化固定層に接続された電極を介してスピン注入されるために、共有された磁化自由層をスピン注入磁化反転させて、画素毎に電流の向きに応じた所望の磁化方向にすることができる。さらに、空間光変調器は、画素判定手段が、光変調素子の磁化自由層が電流供給手段により所望の磁化方向に正常に磁化反転していたかを診断することができる。具体的には、空間光変調器は、画素選択手段が画素を選択して、前記電極を介して副電流供給手段から光変調素子にスピン注入磁化反転動作をしない所定の大きさの電流を供給させると、光変調素子の抵抗によって電圧が特定の範囲で変化するので、画素判定手段がこの電圧の値を予め設定した閾値と比較することにより、磁化自由層がいずれの磁化方向であるかを判定することができる。   With this configuration, the spatial light modulator is configured with two spin-injection magnetization reversal element structures, and the pixel includes a light modulation element that does not connect the electrode to the light incident side. Therefore, the light is applied to the pixel with a high aperture ratio. It can enter without being blocked by. The spatial light modulator is connected to the magnetization fixed layers of the two spin-injection magnetization reversal element structures when the pixel selection unit selects a pixel and supplies current from the current supply unit to the light modulation element. Since the spin injection is performed through the connected electrodes, the shared magnetization free layer can be reversed by spin injection magnetization so that a desired magnetization direction corresponding to the direction of current is obtained for each pixel. Furthermore, the spatial light modulator can diagnose whether the pixel determination unit has normally reversed the magnetization of the magnetization free layer of the light modulation element in the desired magnetization direction by the current supply unit. Specifically, in the spatial light modulator, the pixel selection unit selects a pixel, and supplies a current of a predetermined magnitude that does not perform a spin injection magnetization reversal operation from the sub-current supply unit to the light modulation element via the electrode. Then, since the voltage changes in a specific range due to the resistance of the light modulation element, the pixel determination means compares the value of this voltage with a preset threshold value to determine which magnetization direction the magnetization free layer is in. Can be determined.

さらに、空間光変調器は、前記画素が、前記第1磁化固定層または前記第2磁化固定層に、前記電極との電気的接続を接続解除自在とする選択素子を備える構成としてもよい。かかる構成により、空間光変調器は、非選択の画素の光変調素子への電流の漏れが抑えられるので、画素判定手段による診断が容易になる。   Furthermore, the spatial light modulator may be configured such that the pixel includes a selection element that can freely disconnect electrical connection with the electrode in the first magnetization fixed layer or the second magnetization fixed layer. With this configuration, the spatial light modulator can suppress current leakage to the light modulation element of the non-selected pixel, and thus diagnosis by the pixel determination unit is facilitated.

本発明に係る光変調素子によれば、面積が拡張しても好適に磁化反転動作をし、また空間光変調器の画素に用いる際に、接続する電極に透明電極材料を使用しなくてよいので、空間光変調器の画素の開口率を高くしつつ、微細化することが容易となる。また、本発明に係る光変調素子によれば、磁化反転動作により抵抗が変化するので、空間光変調器の画素に用いて、磁化反転動作のための電極を利用しての画素判定(書込みエラー検出)が可能となる。   According to the light modulation element of the present invention, the magnetization reversal operation can be suitably performed even when the area is expanded, and the transparent electrode material need not be used for the electrode to be connected when used for the pixel of the spatial light modulator. Therefore, it is easy to miniaturize while increasing the aperture ratio of the pixels of the spatial light modulator. Also, according to the light modulation element of the present invention, the resistance changes due to the magnetization reversal operation. Therefore, the pixel determination (write error) using the electrode for the magnetization reversal operation is used for the pixel of the spatial light modulator. Detection).

本発明に係る空間光変調器によれば、前記の光変調素子を画素に用いて、金属電極材料のみですべての配線を形成することができるので、高精細かつ省電力とすることができ、さらに画素の開口率を高くして、高コントラストとすることができる。さらに、本発明に係る空間光変調器によれば、駆動用の配線を利用して、MRAMと同様の読出し動作を行うことができ、すべての画素のそれぞれについて書込みエラー検出が可能となる。   According to the spatial light modulator according to the present invention, since all the wiring can be formed using only the metal electrode material by using the light modulation element in a pixel, high definition and power saving can be achieved. Furthermore, the aperture ratio of the pixel can be increased to achieve high contrast. Further, according to the spatial light modulator according to the present invention, it is possible to perform a read operation similar to that of the MRAM by using a driving wiring, and it is possible to detect a write error for each of all pixels.

本発明に係る光変調素子を用いた空間光変調器の底面図であり、本発明の第1実施形態に係る空間光変調器の構成を説明する模式図である。It is a bottom view of the spatial light modulator using the light modulation element which concerns on this invention, and is a schematic diagram explaining the structure of the spatial light modulator which concerns on 1st Embodiment of this invention. 本発明に係る光変調素子の断面構造を説明する模式図であり、図1のA−A部分断面図に相当する。It is a schematic diagram explaining the cross-sectional structure of the light modulation element which concerns on this invention, and is equivalent to the AA fragmentary sectional view of FIG. 本発明に係る光変調素子の断面図で、磁化反転動作を説明する模式図である。It is sectional drawing of the light modulation element which concerns on this invention, and is a schematic diagram explaining magnetization reversal operation | movement. 本発明に係る光変調素子の断面図で、光変調の動作および抵抗の変化を説明する模式図である。It is sectional drawing of the light modulation element which concerns on this invention, and is a schematic diagram explaining the operation | movement of light modulation, and the change of resistance. 本発明に係る空間光変調器を用いた表示装置の模式図であり、図1のA−A断面図に相当する。It is a schematic diagram of the display apparatus using the spatial light modulator which concerns on this invention, and is equivalent to AA sectional drawing of FIG. 本発明の第1実施形態に係る空間光変調器の等価回路図である。1 is an equivalent circuit diagram of a spatial light modulator according to a first embodiment of the present invention. 本発明に係る空間光変調器の製造方法を説明する模式図であり、(a)〜(e)は図1のA−A部分断面図に相当する。It is a schematic diagram explaining the manufacturing method of the spatial light modulator which concerns on this invention, (a)-(e) is corresponded in the AA fragmentary sectional view of FIG. 本発明に係る空間光変調器の製造方法を説明する模式図であり、(a)〜(d)は図1のA−A部分断面図に相当し、(e)は(d)における平面図である。It is a schematic diagram explaining the manufacturing method of the spatial light modulator which concerns on this invention, (a)-(d) is equivalent to the AA fragmentary sectional view of FIG. 1, (e) is a top view in (d). It is. 本発明に係る空間光変調器の製造方法を説明する模式図であり、(a)〜(e)は図1のA−A部分断面図に相当する。It is a schematic diagram explaining the manufacturing method of the spatial light modulator which concerns on this invention, (a)-(e) is corresponded in the AA fragmentary sectional view of FIG. 本発明に係る空間光変調器の製造方法を説明する模式図であり、(a)、(b)、(d)は図1のA−A部分断面図に相当し、(c)は(b)における平面図である。It is a schematic diagram explaining the manufacturing method of the spatial light modulator which concerns on this invention, (a), (b), (d) is equivalent to the AA fragmentary sectional view of FIG. 1, (c) is (b FIG. 本発明の第2実施形態に係る空間光変調器の画素の構成を説明する底面図である。It is a bottom view explaining the structure of the pixel of the spatial light modulator which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態およびその変形例に係る空間光変調器の画素アレイの模式図であり、(a)は第3実施形態の底面図、(b)は(a)のB−B断面図、(c)は第3実施形態の変形例で(a)のB−B断面図に相当する。It is a schematic diagram of the pixel array of the spatial light modulator which concerns on 3rd Embodiment of this invention, and its modification, (a) is a bottom view of 3rd Embodiment, (b) is BB cross section of (a). FIG. 4C is a modification of the third embodiment and corresponds to a cross-sectional view taken along the line BB in FIG. 本発明の第4実施形態に係る空間光変調器の等価回路図である。FIG. 6 is an equivalent circuit diagram of a spatial light modulator according to a fourth embodiment of the present invention. スピン注入磁化反転素子を用いた従来の光変調素子の断面図で、磁化反転および光変調の動作を説明する模式図である。It is sectional drawing of the conventional light modulation element using a spin injection magnetization reversal element, and is a schematic diagram explaining the operation | movement of magnetization reversal and light modulation. デュアルピン構造のスピン注入磁化反転素子を用いた従来の光変調素子の断面図で、磁化反転動作を説明する模式図である。It is a cross-sectional view of a conventional light modulation element using a spin-injection magnetization reversal element having a dual pin structure and is a schematic diagram for explaining the magnetization reversal operation.

以下、本発明に係る光変調素子および空間光変調器を実現するための形態について図面を参照して説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for realizing a light modulation element and a spatial light modulator according to the present invention will be described with reference to the drawings.

[光変調素子]
本発明に係る光変調素子は、図1に示す空間光変調器10の画素8(空間光変調器による表示の最小単位での情報(明/暗)を表示する手段を指す。)として用いられて、下方から入射した光を反射して異なる2値の光(偏光成分)に変調して下方へ出射する。
[Light modulation element]
The light modulation element according to the present invention is used as the pixel 8 of the spatial light modulator 10 shown in FIG. 1 (refers to means for displaying information (light / dark) in the minimum unit of display by the spatial light modulator). Thus, the light incident from below is reflected, modulated into different binary light (polarized component), and emitted downward.

図2に示すように、光変調素子1は、1つの磁化自由層3と、2つの中間層21,22(第1中間層、第2中間層)と、2つの磁化固定層11,12(第1磁化固定層、第2磁化固定層)と、を積層して備える。この光変調素子1は、光を透過する基板7上に磁化自由層3を形成して、この磁化自由層3の上に、2つの中間層21,22を互いに離間して面方向に並べて積層し、第1中間層21上に第1磁化固定層11を、第2中間層22上に第2磁化固定層12を、それぞれ積層して備える。光変調素子1は、さらに、磁化固定層11,12のそれぞれの上に保護膜41,42を積層して備える。この光変調素子1は、ここでは断面視凹字型である。図2に示す光変調素子1は、基板7上に形成され、また、第1電極(電極)51、第2電極(電極)52が一対の電極として、保護膜41,42を介して2つの磁化固定層11,12に接続されている。なお、中間層21,22、磁化固定層11,12、保護膜41,42は、図2やその他図面の断面図においてはそれぞれ同じ厚さかつ同じ高さ位置で示しているが、厚さおよび高さ位置を同じとすることを規定するものではなく、互いに異なる厚さで、また異なる高さ位置に形成されてよい。   As shown in FIG. 2, the light modulation element 1 includes one magnetization free layer 3, two intermediate layers 21 and 22 (first intermediate layer and second intermediate layer), and two magnetization fixed layers 11 and 12 ( A first magnetization pinned layer and a second magnetization pinned layer). In this light modulation element 1, a magnetization free layer 3 is formed on a substrate 7 that transmits light, and two intermediate layers 21 and 22 are stacked on the magnetization free layer 3 so as to be spaced apart from each other in the plane direction. In addition, the first magnetization fixed layer 11 is stacked on the first intermediate layer 21, and the second magnetization fixed layer 12 is stacked on the second intermediate layer 22. The light modulation element 1 further includes protective films 41 and 42 stacked on the magnetization fixed layers 11 and 12, respectively. Here, the light modulation element 1 has a concave shape in cross section. The light modulation element 1 shown in FIG. 2 is formed on a substrate 7, and a first electrode (electrode) 51 and a second electrode (electrode) 52 are formed as a pair of electrodes through two protective films 41 and 42. It is connected to the magnetization fixed layers 11 and 12. The intermediate layers 21 and 22, the magnetization fixed layers 11 and 12, and the protective films 41 and 42 are shown at the same thickness and the same height in the cross-sectional views of FIG. 2 and other drawings. It does not stipulate that the height positions are the same, and may be formed with different thicknesses and at different height positions.

平面視においては、図1に示すように、光変調素子1は正方形(矩形)である。したがって、磁化自由層3は光変調素子1と同じ正方形である。一方、中間層21,22および磁化固定層11,12は、長辺が光変調素子1(磁化自由層3)と同じ長さの長方形(図1において網掛けを付した領域)であり、それぞれ短辺方向(図1、図2における横方向)に2つを離間して並べられている。平面視における大きさについては、光変調素子1が後記する磁化反転動作を好適に行うために、磁化固定層11,12およびその下の中間層21,22のそれぞれが、300nm×400nm相当の面積以下であることが好ましく、一般的なスピン注入磁化反転素子の一個の大きさである300nm×100nm程度相当の面積であることがさらに好ましい。一方、光変調素子1の全体の、すなわち磁化自由層3の面積は特に規定されず、磁化固定層11,12の各面積の合計よりも膜面方向に拡張されても、後記するように磁化反転させることができる。具体的には、光変調素子1は、空間光変調器の画素アレイ(図1参照)として2次元配列されたときに、隣り合う光変調素子1,1同士が間隔を設けて絶縁されていればよい。   In plan view, as shown in FIG. 1, the light modulation element 1 is a square (rectangular). Therefore, the magnetization free layer 3 is the same square as the light modulation element 1. On the other hand, the intermediate layers 21 and 22 and the magnetization fixed layers 11 and 12 are rectangles (regions shaded in FIG. 1) whose long sides are the same length as the light modulation element 1 (magnetization free layer 3). Two are arranged apart from each other in the short side direction (lateral direction in FIGS. 1 and 2). With respect to the size in plan view, the magnetization fixed layers 11 and 12 and the intermediate layers 21 and 22 below each have an area equivalent to 300 nm × 400 nm in order to suitably perform the magnetization reversal operation described later by the light modulation element 1. Preferably, the area is equivalent to about 300 nm × 100 nm, which is one size of a general spin-injection magnetization switching element. On the other hand, the entire area of the light modulation element 1, that is, the area of the magnetization free layer 3 is not particularly defined, and even if it is expanded in the film surface direction with respect to the total area of the magnetization fixed layers 11 and 12, the magnetization will be described later. Can be reversed. Specifically, when the light modulation element 1 is two-dimensionally arranged as a pixel array of a spatial light modulator (see FIG. 1), the adjacent light modulation elements 1 and 1 are insulated with a gap therebetween. That's fine.

光変調素子1は、2つのスピン注入磁化反転素子を、磁化自由層を共有して接続した構造である。すなわち、光変調素子1は、第1磁化固定層11、第1中間層21、磁化自由層3からなるスピン注入磁化反転素子構造(以下、適宜、第1素子構造MR1と称する)と、第2磁化固定層12、第2中間層22、磁化自由層3からなるスピン注入磁化反転素子構造(以下、適宜、第2素子構造MR2と称する)を備えるといえる(図3(a)参照)。   The light modulation element 1 has a structure in which two spin-injection magnetization reversal elements are connected by sharing a magnetization free layer. That is, the light modulation element 1 includes a spin injection magnetization reversal element structure (hereinafter, referred to as a first element structure MR1 as appropriate) composed of a first magnetization fixed layer 11, a first intermediate layer 21, and a magnetization free layer 3, and a second It can be said that a spin-injection magnetization reversal element structure (hereinafter, appropriately referred to as a second element structure MR2) including the magnetization fixed layer 12, the second intermediate layer 22, and the magnetization free layer 3 is provided (see FIG. 3A).

素子構造MR1,MR2は、磁化が一方向に固定された磁化固定層11,12および磁化の方向が回転可能な磁化自由層3を、非磁性または絶縁体である中間層21,22を挟んで備えたCPP−GMR(Current Perpendicular to the Plane Giant Magneto-Resistance:垂直通電型巨大磁気抵抗効果)素子やTMR(Tunnel MagnetoResistance:トンネル磁気抵抗効果)素子等のスピン注入磁化反転素子構造である。特に、光変調素子1における2つのスピン注入磁化反転素子構造は、一方がTMR素子で他方がCPP−GMR素子であるか、両方がTMR素子であることが好ましく、本実施形態では、第1素子構造MR1がTMR素子、第2素子構造MR2がCPP−GMR素子である。さらに、光変調素子1は、光変調素子1の製造時におけるダメージからこれらの層を保護するために、最上層に保護膜41,42が設けられている。以下、光変調素子を構成する各要素について、詳細に説明する。   In the element structures MR1 and MR2, the magnetization fixed layers 11 and 12 whose magnetization is fixed in one direction and the magnetization free layer 3 whose magnetization direction can be rotated are sandwiched by intermediate layers 21 and 22 which are nonmagnetic or insulators. A spin injection magnetization reversal element structure such as a CPP-GMR (Current Perpendicular to the Plane Giant Magneto-Resistance) element or a TMR (Tunnel MagnetoResistance) element. In particular, it is preferable that one of the two spin-injection magnetization switching element structures in the light modulation element 1 is a TMR element and the other is a CPP-GMR element, or both are TMR elements. In the present embodiment, the first element The structure MR1 is a TMR element, and the second element structure MR2 is a CPP-GMR element. Further, the light modulation element 1 is provided with protective films 41 and 42 on the uppermost layer in order to protect these layers from damage during manufacture of the light modulation element 1. Hereafter, each element which comprises a light modulation element is demonstrated in detail.

(磁化固定層)
磁化固定層11,12は磁性体であり、磁化を互いに反対方向に固定されている。このような磁化固定層11,12は、CPP−GMR素子やTMR素子に用いられる公知の磁性材料にて構成することができ、特に、磁化自由層3の極カー効果で旋光角θkが大きくなる垂直磁気異方性材料を適用することが好ましい。具体的には、Fe,Co,Ni等の遷移金属とPd,Ptのような貴金属とを繰り返し積層したCo/Pd多層膜のような多層膜、Tb−Fe−Co,Gd−Fe等の希土類金属と遷移金属との合金(RE−TM合金)、L10系の規則合金としたFePt, FePd等が挙げられる。
(Magnetic pinned layer)
The magnetization fixed layers 11 and 12 are magnetic bodies, and the magnetization is fixed in directions opposite to each other. Such magnetization fixed layers 11 and 12 can be made of a known magnetic material used for CPP-GMR elements and TMR elements, and in particular, the optical rotation angle θk is increased by the polar Kerr effect of the magnetization free layer 3. It is preferable to apply a perpendicular magnetic anisotropic material. Specifically, a multilayer film such as a Co / Pd multilayer film in which transition metals such as Fe, Co, and Ni and noble metals such as Pd and Pt are repeatedly stacked, and a rare earth such as Tb—Fe—Co and Gd—Fe. an alloy of the metal and the transition metal (RE-TM alloy), FePt was L1 0 type ordered alloys, FePd, and the like.

また、磁化自由層3の磁化方向が回転しても磁化固定層11,12の磁化が固定されているように、磁化固定層11,12は、その保磁力Hcp1,Hcp2が磁化自由層3の保磁力Hcfよりも十分に大きくなるように、それぞれの材料を選択したり、磁化自由層3よりも厚く形成される。具体的には、磁化固定層11,12の厚さは3〜50nmの範囲において設計されることが好ましい。 Further, the magnetization fixed layers 11 and 12 have their coercive forces Hcp 1 and Hcp 2 having magnetization free layers so that the magnetizations of the magnetization fixed layers 11 and 12 are fixed even when the magnetization direction of the magnetization free layer 3 rotates. Each material is selected so as to be sufficiently larger than the coercive force Hcf of 3 or thicker than the magnetization free layer 3. Specifically, the thickness of the magnetization fixed layers 11 and 12 is preferably designed in the range of 3 to 50 nm.

磁化固定層11,12は、互いに反対方向の磁化に固定されるので、このような磁化方向とする初期設定を容易にするために、保磁力Hcp1,Hcp2が磁化自由層3の保磁力Hcfよりも大きいことに加えて、互いに異なる大きさになるように設計されることが好ましい。ここでは、第2磁化固定層12の保磁力Hcp2がより大きい、すなわちHcf<<Hcp1<Hcp2とする。したがって、磁化固定層11,12は、互いに異なる材料や厚さとしてもよい。あるいは、後記の空間光変調器の第3実施形態の変形例(図12(c)参照)に示すように、異なる面積(平面視形状)としてもよい。 Since the magnetization fixed layers 11 and 12 are fixed to magnetizations in opposite directions, the coercive forces Hcp 1 and Hcp 2 are used as the coercive force of the magnetization free layer 3 in order to facilitate the initial setting of such magnetization directions. In addition to being larger than Hcf, it is preferably designed to have different sizes. Here, the coercive force Hcp 2 of the second magnetization fixed layer 12 is larger, that is, Hcf << Hcp 1 <Hcp 2 . Therefore, the magnetization fixed layers 11 and 12 may have different materials and thicknesses. Or as shown in the modification (refer FIG.12 (c)) of 3rd Embodiment of a spatial light modulator mentioned later, it is good also as a different area (plan view shape).

(磁化自由層)
磁化自由層3は磁性体であり、磁化固定層11,12が磁化方向を固定されているのに対し、磁化自由層3はスピン注入によって磁化を容易に反転(180°回転)させることができ、磁化固定層11,12のいずれか一方と同じ磁化方向を示す。磁化自由層3は前記の公知の磁性材料にて構成することができ、磁化固定層11,12と同様に、垂直磁気異方性材料を適用することが好ましい。特に、磁化自由層3は、光変調素子1(空間光変調器の画素)への入射光の波長において磁気光学効果の大きい材料を選択することがより好ましい。例えば、短波長域(400nm近傍)はCo/Pt多層膜、長波長域(700nm近傍)はGd−Fe合金が好適である。
(Magnetization free layer)
The magnetization free layer 3 is a magnetic material, and the magnetization fixed layers 11 and 12 have a fixed magnetization direction, whereas the magnetization free layer 3 can easily reverse the magnetization (rotate 180 °) by spin injection. The magnetization direction is the same as any one of the magnetization fixed layers 11 and 12. The magnetization free layer 3 can be made of the above-mentioned known magnetic material, and it is preferable to apply a perpendicular magnetic anisotropic material, like the magnetization fixed layers 11 and 12. In particular, it is more preferable to select a material having a large magneto-optic effect at the wavelength of light incident on the light modulation element 1 (pixel of the spatial light modulator) for the magnetization free layer 3. For example, a Co / Pt multilayer film is suitable for the short wavelength region (near 400 nm), and a Gd—Fe alloy is suitable for the long wavelength region (near 700 nm).

また、前記した通り、磁化自由層3は、保磁力Hcfが磁化固定層11,12の保磁力Hcp1,Hcp2よりも小さくなるように、材料を選択したり、磁化固定層11,12よりも薄く形成される。具体的には、磁化自由層3の厚さは1〜20nmの範囲において設計されることが好ましい。 Further, as described above, the magnetization free layer 3 is made of a material selected so that the coercive force Hcf is smaller than the coercive forces Hcp 1 and Hcp 2 of the magnetization fixed layers 11 and 12, or from the magnetization fixed layers 11 and 12. Is also formed thin. Specifically, the thickness of the magnetization free layer 3 is preferably designed in the range of 1 to 20 nm.

(中間層)
第1中間層21は、第1磁化固定層11と磁化自由層3との間に設けられ、第2中間層22は、第2磁化固定層12と磁化自由層3との間に設けられる。本発明に係る光変調素子1においては、第1中間層21と第2中間層22とが、抵抗が互いに異なるように、材料や厚さを異なるものとして形成される。具体的には、中間層21,22は抵抗が2倍以上異なることが好ましいため、非磁性金属、絶縁体、半導体から互いに異なる1種ずつを選択する。
(Middle layer)
The first intermediate layer 21 is provided between the first magnetization fixed layer 11 and the magnetization free layer 3, and the second intermediate layer 22 is provided between the second magnetization fixed layer 12 and the magnetization free layer 3. In the light modulation element 1 according to the present invention, the first intermediate layer 21 and the second intermediate layer 22 are formed with different materials and thicknesses so as to have different resistances. Specifically, since it is preferable that the intermediate layers 21 and 22 have resistances that differ by a factor of two or more, one different type is selected from nonmagnetic metals, insulators, and semiconductors.

さらに、前記した通り、スピン注入磁化反転素子構造の少なくとも一方がTMR素子であることが好ましいため、中間層21,22の少なくとも一方、ここでは第1中間層21がMgO,Al23,HfO2のような絶縁体や、Mg/MgO/Mgのような絶縁体を含む積層膜からなる。第1中間層21は、このような絶縁体を備えることでトンネル障壁層となり、第1磁化固定層11、第1中間層21、および磁化自由層3からなる第1素子構造MR1はTMR素子となる。このとき、第1中間層21の厚さは0.6〜2nm程度とすることが好ましく、1nm以下とすることがさらに好ましい。一方、第2中間層22はCu,Ag,Al,Auのような非磁性金属やZnO等の半導体からなる。したがって、第2磁化固定層12、第2中間層22、および磁化自由層3からなる第2素子構造MR2はCPP−GMR素子構造となる。このとき、第2中間層22の厚さは1〜10nmとすることが好ましい。 Furthermore, as described above, it is preferable that at least one of the spin-injection magnetization switching element structures is a TMR element. Therefore, at least one of the intermediate layers 21 and 22, here, the first intermediate layer 21 is MgO, Al 2 O 3 , HfO. 2 and a laminated film containing an insulator such as Mg / MgO / Mg. The first intermediate layer 21 becomes a tunnel barrier layer by including such an insulator, and the first element structure MR1 including the first magnetization fixed layer 11, the first intermediate layer 21, and the magnetization free layer 3 has the same structure as the TMR element. Become. At this time, the thickness of the first intermediate layer 21 is preferably about 0.6 to 2 nm, and more preferably 1 nm or less. On the other hand, the second intermediate layer 22 is made of a nonmagnetic metal such as Cu, Ag, Al, or Au, or a semiconductor such as ZnO. Therefore, the second element structure MR2 including the second magnetization fixed layer 12, the second intermediate layer 22, and the magnetization free layer 3 has a CPP-GMR element structure. At this time, the thickness of the second intermediate layer 22 is preferably 1 to 10 nm.

(保護膜)
保護膜41,42は、光変調素子1の製造時におけるダメージから磁化固定層11,12等の各層を保護するために、最上層に設けられている。保護膜41,42は、Ta,Ru,Cuの単層、またはCu/Ta,Cu/Ruの2層等から構成される。なお、前記の2層構造とする場合は、いずれもCuを内側(下層)とする。保護膜41,42の厚さは、1nm未満であると連続した膜を形成し難く、一方、10nmを超えて厚くしても、製造工程において磁化固定層11,12等を保護する効果がそれ以上には向上しない。したがって、保護膜41,42の厚さは1〜10nmとすることが好ましい。なお、保護膜41,42の材料および厚さは同一でなくてもよい。
(Protective film)
The protective films 41 and 42 are provided in the uppermost layer in order to protect each layer such as the magnetization fixed layers 11 and 12 from damage during the manufacture of the light modulation element 1. The protective films 41 and 42 are composed of a single layer of Ta, Ru, Cu, or two layers of Cu / Ta, Cu / Ru. In addition, when setting it as the said 2 layer structure, all make Cu inside (lower layer). When the thickness of the protective films 41 and 42 is less than 1 nm, it is difficult to form a continuous film. On the other hand, even if the thickness exceeds 10 nm, the effect of protecting the magnetization fixed layers 11 and 12 and the like in the manufacturing process is reduced. It does not improve above. Therefore, the thickness of the protective films 41 and 42 is preferably 1 to 10 nm. The material and thickness of the protective films 41 and 42 may not be the same.

(光変調素子の磁化反転動作)
次に、本実施形態における光変調素子の磁化反転の動作を、図3を参照して説明する。なお、図3において保護膜41,42は図示を省略する。光変調素子1において、第1磁化固定層11は上向きに、第2磁化固定層12は下向きに、それぞれ磁化が固定されている。
(Magnetic reversal operation of the light modulator)
Next, the magnetization reversal operation of the light modulation element in this embodiment will be described with reference to FIG. In FIG. 3, the protective films 41 and 42 are not shown. In the light modulation element 1, the magnetization is fixed to the first magnetization fixed layer 11 upward and the second magnetization fixed layer 12 downward.

まず、磁化自由層3を図3(a)に示す下向きの磁化から、図3(c)に示す上向きの磁化に反転させる光変調素子1の動作を説明する。図3(b)に示すように、電源95から電流−IWを供給して、第1磁化固定層11に接続した第1電極51を「−」に、第2磁化固定層12に接続した第2電極52を「+」にして、第1磁化固定層11側から電子を注入する。すると、第1磁化固定層11により当該第1磁化固定層11の磁化と逆方向の下向きのスピンを持つ電子d2が弁別されて、第1電極51からは上向きのスピンを持つ電子d1のみが第1磁化固定層11に注入され、さらに第1中間層21を介して磁化自由層3に注入される。磁化自由層3においては、電子d1の上向きスピンによるスピントルクが作用することによって当該磁化自由層3の内部電子のスピンが反転し、第1磁化固定層11の直下の領域から磁化が上向きへ反転する。さらに、磁化自由層3に注入された電子d1は、磁化が逆方向の第2磁化固定層12により弁別されるために磁化自由層3に留まり、その結果、図3(c)に示すように、磁化自由層3は、磁化固定層11,12が積層された領域だけでなく、これら2つの領域に挟まれた領域も含めて、すなわち全体が、第1磁化固定層11の磁化方向と同じ上向きの磁化を示す状態に変化(磁化反転)する。 First, the operation of the light modulation element 1 for reversing the magnetization free layer 3 from the downward magnetization shown in FIG. 3A to the upward magnetization shown in FIG. 3C will be described. As shown in FIG. 3B, the current −I W is supplied from the power source 95, and the first electrode 51 connected to the first magnetization fixed layer 11 is connected to “−” and the second magnetization fixed layer 12. The second electrode 52 is set to “+”, and electrons are injected from the first magnetization fixed layer 11 side. Then, the first magnetization fixed layer 11 discriminates electrons d 2 having a downward spin opposite to the magnetization of the first magnetization fixed layer 11, and only the electron d 1 having an upward spin from the first electrode 51. Is injected into the first magnetization fixed layer 11 and further injected into the magnetization free layer 3 through the first intermediate layer 21. In the magnetization free layer 3, the spin of internal electrons of the magnetization free layer 3 is reversed by the spin torque due to the upward spin of the electron d 1 , and the magnetization is directed upward from the region immediately below the first magnetization fixed layer 11. Invert. Further, the electrons d 1 injected into the magnetization free layer 3 remain in the magnetization free layer 3 because the magnetization is discriminated by the second magnetization fixed layer 12 in the reverse direction, and as a result, as shown in FIG. In addition, the magnetization free layer 3 includes not only the region where the magnetization fixed layers 11 and 12 are stacked, but also the region sandwiched between these two regions, that is, the entire region is the same as the magnetization direction of the first magnetization fixed layer 11. Changes to a state showing the same upward magnetization (magnetization reversal).

次に、磁化自由層3を図3(c)に示す上向きの磁化から、図3(a)に示す下向きの磁化に反転させる光変調素子1の動作を説明する。前記の図3(b)に示す動作とは反対に、図3(d)に示すように、電源95から電流+IWを供給して、第1電極51を「+」に、第2電極52を「−」にして、第2磁化固定層12側から電子を注入する。すると、磁化自由層3には下向きのスピンを持つ電子d2のみが第2中間層22を介して注入され、電子d2の下向きスピンによるスピントルクが作用することによって当該磁化自由層3の内部電子のスピンが反転し、第2磁化固定層12の直下の領域から磁化が下向きへと反転する。さらに、磁化自由層3に注入された電子d2は、磁化が逆方向の第1磁化固定層11により弁別されるために磁化自由層3に留まり、その結果、磁化自由層3は、図3(a)に示すように、全体が第2磁化固定層12の磁化方向と同じ下向きの磁化を示す状態に変化(磁化反転)する。 Next, the operation of the light modulation element 1 for reversing the magnetization free layer 3 from the upward magnetization shown in FIG. 3C to the downward magnetization shown in FIG. Contrary to the operation shown in FIG. 3 (b), as shown in FIG. 3 (d), the current + I W is supplied from the power source 95, the first electrode 51 is set to “+”, and the second electrode 52 is supplied. Is set to “−”, and electrons are injected from the second magnetization fixed layer 12 side. Then, only the electrons d 2 having a downward spin are injected into the magnetization free layer 3 through the second intermediate layer 22, and the spin torque due to the downward spin of the electrons d 2 acts on the inside of the magnetization free layer 3. The spin of electrons is reversed, and the magnetization is reversed downward from the region immediately below the second magnetization fixed layer 12. Further, the electrons d 2 injected into the magnetization free layer 3 remain in the magnetization free layer 3 because the magnetization is discriminated by the first magnetization fixed layer 11 in the reverse direction, and as a result, the magnetization free layer 3 is shown in FIG. As shown to (a), the whole changes to the state which shows the downward magnetization same as the magnetization direction of the 2nd magnetization fixed layer 12 (magnetization reversal).

このように、本実施形態における光変調素子1は、磁化自由層3の同じ側(上側)の面に中間層21,22を挟んで積層された2つの磁化固定層11,12のそれぞれに一対の電極51,52を接続して電流−IW(または+IW)を供給することで、磁化自由層3の磁化方向を変化させる(磁化反転させる)ことができる。したがって、本実施形態における光変調素子1は、2つのスピン注入磁化反転素子構造のそれぞれすなわち磁化固定層11,12および中間層21,22を、スピン注入磁化反転に好適な小さな面積として、共有される磁化自由層3において電流が流れる膜面方向に磁壁が移動して磁化反転するので、この磁化自由層3を大きな面積に形成することができる。また、光変調素子1は、2つの磁化固定層11,12によるスピン注入駆動のため、磁化反転動作が安定したものとなる。なお、電流−IW,+IWの大きさ|IW|は、光変調素子1の磁化自由層3を磁化反転させる電流(磁化反転電流)ISTS以上であればよい。この磁化反転電流ISTSは、光変調素子1の2つのスピン注入磁化反転素子構造MR1,MR2の磁化反転電流I1STS,I2STSのより大きい方であればよく、あるいは、−IW≦−I1STS、+IW≧+I2STSと異なる大きさとしてもよく、素子構造MR1,MR2の面積、各層の材料や厚さ等によって決定される。 As described above, the light modulation element 1 in the present embodiment is paired with each of the two magnetization fixed layers 11 and 12 stacked on the same side (upper side) of the magnetization free layer 3 with the intermediate layers 21 and 22 interposed therebetween. By connecting the electrodes 51 and 52 and supplying a current −I W (or + I W ), the magnetization direction of the magnetization free layer 3 can be changed (magnetization reversed). Therefore, the light modulation element 1 in the present embodiment is shared with each of the two spin injection magnetization reversal element structures, that is, the magnetization fixed layers 11 and 12 and the intermediate layers 21 and 22 as a small area suitable for spin injection magnetization reversal. In the magnetization free layer 3, the domain wall moves in the direction of the film surface through which the current flows to reverse the magnetization, so that the magnetization free layer 3 can be formed in a large area. Further, since the light modulation element 1 is driven by spin injection by the two magnetization fixed layers 11 and 12, the magnetization reversal operation becomes stable. The magnitudes | I W | of the currents −I W and + I W may be equal to or greater than the current (magnetization reversal current) I STS that reverses the magnetization of the magnetization free layer 3 of the light modulation element 1. This magnetization reversal current I STS may be larger than the magnetization reversal currents I1 STS and I2 STS of the two spin-injection magnetization reversal element structures MR1 and MR2 of the light modulation element 1, or −I W ≦ −I1 STS , + I W ≧ + I2 The size may be different from STS, and is determined by the area of the element structures MR1 and MR2, the material and thickness of each layer, and the like.

ここで、2つのスピン注入磁化反転素子構造MR1,MR2のそれぞれの磁化反転電流I1STS,I2STSの差が大き過ぎると、例えばI1STS<<I2STSの場合、I2STS以上の大きさの電流が少なくとも+IWとして光変調素子1に供給されたときに、高抵抗のTMR素子である第1素子構造MR1に過剰な電流が流れることになり、第1中間層21が破壊される虞がある。したがって、光変調素子1は、素子構造MR1,MR2のそれぞれの磁化反転電流I1STS,I2STSの差が100倍以内になるように、設計されることが好ましい。 Here, if the difference between the magnetization reversal currents I1 STS and I2 STS of the two spin-injection magnetization reversal element structures MR1 and MR2 is too large, for example, if I1 STS << I2 STS , a current greater than or equal to I2 STS Is supplied to the light modulation element 1 as at least + I W , an excessive current flows through the first element structure MR1, which is a high-resistance TMR element, and the first intermediate layer 21 may be destroyed. . Therefore, the light modulation element 1 is preferably designed so that the difference between the magnetization reversal currents I1 STS and I2 STS of the element structures MR1 and MR2 is within 100 times.

なお、図3(a)、(c)にそれぞれ示すように、光変調素子1は、磁化自由層3が下向きの磁化を示すときに電流+IWを供給されたり、反対に磁化自由層3が上向きの磁化を示すときに電流−IWを供給されても、磁化自由層3の磁化方向は変化しない。また、光変調素子1は、磁化自由層3の磁化方向が上または下に一様であるときに電流供給を停止されても、磁化自由層3自体の保磁力Hcfにより磁化方向が変化することはない。したがって、光変調素子1の駆動電流として、パルス電流のように磁化方向を反転させる電流値(≧ISTS)に一時的に到達する電流を用いることができる。 3A and 3C, the light modulation element 1 is supplied with a current + I W when the magnetization free layer 3 exhibits downward magnetization, or on the contrary, the magnetization free layer 3 Even if the current −I W is supplied when showing upward magnetization, the magnetization direction of the magnetization free layer 3 does not change. Further, in the light modulation element 1, even when the current supply is stopped when the magnetization direction of the magnetization free layer 3 is uniform upward or downward, the magnetization direction changes due to the coercive force Hcf of the magnetization free layer 3 itself. There is no. Therefore, a current that temporarily reaches a current value (≧ I STS ) that reverses the magnetization direction, such as a pulse current, can be used as the drive current of the light modulation element 1.

(光変調素子の光変調動作)
次に、光変調素子1の光変調の動作を、図4を参照して説明する。光変調素子1に入射した光が磁性体である磁化自由層3で反射すると、磁気光学効果により、光はその偏光の向きが変化(旋光)して出射する。さらに、磁性体の磁化方向が180°異なると、当該磁性体の磁気光学効果による旋光の向きは反転する。したがって、図4(a)、(b)にそれぞれ示す、磁化自由層3の磁化方向が互いに180°異なる光変調素子1における旋光角は−θk,+θkで、互いに逆方向に偏光面が回転する。このように、光変調素子1は、その出射光の偏光の向きを、供給される電流IWの向き(正負)に応じて変化させることで後記の空間光変調器等の画素として機能する。なお、旋光角−θk,+θkは、光変調素子1での1回の反射による旋光(カー回転)に限られず、例えば多重反射により累積された角度も含める。
(Light modulation operation of light modulation element)
Next, the light modulation operation of the light modulation element 1 will be described with reference to FIG. When the light incident on the light modulation element 1 is reflected by the magnetization free layer 3 that is a magnetic material, the direction of polarization of the light changes (rotates) due to the magneto-optic effect, and the light is emitted. Further, if the magnetization direction of the magnetic material is different by 180 °, the direction of optical rotation due to the magneto-optical effect of the magnetic material is reversed. Therefore, the optical rotation angles in the light modulation elements 1 shown in FIGS. 4A and 4B, in which the magnetization directions of the magnetization free layer 3 are 180 ° different from each other, are −θk and + θk, and the planes of polarization rotate in opposite directions. . As described above, the light modulation element 1 functions as a pixel of a spatial light modulator or the like described later by changing the direction of polarization of the emitted light in accordance with the direction (positive / negative) of the supplied current I W. The optical rotation angles −θk and + θk are not limited to optical rotation (Kerr rotation) by one reflection at the light modulation element 1, and include, for example, angles accumulated by multiple reflection.

本発明に係る光変調素子は、前記した通り、空間光変調器の画素として2次元配列されて設けられる。ここで、多数の画素が2次元状に規則的に配列された構造を有する空間光変調器は、平行な波面を有して直進する光が各画素に入射すると、当該画素の端部でその光の進む方向が曲げられ(回折現象)、出射した光による干渉効果(波の強め合いと弱め合い)によって、光の強め合う方向が複数本に分離する。この回折現象により、入射光の直進方向に対して回折角φnの角度に曲げられた±1次、±2次、・・・、±n次の回折光が生じる(nは、0または自然数)。回折角φnは、入射光の波長λおよび画素ピッチpに依存する。空間光変調器をホログラフィ装置に応用する際には、一般的には1次回折光が用いられる。n=0における0次回折光は、反射型の空間光変調器においては、入射角と同一角度で反射する反射光と等価である(透過型の空間光変調器の場合は、入射光の直進方向と同一方向の透過光と等価である)。したがって、本明細書において、光変調素子(空間光変調器の画素)から出射した反射光(出射光)とは、前記のn次回折光も含まれるものとして説明する。この回折光においても、磁性体(磁化自由層)の磁化方向に応じて、ファラデー効果またはカー効果による偏光の向きの変化(旋光)が生じる。 As described above, the light modulation elements according to the present invention are provided in a two-dimensional array as pixels of the spatial light modulator. Here, a spatial light modulator having a structure in which a large number of pixels are regularly arranged in a two-dimensional manner, when light traveling straight and having a parallel wavefront is incident on each pixel, the spatial light modulator at the end of the pixel. The direction in which the light travels is bent (diffraction phenomenon), and the direction in which the light is strengthened is separated into multiple lines by the interference effect (wave strengthening and weakening) due to the emitted light. This diffraction phenomenon, ± 1-order bent at an angle of diffraction angle phi n with respect to the rectilinear direction of the incident light, ± 2-order, · · ·, ± n order diffracted light is generated (n is 0 or a natural number ). The diffraction angle φ n depends on the wavelength λ of incident light and the pixel pitch p. When applying a spatial light modulator to a holographic device, first-order diffracted light is generally used. The 0th-order diffracted light at n = 0 is equivalent to reflected light that is reflected at the same angle as the incident angle in the reflective spatial light modulator (in the case of a transmissive spatial light modulator, the rectilinear direction of the incident light). Is equivalent to transmitted light in the same direction). Therefore, in the present specification, the description will be made assuming that the reflected light (emitted light) emitted from the light modulation element (pixel of the spatial light modulator) includes the n-th order diffracted light. Also in this diffracted light, a change in polarization direction (optical rotation) due to the Faraday effect or the Kerr effect occurs depending on the magnetization direction of the magnetic material (magnetization free layer).

本発明に係る光変調素子1は、磁化自由層3の側すなわち下方から光を入射され、反射させて下方へ出射する。したがって、図2に示すように、光変調素子1は透明な基板7上に形成され、基板7を透過した光が入射される。そして、磁化固定層11,12上に設けられる電極51,52は、光を透過させる必要がないため、低抵抗の金属材料を適用することができる(後記の空間光変調器の実施形態において説明する)。   The light modulation element 1 according to the present invention receives light from the side of the magnetization free layer 3, that is, from below, reflects the light, and emits it downward. Therefore, as shown in FIG. 2, the light modulation element 1 is formed on the transparent substrate 7, and light transmitted through the substrate 7 is incident thereon. Since the electrodes 51 and 52 provided on the magnetization fixed layers 11 and 12 do not need to transmit light, a low-resistance metal material can be applied (described in an embodiment of the spatial light modulator described later). To do).

(光変調素子の抵抗変化)
次に、本実施形態における光変調素子の磁化反転による抵抗の変化を、図4を参照して説明する。図4(a)、(b)のそれぞれに示す光変調素子1は、図3(a)、(b)に示す光変調素子1と同じ磁化状態である。なお、詳しくは後記するが、図4において、光変調素子1に副電源96から供給されている電流ITSTは、磁化反転電流ISTSよりも小さく、光変調素子1の磁化状態を変化させるものではない。光変調素子1は、前記した通り2つのスピン注入磁化反転素子構造MR1,MR2を備えている(図3(a)参照)。
(Resistance change of light modulation element)
Next, a change in resistance due to the magnetization reversal of the light modulation element in the present embodiment will be described with reference to FIG. The light modulation element 1 shown in each of FIGS. 4A and 4B is in the same magnetization state as the light modulation element 1 shown in FIGS. 3A and 3B. As will be described in detail later, in FIG. 4, the current I TST supplied to the optical modulation element 1 from the sub power supply 96 is smaller than the magnetization reversal current I STS and changes the magnetization state of the optical modulation element 1. is not. As described above, the light modulation element 1 includes the two spin-injection magnetization reversal element structures MR1 and MR2 (see FIG. 3A).

図4(a)に示す光変調素子1は、磁化自由層3の磁化方向が下向きで第1磁化固定層11と磁化方向が反平行、すなわち第1素子構造MR1の磁化が反平行(AP)(図14(b)参照)である。このときの第1素子構造MR1の抵抗をR1APと表す。同時に、図4(a)に示す光変調素子1は、磁化自由層3が第2磁化固定層12と磁化方向が平行、すなわち第2素子構造MR2の磁化が平行(P)(図14(a)参照)である。このときの第2素子構造MR2の抵抗をR2Pと表す。そして、この光変調素子1の全体の抵抗RDは、スピン注入磁化反転素子構造MR1,MR2の各抵抗の和であるので、下式(1)で表される。
D=R1AP+R2P ・・・(1)
In the light modulation element 1 shown in FIG. 4A, the magnetization direction of the magnetization free layer 3 is downward and the magnetization direction of the first magnetization fixed layer 11 is antiparallel, that is, the magnetization of the first element structure MR1 is antiparallel (AP). (See FIG. 14B). The resistance of the first element structure MR1 at this time is expressed as R1 AP. At the same time, in the light modulation element 1 shown in FIG. 4A, the magnetization free layer 3 has a magnetization direction parallel to the second magnetization fixed layer 12, that is, the magnetization of the second element structure MR2 is parallel (P) (FIG. 14A ))). The resistance of the second element structure MR2 in this case represented as R2 P. The entire resistance R D of the light modulation element 1 is the sum of the resistances of the spin-injection magnetization switching element structures MR1 and MR2, and is expressed by the following expression (1).
R D = R1 AP + R2 P (1)

一方、図4(b)に示す光変調素子1は、磁化自由層3の磁化方向が上向きで第1磁化固定層11と磁化方向が平行であり、この磁化が平行(P)である第1素子構造MR1の抵抗をR1Pと表す。同時に、図4(b)に示す光変調素子1は、磁化自由層3が第2磁化固定層12と磁化方向が反平行であり、この磁化が反平行(AP)である第2素子構造MR2の抵抗をR2APと表す。そして、この光変調素子1の全体の抵抗RUは、下式(2)で表される。
U=R1P+R2AP ・・・(2)
On the other hand, in the light modulation element 1 shown in FIG. 4B, the magnetization direction of the magnetization free layer 3 is upward, the magnetization direction of the first magnetization fixed layer 11 is parallel, and the magnetization is parallel (P). the resistance of the device structure MR1 represented as R1 P. At the same time, the light modulation element 1 shown in FIG. 4B has a second element structure MR2 in which the magnetization free layer 3 is antiparallel to the second magnetization fixed layer 12 and the magnetization direction is antiparallel (AP). Is represented by R2AP. The overall resistance R U of the optical modulation element 1 is represented by the following formula (2).
R U = R1 P + R2 AP (2)

スピン注入磁化反転素子は、磁化が反平行の方が平行よりも抵抗が大きい。スピン注入磁化反転素子構造MR1,MR2のそれぞれの磁化反転による抵抗の変化量を、ΔR1,ΔR2(>0)と表す。すると、下式(3)、(4)より、光変調素子1の抵抗RD,RUは、下式(5)、(6)に変換される。これにより、光変調素子1の磁化反転による抵抗の変化量ΔRは、下式(7)で表されることになる。
ΔR1=R1AP−R1P ・・・(3)
ΔR2=R2AP−R2P ・・・(4)
D=R1P+ΔR1+R2P ・・・(5)
U=R1P+R2P+ΔR2 ・・・(6)
ΔR=|ΔR1−ΔR2| ・・・(7)
The spin-injection magnetization reversal element has higher resistance when the magnetization is antiparallel than when parallel. The amount of change in resistance due to the magnetization reversal of each of the spin-injection magnetization reversal element structures MR1 and MR2 is expressed as ΔR1 and ΔR2 (> 0). Then, from the following equations (3) and (4), the resistances R D and R U of the light modulation element 1 are converted into the following equations (5) and (6). As a result, the resistance change ΔR due to the magnetization reversal of the light modulation element 1 is expressed by the following equation (7).
ΔR1 = R1 AP −R1 P (3)
ΔR2 = R2 AP -R2 P ··· ( 4)
R D = R1 P + ΔR1 + R2 P (5)
R U = R1 P + R2 P + ΔR2 (6)
ΔR = | ΔR1−ΔR2 | (7)

ここで、一般的に、スピン注入磁化反転素子(光変調素子)101(図14参照)は、CPP−GMR素子よりもTMR素子である方が、抵抗変化率((R101AP−R101P)/R101P)が大きい。すなわち本実施形態に係る光変調素子1は、TMR素子である第1素子構造MR1の抵抗の変化量ΔR1の方が、CPP−GMR素子である第2素子構造MR2の抵抗の変化量ΔR2よりも大きい。したがって、光変調素子1は、スピン注入磁化反転素子構造MR1,MR2の素子抵抗R1P,R2Pの差の多少にかかわらず、ΔR1,ΔR2の差が十分に大きい(ΔR1>>ΔR2)ので、RD>>RUとなり、抵抗の変化量ΔR(=ΔR1−ΔR2)>>0となる。 Here, in general, the rate of change in resistance ((R101 AP -R101 P ) / in the spin-injection magnetization reversal element (light modulation element) 101 (see FIG. 14) is a TMR element rather than a CPP-GMR element. R101 P) is large. That is, in the light modulation element 1 according to the present embodiment, the resistance change ΔR1 of the first element structure MR1 that is a TMR element is more than the resistance change ΔR2 of the second element structure MR2 that is a CPP-GMR element. large. Therefore, in the light modulation element 1, the difference between ΔR1 and ΔR2 is sufficiently large (ΔR1 >> ΔR2) regardless of the difference between the element resistances R1 P and R2 P of the spin injection magnetization reversal element structures MR1 and MR2. R D >> R U , and the resistance change amount ΔR (= ΔR1−ΔR2) >> 0.

このように、光変調素子1は、図14に示すような一般的なスピン注入磁化反転素子と同様に、磁化反転動作により、異なる抵抗RD,RUに変化する。そして、この抵抗の値は、光変調素子1の駆動(磁化反転動作)用に接続された電極51,52から測定することができるので、光変調素子1は、抵抗値の測定用に別途電極を接続する必要はない。光変調素子1の抵抗値の測定方法の詳細は、空間光変調器の書込みエラー検出方法(画素判定)の説明にて後記する。 As described above, the light modulation element 1 changes to different resistances R D and R U by the magnetization reversal operation similarly to the general spin injection magnetization reversal element as shown in FIG. Since the resistance value can be measured from the electrodes 51 and 52 connected for driving (magnetization reversal operation) of the light modulation element 1, the light modulation element 1 is provided with a separate electrode for measuring the resistance value. There is no need to connect. Details of the method of measuring the resistance value of the light modulation element 1 will be described later in the description of the write error detection method (pixel determination) of the spatial light modulator.

光変調素子1の別の実施形態として、2つのスピン注入磁化反転素子構造MR1,MR2の両方がTMR素子であってもよい。一般的に、スピン注入磁化反転素子(光変調素子)101(図14参照)は、TMR素子である場合、抵抗の変化量(R101AP−R101P)が、中間層102の抵抗が高いほど大きくなる傾向がある。したがって、中間層21,22を、絶縁体や絶縁体を含む積層膜であって、互いに抵抗の異なるように絶縁体の種類や厚さを異なる構造とすることにより、素子構造MR1,MR2のそれぞれの抵抗の変化量ΔR1,ΔR2の差を十分に大きくすることができる。 As another embodiment of the light modulation element 1, both of the two spin injection magnetization reversal element structures MR1 and MR2 may be TMR elements. In general, when the spin-injection magnetization switching element (light modulation element) 101 (see FIG. 14) is a TMR element, the resistance change amount (R101 AP -R101 P ) increases as the resistance of the intermediate layer 102 increases. Tend to be. Accordingly, the intermediate layers 21 and 22 are insulators or laminated films including insulators, and have different structures and thicknesses of the insulators so as to have different resistances. The difference between the resistance changes ΔR1 and ΔR2 can be made sufficiently large.

さらに、光変調素子1の別の実施形態として、磁化固定層11,12は、保磁力Hcp1,Hcp2に差を設けることに代えて、少なくとも一方を、交換結合した磁性膜を備えた多層構造としてもよい。具体的には、磁化固定層11,12は、Ru等の磁気交換結合膜を挟んで、Co−Fe膜、またはCo−Fe/Tb−Fe−Co等の積層膜をさらに積層した3、4層程度の多層構造としてもよい。例えば、中間層21,22の側から、Co−Fe/Ru/Co−Feの3層構造に、Tb−Fe−Co等の保磁力の大きな垂直磁化膜を積層したCo−Fe/Ru/Co−Fe/Tb−Fe−Coの4層構造とすることができる。このような多層構造において、磁気交換結合膜を挟んだ磁性膜同士は、磁気交換結合膜の厚さによって、互いに反平行な、または平行な磁化方向を示す。 Furthermore, as another embodiment of the light modulation element 1, the magnetization fixed layers 11 and 12 are provided with a multilayer having a magnetic film in which at least one of them is exchange-coupled instead of providing a difference in the coercive forces Hcp 1 and Hcp 2. It is good also as a structure. Specifically, the magnetization fixed layers 11 and 12 are obtained by further laminating a Co—Fe film or a laminated film such as Co—Fe / Tb—Fe—Co with a magnetic exchange coupling film such as Ru interposed therebetween. It is good also as a multilayer structure about a layer. For example, from the side of the intermediate layers 21 and 22, a Co—Fe / Ru / Co in which a perpendicularly magnetized film having a large coercive force such as Tb—Fe—Co is stacked on a three-layer structure of Co—Fe / Ru / Co—Fe. A four-layer structure of -Fe / Tb-Fe-Co can be formed. In such a multilayer structure, the magnetic films sandwiching the magnetic exchange coupling film exhibit anti-parallel or parallel magnetization directions depending on the thickness of the magnetic exchange coupling film.

例えば、第1磁化固定層11はCo−Fe(5nm)の単層とし、第2磁化固定層12は第2中間層22の側から、Co−Fe(2nm)/Ru(0.7nm)/Co−Fe(5nm)の3層構造とする。なお、( )内は厚さを示す。このような光変調素子1に磁界を印加すると、磁化固定層11,12のそれぞれにおける5nm厚さのCo−Fe膜の磁化方向が印加磁界の向きに揃い、磁化固定層12の中間層22側の2nm厚さのCo−Fe膜の磁化方向が反平行な磁化方向となる。あるいは磁化固定層11,12の両方に磁気交換結合膜を設けた場合、第2磁化固定層12は前記と同じ3層構造とし、第1磁化固定層11は第1中間層21の側から、Co−Fe(5nm)/Ru(0.7nm)/Co−Fe(2nm)の各層の厚さを変えた3層構造とする。このような光変調素子1に磁界を印加した場合も、磁界の向きに5nm厚さのCo−Fe膜の磁化方向が揃い、Ru膜を隔てた2nm厚さのCo−Fe膜の磁化方向が反平行な磁化方向となるため、磁化固定層11,12のそれぞれの中間層21,22の側のCo−Fe膜の磁化方向が互いに反平行となる。磁化固定層11,12の少なくとも一方がこのような多層構造であることにより、磁化固定層11,12(多層構造における中間層21,22の側の磁性膜)を互いに反対方向の磁化に容易に初期設定することができる。このような光変調素子1についても、前記に説明したように磁化自由層3が磁化反転して、光変調動作をし、また抵抗が変化するので、空間光変調器10の画素8に設けることができる。   For example, the first magnetization fixed layer 11 is a single layer of Co—Fe (5 nm), and the second magnetization fixed layer 12 is Co—Fe (2 nm) / Ru (0.7 nm) / from the second intermediate layer 22 side. A three-layer structure of Co—Fe (5 nm) is adopted. In addition, () shows thickness. When a magnetic field is applied to such a light modulation element 1, the magnetization direction of the Co-Fe film having a thickness of 5 nm in each of the magnetization fixed layers 11 and 12 is aligned with the direction of the applied magnetic field, and the intermediate layer 22 side of the magnetization fixed layer 12 The magnetization direction of the 2 nm thick Co—Fe film is an antiparallel magnetization direction. Alternatively, when a magnetic exchange coupling film is provided on both the magnetization fixed layers 11 and 12, the second magnetization fixed layer 12 has the same three-layer structure as described above, and the first magnetization fixed layer 11 is from the first intermediate layer 21 side. A three-layer structure in which the thickness of each layer of Co—Fe (5 nm) / Ru (0.7 nm) / Co—Fe (2 nm) is changed is adopted. Even when a magnetic field is applied to such a light modulation element 1, the magnetization direction of the Co-Fe film having a thickness of 5 nm is aligned in the direction of the magnetic field, and the magnetization direction of the Co-Fe film having a thickness of 2 nm across the Ru film is Since the magnetization directions are antiparallel, the magnetization directions of the Co—Fe films on the intermediate layers 21 and 22 of the magnetization fixed layers 11 and 12 are antiparallel to each other. Since at least one of the magnetization fixed layers 11 and 12 has such a multilayer structure, the magnetization fixed layers 11 and 12 (magnetic films on the side of the intermediate layers 21 and 22 in the multilayer structure) can be easily magnetized in directions opposite to each other. Can be initialized. Such a light modulation element 1 is also provided in the pixel 8 of the spatial light modulator 10 because the magnetization free layer 3 undergoes magnetization reversal to perform a light modulation operation and the resistance changes as described above. Can do.

さらに光変調素子1の別の実施形態として、磁化固定層11,12、および磁化自由層3は、面内磁気異方性材料で形成されてもよい。具体的には、Ni,Fe,Coのような遷移金属や、Ni−Fe,Ni−Fe−Mo,Co−Cr,Co−Fe,Co−Fe−B,Co−Fe−Si,Co−Fe−Ge等の遷移金属合金、あるいはCo−Pt等の遷移金属と貴金属との合金が挙げられる。あるいはMn−Bi合金、Mn/Bi多層膜、Pt−Mn−Sb合金、Pt/Mn−Sb多層膜等の磁気光学効果の大きなMn含有磁性合金を用いることができる。さらに磁化固定層11,12について、少なくとも一方を交換結合した磁性膜を備えた多層構造とする場合は、例えば、中間層21,22の側からCo−Fe/Ru/Co−Fe/Ir−Mnの4層構造とすることができる。最上層のIr−Mnに代えて、Fe−Mn,Pt−Mn等の反強磁性材料を適用することもできる。   Furthermore, as another embodiment of the light modulation element 1, the magnetization fixed layers 11 and 12 and the magnetization free layer 3 may be formed of an in-plane magnetic anisotropic material. Specifically, transition metals such as Ni, Fe, Co, Ni-Fe, Ni-Fe-Mo, Co-Cr, Co-Fe, Co-Fe-B, Co-Fe-Si, Co-Fe Examples thereof include transition metal alloys such as —Ge or alloys of transition metals such as Co—Pt and noble metals. Alternatively, a Mn-containing magnetic alloy having a large magneto-optical effect such as a Mn—Bi alloy, a Mn / Bi multilayer film, a Pt—Mn—Sb alloy, or a Pt / Mn—Sb multilayer film can be used. Further, when the magnetization fixed layers 11 and 12 have a multilayer structure including a magnetic film in which at least one of them is exchange-coupled, for example, Co—Fe / Ru / Co—Fe / Ir—Mn from the intermediate layers 21 and 22 side. 4 layer structure. Instead of the uppermost Ir—Mn, an antiferromagnetic material such as Fe—Mn or Pt—Mn can be used.

このような面内磁気異方性とした磁化固定層11,12は、面内方向における一方向とその反対方向に磁化を固定され、例えば図1に示す平面視形状の光変調素子1においては、長方形の当該磁化固定層11,12の長辺方向(図1における縦方向)に固定されることが好ましい。このような光変調素子1は、垂直磁気異方性の場合と同様に、磁化反転により、磁化自由層3が磁化固定層11,12のいずれか一方と平行で他方と反平行の磁化方向を示し、また、中間層21,22の抵抗が互いに異なることで、磁化反転動作に伴い抵抗が変化する(図示省略)。   The magnetization fixed layers 11 and 12 having such in-plane magnetic anisotropy have magnetization fixed in one direction in the in-plane direction and the opposite direction. For example, in the light modulation element 1 having a planar view shape shown in FIG. The rectangular fixed magnetization layers 11 and 12 are preferably fixed in the long side direction (longitudinal direction in FIG. 1). As in the case of perpendicular magnetic anisotropy, such a light modulation element 1 has a magnetization direction in which the magnetization free layer 3 is parallel to one of the magnetization fixed layers 11 and 12 and antiparallel to the other by magnetization reversal. In addition, the resistances of the intermediate layers 21 and 22 are different from each other, so that the resistance changes with the magnetization reversal operation (not shown).

図3を参照して説明した通り、光変調素子1の素子構造MR1,MR2はバイポーラ(双極性)駆動によりスピン注入磁化反転するが、ユニポーラ(単極性)駆動式のスピン注入磁化反転素子構造を適用してもよい。一例として、大塚雄太他、「ユニポーラ電流によるスピン注入磁化反転」、2012年春季第59回応用物理学関係連合講演会予稿集、17p−B4−8、2012年2月、に記載された、磁化自由層に特定のフェリ磁性体材料を適用したスピン注入磁化反転素子が挙げられる。かかるスピン注入磁化反転素子を素子構造MR1,MR2に適用することにより、光変調素子1は、2値の大きさの電流を一方向に供給することで、磁化自由層の磁化方向を下向きから上向き、上向きから下向きの両方向の磁化反転動作が可能である(図示省略)。   As described with reference to FIG. 3, the element structures MR1 and MR2 of the light modulation element 1 are reversed in spin injection magnetization by bipolar (bipolar) driving, but have a unipolar (single polarity) driving type spin injection magnetization reversal element structure. You may apply. As an example, the magnetization described in Yuta Otsuka et al., “Spin-injection magnetization reversal by unipolar current”, Proceedings of the 59th Joint Lecture on Applied Physics in Spring 2012, 17p-B4-8, February 2012. Examples thereof include a spin-injection magnetization reversal element in which a specific ferrimagnetic material is applied to the free layer. By applying such a spin-injection magnetization reversal element to the element structures MR1 and MR2, the light modulation element 1 supplies a binary magnitude of current in one direction, so that the magnetization direction of the magnetization free layer is directed upward from below. In addition, the magnetization reversal operation in both the upward and downward directions is possible (not shown).

以上のように、本発明に係る光変調素子は、2つの磁化固定層により磁化反転動作が安定し、かつ全体の面積を大きくすることができるので、空間光変調器の画素に備えてその開口率を高くすることができる。さらに、本発明に係る光変調素子は、磁化反転により抵抗が変化する磁気抵抗効果素子であるので、磁化自由層の磁化方向を検知することが容易で、空間光変調器等の画素としてのみならず、従来のスピン注入磁化反転素子と同様に、MRAM用のメモリ素子に適用することができる。   As described above, the light modulation element according to the present invention has a magnetization reversal operation stabilized by two magnetization fixed layers and can increase the entire area. The rate can be increased. Furthermore, since the light modulation element according to the present invention is a magnetoresistive effect element whose resistance changes due to magnetization reversal, it is easy to detect the magnetization direction of the magnetization free layer, and it can be used only as a pixel such as a spatial light modulator. However, the present invention can be applied to a memory element for MRAM similarly to a conventional spin transfer magnetization switching element.

[空間光変調器]
(第1実施形態)
次に、前記の本発明に係る光変調素子を画素に備える空間光変調器について、図面を参照してその実施形態を説明する。
図1に示すように、本発明の第1実施形態に係る空間光変調器10は、基板7と、基板7上に2次元アレイ状に配列された画素8からなる画素アレイ80と、画素アレイ80から1つ以上の画素8を選択して駆動する電流制御部90を備える。図1は基板7側からの底面図であり、画素8においては、第2電極52よりも第1電極51が基板7側、すなわち下に配され、さらにその下の基板7上に光変調素子1が配される(図2、図5参照)。空間光変調器10の光の入射面は底面(下面)であり、空間光変調器10は、基板7を透過して画素8(画素アレイ80)に下方から入射した光を変調して下方へ出射する反射型の空間光変調器である(図5参照)。
[Spatial light modulator]
(First embodiment)
Next, an embodiment of the spatial light modulator including the light modulation element according to the present invention in a pixel will be described with reference to the drawings.
As shown in FIG. 1, the spatial light modulator 10 according to the first embodiment of the present invention includes a substrate 7, a pixel array 80 including pixels 8 arranged in a two-dimensional array on the substrate 7, and a pixel array. A current control unit 90 that selects and drives one or more pixels 8 from 80 is provided. FIG. 1 is a bottom view from the substrate 7 side. In the pixel 8, the first electrode 51 is arranged on the substrate 7 side, that is, below the second electrode 52, and further on the substrate 7 below the light modulation element. 1 is arranged (see FIGS. 2 and 5). The light incident surface of the spatial light modulator 10 is a bottom surface (lower surface), and the spatial light modulator 10 modulates the light transmitted through the substrate 7 and incident on the pixel 8 (pixel array 80) from below to move downward. A reflective spatial light modulator that emits light (see FIG. 5).

本実施形態では、画素アレイ80は、説明を簡潔にするために、4行×4列の16個の画素8からなる構成で例示される。画素アレイ80は、平面(底面)視でY方向(図1における縦方向)に延設された4本の第1電極51と、平面視で第1電極51と直交するX方向(図1における横方向)に延設された4本の第2電極52と、を備える。   In the present embodiment, the pixel array 80 is exemplified by a configuration including 16 pixels 8 of 4 rows × 4 columns for the sake of brevity. The pixel array 80 includes four first electrodes 51 extending in the Y direction (vertical direction in FIG. 1) in plan (bottom) view, and an X direction (in FIG. 1) orthogonal to the first electrode 51 in plan view. And four second electrodes 52 extending in the lateral direction).

ここで、前記した通り、空間光変調器10の画素8に設けられた光変調素子1は、同一面に離間して形成された磁化固定層11,12のそれぞれに電極51,52を一対の電極として接続される。また、画素アレイ80において、光変調素子1は、磁化固定層11,12の並び方向をX方向にして配置されている。そのため、この並び方向に直交したY方向に延設されて第1磁化固定層11に接続する第1電極51は、隣の(右側のまたは左隣の光変調素子1の)第2磁化固定層12に接触しない程度の幅の帯状の配線に形成され、図2および図5に示すように、光変調素子1上に直接に接続する高さ位置に設けられる。一方、X方向に延設されて第2磁化固定層12に接続する第2電極52は、光変調素子1と同じまたはそれよりも幅の広い帯状の配線(配線部52a)が、第1磁化固定層11と第1電極51との接続を妨げないように、かつ第1電極51と短絡しないように、第1電極51の上(光変調素子1から離れた側)に層間絶縁層(絶縁部材6)を挟んで設けられる。そして、配線部52aは、第2磁化固定層12の直上の領域に形成された接続部52cに、層間接続部52b(コンタクト)で接続する。このように、画素アレイ80において、電極51,52は互いに直交して、列単位、行単位で画素8に共有されて設けられるため、適宜、第1電極51をX電極51、第2電極52をY電極52と称する。さらに、画素アレイ80は、隣り合う光変調素子1,1間、X電極51,51間、Y電極52,52間、およびX電極51とY電極52との層間に、すなわち図2において空白で表された領域に、絶縁部材6が形成されている。   Here, as described above, the light modulation element 1 provided in the pixel 8 of the spatial light modulator 10 has a pair of electrodes 51 and 52 on the magnetization fixed layers 11 and 12 formed on the same plane and spaced apart from each other. Connected as an electrode. Further, in the pixel array 80, the light modulation element 1 is arranged with the alignment direction of the magnetization fixed layers 11 and 12 set in the X direction. Therefore, the first electrode 51 extending in the Y direction orthogonal to the arrangement direction and connected to the first magnetization fixed layer 11 is adjacent to the second magnetization fixed layer (on the right or left adjacent light modulation element 1). 12 is formed in a strip-like wiring having a width that does not contact 12, and is provided at a height position directly connected on the light modulation element 1 as shown in FIGS. 2 and 5. On the other hand, the second electrode 52 that extends in the X direction and is connected to the second magnetization fixed layer 12 has a strip-like wiring (wiring portion 52a) that is the same as or wider than the light modulation element 1, and has the first magnetization. An interlayer insulating layer (insulating) is formed on the first electrode 51 (on the side away from the light modulation element 1) so as not to prevent the connection between the fixed layer 11 and the first electrode 51 and to prevent a short circuit with the first electrode 51. Provided with member 6) in between. The wiring portion 52a is connected to a connection portion 52c formed in a region immediately above the second magnetization fixed layer 12 through an interlayer connection portion 52b (contact). As described above, in the pixel array 80, the electrodes 51 and 52 are provided to be shared by the pixels 8 in a column unit and a row unit so as to be orthogonal to each other. Therefore, the first electrode 51 is appropriately used as the X electrode 51 and the second electrode 52. Is referred to as Y electrode 52. Furthermore, the pixel array 80 is blank between the adjacent light modulation elements 1 and 1, between the X electrodes 51 and 51, between the Y electrodes 52 and 52, and between the X electrode 51 and the Y electrode 52, that is, in FIG. An insulating member 6 is formed in the represented area.

(光変調素子)
光変調素子1は、既に説明した構成であり、説明を省略する。なお、画素アレイ80に設けられたすべての光変調素子1は、ここでは、第1磁化固定層11を上向きに、第2磁化固定層12を下向きに固定されている(図5参照)。また、磁化自由層3は、磁化方向が上向きのときには+θk、磁化方向が下向きのときには−θkの角度で、入射した光の偏光の向きを回転させる(図4参照)。なお、光変調素子1は、基板7への密着性を得るために、基板7との間(磁化自由層3の下)に金属薄膜からなる下地膜を備えてもよい(図示省略)。このような下地膜は、Ta,Ru,Cu等の非磁性金属材料で、厚さ1〜10nmとすることが好ましい。下地膜は、厚さが1nm未満であると連続した膜を形成し難く、一方、10nmを超えると入出射する光が吸収されて効率が低下する。
(Light modulation element)
The light modulation element 1 has the configuration already described, and a description thereof is omitted. Here, all the light modulation elements 1 provided in the pixel array 80 are fixed so that the first magnetization fixed layer 11 faces upward and the second magnetization fixed layer 12 faces downward (see FIG. 5). The magnetization free layer 3 rotates the polarization direction of the incident light by an angle of + θk when the magnetization direction is upward and −θk when the magnetization direction is downward (see FIG. 4). The light modulation element 1 may include a base film made of a metal thin film between the substrate 7 (under the magnetization free layer 3) in order to obtain adhesion to the substrate 7 (not shown). Such a base film is preferably made of a nonmagnetic metal material such as Ta, Ru, or Cu and has a thickness of 1 to 10 nm. If the base film has a thickness of less than 1 nm, it is difficult to form a continuous film. On the other hand, if the thickness exceeds 10 nm, light entering and exiting is absorbed and efficiency is lowered.

(電極)
X電極51およびY電極52は、共に光変調素子1(磁化自由層3)に対して光の入出射側の反対側に配置されるので、光を遮ることがなく、低抵抗の金属材料で形成することができる。したがって、X電極51およびY電極52は、例えば、Cu,Al,Au,Ag,Ta,Cr等の金属やその合金のような一般的な金属電極材料で形成される。そして、スパッタリング法等の公知の方法により成膜、フォトリソグラフィ、およびエッチングまたはリフトオフ法等によりストライプ状等の所望の形状に加工される。
(electrode)
Since both the X electrode 51 and the Y electrode 52 are disposed on the opposite side of the light incident / exit side with respect to the light modulation element 1 (magnetization free layer 3), the X electrode 51 and the Y electrode 52 are made of a low-resistance metal material without blocking light. Can be formed. Therefore, the X electrode 51 and the Y electrode 52 are formed of a general metal electrode material such as a metal such as Cu, Al, Au, Ag, Ta, or Cr, or an alloy thereof. Then, it is processed into a desired shape such as a stripe shape by a known method such as a sputtering method, by film formation, photolithography, etching, lift-off method, or the like.

(基板)
基板7は、画素8を2次元配列するための土台であり、光変調素子1を製造するための広義の基板である。また、本実施形態に係る空間光変調器10は基板7側から光を入出射するので、基板7は光を透過させる材料からなる。このような基板7として、公知の透明基板材料が適用でき、具体的には、SiO2(酸化ケイ素、ガラス)、MgO(酸化マグネシウム)、サファイア、GGG(ガドリニウムガリウムガーネット)、SiC(シリコンカーバイド)、Ge(ゲルマニウム)単結晶基板等を適用することができる。また、基板7上に、Si−N(シリコン窒化物)、ZnO(酸化亜鉛)、HfO2(酸化ハフニウム)、ZrO(酸化ジルコニウム)等の、基板7に対して高屈折率の誘電体(絶縁体)層を設けて、その上に光変調素子1を形成してもよい。あるいは、基板7上に、ITO(酸化インジウムスズ)、IZO(インジウム酸化亜鉛)などの高屈折率の透明酸化物半導体(透明導電体)層を成膜し、その上にSiO2(ガラス)、Si−N(シリコン窒化物)等の誘電体(絶縁体)層を積層し、さらにその上に光変調素子1を形成してもよい。また、前記透明酸化物半導体(導電体)層と前記誘電体(絶縁体)層とを、交互に積層した多層膜を形成し、その上に光変調素子1を形成してもよい(図示省略)。光変調素子1(磁化自由層3)で反射した光が誘電体層と基板7との界面で反射して、再び光変調素子1に入射するという動作を繰り返すため、光が基板7を透過して出射するまでに、光変調素子1で何回も旋光を繰り返して旋光角が累積されて大きくなり、明暗のコントラストが向上する。
(substrate)
The substrate 7 is a base for two-dimensionally arranging the pixels 8, and is a broad substrate for manufacturing the light modulation element 1. Further, since the spatial light modulator 10 according to the present embodiment emits light from the substrate 7 side, the substrate 7 is made of a material that transmits light. As such a substrate 7, a known transparent substrate material can be applied, and specifically, SiO 2 (silicon oxide, glass), MgO (magnesium oxide), sapphire, GGG (gadolinium gallium garnet), SiC (silicon carbide). A Ge (germanium) single crystal substrate or the like can be applied. Further, on the substrate 7, a dielectric (such as Si—N (silicon nitride), ZnO (zinc oxide), HfO 2 (hafnium oxide), ZrO 2 (zirconium oxide)) having a high refractive index with respect to the substrate 7 ( An insulator) layer may be provided, and the light modulation element 1 may be formed thereon. Alternatively, a transparent oxide semiconductor (transparent conductor) layer having a high refractive index such as ITO (indium tin oxide) or IZO (indium zinc oxide) is formed on the substrate 7, and SiO 2 (glass) is formed thereon. A dielectric (insulator) layer such as Si—N (silicon nitride) may be stacked, and the light modulation element 1 may be further formed thereon. Further, a multilayer film in which the transparent oxide semiconductor (conductor) layer and the dielectric (insulator) layer are alternately stacked may be formed, and the light modulation element 1 may be formed thereon (not shown). ). The light reflected by the light modulation element 1 (magnetization free layer 3) is reflected at the interface between the dielectric layer and the substrate 7 and is incident on the light modulation element 1 again. Until the light is emitted, the optical modulation element 1 repeats the optical rotation many times and the optical rotation angle is accumulated to increase, thereby improving the contrast between light and dark.

(絶縁部材)
絶縁部材6は、光変調素子1における磁化固定層11,12間および中間層21,22間(素子構造MR1,MR2間)、ならびに隣り合う光変調素子1,1間、X電極51,51間、Y電極52,52間、さらにX電極51とY電極52との層間を、それぞれ絶縁するために設けられる。絶縁部材6は、例えばSiO2やAl23等の酸化膜やSi34等の公知の絶縁材料を適用することができる。
(Insulating material)
The insulating member 6 is provided between the magnetization fixed layers 11 and 12 and the intermediate layers 21 and 22 (between the element structures MR1 and MR2) of the light modulation element 1 and between the adjacent light modulation elements 1 and 1 and between the X electrodes 51 and 51. Are provided to insulate the Y electrodes 52, 52 and the interlayer between the X electrode 51 and the Y electrode 52, respectively. For the insulating member 6, for example, an oxide film such as SiO 2 or Al 2 O 3 or a known insulating material such as Si 3 N 4 can be applied.

(電流制御部)
図1に示すように、電流制御部90は、X電極51を選択するX電極選択部91と、Y電極52を選択するY電極選択部92と、電極51,52に電流を供給する電源(電流供給手段)95と、この電源95および前記の電極選択部91,92を制御する画素選択部(画素選択手段)94と、を備える。これらはそれぞれ以下に説明する動作が可能な公知の装置を適用することができる。さらに、電流制御部90は、電極51,52に電流を供給する副電源(副電流供給手段)96と、画素の書込みエラー検出を行う判定部(画素判定手段)97と、を備える。副電源96は、後記するように、供給する電流の大きさが異なる以外は電源95と同様の装置を適用することができる。判定部97は、電圧比較器97aおよび検査部97bで構成され、後記するように、電圧比較器97aはMRAMにおける公知の読出し回路を、検査部97bは演算処理を行ういわゆるCPUを、それぞれ適用することができる。
(Current controller)
As shown in FIG. 1, the current control unit 90 includes an X electrode selection unit 91 that selects the X electrode 51, a Y electrode selection unit 92 that selects the Y electrode 52, and a power source that supplies current to the electrodes 51 and 52 ( Current supply means) 95, and a power source 95 and a pixel selection section (pixel selection means) 94 for controlling the electrode selection sections 91 and 92. A known device capable of the operations described below can be applied to each of these. Further, the current control unit 90 includes a sub power source (sub current supply unit) 96 that supplies current to the electrodes 51 and 52, and a determination unit (pixel determination unit) 97 that detects a pixel writing error. As will be described later, a device similar to the power source 95 can be applied to the sub power source 96 except that the magnitude of the supplied current is different. The determination unit 97 includes a voltage comparator 97a and an inspection unit 97b. As will be described later, the voltage comparator 97a applies a known read circuit in the MRAM, and the inspection unit 97b applies a so-called CPU that performs arithmetic processing. be able to.

画素選択部94は、例えば図示しない外部からの信号に基づいて、画素アレイ80の特定の1つ以上の画素8を選択し、選択した画素8の画素アレイ80におけるX,Y座標に基づいて電極選択部91,92に電極51,52を選択させ、さらに電源95が供給する電流の向きを選択する。そして図6に示すように、画素選択部94からの命令(図中、94の丸数字で表す)により、X電極選択部91はX電極51の1つ以上を選択し、Y電極選択部92はY電極52の1つ以上を選択し、選択した電極51,52に電源95を接続する。電源95は、選択した画素8に備えられる光変調素子1を磁化反転させるために適正な電圧・電流を供給する公知の電源で、直流パルス電流を正負反転可能に供給することができる。そして、電源95は、画素選択部94が選択した正または負の電流(+IW/−IW)を、接続された電極51,52を介して光変調素子1に供給する。空間光変調器10は、このような構成により、画素アレイ80から所望の画素8が選択され、この画素8の光変調素子1に、所定の大きさのパルス電流が選択された向きに供給されて、磁化自由層3を所望の磁化方向にする。光変調素子1の磁化反転動作は、図3を参照して説明した通りである。選択された画素8の光変調素子1の磁化反転動作により当該光変調素子1の磁化自由層3の磁化方向が変化することで、この選択された画素8に入射した光を選択的に所望の偏光の向きに変調して出射することができる(後記の空間光変調器の光変調動作(図5参照)にて、詳細に説明する)。 The pixel selection unit 94 selects one or more specific pixels 8 of the pixel array 80 based on, for example, an external signal (not shown), and electrodes based on the X and Y coordinates in the pixel array 80 of the selected pixel 8. The selection units 91 and 92 are made to select the electrodes 51 and 52, and further, the direction of the current supplied by the power source 95 is selected. As shown in FIG. 6, the X electrode selection unit 91 selects one or more of the X electrodes 51 according to a command from the pixel selection unit 94 (represented by the circled number 94 in the figure), and the Y electrode selection unit 92. Selects one or more of the Y electrodes 52 and connects the power source 95 to the selected electrodes 51, 52. The power source 95 is a known power source that supplies an appropriate voltage / current for reversing the magnetization of the light modulation element 1 provided in the selected pixel 8, and can supply a DC pulse current so that it can be inverted. Then, the power source 95 supplies the positive or negative current (+ I W / −I W ) selected by the pixel selection unit 94 to the light modulation element 1 through the connected electrodes 51 and 52. With such a configuration, the spatial light modulator 10 selects a desired pixel 8 from the pixel array 80 and supplies a pulse current of a predetermined magnitude to the light modulation element 1 of the pixel 8 in the selected direction. Thus, the magnetization free layer 3 is set to a desired magnetization direction. The magnetization reversal operation of the light modulation element 1 is as described with reference to FIG. The magnetization reversal operation of the light modulation element 1 of the selected pixel 8 changes the magnetization direction of the magnetization free layer 3 of the light modulation element 1, so that the light incident on the selected pixel 8 can be selectively selected. The light can be emitted after being modulated in the direction of polarization (described in detail in the light modulation operation of the spatial light modulator described later (see FIG. 5)).

さらに画素選択部94は、電源95に代えて副電源96を、選択した電極51,52に接続させて、光変調素子1の磁化反転電流ISTSよりも小さい所定の電流ITSTを供給させることができる。判定部97において、電圧比較器97aは、副電源96と並列に接続され、光変調素子1に電流ITSTが供給されているときの電極51,52間の電圧を参照電位(閾値)Vrefと比較して、結果を検査部97b(図6では図示省略)に出力する。この比較結果は、光変調素子1の磁化自由層3の現実の磁化方向を示すものであり、検査部97bは、比較結果が示す磁化方向が画素選択部94が選択した磁化方向であるかを照合する書込みエラー検出を行う。電圧比較器97aは、電極51,52間の電圧を入力されて、参照電位Vrefと比較して高いか低いかを1か0で出力する差動センスアンプSA(図6参照)や、参照電位Vrefの出力回路(図示省略)を備え、MRAMにおける公知の読出し回路を適用することができる。また、電圧比較器97aは、精度を向上させるために、電極51,52からの電圧を増幅する増幅器を経由して接続されたり、差動センスアンプSAに閾値Vrefとの差分を増幅させる回路を備えたりしてもよい(図示省略)。空間光変調器10の書込みエラー検出方法は、後記にて詳細に説明する。 Further, the pixel selection unit 94 connects a sub power source 96 in place of the power source 95 to the selected electrodes 51 and 52 to supply a predetermined current I TST smaller than the magnetization reversal current I STS of the light modulation element 1. Can do. In the determination unit 97, the voltage comparator 97 a is connected in parallel with the sub power supply 96, and the voltage between the electrodes 51 and 52 when the current I TST is supplied to the light modulation element 1 is referred to as a reference potential (threshold) Vref. In comparison, the result is output to the inspection unit 97b (not shown in FIG. 6). This comparison result indicates the actual magnetization direction of the magnetization free layer 3 of the light modulation element 1, and the inspection unit 97b determines whether the magnetization direction indicated by the comparison result is the magnetization direction selected by the pixel selection unit 94. Write error detection to be verified. The voltage comparator 97a receives a voltage between the electrodes 51 and 52, and outputs a differential sense amplifier SA (see FIG. 6) that outputs 1 or 0 higher or lower than the reference potential Vref, or a reference potential. A Vref output circuit (not shown) is provided, and a known read circuit in the MRAM can be applied. In order to improve accuracy, the voltage comparator 97a is connected via an amplifier that amplifies the voltage from the electrodes 51 and 52, or a circuit that amplifies the difference from the threshold Vref in the differential sense amplifier SA. It may be provided (not shown). The write error detection method of the spatial light modulator 10 will be described in detail later.

[空間光変調器の製造方法]
本発明に係る空間光変調器の画素アレイの製造方法の一例を、図7〜10を参照して説明する。画素アレイ80は、はじめに、基板7上に光変調素子1を形成し、次に光変調素子1に接続する電極51,52を形成して製造される。
[Method of manufacturing spatial light modulator]
An example of a method for manufacturing a pixel array of a spatial light modulator according to the present invention will be described with reference to FIGS. The pixel array 80 is manufactured by first forming the light modulation element 1 on the substrate 7 and then forming the electrodes 51 and 52 connected to the light modulation element 1.

(光変調素子の形成)
はじめに、基板7上に、磁化自由層3、第1中間層21、第1磁化固定層11、保護膜41をそれぞれ形成する材料(図中、各層と同じ符号で示す。以下同。)を連続して成膜する。その上に、図7(a)に示すように、光変調素子1のそれぞれの第2中間層22および第2磁化固定層12が設けられる領域を空けた(第1中間層21および第1磁化固定層11が設けられる領域をマスクする)レジストパターンを電子線リソグラフィにより形成する。そして、イオンビームミリング法によるエッチングで、図7(b)に示すように、保護膜41から第1磁化固定層11、第1中間層21までを除去して磁化自由層3を露出させる。
(Formation of light modulation element)
First, materials for forming the magnetization free layer 3, the first intermediate layer 21, the first magnetization fixed layer 11, and the protective film 41 on the substrate 7 (indicated by the same reference numerals as those of the respective layers in the figure, the same applies hereinafter). To form a film. Further, as shown in FIG. 7A, the regions where the second intermediate layer 22 and the second magnetization fixed layer 12 of the light modulation element 1 are provided are opened (the first intermediate layer 21 and the first magnetization). A resist pattern (which masks the region where the fixed layer 11 is provided) is formed by electron beam lithography. Then, by etching using an ion beam milling method, as shown in FIG. 7B, the first magnetization fixed layer 11 and the first intermediate layer 21 are removed from the protective film 41 to expose the magnetization free layer 3.

次に、図7(c)に示すように、第2中間層22、第2磁化固定層12、保護膜42をそれぞれ形成する材料を連続して成膜する。そして、レジストをその上に成膜した第2中間層22等ごと除去する(リフトオフ)。これにより、図7(d)に示すように、基板7上の全面に成膜した磁化自由層3、その上に、第1中間層21/第1磁化固定層11/保護膜41の積層膜と第2中間層22/第2磁化固定層12/保護膜42の積層膜とがY方向(図1における縦方向)に沿ったストライプ状に交互に形成された状態となる(図示省略)。   Next, as shown in FIG. 7C, materials for forming the second intermediate layer 22, the second magnetization fixed layer 12, and the protective film 42 are successively formed. Then, the resist is removed together with the second intermediate layer 22 and the like formed thereon (lift-off). Thereby, as shown in FIG. 7 (d), the magnetization free layer 3 formed on the entire surface of the substrate 7, and the laminated film of the first intermediate layer 21 / the first magnetization fixed layer 11 / the protective film 41 thereon. And the laminated film of the second intermediate layer 22 / second magnetization fixed layer 12 / protective film 42 are alternately formed in stripes along the Y direction (vertical direction in FIG. 1) (not shown).

次に、前記の積層膜を光変調素子1の形状に加工する。まず、光変調素子1における2つのスピン注入磁化反転素子構造同士の間を分離する。図7(e)に示すように、保護膜41,42上に、光変調素子1のそれぞれの第1、第2のスピン注入磁化反転素子構造間の領域を空けたレジストパターンを形成する。エッチングで、図8(a)に示すように、保護膜41,42から磁化固定層11,12、中間層21,22までを除去して磁化自由層3を露出させる。次に、図8(b)に示すように絶縁膜(絶縁部材6)を成膜して、レジストを絶縁膜ごと除去する(リフトオフ)。これにより、図8(c)に示すように、光変調素子1における2つのスピン注入磁化反転素子構造同士の間が分離し、絶縁部材6で埋められる。   Next, the laminated film is processed into the shape of the light modulation element 1. First, the two spin injection magnetization reversal element structures in the light modulation element 1 are separated from each other. As shown in FIG. 7E, a resist pattern is formed on the protective films 41 and 42 with a region between the first and second spin-injection magnetization switching element structures of the light modulation element 1. As shown in FIG. 8A, the magnetization free layers 3 are exposed by removing the magnetization fixed layers 11 and 12 and the intermediate layers 21 and 22 from the protective films 41 and 42 by etching. Next, as shown in FIG. 8B, an insulating film (insulating member 6) is formed, and the resist is removed together with the insulating film (lift-off). As a result, as shown in FIG. 8C, the two spin-injection magnetization reversal element structures in the light modulation element 1 are separated from each other and filled with the insulating member 6.

図8(d)、(e)に示すように、保護膜41,42および絶縁部材6上に、光変調素子1の平面視形状のレジストパターンを形成する。エッチングで、図9(a)に示すように、保護膜41,42から磁化固定層11,12、中間層21,22、磁化自由層3までを除去して基板7を露出させる。次に、図9(b)に示すように絶縁膜(絶縁部材6)を成膜して、レジストを絶縁膜ごと除去する(リフトオフ)。これにより、図9(c)に示すように、2つのスピン注入磁化反転素子構造MR1,MR2を備えた光変調素子1が形成され、上面(保護膜41,42表面)までが面一に絶縁部材6で埋められる。   As shown in FIGS. 8D and 8E, a resist pattern having a planar view shape of the light modulation element 1 is formed on the protective films 41 and 42 and the insulating member 6. As shown in FIG. 9A, the substrate 7 is exposed by removing the magnetization fixed layers 11 and 12, the intermediate layers 21 and 22, and the magnetization free layer 3 from the protective films 41 and 42 by etching. Next, as shown in FIG. 9B, an insulating film (insulating member 6) is formed, and the resist is removed together with the insulating film (lift-off). As a result, as shown in FIG. 9C, the light modulation element 1 including the two spin-injection magnetization reversal element structures MR1 and MR2 is formed, and the upper surfaces (the surfaces of the protective films 41 and 42) are insulated to be flush with each other. Filled with member 6.

(電極の形成)
はじめに、光変調素子1の第1素子構造MR1の上面(保護膜41)に接続されてY方向に延設されるX電極51、および第2素子構造MR2の上面(保護膜42)に接続されるY電極52の接続部52cを形成する。光変調素子1および絶縁部材6上に、絶縁膜(絶縁部材6)をX電極51の厚さで成膜する。そして、図9(d)に示すように、絶縁部材6上に、X電極51が設けられる領域とY電極52の接続部52cが設けられる領域とを空けたレジストパターンを形成する。そして、エッチングで、図9(e)に示すように保護膜41,42が露出するまで、絶縁部材6を除去する。次に、図10(a)に示すように金属電極材料を成膜して、レジストを金属電極材料ごと除去する(リフトオフ)。これにより、図10(b)、(c)に示すように、X電極51とY電極52の接続部52cとが、光変調素子1のスピン注入磁化反転素子構造MR1,MR2に接続される。
(Formation of electrodes)
First, the X electrode 51 connected to the upper surface (protective film 41) of the first element structure MR1 of the light modulation element 1 and extending in the Y direction, and the upper surface (protective film 42) of the second element structure MR2 are connected. A connecting portion 52c of the Y electrode 52 is formed. An insulating film (insulating member 6) is formed on the light modulation element 1 and the insulating member 6 with the thickness of the X electrode 51. Then, as illustrated in FIG. 9D, a resist pattern is formed on the insulating member 6, with a region where the X electrode 51 is provided and a region where the connection portion 52 c of the Y electrode 52 is provided. Then, the insulating member 6 is removed by etching until the protective films 41 and 42 are exposed as shown in FIG. Next, as shown in FIG. 10A, a metal electrode material is formed, and the resist is removed together with the metal electrode material (lift-off). As a result, as shown in FIGS. 10B and 10C, the connection portion 52 c between the X electrode 51 and the Y electrode 52 is connected to the spin injection magnetization reversal element structures MR 1 and MR 2 of the light modulation element 1.

最後に、Y電極52を完成させる。X電極51、接続部52c、および絶縁部材6上に、絶縁膜(絶縁部材6)を電極51,52層間の厚さで成膜する。次に、絶縁部材6上に、接続部52c上の領域を空けたレジストパターンを形成する。そして、エッチングで、接続部52cが露出するまで、絶縁部材6を除去する。次に、金属電極材料を成膜して、レジストを金属電極材料ごと除去する(リフトオフ)。これにより、図10(d)に示すように、Y電極52の接続部52cに、Y電極52の配線部52aを接続するための層間接続部52bが形成される。さらに、層間接続部52bおよび絶縁部材6上に、絶縁膜(絶縁部材6)をY電極52の配線部52aの厚さで成膜し、X電極51等と同様に、リフトオフにて配線部52a(図2参照)を形成する。   Finally, the Y electrode 52 is completed. An insulating film (insulating member 6) is formed on the X electrode 51, the connecting portion 52c, and the insulating member 6 with a thickness between the electrodes 51 and 52. Next, a resist pattern is formed on the insulating member 6 so as to leave a region on the connection portion 52c. Then, the insulating member 6 is removed by etching until the connection portion 52c is exposed. Next, a metal electrode material is formed, and the resist is removed together with the metal electrode material (lift-off). As a result, as shown in FIG. 10D, an interlayer connection portion 52 b for connecting the wiring portion 52 a of the Y electrode 52 is formed in the connection portion 52 c of the Y electrode 52. Further, an insulating film (insulating member 6) is formed on the interlayer connection portion 52b and the insulating member 6 with the thickness of the wiring portion 52a of the Y electrode 52, and the wiring portion 52a is lifted off similarly to the X electrode 51 and the like. (See FIG. 2).

このような製造方法によれば、並設デュアルピン構造としたスピン注入磁化反転素子である光変調素子1、および光変調素子1に接続する電極51,52を備えた画素8が2次元配列された画素アレイ80を、基板7上に形成することができる。なお、光変調素子1の形成において、第1中間層21、第1磁化固定層11、保護膜41を先に成膜したが、第2中間層22、第2磁化固定層12、保護膜42を先に成膜してもよい。また、光変調素子1を形成した後に光変調素子1,1間に絶縁部材6を埋め込んだが、この絶縁部材6を形成した後に光変調素子1の各層を成膜して、リフトオフにて光変調素子1を形成してもよい。   According to such a manufacturing method, the light modulation element 1 which is a spin-injection magnetization reversal element having a parallel dual pin structure and the pixels 8 including the electrodes 51 and 52 connected to the light modulation element 1 are two-dimensionally arranged. The pixel array 80 can be formed on the substrate 7. In the formation of the light modulation element 1, the first intermediate layer 21, the first magnetization fixed layer 11, and the protective film 41 are formed first, but the second intermediate layer 22, the second magnetization fixed layer 12, and the protective film 42 are formed. The film may be formed first. Further, the insulating member 6 is embedded between the light modulating elements 1 and 1 after the light modulating element 1 is formed. After the insulating member 6 is formed, each layer of the light modulating element 1 is formed, and light modulation is performed by lift-off. Element 1 may be formed.

(光変調素子の初期設定)
前記した通り、画素アレイ80のすべての画素8の光変調素子1は、第1磁化固定層11が上向きに、第2磁化固定層12が下向きに、それぞれ磁化が固定されている必要がある。磁化固定層11,12は電源95からの電流供給では磁化反転しないため、次の方法で光変調素子1の初期設定を行う。
(Initial setting of light modulator)
As described above, in the light modulation elements 1 of all the pixels 8 in the pixel array 80, the first magnetization fixed layer 11 needs to be upward and the second magnetization fixed layer 12 needs to be fixed downward. Since the magnetization fixed layers 11 and 12 do not undergo magnetization reversal when a current is supplied from the power supply 95, the optical modulation element 1 is initialized by the following method.

本実施形態に係る光変調素子1は、第1磁化固定層11の保磁力Hcp1よりも第2磁化固定層12の保磁力Hcp2が大きい(Hcp1<Hcp2)。そのため、まず、画素アレイ80に、Hcp2よりも大きい外部磁界を印加して、すべての磁化固定層11,12の磁化を下向きにする。次に、Hcp2よりも小さくかつHcp1よりも大きい外部磁界を印加して、第1磁化固定層11の磁化を上向きにする。なお、この2段階の磁界印加は、完成した(製造後の)画素アレイ80に限られず、画素アレイ80の製造工程途中において磁化固定層11,12用の磁性膜材料を成膜した後以降であれば、どの段階であっても実施することができる。 Light modulation element 1 according to this embodiment, than the coercive force Hcp 1 of the first magnetization fixed layer 11 is the coercive force Hcp 2 of the second magnetization pinned layer 12 large (Hcp 1 <Hcp 2). Therefore, first, an external magnetic field larger than Hcp 2 is applied to the pixel array 80 so that the magnetizations of all the magnetization fixed layers 11 and 12 are directed downward. Next, an external magnetic field smaller than Hcp 2 and larger than Hcp 1 is applied to make the magnetization of the first magnetization fixed layer 11 upward. The application of the two-stage magnetic field is not limited to the completed (after manufacturing) pixel array 80, but after the magnetic film material for the magnetization fixed layers 11 and 12 is formed during the manufacturing process of the pixel array 80. Any stage can be implemented.

また、磁化固定層11,12の少なくとも一方が、交換結合した磁性膜を備えた多層構造である光変調素子1の場合は、磁化固定層11,12のすべての保磁力(Hcp1,Hcp2)を超える外部磁界を印加しながら、真空中で200℃程度の熱処理をすることにより、前記磁界印加の1回(1段階)で光変調素子1の初期設定を行うことができる。 In the case where the light modulation element 1 has a multilayer structure in which at least one of the magnetization fixed layers 11 and 12 includes exchange-coupled magnetic films, all the coercive forces (Hcp 1 and Hcp 2 of the magnetization fixed layers 11 and 12). ) By applying a heat treatment at about 200 ° C. in a vacuum while applying an external magnetic field exceeding 1), the light modulation element 1 can be initialized in one (one step) application of the magnetic field.

[空間光変調器の光変調動作]
本発明に係る空間光変調器の光変調動作を、図5を参照して、この空間光変調器を用いた表示装置にて説明する。表示装置は、前記した従来のスピン注入磁化反転素子を光変調素子としたもの(特許文献1参照)と同様の構成とすればよい。本実施形態に係る空間光変調器10は反射型であり、また、その光変調部となる光変調素子1の磁化自由層3は、透明な基板7上に設けられ、また垂直磁気異方性材料からなり磁化方向が上向きまたは下向きを示すため、表示装置は以下の構成とすることが好ましい。空間光変調器10の画素アレイ80の下方には、画素アレイ80に向けて光(レーザー光)を照射する光源等を備える光学系OPSと、光学系OPSから照射された光を画素アレイ80に入射する前に1つの偏光成分の光(以下、入射光)にする偏光子(偏光フィルタ)PFiと、この下方から画素アレイ80に入射した入射光が画素アレイ80で反射して出射した出射光から特定の偏光成分の光を遮光する偏光子(偏光フィルタ)PFoと、偏光子PFoを透過した光を検出する検出器PDとが配置される。
[Light modulation operation of spatial light modulator]
The light modulation operation of the spatial light modulator according to the present invention will be described with reference to FIG. 5 using a display device using this spatial light modulator. The display device may have the same configuration as that of the conventional spin-injection magnetization reversal element as a light modulation element (see Patent Document 1). The spatial light modulator 10 according to the present embodiment is of a reflective type, and the magnetization free layer 3 of the light modulation element 1 serving as the light modulation unit is provided on a transparent substrate 7 and has perpendicular magnetic anisotropy. Since it is made of a material and the magnetization direction indicates upward or downward, the display device preferably has the following configuration. Below the pixel array 80 of the spatial light modulator 10, an optical system OPS having a light source or the like that irradiates light (laser light) toward the pixel array 80, and the light emitted from the optical system OPS is applied to the pixel array 80. A polarizer (polarization filter) PFi that makes light of one polarization component (hereinafter referred to as incident light) before entering, and outgoing light that is incident and incident on the pixel array 80 from below is emitted from the pixel array 80. A polarizer (polarization filter) PFo that shields light of a specific polarization component and a detector PD that detects light transmitted through the polarizer PFo are disposed.

光学系OPSは、例えばレーザー光源、およびこれに光学的に接続されてレーザー光を画素アレイ80の全面に照射する大きさに拡大するビーム拡大器、さらに拡大されたレーザー光を平行光にするレンズで構成される(図示省略)。光学系OPSから照射された光(レーザー光)は様々な偏光成分を含んでいるため、この光を画素アレイ80の手前の偏光子PFiを透過させて、1つの偏光成分の光にする。偏光子PFi,PFoはそれぞれ偏光板等であり、検出器PDはスクリーン等の画像表示手段である。   The optical system OPS includes, for example, a laser light source, a beam expander that is optically connected to the laser light source and expands the laser light onto the entire surface of the pixel array 80, and a lens that converts the expanded laser light into parallel light. (Not shown). Since the light (laser light) emitted from the optical system OPS contains various polarization components, this light is transmitted through the polarizer PFi in front of the pixel array 80 to be one polarization component light. The polarizers PFi and Pfo are polarizing plates, respectively, and the detector PD is an image display means such as a screen.

光学系OPSは、平行光としたレーザー光を、画素アレイ80へ照射する。ここで、光変調素子1の磁化自由層3の磁気光学効果は、光の入射角が磁化自由層3の磁化方向に平行に近いほど大きい。したがって、入射角は膜面に垂直すなわち0°とすることが光変調度を最大とする上で望ましいが、このようにすると、出射光の光路が入射光の光路と一致する。そこで、入射角を少し傾斜させて、偏光子PFoおよび検出器PD、光学系OPSおよび偏光子PFiが、それぞれ入射光および出射光の光路を遮らない配置となるようにする。具体的には、入射光の入射角は30°以下とすることが好ましい。レーザー光は偏光子PFiを透過して1つの偏光成分の入射光となり、画素アレイ80の下方からすべての画素8に向けて入射する。入射光は、基板7を透過してそれぞれの画素8の光変調素子1で反射して、当該画素8から出射光として出射し、再び基板7を透過する。   The optical system OPS irradiates the pixel array 80 with a parallel laser beam. Here, the magneto-optical effect of the magnetization free layer 3 of the light modulation element 1 increases as the incident angle of light becomes closer to the magnetization direction of the magnetization free layer 3. Therefore, it is desirable that the incident angle be perpendicular to the film surface, that is, 0 °, in order to maximize the degree of light modulation. However, in this case, the optical path of the emitted light coincides with the optical path of the incident light. Therefore, the incident angle is slightly inclined so that the polarizer PF0, the detector PD, the optical system OPS, and the polarizer PFi are arranged so as not to block the optical paths of the incident light and the outgoing light, respectively. Specifically, the incident angle of incident light is preferably set to 30 ° or less. The laser light passes through the polarizer PFi and becomes incident light of one polarization component, and is incident on all the pixels 8 from below the pixel array 80. Incident light passes through the substrate 7, is reflected by the light modulation element 1 of each pixel 8, exits from the pixel 8 as outgoing light, and passes through the substrate 7 again.

出射光は偏光子PFoによって特定の1つの偏光成分の光、ここでは入射光に対して+θk旋光した光が遮光され、偏光子PFoを透過した光が検出器PDに入射する。したがって、光変調素子1の磁化自由層3の磁化方向が上向きである画素8からの出射光は偏光子PFoで遮光されるため、この画素8は暗く(黒く)、検出器PDに表示される。一方、入射光に対して−θk旋光した光すなわち光変調素子1の磁化自由層3の磁化方向が下向きである画素8からの出射光は、偏光子PFoを透過して検出器PDに到達するため、この画素8は明るく(白く)検出器PDに表示される。   Outgoing light is light of a specific polarization component by the polarizer PFo, here, light that has been rotated by θθ relative to the incident light is shielded, and light that has passed through the polarizer PFo enters the detector PD. Accordingly, since the light emitted from the pixel 8 whose magnetization direction of the magnetization free layer 3 of the light modulation element 1 is upward is blocked by the polarizer PFo, the pixel 8 is dark (black) and is displayed on the detector PD. . On the other hand, light that has been rotated by −θk with respect to incident light, that is, light emitted from the pixel 8 in which the magnetization direction of the magnetization free layer 3 of the light modulation element 1 is downward passes through the polarizer PFo and reaches the detector PD. Therefore, this pixel 8 is displayed brightly (white) on the detector PD.

このように、本発明に係る空間光変調器10は、画素8毎に明/暗(白/黒)を切り分けられ、各画素8に供給する電流の向き(+IW/−IW)を切り換えれば明/暗が切り換わる。なお、空間光変調器10の初期状態としては、例えば全体が白く表示されるように、すべての画素8の光変調素子1の磁化自由層3の磁化方向が下向きにするべく、電源95からすべての画素8に電流+IWを供給すればよい(図3(d)、(a)参照)。 As described above, the spatial light modulator 10 according to the present invention switches between light / dark (white / black) for each pixel 8 and switches the direction of current supplied to each pixel 8 (+ I W / −I W ). Light / dark will switch. The initial state of the spatial light modulator 10 is all from the power source 95 so that the magnetization direction of the magnetization free layer 3 of the light modulation elements 1 of all the pixels 8 is downward, for example, so that the whole is displayed white. The current + I W may be supplied to the pixel 8 (see FIGS. 3D and 3A).

[空間光変調器の画素の書込みエラー検出方法]
本発明に係る空間光変調器を等価回路図で表す(画素アレイは2行×2列の画素のみを示す)と、図6に示すように光変調素子1が1つの磁気抵抗効果素子として表され、第1電極(X電極)51がビット線、第2電極(Y電極)52がワード線となり、画素アレイ80はクロスポイント型のMRAMと同じ回路構造であるといえる。したがって、本発明に係る空間光変調器は、MRAMと同様の読出し動作を行って、選択した画素について光変調素子の磁化反転動作(書込み)が正常になされたかを検査することができる。空間光変調器の画素の書込みエラー検出方法を、図1、図4、および適宜図3を参照して説明する。
まず、光変調素子1に接続した電極51,52間の電圧と磁化自由層3の磁化方向との関係について説明する。
[Method for detecting pixel write error in spatial light modulator]
When the spatial light modulator according to the present invention is represented by an equivalent circuit diagram (a pixel array shows only pixels of 2 rows × 2 columns), the light modulation element 1 is represented as one magnetoresistive effect element as shown in FIG. Thus, it can be said that the first electrode (X electrode) 51 is a bit line and the second electrode (Y electrode) 52 is a word line, and the pixel array 80 has the same circuit structure as a cross-point type MRAM. Therefore, the spatial light modulator according to the present invention can check whether the magnetization reversal operation (writing) of the light modulation element has been normally performed for the selected pixel by performing a reading operation similar to that of the MRAM. A method for detecting a write error in a pixel of the spatial light modulator will be described with reference to FIGS. 1 and 4 and FIG. 3 as appropriate.
First, the relationship between the voltage between the electrodes 51 and 52 connected to the light modulation element 1 and the magnetization direction of the magnetization free layer 3 will be described.

(光変調素子における磁化自由層の磁化方向と電圧との関係)
図4(a)、(b)に示すように、光変調素子1に副電源96から所定の大きさの電流ITSTを供給しているとき、副電源96と並列に接続された電圧計で計測される電圧は、光変調素子1の抵抗に比例する。このとき光変調素子1に供給する電流(抵抗測定用電流)ITSTは、磁化自由層3の磁化方向を変化させない、すなわち光変調素子1の磁化反転電流ISTSよりも小さく、詳しくは、光変調素子1の2つのスピン注入磁化反転素子構造MR1,MR2の磁化反転電流I1STS,I2STSの小さい方よりもさらに小さい。また、図4においては、抵抗測定用電流ITSTを、第2電極52を「+」にして供給しているが、電流の向きは問わず、また、光変調素子1の磁化反転動作のための電流−IW,+IWと異なり電流の向きは一方向でよい。このように、光変調素子1は、磁化反転電流ISTSよりも小さい電流を供給されても、磁化自由層3の磁化方向は変化しない。そして、このような一定の電流ITSTを光変調素子1に供給して計測される電圧は、光変調素子1の磁化自由層3の磁化方向により変化する。
(Relationship between magnetization direction and voltage of magnetization free layer in light modulator)
As shown in FIGS. 4A and 4B, when a current I TST having a predetermined magnitude is supplied from the sub power source 96 to the light modulation element 1, a voltmeter connected in parallel with the sub power source 96 is used. The measured voltage is proportional to the resistance of the light modulation element 1. At this time, the current (resistance measurement current) I TST supplied to the light modulation element 1 does not change the magnetization direction of the magnetization free layer 3, that is, is smaller than the magnetization reversal current I STS of the light modulation element 1. It is further smaller than the smaller one of the magnetization reversal currents I1 STS and I2 STS of the two spin injection magnetization reversal element structures MR1 and MR2 of the modulation element 1. In FIG. 4, the resistance measurement current I TST is supplied with the second electrode 52 set to “+”, but the direction of the current is not limited, and for the magnetization reversal operation of the light modulation element 1. Unlike the currents −I W and + I W , the direction of the current may be one direction. Thus, even if the light modulation element 1 is supplied with a current smaller than the magnetization reversal current I STS , the magnetization direction of the magnetization free layer 3 does not change. The voltage measured by supplying such a constant current I TST to the light modulation element 1 varies depending on the magnetization direction of the magnetization free layer 3 of the light modulation element 1.

図4(a)に示すように、磁化自由層3が下向きの磁化を示している光変調素子1は、抵抗の値が前記式(1)に示すRDであるので、電圧の値VDがITST・RDとなる。反対に、図4(b)に示すように、磁化自由層3が上向きの磁化を示している光変調素子1は、抵抗の値が前記式(2)に示すRUであるので、電圧の値VUがITST・RUとなる。前記した通り、光変調素子1は、磁化自由層3が下向きの磁化を示しているときの方が抵抗が高く、RD>RUであり、したがってVD>VUとなる。すなわち、副電源96と並列に接続された、言い換えると電極51,52に接続された電圧計で計測した電圧の値から、光変調素子1の磁化自由層3の磁化が上向きか下向きかを検知することができる。例えば、電圧VD,VUのそれぞれの許容範囲における限界値として、閾値VrefL,VrefH(VU<VrefL<VrefH<VD)を設定する。計測した電圧の値がVrefH以上であれば磁化自由層3の磁化は下向きであり、VrefL以下であれば磁化自由層3の磁化は上向きであると検知することができる。特に、光変調素子1は、前記した通り、第1中間層21が絶縁体からなるため、磁化反転による抵抗の変化量ΔRが大きい(RD>>RU)。したがって、光変調素子1は、磁化反転により変化する電圧VD,VUの差が大きく、閾値VrefL,VrefHによる磁化自由層3の磁化方向の検知が容易かつ正確となる。 As shown in FIG. 4A, in the light modulation element 1 in which the magnetization free layer 3 exhibits downward magnetization, the resistance value is R D shown in the above equation (1), so that the voltage value V D Becomes I TST · R D. On the other hand, as shown in FIG. 4B, the light modulation element 1 in which the magnetization free layer 3 exhibits upward magnetization has a resistance value of R U shown in the above equation (2). The value V U is I TST · R U. As described above, the light modulation element 1 has higher resistance when the magnetization free layer 3 exhibits downward magnetization, and R D > R U , and therefore V D > V U. That is, whether the magnetization of the magnetization free layer 3 of the light modulation element 1 is upward or downward is detected from the value of the voltage measured by a voltmeter connected in parallel with the sub power source 96, in other words, connected to the electrodes 51 and 52. can do. For example, threshold values Vref L and Vref H (V U <Vref L <Vref H <V D ) are set as limit values in the allowable ranges of the voltages V D and V U. If the measured voltage value is Vref H or more, the magnetization of the magnetization free layer 3 can be detected downward, and if it is Vref L or less, it can be detected that the magnetization of the magnetization free layer 3 is upward. In particular, in the light modulation element 1, as described above, since the first intermediate layer 21 is made of an insulator, a resistance change ΔR due to magnetization reversal is large (R D >> R U ). Therefore, the light modulation element 1 has a large difference between the voltages V D and V U that change due to the magnetization reversal, and the magnetization direction of the magnetization free layer 3 can be easily and accurately detected by the threshold values Vref L and Vref H.

(画素の書込みエラーの検出方法)
このことから、空間光変調器10は、選択した画素8について、光変調素子1の電極51,52間の電圧を閾値VrefL,VrefHと比較して、当該光変調素子1の磁化自由層3の磁化方向を検知し、光変調素子1の磁化自由層3の磁化方向を上向き、下向きのいずれにするかという画素選択部94による磁化反転動作の選択方向と照合することにより、磁化反転動作(書込み)が正常に行われたかを検査することができる。ここでは、書込みエラーの検出は、選択された画素8の光変調素子1に対して磁化反転動作を行った直後に、当該画素8に対して行うものとして説明する。
(Pixel writing error detection method)
From this, the spatial light modulator 10 compares the voltage between the electrodes 51 and 52 of the light modulation element 1 with the thresholds Vref L and Vref H for the selected pixel 8, and the magnetization free layer of the light modulation element 1. 3 is detected and collated with the selection direction of the magnetization reversal operation by the pixel selection unit 94 which determines whether the magnetization direction of the magnetization free layer 3 of the light modulation element 1 is upward or downward. It can be checked whether (writing) has been performed normally. Here, description will be made assuming that the detection of the write error is performed on the pixel 8 immediately after the magnetization reversal operation is performed on the light modulation element 1 of the selected pixel 8.

光変調素子1は、電源95が画素選択部94からの命令により電流+IWを供給することで、図3(a)に示すように磁化自由層3が下向きの磁化を示している。ここで、画素選択部94は、光変調素子1の磁化反転動作のための電源95への電流供給指示の際に、磁化自由層3の磁化を下向きにすることを判定部97に通知している(図1参照)。そして、電源95からの電流+IWの供給後(供給停止後)に、画素選択部94からの命令により、この光変調素子1の電極51,52を電源95から副電源96に切り替えて接続し、図4(a)に示すように、副電源96から抵抗測定用電流ITSTを供給する。 In the light modulation element 1, when the power source 95 supplies the current + I W according to a command from the pixel selection unit 94, the magnetization free layer 3 exhibits downward magnetization as shown in FIG. Here, the pixel selection unit 94 notifies the determination unit 97 that the magnetization of the magnetization free layer 3 is directed downward when instructing the current supply to the power source 95 for the magnetization reversal operation of the light modulation element 1. (See FIG. 1). Then, after supplying the current + I W from the power source 95 (after the supply is stopped), the electrodes 51 and 52 of the light modulation element 1 are switched from the power source 95 to the sub power source 96 in accordance with a command from the pixel selecting unit 94. As shown in FIG. 4A, a resistance measurement current I TST is supplied from the sub power supply 96.

判定部97は、画素選択部94から入力された磁化反転動作の選択方向:下向きに基づき、予め、電圧比較器97aが比較の基準とする参照電位(閾値)をVrefHに設定し、さらに、検査部97bがこの閾値VrefH以上であれば合格(PASS)であると判定するように設定する。そして、副電源96による抵抗測定用電流ITSTの供給開始に合わせて、判定部97において、電圧比較器97aが電極51,52間の電圧を閾値VrefHと比較して、VrefH以上であるか否かの結果を検査部97bへ出力する。電極51,52間の電圧の値がVrefH以上であれば、図4(a)に示す通り、磁化自由層3の磁化は下向きであり、光変調素子1の磁化反転動作が正常に行われたことがわかる。一方、電圧の値がVrefH未満である場合、光変調素子1の磁化反転動作が適切になされていない(FAIL)、すなわち書込みエラーであることがわかる。 The determination unit 97 previously sets the reference potential (threshold value) that the voltage comparator 97a uses as a reference for comparison to Vref H based on the selection direction of the magnetization reversal operation input from the pixel selection unit 94: downward, and inspection unit 97b is set to determine that a pass (pASS) if more than the threshold value Vref H. Then, in accordance with the start of supply of the resistance measurement current I TST by the sub power supply 96, the voltage comparator 97a compares the voltage between the electrodes 51 and 52 with the threshold value Vref H in the determination unit 97, and is equal to or higher than Vref H. Is output to the inspection unit 97b. If the value of the voltage between the electrodes 51 and 52 is Vref H or more, as shown in FIG. 4A, the magnetization of the magnetization free layer 3 is downward, and the magnetization reversal operation of the light modulation element 1 is normally performed. I understand that. On the other hand, if the value of the voltage is less than Vref H, the magnetization reversal operation of the optical modulation element 1 is not properly done (FAIL), ie it can be seen that a write error.

反対に、図3(c)に示すように電源95から電流−IWを供給されて磁化自由層3の磁化を上向きにした場合も、同様に接続を切り替えて、図4(b)に示すように副電源96から抵抗測定用電流ITSTを供給する。このとき、判定部97は、画素選択部94から入力された磁化反転動作の選択方向:上向きに基づき、予め、参照電位(閾値)をVrefLに設定し、検査部97bがこの閾値VrefL以下であれば合格(PASS)であると判定するように設定する。電圧比較器97aが電極51,52間の電圧の値を閾値VrefLと比較した結果、電圧の値がVrefL以下であれば、図4(b)に示す通り、磁化自由層3の磁化は上向きであり、光変調素子1の磁化反転動作が正常に行われたことがわかる。一方、電圧の値がVrefL超である場合、光変調素子1の磁化反転動作が適切になされていない(FAIL)、すなわち書込みエラーであることがわかる。 On the other hand, as shown in FIG. 3C, when the current -I W is supplied from the power source 95 and the magnetization of the magnetization free layer 3 is directed upward, the connection is switched in the same manner, and the state shown in FIG. As described above, the resistance measurement current I TST is supplied from the auxiliary power source 96. At this time, the determination unit 97 sets the reference potential (threshold value) to Vref L in advance based on the selection direction of the magnetization reversal operation input from the pixel selection unit 94: upward, and the inspection unit 97b has the threshold Vref L or less. If so, it is set so as to be determined as passing (PASS). When the voltage comparator 97a compares the voltage value between the electrodes 51 and 52 with the threshold value Vref L and the voltage value is Vref L or less, the magnetization of the magnetization free layer 3 is as shown in FIG. 4B. It can be seen that the magnetization reversal operation of the light modulation element 1 was normally performed. On the other hand, when the voltage value exceeds Vref L , it can be seen that the magnetization reversal operation of the light modulation element 1 is not properly performed (FAIL), that is, a write error.

そして、判定部97の検査部97bは、光変調素子1の磁化反転動作が正常に行われたと判定した場合は、画素選択部94に次の動作、すなわち別の画素8の選択および書込み、または同じ画素8への次の書込みに移行するように命令する。反対に、検査部97bは、書込みエラーを検出した場合は、画素選択部94に同じ画素8に対する先の磁化反転動作を再び実行するように命令する(図1参照)。このように、判定部97による判定を行いながら、画素選択部94による磁化反転動作(書込み)を行うことで、空間光変調器10は、画素アレイ80のすべての画素8で正確に表示することができる。なお、閾値VrefL,VrefHの設定、および判定部97の検査部97bによる判定方法や画素選択部94への命令等を行うためのプログラムは、例えば電流制御部90に内蔵された記憶装置(図示省略)に予め記憶すればよい。 If the inspection unit 97b of the determination unit 97 determines that the magnetization reversal operation of the light modulation element 1 has been performed normally, the pixel selection unit 94 performs the next operation, that is, selection and writing of another pixel 8, or Command to move to next write to same pixel 8. On the other hand, when detecting a write error, the inspection unit 97b instructs the pixel selection unit 94 to execute the previous magnetization reversal operation on the same pixel 8 again (see FIG. 1). In this way, the spatial light modulator 10 can accurately display in all the pixels 8 of the pixel array 80 by performing the magnetization reversal operation (writing) by the pixel selection unit 94 while performing the determination by the determination unit 97. Can do. Note that a program for setting threshold values Vref L and Vref H , a determination method by the inspection unit 97b of the determination unit 97, a command to the pixel selection unit 94, and the like is stored in, for example, a storage device ( (Not shown) may be stored in advance.

(書込みエラー検出方法の別の実施形態)
光変調素子1の磁化自由層3の磁化方向を検知するための電圧の閾値は、VrefL=VrefHとして1値(Vref)のみを設定してもよい(VU<Vref<VD)。すなわち、判定部97は、電極51,52間の電圧の値が閾値Vrefよりも大きいか小さいかにより、磁化自由層3の磁化が下向きか上向きかを検知する。詳しくは、電圧比較器97aが比較の基準とする参照電位(閾値)はVrefに固定され、判定部97は、画素選択部94から入力された磁化反転動作の選択方向に基づき、検査部97bがこの閾値Vrefよりも大きい場合と小さい場合とのいずれを合格(PASS)とするかを設定すればよい。また、電圧の閾値として、電圧VD,VUのそれぞれの限界値の一方のみ、すなわち電圧VDの下限値VrefHと電圧VUの上限値VrefLではなく、電圧VD,VUのそれぞれの許容範囲の下限値および上限値の計4値を設定して、より厳密に判定を行ってもよい。
(Another embodiment of write error detection method)
As a voltage threshold for detecting the magnetization direction of the magnetization free layer 3 of the light modulation element 1, only one value (Vref) may be set as Vref L = Vref H (V U <Vref <V D ). That is, the determination unit 97 detects whether the magnetization of the magnetization free layer 3 is downward or upward depending on whether the voltage value between the electrodes 51 and 52 is larger or smaller than the threshold value Vref. Specifically, the reference potential (threshold value) used as a reference for comparison by the voltage comparator 97a is fixed to Vref, and the determination unit 97 determines whether the inspection unit 97b is based on the selection direction of the magnetization reversal operation input from the pixel selection unit 94. What is necessary is just to set whether the case where it is larger than this threshold value Vref and the case where it is smaller is set to pass (PASS). Further, as the voltage threshold, only one of the limit values of the voltages V D and V U , that is, not the lower limit value Vref H of the voltage V D and the upper limit value Vref L of the voltage V U , but the voltage V D , V U The determination may be made more strictly by setting a total of four values, the lower limit value and the upper limit value of each allowable range.

また、前記した方法では、画素選択部94が画素8を選択して書込み(光変調素子1の磁化反転動作)を行う度に、判定部97が当該画素8に対して書込みエラー検出を行うという動作を繰り返すが、これに限られない。例えば、画素アレイ80のすべての画素8への書込みを完了したら、これらすべての画素8に対して順番に書込みエラー検出をすることもできる。   Further, in the above-described method, each time the pixel selection unit 94 selects the pixel 8 and performs writing (magnetization reversal operation of the light modulation element 1), the determination unit 97 performs write error detection on the pixel 8. The operation is repeated, but is not limited to this. For example, when writing to all the pixels 8 in the pixel array 80 is completed, the writing error can be detected in order for all the pixels 8.

また、2以上の画素8を同時に選択して、それぞれの光変調素子1に対して同一の磁化反転動作を行った場合に、これらの画素8について一括して書込みエラー検出を行ってもよい。同時に選択された2以上の画素8の光変調素子1は副電源96に並列に接続されているので、合成抵抗に基づいた電圧の閾値を予め設定または判定部97が算出することができ、1個の光変調素子1の場合と同様の方法で書込みエラー検出を行うことができる。この場合、判定部97は、選択された画素8のすべての光変調素子1について磁化反転動作が正常に行われたか、1以上のいずれかの光変調素子1について書込みエラーであるか、のどちらかであることを判定することができる。   In addition, when two or more pixels 8 are selected at the same time and the same magnetization reversal operation is performed on each of the light modulation elements 1, the write error detection may be performed on these pixels 8 collectively. Since the light modulation elements 1 of two or more pixels 8 selected at the same time are connected in parallel to the sub-power supply 96, the threshold value of the voltage based on the combined resistance can be preset or calculated by the determination unit 97. Write error detection can be performed in the same manner as in the case of the individual light modulation elements 1. In this case, the determination unit 97 determines whether the magnetization reversal operation has been normally performed for all the light modulation elements 1 of the selected pixel 8 or a write error has occurred for any one or more of the light modulation elements 1. Can be determined.

以上のように、第1実施形態に係る空間光変調器によれば、面積の大きな光変調素子により画素の有効領域を広くして開口率を高くしつつ、従来のスピン注入磁化反転素子を光変調素子とした空間光変調器と同様に、駆動用配線を用いて書込みエラー検出が可能であり、さらに画素を微細化することができる。   As described above, according to the spatial light modulator according to the first embodiment, the conventional spin-injection magnetization reversal element is optically enlarged while the effective area of the pixel is widened by the light modulation element having a large area to increase the aperture ratio. Similar to the spatial light modulator used as the modulation element, the write error can be detected using the driving wiring, and the pixel can be further miniaturized.

(第2実施形態)
次に、図11を参照して、本発明の第2実施形態に係る空間光変調器について説明する。なお、本実施形態および後記第3実施形態においては、第1実施形態(図1〜5参照)と同一の要素については同じ符号を付し、説明を省略する。
(Second Embodiment)
Next, with reference to FIG. 11, a spatial light modulator according to the second embodiment of the invention will be described. In addition, in this embodiment and 3rd Embodiment mentioned later, the same code | symbol is attached | subjected about the element same as 1st Embodiment (refer FIGS. 1-5), and description is abbreviate | omitted.

第1実施形態に係る空間光変調器10は、1つの画素8に1個の光変調素子1を備える構成であったが、これに限られず、1画素に2個以上の光変調素子を備えてもよい。すなわち、図11に示すように、第2実施形態に係る空間光変調器の画素8Aは、3個の光変調素子1Aを備える。光変調素子1Aは、X方向(図11における横方向)に拡張した平面視横長の長方形であること以外は、第1実施形態に係る空間光変調器10の光変調素子1と同一の構造である。そして、画素8Aにおいて、3個の光変調素子1Aは、当該光変調素子1Aの短辺方向(Y方向)に並べられて、同一の組の電極51,52に並列に接続される。このような画素8Aは、第1実施形態と同様に基板7上に2次元配列されて画素アレイとなり、電流制御部90で動作させることができる。画素アレイおよび電流制御部90は、第1実施形態と同様の構成であるので、図示および説明を省略する。   The spatial light modulator 10 according to the first embodiment has a configuration in which one pixel 8 includes one light modulation element 1, but is not limited thereto, and one pixel includes two or more light modulation elements. May be. That is, as shown in FIG. 11, the pixel 8A of the spatial light modulator according to the second embodiment includes three light modulation elements 1A. The light modulation element 1A has the same structure as that of the light modulation element 1 of the spatial light modulator 10 according to the first embodiment, except that the light modulation element 1A is a horizontally long rectangle in plan view extended in the X direction (lateral direction in FIG. 11). is there. In the pixel 8A, the three light modulation elements 1A are arranged in the short side direction (Y direction) of the light modulation element 1A and connected in parallel to the same pair of electrodes 51 and 52. Such pixels 8 </ b> A are two-dimensionally arranged on the substrate 7 to form a pixel array as in the first embodiment, and can be operated by the current control unit 90. Since the pixel array and current control unit 90 have the same configuration as in the first embodiment, illustration and description thereof are omitted.

以上のように、第2実施形態に係る空間光変調器によれば、画素サイズを大きくしても、光変調素子の1個のサイズが十分に小さいので好適に磁化反転し、開口率の高い画素とすることができる。   As described above, according to the spatial light modulator according to the second embodiment, even if the pixel size is increased, one size of the light modulation element is sufficiently small, so that the magnetization is appropriately reversed and the aperture ratio is high. It can be a pixel.

(第3実施形態)
次に、図12を参照して、本発明の第3実施形態およびその変形例に係る空間光変調器について説明する。本実施形態およびその変形例に係る空間光変調器は、画素アレイの構成のみが第1実施形態と異なり、電流制御部90については同様の構成であるため、図示および説明を省略する。
(Third embodiment)
Next, with reference to FIG. 12, a spatial light modulator according to a third embodiment of the present invention and a modification thereof will be described. The spatial light modulator according to the present embodiment and its modification is different from the first embodiment only in the configuration of the pixel array, and the current control unit 90 has the same configuration, and thus illustration and description thereof are omitted.

第1実施形態に係る空間光変調器10の画素アレイ80は、設けられたすべての光変調素子1は、平面視(底面視)における向きを揃え、図1、図5において左側に第1磁化固定層11が、右側に第2磁化固定層12がそれぞれ配置されているが、これに限られない。すなわち、第3実施形態に係る空間光変調器の画素アレイ80Aは、図12(a)、(b)に示すように、X方向において、画素8を1つおきに左右反転させて配列する。したがって、画素アレイ80Aは、隣り合う光変調素子1,1において、第1磁化固定層11,11同士、第2磁化固定層12,12同士が隣り合う構成となる。なお、図12(b)、(c)において、保護膜41,42は図示を省略する。   In the pixel array 80 of the spatial light modulator 10 according to the first embodiment, all the light modulation elements 1 provided are aligned in a plan view (bottom view), and the first magnetization is on the left side in FIGS. Although the fixed layer 11 and the second magnetization fixed layer 12 are arranged on the right side, the present invention is not limited to this. That is, in the spatial light modulator pixel array 80A according to the third embodiment, every other pixel 8 is horizontally inverted and arranged in the X direction, as shown in FIGS. 12 (a) and 12 (b). Therefore, the pixel array 80A has a configuration in which the first magnetization fixed layers 11 and 11 and the second magnetization fixed layers 12 and 12 are adjacent to each other in the adjacent light modulation elements 1 and 1. In FIGS. 12B and 12C, the protective films 41 and 42 are not shown.

さらに、第3実施形態の変形例に係る空間光変調器の画素アレイ80Bは、図12(c)に示すように、前記第3実施形態で隣り合う第2磁化固定層12,12、および第2中間層22,22を、それぞれ一体に結合したものである。X方向において隣り合う第2磁化固定層12,12は同じY電極52に接続され、また磁化自由層3に積層されたスピン注入磁化反転素子構造MR2の面積は第1実施形態の光変調素子1と同一であるため、このように変形した光変調素子1Bであっても、第1実施形態と同様に磁化反転動作させることができる。さらに、第2磁化固定層12の面積が第1磁化固定層11よりも2倍を超えて大きくなるため、材料や厚さの違いに拠らず、第2磁化固定層12の保磁力Hcp2を第1磁化固定層11の保磁力Hcp1よりも大きく設計することができる。 Furthermore, as shown in FIG. 12C, the pixel array 80B of the spatial light modulator according to the modification of the third embodiment includes the second magnetization fixed layers 12 and 12 adjacent to each other in the third embodiment, and The two intermediate layers 22 and 22 are joined together. The second magnetization fixed layers 12 and 12 adjacent in the X direction are connected to the same Y electrode 52, and the area of the spin injection magnetization reversal element structure MR2 laminated on the magnetization free layer 3 is the light modulation element 1 of the first embodiment. Therefore, even in the light modulation element 1B modified in this way, the magnetization reversal operation can be performed as in the first embodiment. Furthermore, since the area of the second magnetization fixed layer 12 is more than twice that of the first magnetization fixed layer 11, the coercive force Hcp 2 of the second magnetization fixed layer 12 is not dependent on the difference in material and thickness. Can be designed to be larger than the coercive force Hcp 1 of the first magnetization fixed layer 11.

以上のように、第3実施形態に係る空間光変調器によれば、第1実施形態に係る空間光変調器と同様に、書込みエラー検出が可能で、画素の微細化が可能で開口率を高くすることができる。   As described above, according to the spatial light modulator according to the third embodiment, similarly to the spatial light modulator according to the first embodiment, it is possible to detect a write error, to miniaturize a pixel, and to reduce an aperture ratio. Can be high.

(第4実施形態)
次に、図13を参照して、本発明の第4実施形態に係る空間光変調器について説明する。なお、本実施形態においては、第1実施形態(図1〜6参照)と同一の要素については同じ符号を付し、説明を省略する。
(Fourth embodiment)
Next, a spatial light modulator according to the fourth embodiment of the present invention will be described with reference to FIG. In addition, in this embodiment, the same code | symbol is attached | subjected about the same element as 1st Embodiment (refer FIGS. 1-6), and description is abbreviate | omitted.

第1実施形態に係る空間光変調器の画素アレイは、図6を参照して説明した通り、クロスポイント型のMRAM回路と同じ構造である。このクロスポイント型のMRAMにおいては、非選択の磁気抵抗効果素子にも電流が漏れるため、磁気抵抗効果素子の搭載個数が多いほどデータ読出し時に検出される1個の磁気抵抗効果素子の抵抗変化量が実際の値よりも小さくなることから、抵抗変化量の十分に大きい磁気抵抗効果素子が適用される。すなわち第1実施形態に係る空間光変調器10は、画素アレイ80における光変調素子1の搭載個数(画素数)にもよるが、電極51,52間の電圧が、非選択の画素8の光変調素子1の抵抗成分による影響を受けても、判定部97の電圧比較器97aにて閾値に対する高低の判別可能となる程度に、抵抗変化量が大きくなるように、光変調素子1が設計されている。   The pixel array of the spatial light modulator according to the first embodiment has the same structure as that of the cross point type MRAM circuit as described with reference to FIG. In this cross-point type MRAM, the current leaks also to the non-selected magnetoresistive effect element. Therefore, as the number of mounted magnetoresistive effect elements increases, the resistance change amount of one magnetoresistive effect element detected at the time of data reading is increased. Is smaller than the actual value, a magnetoresistance effect element having a sufficiently large resistance change is applied. That is, in the spatial light modulator 10 according to the first embodiment, the voltage between the electrodes 51 and 52 is the light of the non-selected pixel 8, depending on the number of mounted light modulation elements 1 (number of pixels) in the pixel array 80. The light modulation element 1 is designed so that the amount of change in resistance increases to such an extent that the voltage comparator 97a of the determination unit 97 can determine whether the threshold value is high or low even if affected by the resistance component of the modulation element 1. ing.

しかし、このような光変調素子1を適用すると、空間光変調器10は、読出しすなわち判定(書込みエラー検出)に時間を要する。そこで、MRAMに多く適用されているように、選択トランジスタ型とすることもできる。すなわち、図13に示すように、本実施形態に係る空間光変調器10Aは、それぞれの光変調素子1に接続する電極の一方、ここではY電極52(52A)と第2磁化固定層12との間に、選択素子としてトランジスタTr1を接続する。詳しくは、トランジスタTr1は、ドレインが光変調素子1の第2磁化固定層12に、ソースがY電極52Aに、ゲートが新たに設けられた配線(素子選択電極53)に、それぞれ接続される。素子選択電極53は、Y電極52Aと独立して画素8Cを選択するために、Y電極52Aとは非平行すなわち直交して設けられ、したがってX電極51と平行にY方向に延設される。空間光変調器10Aは素子選択電極53を選択する素子選択部93を新たに備え、素子選択電極53は、素子選択部93に内蔵されたトランジスタTr1の駆動用の電源(図13参照)から電流を供給される。   However, when such a light modulation element 1 is applied, the spatial light modulator 10 requires time for reading, that is, determination (writing error detection). Therefore, as is often applied to MRAM, a select transistor type may be used. That is, as shown in FIG. 13, the spatial light modulator 10A according to the present embodiment includes one of electrodes connected to each light modulation element 1, in this case, the Y electrode 52 (52A), the second magnetization fixed layer 12, and the like. The transistor Tr1 is connected as a selection element. Specifically, the transistor Tr1 has a drain connected to the second magnetization fixed layer 12 of the light modulation element 1, a source connected to the Y electrode 52A, and a wiring (element selection electrode 53) newly provided with a gate. In order to select the pixel 8C independently of the Y electrode 52A, the element selection electrode 53 is provided non-parallel to, or orthogonal to, the Y electrode 52A, and thus extends in the Y direction in parallel with the X electrode 51. The spatial light modulator 10A newly includes an element selection unit 93 that selects the element selection electrode 53. The element selection electrode 53 receives a current from a power source for driving the transistor Tr1 built in the element selection unit 93 (see FIG. 13). Supplied.

このように構成された空間光変調器10Aは、光変調素子1に電流を供給する一対の電極51,52Aだけでなく、さらに素子選択電極53により画素8Cを選択するものである。そして、空間光変調器10Aは、書込みエラー検出において、選択された画素8Cの光変調素子1のみがY電極52Aを介して副電源96や判定部97の電圧比較器97aに接続され、同じ行のすなわちY電極52Aを共有する非選択の画素8Cの光変調素子1が接続されないので、これらの光変調素子1に漏れ電流が流れない。これにより、選択された画素8Cの光変調素子1の抵抗は、非選択状態にある他の画素8Cの光変調素子1による抵抗成分の影響を受けず、磁化反転による抵抗の変化量が大きくなくても高低の判別が可能となる。さらに空間光変調器10Aは、磁化反転動作においても、選択された画素8Cの光変調素子1のみが電源95に接続されることで、漏れ電流による損失が抑えられる。   The spatial light modulator 10 </ b> A configured in this way selects the pixel 8 </ b> C not only with the pair of electrodes 51 and 52 </ b> A that supply current to the light modulation element 1 but also with the element selection electrode 53. In the spatial light modulator 10A, in the write error detection, only the light modulation element 1 of the selected pixel 8C is connected to the sub power source 96 or the voltage comparator 97a of the determination unit 97 via the Y electrode 52A, and the same row That is, since the light modulation elements 1 of the non-selected pixels 8C sharing the Y electrode 52A are not connected, no leakage current flows through these light modulation elements 1. Thereby, the resistance of the light modulation element 1 of the selected pixel 8C is not affected by the resistance component of the light modulation element 1 of the other pixel 8C in the non-selected state, and the amount of change in resistance due to magnetization reversal is not large. However, it is possible to distinguish between high and low. Furthermore, in the spatial light modulator 10A, even in the magnetization reversal operation, only the light modulation element 1 of the selected pixel 8C is connected to the power supply 95, so that loss due to leakage current can be suppressed.

画素8C毎に設けられるトランジスタTr1は、例えばMOSFET(金属酸化膜半導体電界効果トランジスタ)を適用することができる。ここで、MOSFETは、一般的にSi(シリコン)基板を材料として形成されるが、光変調素子1を形成した上に800℃程度の熱処理を必要とする通常の結晶Si膜を形成すると、光変調素子1にダメージを与えることになる。そこで、空間光変調器10Aには、150℃程度の低温で成膜可能な多結晶シリコン(poly−Si)を適用する。具体的に、一例として、基板7上に光変調素子1を形成し、その上に層間絶縁層(絶縁部材6)を成膜した(図9(d)参照)後に、poly−Si膜を成膜し、MOSFET(トランジスタTr1)を形成する。そして、光変調素子1の磁化固定層11,12上の層間絶縁層にコンタクトホールを形成し、金属電極材料で、第2磁化固定層12とトランジスタTr1のドレインとを接続し、第1磁化固定層11にX電極51を接続して形成する。さらに、トランジスタTr1のソースにY電極52を、ゲートに電極53を、それぞれ接続して形成する。なお、磁化固定層11,12への接続の妨げとならないように、トランジスタTr1は平面視で光変調素子1のない領域に形成される。   As the transistor Tr1 provided for each pixel 8C, for example, a MOSFET (metal oxide semiconductor field effect transistor) can be applied. Here, the MOSFET is generally formed using a Si (silicon) substrate as a material. However, if a normal crystalline Si film that requires heat treatment at about 800 ° C. is formed on the light modulation element 1, the optical modulation element 1 is formed. The modulation element 1 is damaged. Therefore, polycrystalline silicon (poly-Si) that can be formed at a low temperature of about 150 ° C. is applied to the spatial light modulator 10A. Specifically, as an example, after the light modulation element 1 is formed on the substrate 7 and an interlayer insulating layer (insulating member 6) is formed thereon (see FIG. 9D), a poly-Si film is formed. A film is formed to form a MOSFET (transistor Tr1). Then, a contact hole is formed in the interlayer insulating layer on the magnetization fixed layers 11 and 12 of the light modulation element 1, and the second magnetization fixed layer 12 and the drain of the transistor Tr1 are connected with a metal electrode material, and the first magnetization fixed. An X electrode 51 is connected to the layer 11 and formed. Further, a Y electrode 52 is connected to the source of the transistor Tr1, and an electrode 53 is connected to the gate, respectively. The transistor Tr1 is formed in a region where the light modulation element 1 is not present in plan view so as not to hinder connection to the magnetization fixed layers 11 and 12.

空間光変調器10Aは、トランジスタTr1を光変調素子1の第2磁化固定層12に接続しているが、第1磁化固定層11の方に接続しても同様の効果が得られる。また、空間光変調器10Aは、図13においては、画素選択部94により同じ列の画素8の第1電極(X電極)51と素子選択電極53が同時に選択されるが、独立して選択される構成としてもよい。また、空間光変調器10Aの画素アレイ80Cは、素子選択電極53と第2電極52とで、XYを入れ替えてもよい。すなわち、素子選択電極53はX方向に延設され、一方、第2電極52は第1電極51と平行にY方向に延設されて、同じ列の画素8Cの第1電極51と同時に選択されるように構成される(図示省略)。   In the spatial light modulator 10A, the transistor Tr1 is connected to the second magnetization fixed layer 12 of the light modulation element 1, but the same effect can be obtained by connecting the transistor Tr1 to the first magnetization fixed layer 11. In FIG. 13, the spatial light modulator 10 </ b> A is selected independently, although the pixel selection unit 94 simultaneously selects the first electrode (X electrode) 51 and the element selection electrode 53 of the pixels 8 in the same column. It is good also as composition to be. In the pixel array 80C of the spatial light modulator 10A, XY may be interchanged between the element selection electrode 53 and the second electrode 52. That is, the element selection electrode 53 extends in the X direction, while the second electrode 52 extends in the Y direction in parallel with the first electrode 51 and is selected simultaneously with the first electrode 51 of the pixel 8C in the same column. (Not shown).

第4実施形態の変形例として、選択素子にダイオードを適用することもできる。具体的には、第1実施形態に係る空間光変調器10(図6参照)の、光変調素子1の第2磁化固定層12とY電極52との間に、ダイオードを接続する(図示省略)。本変形例に係る空間光変調器は、光変調素子1(素子構造MR1,MR2)がユニポーラ駆動式のスピン注入磁化反転素子であり、第2電極52から第1電極51への一方向にのみ電流を供給して、磁化反転させる(図示省略)。あるいは、空間光変調器は、電源95からの電流供給による磁化反転動作では、光変調素子1に、第2電極52から第1電極51への一方向にのみ電流を供給して、磁化自由層3の磁化方向を上向きにする(図3(b)、(c)参照)。磁化自由層3の磁化方向を下向きにする場合は、例えば画素8(画素アレイ80)への磁界印加により反転させることができる。したがって、Y電極52をダイオードのアノードに接続し、カソードに第2磁化固定層12を接続する。   As a modification of the fourth embodiment, a diode can be applied to the selection element. Specifically, a diode is connected between the second magnetization fixed layer 12 of the light modulation element 1 and the Y electrode 52 of the spatial light modulator 10 (see FIG. 6) according to the first embodiment (not shown). ). In the spatial light modulator according to this modification, the light modulation element 1 (element structure MR1, MR2) is a unipolar drive type spin injection magnetization reversal element, and is only in one direction from the second electrode 52 to the first electrode 51. A current is supplied to reverse the magnetization (not shown). Alternatively, the spatial light modulator supplies a current to the light modulation element 1 only in one direction from the second electrode 52 to the first electrode 51 in the magnetization reversal operation by supplying a current from the power supply 95, thereby freeing the magnetization free layer. 3 is directed upward (see FIGS. 3B and 3C). When the magnetization direction of the magnetization free layer 3 is downward, it can be reversed by applying a magnetic field to the pixel 8 (pixel array 80), for example. Therefore, the Y electrode 52 is connected to the anode of the diode, and the second magnetization fixed layer 12 is connected to the cathode.

ダイオードは、トランジスタTr1と同様に、poly−Si膜に形成して設けることができる。このように構成された空間光変調器は、書込みエラー検出時の非選択の画素8において、あるいは磁化反転動作時に、Y電極52がopen状態であることで、ダイオードに電流が流れないので、光変調素子1に漏れ電流が流れない。さらに、本変形例に係る空間光変調器は、非選択の画素8について、Y電極52を、X電極51から供給される電流に対して電位を低くして(「−」側にして)、ダイオードに電流が流れようにしてもよい。このように、ダイオードは、特定の向きに電流を供給されたときのみに電流を流すので、トランジスタTr1と同様に選択素子とすることができる。さらに、一般にダイオードはトランジスタよりも構造が簡易かつ平面視サイズが小さいので、トランジスタを設ける場合に比べて画素が大型化せず、かつ画素アレイにゲートへの電流供給のための配線(素子選択電極53、図13参照)を設ける必要がない。なお、第4実施形態におけるトランジスタTr1と同様に、ダイオードを第1磁化固定層11の方に接続しても同様の効果が得られる。この場合は、第1磁化固定層11をダイオードのアノードに接続し、カソードにX電極51を接続する。   The diode can be formed in a poly-Si film as in the transistor Tr1. In the spatial light modulator configured in this way, no current flows through the diode because the Y electrode 52 is in the open state in the non-selected pixel 8 at the time of writing error detection or in the magnetization reversal operation. No leakage current flows through the modulation element 1. Further, in the spatial light modulator according to this modification, with respect to the non-selected pixel 8, the potential of the Y electrode 52 is made lower than the current supplied from the X electrode 51 (on the “−” side). A current may flow through the diode. As described above, since the current flows only when the current is supplied in a specific direction, the diode can be used as a selection element like the transistor Tr1. Furthermore, since a diode is generally simpler than a transistor and has a smaller size in plan view, the pixel does not become larger than when a transistor is provided, and wiring for supplying current to the gate to the pixel array (element selection electrode) 53, see FIG. 13). Similar to the transistor Tr1 in the fourth embodiment, the same effect can be obtained by connecting a diode to the first magnetization fixed layer 11. In this case, the first magnetization fixed layer 11 is connected to the anode of the diode, and the X electrode 51 is connected to the cathode.

以上のように、第4実施形態およびその変形例に係る空間光変調器によれば、書込みエラー検出、磁化反転動作の両方において、非選択画素の光変調素子へ電流が漏れないので、書込みエラー検出においては、抵抗変化量の小さい光変調素子を適用して応答速度を高速化することができ、磁化反転動作においては、漏れ電流による損失が抑えられるので省電力化することができる。   As described above, according to the spatial light modulator according to the fourth embodiment and the modification thereof, the current does not leak to the light modulation element of the non-selected pixel in both the write error detection and the magnetization reversal operation. In detection, an optical modulation element having a small resistance change amount can be applied to increase the response speed. In the magnetization reversal operation, loss due to leakage current can be suppressed, so that power can be saved.

以上、本発明の光変調素子および空間光変調器を実施するための各実施形態について述べてきたが、本発明はこれらの実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。   As mentioned above, although each embodiment for implementing the light modulation element and the spatial light modulator of the present invention has been described, the present invention is not limited to these embodiments, and various modifications can be made within the scope of the claims. Can be changed.

10,10A 空間光変調器
1,1A,1B 光変調素子
11 第1磁化固定層
12 第2磁化固定層
21 第1中間層(中間層)
22 第2中間層(中間層)
3 磁化自由層
51 第1電極、X電極(電極)
52 第2電極、Y電極(電極)
7 基板
80,80A,80B,80C 画素アレイ
8,8A,8C 画素
90 電流制御部
94 画素選択部(画素選択手段)
95 電源(電流供給手段)
96 副電源(副電流供給手段)
97 判定部(画素判定手段)
DESCRIPTION OF SYMBOLS 10,10A Spatial light modulator 1, 1A, 1B Light modulation element 11 1st magnetization fixed layer 12 2nd magnetization fixed layer 21 1st intermediate | middle layer (intermediate layer)
22 Second intermediate layer (intermediate layer)
3 Magnetization free layer 51 1st electrode, X electrode (electrode)
52 Second electrode, Y electrode (electrode)
7 Substrate 80, 80A, 80B, 80C Pixel array 8, 8A, 8C Pixel 90 Current control unit 94 Pixel selection unit (pixel selection means)
95 Power supply (current supply means)
96 Sub power supply (sub current supply means)
97 determination unit (pixel determination means)

Claims (8)

基板上に、磁化自由層、中間層、および磁化固定層の順に積層したスピン注入磁化反転素子構造を備え、前記磁化自由層が積層された側から入射した光をその偏光の向きを変化させて反射して出射する光変調素子であって、
前記磁化固定層は、面方向に離間して、互いに反平行な方向の磁化に固定された第1磁化固定層と第2磁化固定層を、前記磁化自由層の上に有し、
前記中間層は、前記第1磁化固定層を積層された中間層と前記第2磁化固定層を積層された中間層とを分離して有して互いに抵抗が異なり、
前記第1磁化固定層と前記第2磁化固定層とに一対の電極を接続して電流を供給されることにより、前記磁化自由層の磁化方向が変化することを特徴とする光変調素子。
A spin-injection magnetization reversal element structure in which a magnetization free layer, an intermediate layer, and a magnetization fixed layer are laminated in this order on a substrate, and the direction of polarization of light incident from the side on which the magnetization free layer is laminated is changed. A light modulation element that reflects and emits light,
The magnetization pinned layer has a first magnetization pinned layer and a second magnetization pinned layer, which are spaced apart in a plane direction and pinned in magnetization in directions opposite to each other on the magnetization free layer,
The intermediate layer has an intermediate layer in which the first magnetization fixed layer is stacked and an intermediate layer in which the second magnetization fixed layer is stacked, and has different resistances.
A light modulation element, wherein a magnetization direction of the magnetization free layer is changed by supplying a current by connecting a pair of electrodes to the first magnetization fixed layer and the second magnetization fixed layer.
前記2つの中間層は、少なくとも一方が、トンネル障壁層であることを特徴とする請求項1に記載の光変調素子。   The light modulation element according to claim 1, wherein at least one of the two intermediate layers is a tunnel barrier layer. 前記第1磁化固定層と前記第2磁化固定層は、互いに保磁力が異なることを特徴とする請求項1または請求項2に記載の光変調素子。   The light modulation element according to claim 1, wherein the first magnetization fixed layer and the second magnetization fixed layer have different coercive forces. 前記第1磁化固定層と前記第2磁化固定層は、少なくとも一方が、交換結合した磁性膜を備えた多層構造であることを特徴とする請求項1または請求項2に記載の光変調素子。   3. The light modulation element according to claim 1, wherein at least one of the first magnetization fixed layer and the second magnetization fixed layer has a multilayer structure including a magnetic film exchange-coupled. 4. 光を透過する基板と前記基板上に2次元配列された複数の画素とを備えて、前記基板を透過して前記複数の画素に入射した光を反射させて出射する空間光変調器において、前記画素が、請求項1ないし請求項4のいずれか一項に記載の光変調素子と、前記光変調素子の前記第1磁化固定層と前記第2磁化固定層とに接続された一対の電極とを備え、
前記複数の画素から1つ以上の画素を選択し、前記選択した画素について、前記光変調素子の磁化自由層の磁化方向を異なる2方向のいずれにするかをさらに選択する画素選択手段と、
前記画素選択手段が選択した画素の前記光変調素子に電流を供給して、前記光変調素子の磁化自由層の磁化方向を前記画素選択手段が選択した方向にする電流供給手段と、
前記電流供給手段が電流を供給した前記光変調素子の磁化自由層の磁化方向が、前記画素選択手段により選択された方向であることを判定する画素判定を、前記光変調素子の抵抗の変化を検知することにより行う画素判定手段と、を備えることを特徴とする空間光変調器。
A spatial light modulator comprising: a substrate that transmits light; and a plurality of pixels that are two-dimensionally arranged on the substrate, wherein the light that has passed through the substrate and is incident on the plurality of pixels is reflected and emitted. 5. A pixel includes a light modulation element according to claim 1, and a pair of electrodes connected to the first magnetization fixed layer and the second magnetization fixed layer of the light modulation element, With
Pixel selection means for selecting one or more pixels from the plurality of pixels and further selecting which of the two different directions of magnetization directions of the magnetization free layer of the light modulation element for the selected pixels;
Current supply means for supplying a current to the light modulation element of the pixel selected by the pixel selection means so that the magnetization direction of the magnetization free layer of the light modulation element is selected by the pixel selection means;
The pixel determination for determining that the magnetization direction of the magnetization free layer of the light modulation element to which the current supply means has supplied current is the direction selected by the pixel selection means, and a change in the resistance of the light modulation element. A spatial light modulator comprising: a pixel determination unit that performs detection.
前記画素選択手段が選択した画素の前記光変調素子に所定の大きさの電流を供給する副電流供給手段をさらに備え、
前記画素判定手段は、前記副電流供給手段に電流を供給されている前記光変調素子に接続された前記一対の電極間の電圧の値を、前記磁化自由層の磁化方向が前記画素選択手段により選択された方向であるときの前記光変調素子の抵抗に基づいて予め設定された閾値と比較することにより、前記画素判定を行うことを特徴とする請求項5に記載の空間光変調器。
Sub-current supply means for supplying a current of a predetermined magnitude to the light modulation element of the pixel selected by the pixel selection means,
The pixel determination unit is configured to determine a voltage value between the pair of electrodes connected to the light modulation element to which a current is supplied to the sub-current supply unit, and a magnetization direction of the magnetization free layer by the pixel selection unit. The spatial light modulator according to claim 5, wherein the pixel determination is performed by comparing with a threshold value set in advance based on a resistance of the light modulation element in the selected direction.
前記画素は、前記第1磁化固定層または前記第2磁化固定層に、前記電極との電気的接続を接続解除自在とする選択素子を備えることを特徴とする請求項5または請求項6に記載の空間光変調器。   7. The pixel according to claim 5, wherein the pixel includes a selection element that can freely disconnect the electrical connection with the electrode in the first magnetization fixed layer or the second magnetization fixed layer. 8. Spatial light modulator. 前記画素は、前記光変調素子の2以上を、前記一対の電極に並列に接続して備えることを特徴とする請求項5ないし請求項7のいずれか一項に記載の空間光変調器。   The spatial light modulator according to any one of claims 5 to 7, wherein the pixel includes two or more of the light modulation elements connected in parallel to the pair of electrodes.
JP2012061279A 2012-03-17 2012-03-17 Light modulator and spatial light modulator Active JP5836857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012061279A JP5836857B2 (en) 2012-03-17 2012-03-17 Light modulator and spatial light modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012061279A JP5836857B2 (en) 2012-03-17 2012-03-17 Light modulator and spatial light modulator

Publications (2)

Publication Number Publication Date
JP2013195593A JP2013195593A (en) 2013-09-30
JP5836857B2 true JP5836857B2 (en) 2015-12-24

Family

ID=49394635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012061279A Active JP5836857B2 (en) 2012-03-17 2012-03-17 Light modulator and spatial light modulator

Country Status (1)

Country Link
JP (1) JP5836857B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021110787A (en) * 2020-01-08 2021-08-02 日本放送協会 Domain wall displacement type spatial light modulator
WO2021192128A1 (en) * 2020-03-26 2021-09-30 日本電信電話株式会社 Substance capable of exhibiting delivery phenomenon of weyl fermion, and magnetoresistive element

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269885A (en) * 2005-03-25 2006-10-05 Sony Corp Spin injection type magnetoresistance effect element
JP4987616B2 (en) * 2006-08-31 2012-07-25 株式会社東芝 Magnetic random access memory and resistive random access memory
JP5278769B2 (en) * 2007-08-08 2013-09-04 日本電気株式会社 Magnetic recording apparatus and magnetization fixing method
JP5238619B2 (en) * 2009-06-12 2013-07-17 日本放送協会 Magneto-optic spatial light modulator and manufacturing method thereof
JP2012028489A (en) * 2010-07-22 2012-02-09 Nec Corp Magnetic storage device
JP5567969B2 (en) * 2010-10-01 2014-08-06 日本放送協会 Light modulator and spatial light modulator using the same

Also Published As

Publication number Publication date
JP2013195593A (en) 2013-09-30

Similar Documents

Publication Publication Date Title
JP4371781B2 (en) Magnetic cell and magnetic memory
JP5283922B2 (en) Magnetic memory
JP5567969B2 (en) Light modulator and spatial light modulator using the same
JP5545213B2 (en) Magnetic random access memory and initialization method thereof
JP5836858B2 (en) Light modulator and spatial light modulator
JP5238619B2 (en) Magneto-optic spatial light modulator and manufacturing method thereof
TWI422083B (en) Magnetic memory lattice and magnetic random access memory
JP6017190B2 (en) Manufacturing method of light modulation element
JP5836857B2 (en) Light modulator and spatial light modulator
WO2007111318A1 (en) Magnetic random access memory and operation method thereof
JP5873363B2 (en) Light modulator and spatial light modulator
JP2010232374A (en) Magnetoresistive element, and magnetic random access memory and spatial light modulator using the same
JP6017165B2 (en) Spatial light modulator
JP5679690B2 (en) Spin injection magnetization reversal device, magnetic random access memory and spatial light modulator using the same
JP5873364B2 (en) Light modulator and spatial light modulator
JP5567970B2 (en) Light modulator and spatial light modulator using the same
JP5581171B2 (en) Light modulator and spatial light modulator using the same
JP5836855B2 (en) Light modulator and spatial light modulator
JP5836856B2 (en) Light modulator and spatial light modulator
JP2004296858A (en) Magnetic memory element and magnetic memory device
JP2014175429A (en) Spin injection magnetization reversal element
JP2014110356A (en) Spin injection magnetization reversal element
JP5281522B2 (en) Spatial light modulator
JP2011180355A (en) Optical modulation element and spatial light modulator
JP6182030B2 (en) Manufacturing method of light modulation element and spatial light modulator

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151104

R150 Certificate of patent or registration of utility model

Ref document number: 5836857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250