JP2010232374A - Magnetoresistive element, and magnetic random access memory and spatial light modulator using the same - Google Patents

Magnetoresistive element, and magnetic random access memory and spatial light modulator using the same Download PDF

Info

Publication number
JP2010232374A
JP2010232374A JP2009077501A JP2009077501A JP2010232374A JP 2010232374 A JP2010232374 A JP 2010232374A JP 2009077501 A JP2009077501 A JP 2009077501A JP 2009077501 A JP2009077501 A JP 2009077501A JP 2010232374 A JP2010232374 A JP 2010232374A
Authority
JP
Japan
Prior art keywords
magnetization
layer
magnetoresistive element
spin
magnetization reversal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009077501A
Other languages
Japanese (ja)
Inventor
Nobuhiko Funabashi
信彦 船橋
Kenichi Aoshima
賢一 青島
Kenji Machida
賢司 町田
Yasuyoshi Miyamoto
泰敬 宮本
Atsushi Kuga
淳 久我
Naoki Shimizu
直樹 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP2009077501A priority Critical patent/JP2010232374A/en
Publication of JP2010232374A publication Critical patent/JP2010232374A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hall/Mr Elements (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetoresistive element with vertical magnetic anisotropy which has superior magnetic characteristics by containing an RE-TM alloy, and can maintain the magnetic characteristics. <P>SOLUTION: The magnetoresistive element 1 has a magnetization fixed layer 11, an intermediate layer 12 and a magnetization reversal layer 13 laminated, wherein at least one of the magnetization fixed layer 11 and magnetization reversal layer 13 contains the RE-TM alloy, and an insulating layer 6 for insulating a pair of electrodes 2 and 3 connected above and below is disposed in contact with the magnetoresistive element 1 and made of silicon oxide. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、磁性体膜の性質を利用する磁気抵抗素子および磁気ランダムアクセスメモリあるいは空間光変調器に関する。   The present invention relates to a magnetoresistive element, a magnetic random access memory, or a spatial light modulator that utilizes the properties of a magnetic film.

膜面垂直通電型の磁気抵抗素子(磁気抵抗効果素子)は、2層以上の磁性体膜を備え、上下に接続された電極(配線)から膜面に垂直に電流を供給されることでスピン注入磁化反転して、一部の磁性体膜の磁化方向が180°回転し、磁化方向が変化しない別の磁性体膜と同じ方向になったり、あるいは反対方向になったりする。この磁気抵抗素子は、スピン注入磁化反転(以下、磁化反転)することで、上下の電極間での抵抗が変化するため、これを利用して1ビットのデータの書き込み/読み出しを行うことができる。すなわち、磁気抵抗素子は、これを備えたメモリセルをマトリクス状に配列して磁気ランダムアクセスメモリ(MRAM)を構成する。磁気抵抗素子は、その大きさが極めて小さい上、磁化反転の動作が高速であるため、大容量磁気メモリとしてMRAMおよび磁気抵抗素子の研究・開発が進められている。   A film surface vertical conduction type magnetoresistive element (magnetoresistance effect element) includes two or more magnetic films, and spins by supplying current perpendicularly to the film surface from vertically connected electrodes (wiring). Due to the reversal of the injected magnetization, the magnetization direction of a part of the magnetic film is rotated by 180 ° to be the same direction as another magnetic film in which the magnetization direction does not change, or in the opposite direction. In this magnetoresistive element, the resistance between the upper and lower electrodes changes due to spin injection magnetization reversal (hereinafter referred to as magnetization reversal), and this can be used to write / read 1-bit data. . That is, the magnetoresistive element constitutes a magnetic random access memory (MRAM) by arranging memory cells including the magnetoresistive element in a matrix. Since the magnetoresistive element is extremely small in size and operates at a high speed of magnetization reversal, research and development of an MRAM and a magnetoresistive element as a large-capacity magnetic memory are underway.

磁気抵抗素子の磁性体材料として、従来は膜面方向の磁化を示すCo−Fe合金等について研究されていたが、最近では、MRAMの、よりいっそうの大容量化および省電力化のために、磁気抵抗素子のさらなる微細化が可能で、かつ磁化反転に要する電流を低減できる、膜面に垂直方向の磁化を示す(垂直磁気異方性を有する)磁性体材料が注目されている。このような垂直磁気異方性材料の中でも、希土類金属と遷移金属との合金(RE−TM合金)はフェリ磁性の垂直磁気異方性材料として注目されており、垂直磁気異方性の磁気抵抗素子の材料として有望である(例えば、特許文献1参照)。   As a magnetic material of the magnetoresistive element, a Co—Fe alloy or the like that exhibits magnetization in the film surface direction has been conventionally studied, but recently, in order to further increase the capacity and power saving of the MRAM, Attention has been focused on magnetic materials that exhibit magnetization in the direction perpendicular to the film surface (having perpendicular magnetic anisotropy) that can further miniaturize the magnetoresistive element and reduce the current required for magnetization reversal. Among such perpendicular magnetic anisotropy materials, an alloy of rare earth metal and transition metal (RE-TM alloy) is attracting attention as a ferrimagnetic perpendicular magnetic anisotropy material. It is promising as an element material (see, for example, Patent Document 1).

また、磁気抵抗素子の別の用途として、空間光変調器の画素に搭載される光変調素子が挙げられる。光変調素子としての磁気抵抗素子は、磁化が回転する磁性体膜で反射または透過した光の偏光の向きを磁気光学効果により変化させるものであり、空間光変調器の高精細化および高速化のために、従来の液晶に代わる材料として研究・開発が進められている(例えば、特許文献2参照)。光変調素子として使用する磁気抵抗素子については、偏光の向きの変化を大きくする(光変調度を大きくする)ことが望ましい。そのため、光変調素子は、垂直磁気異方性の磁気抵抗素子を用いて、膜面にほぼ垂直に光を入射することにより、極カー効果で光変調度を大きくすることが望ましい。   Another application of the magnetoresistive element is a light modulation element mounted on a pixel of a spatial light modulator. A magnetoresistive element as a light modulation element changes the direction of polarization of light reflected or transmitted by a magnetic film whose magnetization rotates by the magneto-optic effect. For this reason, research and development are being carried out as materials that can replace conventional liquid crystals (see, for example, Patent Document 2). For a magnetoresistive element used as a light modulation element, it is desirable to increase the change in the direction of polarization (increase the degree of light modulation). For this reason, it is desirable that the light modulation element increases the degree of light modulation by the polar Kerr effect by using a magnetoresistive element having perpendicular magnetic anisotropy and allowing light to enter the film surface substantially perpendicularly.

特開2008−283207号公報(請求項6、請求項11、段落0027)JP 2008-283207 A (Claim 6, Claim 11, Paragraph 0027) 特開2008−145748号公報(請求項6、図4)JP 2008-145748 A (Claim 6, FIG. 4)

MRAMにおいても空間光変調器においても、磁気抵抗素子は膜面方向に2次元配列されて、上下から電極を接続される。そして、磁気抵抗素子同士の離間領域で上下の電極が互いに短絡しないように、この領域には絶縁材料が埋め込まれる。絶縁材料は前記の短絡防止の他に、磁気抵抗素子の側面(端面)を封止するものであり、一般にシリコン酸化物(SiO2)が適用される。ここで、前記したように、RE−TM合金は垂直磁気異方性材料として特に好ましい材料であるが、酸化し易い性質がある。そのため、MRAMや空間光変調器を製造する際の磁気抵抗素子同士の離間領域にSiO2を成膜する工程で、酸素を供給されることで、露出した磁気抵抗素子の端面で、磁気抵抗素子に含まれるRE−TM合金が酸化して、RE−TM合金の、さらには磁気抵抗素子の磁気特性が劣化する虞がある。また、製造後に、SiO2との界面(磁気抵抗素子の端面)でRE−TM合金がSiO2に接触していることで、SiO2の酸素(O)により端面から酸化が進行して、RE−TM合金の磁気特性が劣化する虞がある。 In both the MRAM and the spatial light modulator, the magnetoresistive elements are two-dimensionally arranged in the film surface direction, and electrodes are connected from above and below. An insulating material is buried in this region so that the upper and lower electrodes are not short-circuited in a region where the magnetoresistive elements are separated from each other. The insulating material seals the side surface (end surface) of the magnetoresistive element in addition to the prevention of the short circuit, and silicon oxide (SiO 2 ) is generally applied. Here, as described above, the RE-TM alloy is a particularly preferable material as the perpendicular magnetic anisotropic material, but has a property of being easily oxidized. Therefore, the magnetoresistive element is exposed at the end face of the magnetoresistive element exposed by supplying oxygen in the step of forming SiO 2 in the space between the magnetoresistive elements when manufacturing the MRAM or the spatial light modulator. There is a possibility that the RE-TM alloy contained in the metal will oxidize and the magnetic properties of the RE-TM alloy and further of the magnetoresistive element will deteriorate. Also, after manufacturing, by interfacial RE-TM alloy (the end face of the magnetic resistance element) with SiO 2 is in contact with the SiO 2, oxidation from the end face by the SiO 2 oxygen (O) progresses, RE -There exists a possibility that the magnetic characteristic of TM alloy may deteriorate.

本発明は前記問題点に鑑み創案されたもので、垂直磁気異方性材料として好ましいRE−TM合金を備えて磁気特性の劣化を抑制できる磁気抵抗素子、ならびにこの磁気抵抗素子を備えた磁気ランダムアクセスメモリおよび空間光変調器を提供することを目的とする。   The present invention has been devised in view of the above problems, and includes a magnetoresistive element that includes a RE-TM alloy that is preferable as a perpendicular magnetic anisotropy material and that can suppress deterioration of magnetic characteristics, and a magnetic random element that includes this magnetoresistive element. An object is to provide an access memory and a spatial light modulator.

前記課題を解決するために、本発明者らは、SiO2に代わる絶縁材料として、酸化物等の酸素(O)を含む材料を適用しないことが、RE−TM合金を酸化させず、劣化を抑制できると考え、シリコン窒化物を適用することに知見した。 In order to solve the above-mentioned problems, the present inventors do not apply a material containing oxygen (O) such as an oxide as an insulating material in place of SiO 2 , but do not oxidize the RE-TM alloy and cause deterioration. We thought that it could be suppressed and found out that silicon nitride was applied.

すなわち、本発明に係る磁気抵抗素子は、磁化固定層と中間層と磁化反転層とを積層して備えるスピン注入磁化反転素子と、このスピン注入磁化反転素子の上下に接続された一対の電極と、この一対の電極間を絶縁する絶縁層と、を備え、前記スピン注入磁化反転素子は、磁化固定層および磁化反転層の少なくとも一方が希土類金属と遷移金属との合金を含み、前記絶縁層は、前記スピン注入磁化反転素子に接触して配され、シリコン窒化物からなることを特徴とする。   That is, a magnetoresistive element according to the present invention includes a spin injection magnetization reversal element including a magnetization fixed layer, an intermediate layer, and a magnetization reversal layer, and a pair of electrodes connected above and below the spin injection magnetization reversal element. The spin-injection magnetization reversal element includes at least one of a magnetization fixed layer and a magnetization reversal layer including an alloy of a rare earth metal and a transition metal, and the insulation layer includes: , In contact with the spin-injection magnetization switching element, and made of silicon nitride.

かかる構成により、スピン注入磁化反転素子がRE−TM合金を含んで垂直磁気異方性を有するので、微細化および磁化反転電流の低減が可能となり、また磁化反転動作が安定する。さらにこれらの磁気特性は、接触する絶縁層をシリコン窒化物とすることで、RE−TM合金が酸化して劣化する虞がない。   With this configuration, since the spin-injection magnetization switching element includes the RE-TM alloy and has perpendicular magnetic anisotropy, it is possible to reduce the size and decrease the magnetization switching current, and stabilize the magnetization switching operation. Furthermore, these magnetic characteristics do not have the possibility that the RE-TM alloy is oxidized and deteriorated by making the insulating layer in contact with silicon nitride.

また、本発明に係る磁気ランダムアクセスメモリは、前記のRE−TM合金を含むスピン注入磁化反転素子とその上下に接続された一対の電極とをメモリセルに備えて構成される。すなわち2次元配列された複数のメモリセルを備える磁気ランダムアクセスメモリであって、前記スピン注入磁化反転素子に接触して、隣り合うスピン注入磁化反転素子間および前記一対の電極間をそれぞれ絶縁するシリコン窒化物からなる絶縁層を備えることを特徴とする。   In addition, a magnetic random access memory according to the present invention is configured by including, in a memory cell, a spin-injection magnetization reversal element containing the RE-TM alloy and a pair of electrodes connected to the upper and lower sides thereof. That is, a magnetic random access memory including a plurality of two-dimensionally arranged memory cells, which is in contact with the spin injection magnetization reversal element and insulates between adjacent spin injection magnetization reversal elements and the pair of electrodes. An insulating layer made of nitride is provided.

かかる構成により、磁気ランダムアクセスメモリは、その1ビットを記録するスピン注入磁化反転素子を垂直磁気異方性として微細化することができ、また駆動電流を低減でき、データの書き込み/読み出し動作が安定する。さらにこれらの特性は、スピン注入磁化反転素子に接触する領域にシリコン窒化物を絶縁層として備えることで、劣化を抑制できる。   With this configuration, the magnetic random access memory can reduce the spin injection magnetization reversal element for recording 1 bit as perpendicular magnetic anisotropy, reduce the drive current, and stabilize the data write / read operation. To do. Furthermore, these characteristics can suppress deterioration by providing silicon nitride as an insulating layer in a region in contact with the spin injection magnetization switching element.

また、本発明に係る空間光変調器は、前記のRE−TM合金を含むスピン注入磁化反転素子を光変調素子とするものであり、スピン注入磁化反転素子とその上下に接続された一対の電極とを画素に備えて構成される。すなわち2次元配列された複数の画素と、前記複数の画素から1つ以上の画素を選択する画素選択手段と、この画素選択手段が選択した画素に所定の電流を供給する電流供給手段と、を備えて、前記画素選択手段が選択した画素に入射した光の偏光方向を特定の方向に変化させて出射する空間光変調器であって、前記スピン注入磁化反転素子に接触して、隣り合うスピン注入磁化反転素子間および前記一対の電極間をそれぞれ絶縁するシリコン窒化物からなる絶縁層を備えることを特徴とする。   A spatial light modulator according to the present invention uses the spin-injection magnetization switching element including the RE-TM alloy as a light modulation element, and a pair of electrodes connected above and below the spin-transfer magnetization switching element. Are provided in a pixel. That is, a plurality of pixels arranged two-dimensionally, a pixel selection unit that selects one or more pixels from the plurality of pixels, and a current supply unit that supplies a predetermined current to the pixels selected by the pixel selection unit, A spatial light modulator that emits light by changing the polarization direction of light incident on the pixel selected by the pixel selection means in a specific direction, and is adjacent to the spin injection magnetization switching element and An insulating layer made of silicon nitride that insulates between the magnetization reversal elements and the pair of electrodes is provided.

かかる構成により、空間光変調器は、画素に備えた光変調素子を構成する磁気抵抗素子を垂直磁気異方性として、極カー効果で光変調度を大きくすることができる。また画素選択動作のための電流を低減でき、その動作が安定する。さらにこれらの特性は、磁気抵抗素子の側面にシリコン窒化物を絶縁材料に備えることで劣化を抑制できる。   With this configuration, the spatial light modulator can increase the degree of light modulation by the polar Kerr effect, with the magnetoresistive element constituting the light modulation element provided in the pixel as the perpendicular magnetic anisotropy. Further, the current for pixel selection operation can be reduced, and the operation is stabilized. Furthermore, deterioration of these characteristics can be suppressed by providing silicon nitride as an insulating material on the side surface of the magnetoresistive element.

本発明に係る磁気抵抗素子によれば、磁化反転電流を低減でき、かつ磁化反転動作が安定し、これらの磁気特性の劣化し難い垂直磁気異方性の磁気抵抗素子とすることができる。そして、本発明に係る磁気ランダムアクセスメモリによれば、大容量で、データの書き込み/読み出し動作が高速で安定したものとすることができ、さらにこれらの特性の劣化し難いものとすることができる。また、本発明に係る空間光変調器によれば、高精細かつ高速応答で画素選択性に優れたものとすることができ、さらにこれらの特性の劣化し難いものとすることができる。   According to the magnetoresistive element of the present invention, it is possible to obtain a magnetoresistive element having perpendicular magnetic anisotropy that can reduce the magnetization reversal current, stabilize the magnetization reversal operation, and hardly deteriorate the magnetic characteristics thereof. According to the magnetic random access memory according to the present invention, the capacity can be increased, the data writing / reading operation can be performed stably at high speed, and the characteristics can be hardly deteriorated. . Further, according to the spatial light modulator according to the present invention, it is possible to achieve high definition, high speed response, and excellent pixel selectivity, and further, these characteristics can be hardly deteriorated.

本発明の一実施形態に係る磁気抵抗素子の断面図である。It is sectional drawing of the magnetoresistive element which concerns on one Embodiment of this invention. 本発明の一実施形態に係る磁気抵抗素子の動作を模式的に説明する斜視図である。It is a perspective view explaining typically operation of a magnetoresistive element concerning one embodiment of the present invention. 本発明の一実施形態に係る空間光変調器の構成を模式的に示す平面図である。It is a top view which shows typically the structure of the spatial light modulator which concerns on one Embodiment of this invention. 図3に示す空間光変調器の画素選択の動作を説明する模式図で、図3のA−A断面図である。FIG. 4 is a schematic diagram for explaining the pixel selection operation of the spatial light modulator shown in FIG. 本発明の一実施形態に係る磁気ランダムアクセスメモリを備えた記録装置の構成を模式的に示す平面図である。It is a top view which shows typically the structure of the recording device provided with the magnetic random access memory which concerns on one Embodiment of this invention. 本発明の一実施形態に係る磁気抵抗素子およびこれを備えたメモリセルの断面図で、図5のB−B断面図である。6 is a cross-sectional view of a magnetoresistive element and a memory cell including the magnetoresistive element according to an embodiment of the present invention, and is a cross-sectional view taken along line BB of FIG. 実施例の磁気抵抗素子の磁気特性を示すグラフである。It is a graph which shows the magnetic characteristic of the magnetoresistive element of an Example.

以下、本発明に係る磁気抵抗素子、磁気ランダムアクセスメモリ、および空間光変調器を実現するための形態について、図を参照して説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for realizing a magnetoresistive element, a magnetic random access memory, and a spatial light modulator according to the present invention will be described with reference to the drawings.

[磁気抵抗素子]
本発明の一実施形態に係る磁気抵抗素子(スピン注入磁化反転素子)1は、図1に示すように、磁化固定層11、中間層12、磁化反転層13、保護層14の順に積層された構成であり、一対の電極である上部電極2と下部電極3に上下で接続されて、膜面に垂直に電流を供給される。また、上部電極2と下部電極3(以下、適宜電極2,3)の隙間、すなわち磁気抵抗素子1の側面に隣接する領域には絶縁層6が埋め込まれている。磁気抵抗素子1は、磁化が一方向に固定された磁化固定層11および磁化の方向が回転可能な磁化反転層13を、非磁性または絶縁体である中間層12を挟んで備えたCPP−GMR(Current Perpendicular to the Plane Giant MagnetoResistance:垂直通電型巨大磁気抵抗)素子やTMR(Tunnel MagnetoResistance:トンネル磁気抵抗)素子等のスピン注入磁化反転素子であり、製造工程におけるダメージからこれらの層を保護するために、最上層に保護層14が設けられている。磁気抵抗素子1を構成する各層は、下部電極3を形成された上に、例えばスパッタリング法や分子線エピタキシー(MBE)法等の公知の方法で連続的に成膜されて積層され、電子線リソグラフィおよびイオンビームミリング法等で所望の平面視形状に加工される。以下、磁気抵抗素子1を構成する各層の詳細を説明する。
[Magnetic resistance element]
As shown in FIG. 1, a magnetoresistive element (spin injection magnetization reversal element) 1 according to an embodiment of the present invention is laminated in the order of a magnetization fixed layer 11, an intermediate layer 12, a magnetization reversal layer 13, and a protective layer 14. It is a structure and is connected to the upper electrode 2 and the lower electrode 3 which are a pair of electrodes in the vertical direction, and a current is supplied perpendicular to the film surface. Further, an insulating layer 6 is embedded in a gap between the upper electrode 2 and the lower electrode 3 (hereinafter appropriately referred to as electrodes 2 and 3), that is, a region adjacent to the side surface of the magnetoresistive element 1. The magnetoresistive element 1 is a CPP-GMR having a magnetization fixed layer 11 whose magnetization is fixed in one direction and a magnetization reversal layer 13 whose magnetization direction is rotatable, with an intermediate layer 12 which is nonmagnetic or insulating, sandwiched between them. Spin injection magnetization reversal elements such as (Current Perpendicular to the Plane Giant MagnetoResistance) elements and TMR (Tunnel MagnetoResistance) elements, and to protect these layers from damage in the manufacturing process In addition, a protective layer 14 is provided as the uppermost layer. Each layer constituting the magnetoresistive element 1 is formed with a lower electrode 3 and is continuously formed and laminated by a known method such as a sputtering method or a molecular beam epitaxy (MBE) method. And it is processed into a desired planar view shape by an ion beam milling method or the like. Hereinafter, details of each layer constituting the magnetoresistive element 1 will be described.

磁化固定層11および磁化反転層13は、それぞれ垂直磁気異方性を有するCPP−GMR素子やTMR素子等の磁化固定層および磁化反転層として公知の磁性材料にて構成することができるが、本実施形態においては、少なくとも一方が希土類金属と遷移金属との合金(RE−TM合金)を含むものとする。遷移金属としてはFe,Co,Ni、希土類金属としてはSm,Eu,Gd,Tbが挙げられる。RE−TM合金は、フェリ磁性材料であり、見かけ上の飽和磁化Msが低いため、外部へ漏れる磁界を低減することができる。なお、RE−TM合金を含むというのは、磁化固定層11または磁化反転層13の全体を構成してもよいし、他の材料と積層した多層構造等のような一部に含む構成としてもよい。   The magnetization fixed layer 11 and the magnetization reversal layer 13 can be made of a known magnetic material as a magnetization fixed layer and a magnetization reversal layer such as a CPP-GMR element or a TMR element having perpendicular magnetic anisotropy, respectively. In the embodiment, at least one includes an alloy (RE-TM alloy) of a rare earth metal and a transition metal. Examples of transition metals include Fe, Co, Ni, and examples of rare earth metals include Sm, Eu, Gd, and Tb. The RE-TM alloy is a ferrimagnetic material, and since the apparent saturation magnetization Ms is low, the magnetic field leaking to the outside can be reduced. Note that including the RE-TM alloy may constitute the entire magnetization fixed layer 11 or the magnetization reversal layer 13, or may include a part such as a multilayer structure laminated with other materials. Good.

磁化固定層11は、その厚さを1〜50nmとすることが好ましい。磁化固定層11がRE−TM合金を含む構成とした場合は、その飽和磁化Msが低いため、磁気抵抗素子1は、磁化固定層11から磁化反転層13へ漏れる磁界が減少して、スピン注入磁化反転特性が電流軸方向の一方にシフトする現象を抑制することができ、正の磁化反転電流と負の磁化反転電流をほぼ同じ大きさとして安定したスピン注入磁化反転動作を得ることができる。その他の材料としては、Fe,Co,Ni等の遷移金属およびそれらを含む合金、[Fe/Pt]×n、[Co/Pt]×nの多層膜が挙げられる。   The magnetization fixed layer 11 preferably has a thickness of 1 to 50 nm. When the magnetization pinned layer 11 includes a RE-TM alloy, the saturation magnetization Ms is low. Therefore, the magnetoresistive element 1 reduces the magnetic field leaking from the magnetization pinned layer 11 to the magnetization switching layer 13 and spin injection. The phenomenon that the magnetization reversal characteristic shifts to one side in the current axis direction can be suppressed, and a stable spin injection magnetization reversal operation can be obtained by setting the positive magnetization reversal current and the negative magnetization reversal current to substantially the same magnitude. Examples of other materials include transition metals such as Fe, Co, and Ni, alloys containing them, and [Fe / Pt] × n and [Co / Pt] × n multilayer films.

磁化反転層13は、その厚さを1〜20nmとすることが好ましい。磁化反転層13がRE−TM合金を含む構成とした場合は、その飽和磁化Msが低いため、磁気抵抗素子1は、磁化反転電流密度Jcを低減して磁化反転電流を低減することができる。その他の材料としては、Fe,Co,Ni等の遷移金属およびそれらを含む合金、CoPt,CoCr基合金(CoCr,CoCrPt,CoCrTa等)、[Fe/Pt]×n、[Co/Pt]×nの多層膜、MnBiのような強磁性金属が挙げられる。   The magnetization switching layer 13 preferably has a thickness of 1 to 20 nm. When the magnetization reversal layer 13 includes a RE-TM alloy, the saturation magnetization Ms is low. Therefore, the magnetoresistive element 1 can reduce the magnetization reversal current density Jc to reduce the magnetization reversal current. Other materials include transition metals such as Fe, Co, Ni, and alloys containing them, CoPt, CoCr based alloys (CoCr, CoCrPt, CoCrTa, etc.), [Fe / Pt] × n, [Co / Pt] × n. And a ferromagnetic metal such as MnBi.

また、RE−TM合金あるいはその他の材料においても、磁化固定層11および磁化反転層13の少なくとも一方は、中間層12との界面にCoFe等の遷移金属または遷移金属合金のようなスピン偏極率の高い材料を厚さ1nm程度で積層することが好ましい。これにより、当該界面でのスピン偏極率を高くして、中間層12を介して注入される磁化反転層13に注入されるスピンによるスピントルクが増大するため、磁気抵抗素子1の磁化反転に要する電流を低減することができる。   Also in the RE-TM alloy or other materials, at least one of the magnetization fixed layer 11 and the magnetization switching layer 13 has a spin polarization factor such as a transition metal such as CoFe or a transition metal alloy at the interface with the intermediate layer 12. It is preferable to stack a high material with a thickness of about 1 nm. As a result, the spin polarization at the interface is increased, and the spin torque caused by the spin injected into the magnetization switching layer 13 injected through the intermediate layer 12 is increased. The required current can be reduced.

中間層12は、磁化固定層11と磁化反転層13との間に設けられる。磁気抵抗素子1がTMR素子であれば、中間層12は、MgO,Al23,HfO2のような絶縁体や、Mg/MgO/Mgのような絶縁体を含む積層膜からなり、その厚さは0.1〜2nmとすることが好ましい。また、磁気抵抗素子1がCPP−GMR素子であれば、中間層12は、Cu,Au,Agのような非磁性金属からなり、その厚さは1〜10nmとすることが好ましい。 The intermediate layer 12 is provided between the magnetization fixed layer 11 and the magnetization switching layer 13. If the magnetoresistive element 1 is a TMR element, the intermediate layer 12 is made of an insulator such as MgO, Al 2 O 3 , HfO 2 or a laminated film containing an insulator such as Mg / MgO / Mg. The thickness is preferably 0.1 to 2 nm. If the magnetoresistive element 1 is a CPP-GMR element, the intermediate layer 12 is made of a nonmagnetic metal such as Cu, Au, or Ag, and the thickness is preferably 1 to 10 nm.

保護層14は、Ta,Ru,Cuの単層、または、Cu/Ta,Cu/Ruの2層等から構成される。なお、前記の2層構造とする場合は、いずれもCuを内側(下層)とする。保護層14の厚さは、1nm未満であると連続した膜を形成し難く、一方、10nmを超えて厚くしても、製造工程において磁化反転層13等を保護する効果がそれ以上には向上しない。したがって、保護層14の厚さは1〜10nmとすることが好ましい。   The protective layer 14 is composed of a single layer of Ta, Ru, Cu, or two layers of Cu / Ta, Cu / Ru. In addition, when setting it as the said 2 layer structure, all make Cu inside (lower layer). When the thickness of the protective layer 14 is less than 1 nm, it is difficult to form a continuous film. On the other hand, even if the thickness exceeds 10 nm, the effect of protecting the magnetization switching layer 13 and the like in the manufacturing process is further improved. do not do. Therefore, the thickness of the protective layer 14 is preferably 1 to 10 nm.

以上のように、本実施形態に係る磁気抵抗素子によれば、垂直磁気異方性を示して微細化が容易であり、磁化反転電流を低減でき、かつ磁化反転動作が安定した磁気抵抗素子とすることができる。ここで、磁気抵抗素子1の磁化反転の動作を、図2を参照して説明する。なお、図2において保護層14は図示を省略する。スピン注入磁化反転素子である磁気抵抗素子1は、逆方向のスピンを持つ電子を注入することにより、すなわち電流を反対向きに供給することにより、磁化反転層13の磁化方向を反転(スピン注入磁化反転、以下、適宜磁化反転という)させて、磁化固定層11の磁化方向と同じ方向または180°異なる方向にする。そして、前記した通り、磁化固定層11および磁化反転層13は、垂直磁気異方性を有するのでその磁化は上または下方向を示し、本明細書では、図2(a)、(b)に矢印で示すように、磁化固定層11の磁化は常に上方向に固定されている。   As described above, according to the magnetoresistive element according to the present embodiment, a magnetoresistive element that exhibits perpendicular magnetic anisotropy, can be easily miniaturized, can reduce a magnetization reversal current, and has a stable magnetization reversal operation. can do. Here, the magnetization reversal operation of the magnetoresistive element 1 will be described with reference to FIG. In FIG. 2, the protective layer 14 is not shown. The magnetoresistive element 1, which is a spin injection magnetization reversal element, reverses the magnetization direction of the magnetization reversal layer 13 by injecting electrons having spins in the reverse direction, that is, by supplying current in the opposite direction (spin injection magnetization). Reversal (hereinafter referred to as magnetization reversal as appropriate), so that the magnetization direction of the magnetization fixed layer 11 is the same or 180 ° different. As described above, since the magnetization fixed layer 11 and the magnetization switching layer 13 have perpendicular magnetic anisotropy, the magnetization thereof indicates an upward or downward direction. In this specification, in FIGS. 2 (a) and 2 (b) As indicated by the arrows, the magnetization of the magnetization fixed layer 11 is always fixed upward.

図2(a)に示すように、上部電極2を「+」、下部電極3を「−」にして、磁化反転層13側から磁化固定層11へ下向きに電流を供給すると、磁化反転層13の磁化は磁化固定層11の磁化方向と同じ上方向になる。以下、この状態を磁気抵抗素子1の磁化が平行である(P:Parallel)という。反対に、上部電極2を「−」、下部電極3を「+」にして、磁化固定層11側から磁化反転層13へ上向きに電流を供給すると、磁化反転層13の磁化は磁化固定層11の磁化方向と逆の下方向になる。以下、この状態を磁気抵抗素子1の磁化が反平行である(AP:Anti-Parallel)という。   As shown in FIG. 2A, when the upper electrode 2 is set to “+” and the lower electrode 3 is set to “−”, and a current is supplied downward from the magnetization switching layer 13 side to the magnetization fixed layer 11, the magnetization switching layer 13 Is in the same upward direction as the magnetization direction of the fixed magnetization layer 11. Hereinafter, this state is referred to as that the magnetization of the magnetoresistive element 1 is parallel (P: Parallel). On the contrary, when the upper electrode 2 is set to “−” and the lower electrode 3 is set to “+” and current is supplied upward from the magnetization fixed layer 11 side to the magnetization switching layer 13, the magnetization of the magnetization switching layer 13 is changed to the magnetization fixed layer 11. The downward direction is opposite to the magnetization direction. Hereinafter, this state is referred to as anti-parallel (AP) in which the magnetization of the magnetoresistive element 1 is antiparallel.

磁気抵抗素子1の磁化が平行、反平行いずれかの磁化を示していれば、その磁化を反転させる電流が供給されるまでは、磁化反転層13の保磁力により磁化が保持される。このように、磁気抵抗素子1において磁化は保持されるため、磁気抵抗素子1に供給する電流としては、パルス電流のように、磁化方向を反転させる電流値に一時的に到達する電流を用いることができる。そして、後記するように、磁気抵抗素子1は、一般的に、膜面方向に複数個を2次元配列して磁気ランダムアクセスメモリ(MRAM)や空間光変調器の画素アレイを構成するが、電極2,3から所定の電流を供給することにより、任意の1つ以上の磁気抵抗素子1を選択的に磁化反転させることができる。   If the magnetization of the magnetoresistive element 1 exhibits either parallel or antiparallel magnetization, the magnetization is retained by the coercive force of the magnetization reversal layer 13 until a current for reversing the magnetization is supplied. Thus, since the magnetization is retained in the magnetoresistive element 1, a current that temporarily reaches the current value that reverses the magnetization direction, such as a pulse current, is used as the current supplied to the magnetoresistive element 1. Can do. As will be described later, the magnetoresistive element 1 generally has a pixel array of a magnetic random access memory (MRAM) or a spatial light modulator by two-dimensionally arranging a plurality of elements in the film surface direction. By supplying a predetermined current from 2 and 3, any one or more magnetoresistive elements 1 can be selectively reversed in magnetization.

なお、本実施形態に係る磁気抵抗素子は、磁化固定層、中間層、および磁化反転層を1ずつ備えた構成であるが、これに限らず、例えばデュアルピン構造のように、磁化反転層の上下にそれぞれ中間層を挟んで、2つの磁化固定層を備える磁気抵抗素子であってもよい。   Note that the magnetoresistive element according to the present embodiment is configured to include one magnetization fixed layer, one intermediate layer, and one magnetization reversal layer. However, the present invention is not limited to this. A magnetoresistive element including two magnetization fixed layers with an intermediate layer interposed between the upper and lower sides may be used.

ここで、磁気抵抗素子1は、前記した通り、複数個を2次元配列してMRAMや空間光変調器の画素アレイを構成するに際し、磁気抵抗素子1の上下の電極2,3間すなわち隣り合う磁気抵抗素子1,1間の隙間に短絡防止のために絶縁材料(図1の絶縁層6)を埋め込む必要がある。以下に、絶縁材料について、磁気抵抗素子を配列して構成した空間光変調器およびMRAMと共に説明する。   Here, as described above, when a plurality of magnetoresistive elements 1 are two-dimensionally arranged to form a pixel array of an MRAM or a spatial light modulator, the upper and lower electrodes 2 and 3 of the magnetoresistive element 1 are adjacent to each other. An insulating material (insulating layer 6 in FIG. 1) needs to be embedded in the gap between the magnetoresistive elements 1 and 1 to prevent a short circuit. Hereinafter, the insulating material will be described together with a spatial light modulator and an MRAM configured by arranging magnetoresistive elements.

[空間光変調器]
以下に、前記の本発明に係る磁気抵抗素子を光変調素子として画素に備える空間光変調器について、その実施形態を説明する。なお、本明細書における画素とは、空間光変調器による表示の最小単位での情報(明/暗)を表示する手段を指す。
[Spatial light modulator]
Hereinafter, an embodiment of a spatial light modulator provided in a pixel using the magnetoresistive element according to the present invention as a light modulation element will be described. In addition, the pixel in this specification refers to a means for displaying information (bright / dark) in the minimum unit of display by the spatial light modulator.

本発明の一実施形態に係る空間光変調器10は、図3に示すように2次元アレイ状に配列された画素4からなる画素アレイ40と、画素アレイ40から1つ以上の画素4を選択して駆動する電流制御部80を備える。なお、本明細書における平面(上面)は空間光変調器の光の入射面であり、空間光変調器10は画素4(画素アレイ40)に上方から入射した光を反射してその光を変調して上方へ出射する反射型の空間光変調器である。   A spatial light modulator 10 according to an embodiment of the present invention selects a pixel array 40 composed of pixels 4 arranged in a two-dimensional array as shown in FIG. 3 and one or more pixels 4 from the pixel array 40. And a current control unit 80 to be driven. The plane (upper surface) in this specification is a light incident surface of the spatial light modulator, and the spatial light modulator 10 reflects light incident on the pixel 4 (pixel array 40) from above and modulates the light. Thus, the reflective spatial light modulator is emitted upward.

図3に示すように、画素アレイ40は、平面視でストライプ状の複数の上部電極2,2,…と、同じくストライプ状で、平面視で上部電極2と直交する複数の下部電極3,3,…と、を備え、上部電極2と下部電極3との交点毎に1つの画素4を設ける。したがって、画素4は、空間光変調器10の光の入射面に、2次元アレイ状に配列されて画素アレイ40を構成する。本実施形態では、画素アレイ40は、4行×4列の16個の画素4からなる構成で例示される。なお、上部電極2と下部電極3は、適宜、両者をまとめて電極2,3と称する。そして、図3および図4に示すように、画素4は、当該画素4における一対の電極としての上部電極2および下部電極3と、これらの電極2,3に上下から挟まれた磁気抵抗素子1を備える。また、隣り合う上部電極2,2間、磁気抵抗素子1,1間、および下部電極3,3間は、絶縁層6で埋められている。   As shown in FIG. 3, the pixel array 40 includes a plurality of upper electrodes 2, 2... Striped in plan view, and a plurality of lower electrodes 3, 3 that are also striped and orthogonal to the upper electrode 2 in plan view. ,..., And one pixel 4 is provided at each intersection of the upper electrode 2 and the lower electrode 3. Accordingly, the pixels 4 are arranged in a two-dimensional array on the light incident surface of the spatial light modulator 10 to constitute the pixel array 40. In the present embodiment, the pixel array 40 is exemplified by a configuration including 16 pixels 4 of 4 rows × 4 columns. The upper electrode 2 and the lower electrode 3 are collectively referred to as electrodes 2 and 3 as appropriate. As shown in FIGS. 3 and 4, the pixel 4 includes an upper electrode 2 and a lower electrode 3 as a pair of electrodes in the pixel 4, and a magnetoresistive element 1 sandwiched between these electrodes 2 and 3 from above and below. Is provided. Further, the insulating layer 6 is filled between the adjacent upper electrodes 2 and 2, the magnetoresistive elements 1 and 1, and the lower electrodes 3 and 3.

図3に示すように、電流制御部80は、上部電極2を選択する上部電極選択部82と、下部電極3を選択する下部電極選択部83と、これらの電極選択部82,83を制御する画素選択部(画素選択手段)84と、電極2,3に電流を供給する電源(電流供給手段)81と、を備える。これらはそれぞれ公知のものでよく、磁気抵抗素子1を磁化反転させるために適正な電圧・電流を供給するものとする。   As shown in FIG. 3, the current control unit 80 controls the upper electrode selection unit 82 that selects the upper electrode 2, the lower electrode selection unit 83 that selects the lower electrode 3, and the electrode selection units 82 and 83. A pixel selection section (pixel selection means) 84 and a power supply (current supply means) 81 that supplies current to the electrodes 2 and 3 are provided. These may be known ones and supply appropriate voltages and currents to reverse the magnetization of the magnetoresistive element 1.

上部電極選択部82は、上部電極2の1つ以上を選択し、下部電極選択部83は、下部電極3の1つ以上を選択し、それぞれに電源81から所定の電流を供給させる。画素選択部84は、例えば図示しない外部からの信号に基づいて画素アレイ40の特定の1つ以上の画素4を選択し、選択した画素4に接続する電極2,3を電極選択部82,83に選択させる。電源81は、選択した画素4に備えられる磁気抵抗素子1を磁化反転させるために適正な電圧・電流を供給する。このような構成により、特定の画素4が選択され、この画素4の磁気抵抗素子1に、所定の電流が供給されて磁化反転させる。なお、図3において、電源81は、電極2,3のそれぞれ一端に電極選択部82,83を介して接続されているが、両端に接続されていてもよい。両端に接続されることにより、応答速度を上げ、画素間の動作ばらつきも低減できる。   The upper electrode selection unit 82 selects one or more of the upper electrodes 2, and the lower electrode selection unit 83 selects one or more of the lower electrodes 3, and each supplies a predetermined current from the power source 81. The pixel selection unit 84 selects one or more specific pixels 4 of the pixel array 40 based on, for example, an external signal (not shown), and connects the electrodes 2 and 3 connected to the selected pixel 4 to the electrode selection units 82 and 83. To select. The power supply 81 supplies an appropriate voltage / current to reverse the magnetization of the magnetoresistive element 1 provided in the selected pixel 4. With such a configuration, a specific pixel 4 is selected, and a predetermined current is supplied to the magnetoresistive element 1 of this pixel 4 to reverse the magnetization. In FIG. 3, the power supply 81 is connected to one end of each of the electrodes 2 and 3 via the electrode selection units 82 and 83, but may be connected to both ends. By connecting to both ends, the response speed can be increased and the operation variation between pixels can be reduced.

空間光変調器10の画素4の構成の詳細を図3および図4を参照して説明する。上部電極2は、図4に示すように磁気抵抗素子1の上に配され、図3に示すように横方向に帯状に延設される。1つの上部電極2は、横1行に配置された複数の画素4,4,…のそれぞれの磁気抵抗素子1に電流を供給する。一方、下部電極3は、磁気抵抗素子1の下に配され、縦方向に帯状に延設される。1つの下部電極3は、縦1列に配置された複数の画素4,4,…のそれぞれの磁気抵抗素子1に電流を供給する。上部電極2は、磁気抵抗素子1の入射光および出射光を遮らないように透明電極材料で構成される。一方、下部電極3は導電性の優れた電極用金属材料で構成される。なお、このような画素4は、例えば表面を熱酸化したSi基板等の公知の基板上に配列されて、画素アレイ40に形成される。   Details of the configuration of the pixel 4 of the spatial light modulator 10 will be described with reference to FIGS. The upper electrode 2 is disposed on the magnetoresistive element 1 as shown in FIG. 4 and extends in a strip shape in the lateral direction as shown in FIG. One upper electrode 2 supplies a current to each of the magnetoresistive elements 1 of the plurality of pixels 4, 4,... Arranged in one horizontal row. On the other hand, the lower electrode 3 is disposed under the magnetoresistive element 1 and extends in a strip shape in the vertical direction. One lower electrode 3 supplies a current to each of the magnetoresistive elements 1 of the plurality of pixels 4, 4,... Arranged in one vertical column. The upper electrode 2 is made of a transparent electrode material so as not to block incident light and outgoing light of the magnetoresistive element 1. On the other hand, the lower electrode 3 is made of an electrode metal material having excellent conductivity. The pixels 4 are formed on the pixel array 40 by being arranged on a known substrate such as a Si substrate whose surface is thermally oxidized.

磁気抵抗素子1は、図3に示すように、平面視で上部電極2と下部電極3の重なる部分に配され、この電極2,3に上下から挟まれて接続されている。磁気抵抗素子1は、空間光変調器10においては光変調素子としての機能を有するが、その構成は、図1に示す前記の本発明に係る磁気抵抗素子1と同様であるため、説明は省略する。磁気抵抗素子1の平面視形状は、本実施形態においては正方形であるが、これに限定されるものではない。また、1個の画素4につき1個の磁気抵抗素子1が配されているが、例えば1つの画素4に面方向で(1×3)個、(2×2)個等の複数の磁気抵抗素子1を備えてもよい。   As shown in FIG. 3, the magnetoresistive element 1 is arranged in a portion where the upper electrode 2 and the lower electrode 3 overlap in a plan view, and is sandwiched and connected to the electrodes 2 and 3 from above and below. Although the magnetoresistive element 1 has a function as a light modulating element in the spatial light modulator 10, the configuration thereof is the same as the magnetoresistive element 1 according to the present invention shown in FIG. To do. The planar view shape of the magnetoresistive element 1 is a square in the present embodiment, but is not limited to this. In addition, one magnetoresistive element 1 is arranged for one pixel 4. For example, a plurality of magnetoresistive elements such as (1 × 3), (2 × 2), and the like are provided in one pixel 4 in the surface direction. Element 1 may be provided.

上部電極2は、光が透過するように透明電極材料で構成される。透明電極材料は、例えば、インジウム亜鉛酸化物(Indium Zinc Oxide:IZO)、インジウム−スズ酸化物(Indium Tin Oxide:ITO)、酸化スズ(SnO2)、酸化アンチモン−酸化スズ系(ATO)、酸化亜鉛(ZnO)、フッ素ドープ酸化スズ(FTO)、酸化インジウム(In23)等の公知の透明電極材料からなる。特に、比抵抗と成膜の容易さとの点からIZOが最も好ましい。これらの透明電極材料は、スパッタリング法、真空蒸着法、塗布法等の公知の方法により成膜される。 The upper electrode 2 is made of a transparent electrode material so that light can pass therethrough. Transparent electrode materials include, for example, indium zinc oxide (IZO), indium tin oxide (ITO), tin oxide (SnO 2 ), antimony oxide-tin oxide (ATO), oxidation zinc (ZnO), fluorine-doped tin oxide (FTO), consisting of a known transparent electrode material such as indium oxide (in 2 O 3). In particular, IZO is most preferable in terms of specific resistance and ease of film formation. These transparent electrode materials are formed into a film by a known method such as a sputtering method, a vacuum deposition method, or a coating method.

電極(配線)を透明電極材料で構成する場合、電極とこの電極に接続する磁気抵抗素子1との間に金属膜を設けることが好ましい。すなわち透明電極材料で構成された上部電極2においては、磁気抵抗素子1との間の下地層として金属膜を積層することが好ましい(図示せず)。磁気抵抗素子1との間に金属膜を介在させることで、電極用金属材料より抵抗が大きい透明電極材料からなる上部電極2においても、上部電極2−磁気抵抗素子1間の接触抵抗を低減させて応答速度を上げることができる。   When the electrode (wiring) is made of a transparent electrode material, it is preferable to provide a metal film between the electrode and the magnetoresistive element 1 connected to the electrode. That is, in the upper electrode 2 made of a transparent electrode material, it is preferable to laminate a metal film as a base layer between the magnetoresistive element 1 (not shown). By interposing a metal film between the magnetoresistive element 1 and the upper electrode 2 made of a transparent electrode material having a resistance higher than that of the electrode metal material, the contact resistance between the upper electrode 2 and the magnetoresistive element 1 is reduced. To increase the response speed.

下地層を構成する金属としては、例えば、Au,Ru,Ta、またはそれらの金属の2種以上からなる合金等を用いることができ、これらの金属はスパッタリング法等の公知の方法により成膜される。そして、下地層とその上の層すなわち透明電極との密着性をよくして接触抵抗をさらに低減するため、下地層となる金属膜は、透明電極材料と連続的に真空処理室にて成膜されることが好ましい。下地層の厚さは、1nm未満であると連続した膜を形成し難く、一方、10nmを超えると光の透過量を低下させる。したがって、下地層の好ましい厚さは1〜10nmである。   As the metal constituting the underlayer, for example, Au, Ru, Ta, or an alloy composed of two or more of these metals can be used, and these metals are formed by a known method such as a sputtering method. The In order to further reduce the contact resistance by improving the adhesion between the underlying layer and the layer above it, that is, the transparent electrode, the metal film serving as the underlying layer is formed continuously in a vacuum processing chamber with the transparent electrode material. It is preferred that If the thickness of the underlayer is less than 1 nm, it is difficult to form a continuous film, while if it exceeds 10 nm, the amount of transmitted light is reduced. Therefore, the preferable thickness of the underlayer is 1 to 10 nm.

下部電極3は、例えば、Cu,Al,Au,Ag,Ta,Cr等の金属やその合金のような一般的な電極用金属材料からなる。そして、スパッタリング法等の公知の方法により成膜、フォトリソグラフィ、およびエッチングまたはリフトオフ法等によりストライプ状に加工される。   The lower electrode 3 is made of a general electrode metal material such as a metal such as Cu, Al, Au, Ag, Ta, Cr, or an alloy thereof. Then, it is processed into a stripe shape by a known method such as a sputtering method, by film formation, photolithography, etching, lift-off method, or the like.

絶縁層6は、隣り合う上部電極2,2間(図4不図示)および下部電極3,3間に配されてこれらを互いに絶縁するものであり、また平面視で磁気抵抗素子1のない領域において電極2,3間を絶縁し、また磁気抵抗素子1の側面を封止するため、磁気抵抗素子1,1間に配される。ここで、磁気抵抗素子1,1間に絶縁層6としてSiO2等の酸化物を配する場合、酸化物等の酸素(O)を含有する膜は、通常、酸素を含有する雰囲気ガスを供給しながら成膜される。このとき、露出した磁気抵抗素子1の端面(側面)で、磁化固定層11または磁化反転層13に含まれるRE−TM合金が酸化してその磁気特性が変化し、磁気抵抗素子1の磁化反転動作等に影響を及ぼす虞がある。具体的には、RE−TM合金の希土類金属が酸化されて遷移金属の割合が多い組成に変化することで、保磁力が低下し、また見かけ上の飽和磁化Msが増加し、さらに酸化が進行すると、フェリ磁性体としての性質を保持できなくなって、垂直磁気異方性の消失に至ることになる。また、SiO2の成膜後の工程での熱処理や動作時の発熱で、RE−TM合金が、磁気抵抗素子1のSiO2と接触した界面すなわち側面からSiO2の酸素(O)により酸化が進行する虞がある。 The insulating layer 6 is disposed between the adjacent upper electrodes 2 and 2 (not shown in FIG. 4) and the lower electrodes 3 and 3 to insulate them from each other, and is a region where the magnetoresistive element 1 is not present in plan view. In order to insulate between the electrodes 2 and 3 and to seal the side surface of the magnetoresistive element 1, the magnetoresistive elements 1 and 1 are disposed. Here, when an oxide such as SiO 2 is disposed as the insulating layer 6 between the magnetoresistive elements 1 and 1, an oxygen (O) -containing film such as an oxide is usually supplied with an atmospheric gas containing oxygen. While forming the film. At this time, the RE-TM alloy contained in the magnetization fixed layer 11 or the magnetization reversal layer 13 is oxidized on the exposed end face (side surface) of the magnetoresistive element 1 to change its magnetic characteristics, and the magnetization reversal of the magnetoresistive element 1 is changed. There is a risk of affecting the operation. Specifically, the rare earth metal of the RE-TM alloy is oxidized to change to a composition having a high proportion of transition metal, so that the coercive force is reduced, the apparent saturation magnetization Ms is increased, and the oxidation further proceeds. Then, the properties as a ferrimagnetic material cannot be maintained, and the perpendicular magnetic anisotropy is lost. Further, the heat treatment in the process after the film formation of SiO 2 and the heat generated during the operation cause the RE-TM alloy to be oxidized by the oxygen (O) of SiO 2 from the interface or side surface in contact with SiO 2 of the magnetoresistive element 1. There is a risk of progress.

したがって、本発明に係る空間光変調器10においては、絶縁層6として、特に磁気抵抗素子1と接触する部位である磁気抵抗素子1,1間にはシリコン窒化物を適用する。シリコン窒化物は、主にSi34の組成を有し、本明細書ではSi−Nで表す。このように、磁気抵抗素子1,1間にSi−Nを配することで、磁気抵抗素子1に含まれるRE−TM合金が酸化することなくその特性が維持できる。なお、上部電極2,2間および下部電極3,3間等の磁気抵抗素子1に接触しない領域に配する絶縁材料には、SiO2やAl23等の従来公知の絶縁材料を適用してもよい。 Therefore, in the spatial light modulator 10 according to the present invention, silicon nitride is applied as the insulating layer 6 between the magnetoresistive elements 1 and 1 that are in particular in contact with the magnetoresistive element 1. Silicon nitride mainly has a composition of Si 3 N 4 and is represented by Si—N in this specification. Thus, by arranging Si—N between the magnetoresistive elements 1, 1, the RE-TM alloy contained in the magnetoresistive element 1 can be maintained without being oxidized. A conventionally known insulating material such as SiO 2 or Al 2 O 3 is applied to the insulating material disposed in the region not in contact with the magnetoresistive element 1 such as between the upper electrodes 2 and 2 and between the lower electrodes 3 and 3. May be.

絶縁層6は、磁気抵抗素子1を所望の平面視形状に加工した後、上部電極2を形成する(電極材料を成膜する)前に、Si−Nをスパッタリング法や化学気相成長(CVD)法等の公知の方法により成膜して磁気抵抗素子1,1間に堆積させた後、エッチングやCMP(Chemical Mechanical Polishing:化学機械研磨)等により磁気抵抗素子1上のSi−Nを除去することにより形成できる。あるいは、磁気抵抗素子1の加工においてマスクとしたレジストを残した状態でSi−Nを成膜し、レジストをその上のSi−Nごと除去して(リフトオフ)もよい。   After the magnetoresistive element 1 is processed into a desired plan view shape, the insulating layer 6 is formed by sputtering Si-N or chemical vapor deposition (CVD) before forming the upper electrode 2 (forming an electrode material). ) And the like, and deposited between the magnetoresistive elements 1 and 1, and then Si—N on the magnetoresistive element 1 is removed by etching, CMP (Chemical Mechanical Polishing), or the like. Can be formed. Alternatively, Si-N may be deposited with the resist used as a mask remaining in the processing of the magnetoresistive element 1, and the entire Si-N may be removed (lift-off).

(空間光変調器の画素選択の動作)
次に、空間光変調器10の画素選択の動作を、図4を参照して説明する。電極2,3は、前記の通り、電流制御部80に接続される。また、図4に示すように、本実施形態に係る空間光変調器10の画素4(画素アレイ40)の上方には、画素アレイ40に向けて光を照射する光源93と、光源93から照射された光を画素アレイ40に入射する前に偏光とする入射偏光フィルタ91と、画素アレイ40で反射して出射した光から特定の向きの偏光のみを透過する出射偏光フィルタ92と、出射偏光フィルタ92を透過した光を検出する検出器94とが配置される。
(Spatial light modulator pixel selection operation)
Next, the pixel selection operation of the spatial light modulator 10 will be described with reference to FIG. The electrodes 2 and 3 are connected to the current control unit 80 as described above. As shown in FIG. 4, a light source 93 that irradiates light toward the pixel array 40 and a light source 93 that irradiates light above the pixel 4 (pixel array 40) of the spatial light modulator 10 according to the present embodiment. An incident polarizing filter 91 that converts the emitted light into polarized light before entering the pixel array 40, an outgoing polarizing filter 92 that transmits only polarized light in a specific direction from the light reflected and emitted from the pixel array 40, and an outgoing polarizing filter A detector 94 for detecting the light transmitted through 92 is disposed.

光源93から照射された光(レーザー光等)は様々な偏光成分を含んでいるので、これを画素アレイ40の手前の入射偏光フィルタ91を透過させて、1つの偏光成分の光とする。以下、1つの偏光成分の光を偏光と称する。この偏光(入射偏光)は、画素アレイ40のすべての画素4に所定の入射角で入射する。それぞれの画素4において、入射偏光は、上部電極2を透過して磁気抵抗素子1に入射し、磁気抵抗素子1の磁化反転層13で反射して出射偏光として出射し、再び上部電極2を透過して画素4から出射する。それぞれの画素4から出射したすべての出射偏光は、出射偏光フィルタ92に到達する。出射偏光フィルタ92は、特定の偏光、ここでは入射偏光に対して角度θap旋光した偏光のみを透過させ、この透過した出射偏光が検出器94に入射される。偏光フィルタ91,92はそれぞれ偏光板等であり、検出器94はスクリーン等の画像表示手段やカメラ等である。   Since light (laser light or the like) emitted from the light source 93 includes various polarization components, the light is transmitted through the incident polarization filter 91 in front of the pixel array 40 to be light of one polarization component. Hereinafter, light of one polarization component is referred to as polarization. This polarized light (incident polarized light) is incident on all the pixels 4 of the pixel array 40 at a predetermined incident angle. In each pixel 4, the incident polarized light passes through the upper electrode 2 and enters the magnetoresistive element 1, is reflected by the magnetization reversal layer 13 of the magnetoresistive element 1, is emitted as outgoing polarized light, and passes through the upper electrode 2 again. Then, the light is emitted from the pixel 4. All outgoing polarized light emitted from each pixel 4 reaches the outgoing polarization filter 92. The outgoing polarization filter 92 transmits only specific polarized light, here polarized light whose angle θap is rotated with respect to incident polarized light, and this transmitted outgoing polarized light is incident on the detector 94. Each of the polarizing filters 91 and 92 is a polarizing plate, and the detector 94 is an image display means such as a screen, a camera, or the like.

磁気抵抗素子1に入射した光が磁性体である磁化反転層13で反射して出射すると、カー効果(磁気カー効果)により、入射光はその偏光の向きが変化(旋光)する。そして、前記したように、磁気抵抗素子1は電極2,3から供給される電流の向きに応じて磁化反転して、画素4毎に磁化が平行/反平行、すなわち磁化反転層13の磁化が上方向/下方向を示す(図2(a)、(b)参照)。このように、磁化反転層13の磁化方向が180°異なると、入射光は同じ大きさの旋光角すなわち磁化反転層13のカー回転角θkで互いに逆方向に回転して出射する。磁化が平行、反平行である磁気抵抗素子1における旋光角をそれぞれθp,θapと表すと、θp=+θk、θap=−θkとなり、電極2,3からの電流の向きにより磁気抵抗素子1からの出射光の偏光の向きの差すなわち旋光角の差|θp−θap|は2θkとなる。   When light incident on the magnetoresistive element 1 is reflected by the magnetization reversal layer 13 which is a magnetic material and emitted, the direction of polarization of the incident light changes (rotation) due to the Kerr effect (magnetic Kerr effect). As described above, the magnetoresistive element 1 undergoes magnetization reversal according to the direction of the current supplied from the electrodes 2 and 3, and the magnetization is parallel / antiparallel for each pixel 4, that is, the magnetization of the magnetization reversal layer 13 is An upward / downward direction is shown (see FIGS. 2A and 2B). As described above, when the magnetization direction of the magnetization reversal layer 13 is different by 180 °, the incident light is rotated in the opposite directions at the same rotation angle, that is, the Kerr rotation angle θk of the magnetization reversal layer 13 and emitted. If the optical rotation angles in the magnetoresistive element 1 with magnetization parallel and antiparallel are expressed as θp and θap, respectively, θp = + θk and θap = −θk, and the direction from the magnetoresistive element 1 depends on the current direction from the electrodes 2 and 3. The difference in the polarization direction of the emitted light, that is, the difference in optical rotation angle | θp−θap | is 2θk.

あるいは、磁気抵抗素子1に入射した偏光が、磁化反転層13、中間層12、磁化固定層11を透過し、下部電極3の上面で反射して、再び磁化固定層11、中間層12、磁化反転層13を透過して出射する構成であってもよい。この場合は、磁性体である磁化反転層13および磁化固定層11を透過することで、ファラデー効果により、偏光はその向きが、磁化反転層13および磁化固定層11のそれぞれの所定の角度(旋光角)に回転(旋光)する。ただし、磁化固定層11の磁化方向は一定であるので、磁気抵抗素子1からの出射光の偏光の変化は磁化反転層13のファラデー回転角θFによって決定される。出射光は磁化反転層13を2回透過しているので、旋光角の差|θp−θap|は4θFとなる。   Alternatively, the polarized light incident on the magnetoresistive element 1 is transmitted through the magnetization reversal layer 13, the intermediate layer 12, and the magnetization fixed layer 11, reflected at the upper surface of the lower electrode 3, and again the magnetization fixed layer 11, the intermediate layer 12, the magnetization The structure which permeate | transmits and inject | emits the inversion layer 13 may be sufficient. In this case, by passing through the magnetization reversal layer 13 and the magnetization fixed layer 11 which are magnetic materials, the direction of the polarized light depends on the respective predetermined angles (optical rotation) of the magnetization reversal layer 13 and the magnetization fixed layer 11 due to the Faraday effect. Rotate (rotate) to (angle). However, since the magnetization direction of the fixed magnetization layer 11 is constant, the change in the polarization of the light emitted from the magnetoresistive element 1 is determined by the Faraday rotation angle θF of the magnetization switching layer 13. Since the emitted light passes through the magnetization switching layer 13 twice, the difference in optical rotation angle | θp−θap | is 4θF.

入射偏光に対して角度θap旋光した図4の左右両端の画素4,4からのそれぞれの出射偏光は、出射偏光フィルタ92を透過して検出器94に到達するので、この画素4は明るく(白く)検出器94に表示される。一方、中央の画素4からの出射偏光は、出射偏光フィルタ92で遮られるので、この画素4は暗く(黒く)、検出器94に表示される。このように、画素毎に明/暗(白/黒)を切り分けられ、電流の向きを切り換えれば明/暗が切り換わる。なお、空間光変調器10の初期状態としては、例えば全体が白く表示されるように、すべての画素4の磁気抵抗素子1の磁化を反平行にするべく、上部電極2のすべてを「−」、下部電極3のすべてを「+」にして、上向きの電流を供給すればよい。   The outgoing polarized light from the left and right pixels 4 and 4 in FIG. 4 rotated by an angle θap with respect to the incident polarized light passes through the outgoing polarizing filter 92 and reaches the detector 94. Therefore, the pixel 4 is bright (white). ) Is displayed on the detector 94. On the other hand, since the outgoing polarized light from the central pixel 4 is blocked by the outgoing polarizing filter 92, the pixel 4 is dark (black) and displayed on the detector 94. Thus, light / dark (white / black) can be separated for each pixel, and light / dark can be switched by switching the direction of the current. As an initial state of the spatial light modulator 10, for example, all the upper electrodes 2 are “-” so that the magnetizations of the magnetoresistive elements 1 of all the pixels 4 are anti-parallel so that the whole is displayed white. All of the lower electrode 3 may be set to “+” to supply an upward current.

ここで、磁化反転層13のカー回転角θkおよびファラデー回転角θFは、前記したように光の入射角が磁化反転層13の磁化方向である膜面に対する垂直に近いほど大きい。したがって、入射角は90°とすることが旋光角の差|θp−θap|を最大にする上で望ましいが、このようにすると、出射偏光の光路が入射偏光の光路と一致する。そこで、入射角90°から5°〜30°程度傾けて、出射偏光フィルタ92および検出部94、光源93および入射偏光フィルタ91が、それぞれ入射偏光および出射偏光の光路を遮らない配置となるようにする。すなわち、偏光の入射角は、画素アレイ40に対して60°〜85°とすることが好ましい。または、入射角90°として、入射偏光フィルタ91と画素アレイ40との間にハーフミラーを配置して、出射偏光のみを側方へ反射させてもよい。この場合、出射偏光フィルタ92および検出器94は画素アレイ40の側方に配置する。なお、RE−TM合金はカー回転角およびファラデー回転角が大きいため、磁気抵抗素子1は、磁化反転層13にRE−TM合金を含んで構成されることで、旋光角の差|θp−θap|をいっそう大きなものとすることができる。   Here, the Kerr rotation angle θk and the Faraday rotation angle θF of the magnetization switching layer 13 are larger as the incident angle of light is closer to the film surface that is the magnetization direction of the magnetization switching layer 13 as described above. Therefore, it is desirable that the incident angle be 90 ° in order to maximize the optical rotation angle difference | θp−θap |. However, in this case, the optical path of the outgoing polarized light coincides with the optical path of the incident polarized light. Therefore, the incident polarization filter 92, the detector 94, the light source 93, and the incident polarization filter 91 are arranged so as not to block the optical paths of the incident polarized light and the outgoing polarized light, respectively, by tilting the incident angle from 90 ° by about 5 ° to 30 °. To do. That is, the incident angle of polarized light is preferably 60 ° to 85 ° with respect to the pixel array 40. Alternatively, the incident angle may be 90 °, and a half mirror may be disposed between the incident polarizing filter 91 and the pixel array 40 to reflect only the outgoing polarized light laterally. In this case, the output polarization filter 92 and the detector 94 are arranged on the side of the pixel array 40. Since the RE-TM alloy has a large Kerr rotation angle and Faraday rotation angle, the magnetoresistive element 1 is configured to include the RE-TM alloy in the magnetization reversal layer 13 so that the difference in optical rotation angle | θp−θap. | Can be made larger.

本発明に係る空間光変調器においては、別の実施形態として、上下を入れ替えた構成として下方から入射する反射型の空間光変調器としてもよい。すなわち、下部電極を透明電極材料で、上部電極を電極用金属材料でそれぞれ構成して、下方から入射した光が下部電極を透過して磁気抵抗素子1または上部電極で反射して再び下部電極を透過して出射する。したがって、偏光フィルタ91,92、光源93および検出器94は画素アレイ40の下方に配置する。この場合、下部電極は上部電極を透明電極材料で構成した場合と同様に、磁気抵抗素子1との間に金属膜である下地層を設けて接触抵抗を低減させることが好ましい。また、磁気抵抗素子1は磁化固定層11と磁化反転層13の位置を入れ替えて積層する。さらに、基板は、下方から画素4に光を入射させて、再び画素4から出射した光がさらに下方へ照射されるように、透明な基板材料、例えば、SiO2,Al23,MgO等を適用する。 In another embodiment, the spatial light modulator according to the present invention may be a reflective spatial light modulator that enters from below as a configuration in which the top and bottom are switched. That is, the lower electrode is made of a transparent electrode material and the upper electrode is made of an electrode metal material. Light incident from below is transmitted through the lower electrode and reflected by the magnetoresistive element 1 or the upper electrode, and the lower electrode is again formed. Transmits and exits. Accordingly, the polarizing filters 91 and 92, the light source 93, and the detector 94 are disposed below the pixel array 40. In this case, the lower electrode is preferably provided with a base layer, which is a metal film, between the magnetoresistive element 1 and the contact resistance is reduced as in the case where the upper electrode is made of a transparent electrode material. In addition, the magnetoresistive element 1 is laminated by switching the positions of the magnetization fixed layer 11 and the magnetization inversion layer 13. Further, the substrate is made of a transparent substrate material such as SiO 2 , Al 2 O 3 , MgO or the like so that light enters the pixel 4 from below and light emitted from the pixel 4 is irradiated again downward. Apply.

さらに別の実施形態として、上部電極および下部電極を共に透明電極材料で構成して、透過型の空間光変調器としてもよい。このとき、基板は、上方から画素を透過した光がさらに下方へ照射されるように、前記の透明な基板材料からなる。また、磁気抵抗素子1は磁化固定層11と磁化反転層13の位置を入れ替えて積層してもよい。このような空間光変調器においては、光源93および入射偏光フィルタ91は画素アレイ40の直上に、出射偏光フィルタ92および検出器94は、画素アレイ40の直下にそれぞれ配置し、入射角90°とすることができる。また、下方から光を入射して上方へ出射する透過型の空間光変調器としてもよい。   As yet another embodiment, both the upper electrode and the lower electrode may be made of a transparent electrode material to form a transmissive spatial light modulator. At this time, the substrate is made of the transparent substrate material so that light transmitted through the pixel from above is further irradiated downward. In addition, the magnetoresistive element 1 may be stacked by switching the positions of the magnetization fixed layer 11 and the magnetization switching layer 13. In such a spatial light modulator, the light source 93 and the incident polarizing filter 91 are disposed immediately above the pixel array 40, and the outgoing polarizing filter 92 and the detector 94 are disposed immediately below the pixel array 40, respectively, with an incident angle of 90 °. can do. Alternatively, a transmissive spatial light modulator that emits light from below and emits upward may be used.

さらにこれらの実施形態のそれぞれの変形例として、透明電極材料で構成して光を透過させる上部電極および下部電極について、配線部分は電極用金属材料として磁気抵抗素子1と平面視で重なる領域に孔を形成し、この孔の内部のみに透明電極材料を設けてもよい(図示せず)。このような電極とすることで、低抵抗の金属材料を用いて磁気抵抗素子1に光を入射させることができるので、配線抵抗による電圧降下を抑えて省電力化および画素間の動作ばらつきを低減できる。   Furthermore, as a modification of each of these embodiments, for the upper electrode and the lower electrode that are made of a transparent electrode material and transmit light, the wiring portion is a hole in a region overlapping with the magnetoresistive element 1 in plan view as a metal material for an electrode The transparent electrode material may be provided only inside the hole (not shown). By using such an electrode, light can be incident on the magnetoresistive element 1 using a low-resistance metal material, so that a voltage drop due to wiring resistance is suppressed to save power and reduce operation variation between pixels. it can.

以上のように、本発明の各実施形態およびその変形例に係る空間光変調器によれば、RE−TM合金を備えた磁気抵抗素子を光変調素子として、高精細かつ高速応答、さらに画素選択性の優れた空間光変調器となる。そして、磁気抵抗素子間に埋め込む絶縁材料をSi−Nとすることで、磁気抵抗素子に含まれるRE−TM合金が酸化することなくその特性が維持できる。   As described above, according to the spatial light modulators according to the embodiments of the present invention and the modifications thereof, the magnetoresistive element including the RE-TM alloy is used as the light modulation element, and the pixel selection is performed with high definition and high speed response. It becomes a spatial light modulator with excellent properties. In addition, when the insulating material embedded between the magnetoresistive elements is Si—N, the RE-TM alloy contained in the magnetoresistive elements can be maintained without being oxidized.

[磁気ランダムアクセスメモリ]
本発明の一実施形態に係る磁気ランダムアクセスメモリ(MRAM)70は、図5に示すように、電流制御部80Aと共に記録装置9を構成する部品である。MRAM70は、平面視でストライプ状の複数のビット線2A,2A,…と、同じくストライプ状で、平面視でビット線2Aと直交する複数のワード線5,5,…と、を備え、ビット線2Aとワード線5との交点毎に1つのメモリセル7を設ける。本実施形態では、MRAM70は、4行×4列の16個のメモリセル7からなる構成で例示される。
[Magnetic random access memory]
As shown in FIG. 5, a magnetic random access memory (MRAM) 70 according to an embodiment of the present invention is a component that constitutes the recording device 9 together with the current control unit 80A. The MRAM 70 includes a plurality of bit lines 2A, 2A,... Striped in plan view, and a plurality of word lines 5, 5,... That are also striped and orthogonal to the bit line 2A in plan view. One memory cell 7 is provided for each intersection of 2A and the word line 5. In the present embodiment, the MRAM 70 is exemplified by a configuration including 16 memory cells 7 of 4 rows × 4 columns.

図5に示すように、電流制御部80Aは、ビット線2Aを選択するビット線選択部82Aと、ワード線5を選択するワード線選択部85と、これらの選択部82A,85を制御するセル選択部84Aと、ビット線2Aおよびワード線5に電流を供給する電源81Aと、を備える。セル選択部84Aは、例えば図示しない外部からの信号に基づいてMRAM70の特定の1つ以上のメモリセル7を選択し、選択したメモリセル7に接続するビット線2A、ワード線5をビット線選択部82A、ワード線選択部85に選択させる。電源81Aは、選択したメモリセル7に備えられる磁気抵抗素子1およびMOSFETを動作させるために適正な電圧・電流を供給する。   As shown in FIG. 5, the current control unit 80A includes a bit line selection unit 82A that selects the bit line 2A, a word line selection unit 85 that selects the word line 5, and cells that control these selection units 82A and 85. A selection unit 84A and a power supply 81A for supplying current to the bit line 2A and the word line 5 are provided. The cell selection unit 84A selects, for example, one or more specific memory cells 7 of the MRAM 70 based on an external signal (not shown), and selects the bit line 2A and the word line 5 connected to the selected memory cell 7 as a bit line. The part 82A and the word line selection part 85 are selected. The power supply 81A supplies an appropriate voltage / current for operating the magnetoresistive element 1 and the MOSFET provided in the selected memory cell 7.

1つのメモリセル7は、図6に示すように、MOSFET上に1つの磁気抵抗素子1を備える。詳しくは、MOSFETのドレインに配線層を介して磁気抵抗素子1の下部電極3Aが接続されている。また、メモリセル7において、磁気抵抗素子1の上部電極は、MRAM70のビット線2Aを構成する。なお、磁気抵抗素子1の構成は、図1に示す前記の本発明に係る磁気抵抗素子1と同様であるため、説明は省略する。したがって、MRAM70において、磁気抵抗素子1とその上下に接続されたビット線2Aおよび下部電極3Aの形成された積層方向の領域は、下部電極3Aが平面視で縦方向に延設されていないことを除けば、図4に示す空間光変調器10の画素アレイ40と同じ構成となる。   As shown in FIG. 6, one memory cell 7 includes one magnetoresistive element 1 on the MOSFET. Specifically, the lower electrode 3A of the magnetoresistive element 1 is connected to the drain of the MOSFET via a wiring layer. In the memory cell 7, the upper electrode of the magnetoresistive element 1 constitutes the bit line 2 </ b> A of the MRAM 70. The configuration of the magnetoresistive element 1 is the same as that of the magnetoresistive element 1 according to the present invention shown in FIG. Therefore, in the MRAM 70, in the layered direction region where the magnetoresistive element 1 and the bit line 2A and the lower electrode 3A connected to the upper and lower sides thereof are formed, the lower electrode 3A is not extended in the vertical direction in plan view. Otherwise, the configuration is the same as the pixel array 40 of the spatial light modulator 10 shown in FIG.

MOSFETは、例えば、シリコン(Si)からなるp型基板上にソースおよびドレインが形成されている。ソースとドレインとの間のp型基板上には、絶縁層6を介して、ゲート電極が形成されている。また、ドレイン−配線層間、配線層−下部電極3A間は、それぞれコンタクトが形成されて接続されている。一方、ソースにはコンタクトを介してワード線5が接続され、ワード線5は接地されている。   In the MOSFET, for example, a source and a drain are formed on a p-type substrate made of silicon (Si). On the p-type substrate between the source and the drain, a gate electrode is formed via an insulating layer 6. In addition, contacts are formed and connected between the drain-wiring layer and between the wiring layer-lower electrode 3A. On the other hand, the word line 5 is connected to the source via a contact, and the word line 5 is grounded.

これらの配線、すなわちビット線(上部電極)2A、下部電極3A、配線層、ゲート電極、およびワード線5は、Cu,Al,Au,Ag,Ta,Cr等の金属やその合金のような一般的な電極用金属材料からなる。したがって、MRAM70においては、空間光変調器10の画素アレイ40と異なり、磁気抵抗素子1の上下に接続する電極が両方とも金属材料からなる。   These wirings, that is, the bit line (upper electrode) 2A, the lower electrode 3A, the wiring layer, the gate electrode, and the word line 5 are general metals such as Cu, Al, Au, Ag, Ta, Cr, and alloys thereof. It is made of a typical electrode metal material. Therefore, in the MRAM 70, unlike the pixel array 40 of the spatial light modulator 10, both electrodes connected to the top and bottom of the magnetoresistive element 1 are made of a metal material.

絶縁層6は、図6における空白部および隣り合うビット線2A,2A間(図6不図示)に配されて前記の配線を互いに絶縁するものであり、また磁気抵抗素子1の側面を封止する。ここで、少なくとも磁気抵抗素子1,1間すなわちビット線2Aと下部電極3Aとの間に配する絶縁層6は、空間光変調器10の画素アレイ40と同様に、Si−Nを適用する。これにより、磁気抵抗素子1の磁化固定層11または磁化反転層13に含まれるRE−TM合金が、絶縁層6の形成(成膜)時や形成後に、磁気抵抗素子1の側面において酸化することがなく、磁気抵抗素子1の磁化反転動作等の特性が維持できる。なお、ビット線2A,2A間および下部電極3A,3A間、ならびにその他の配線間やMOSFET領域に配する絶縁材料には、SiO2やAl23等の従来公知の絶縁材料を適用してもよい。 The insulating layer 6 is arranged between the blank portion in FIG. 6 and between the adjacent bit lines 2A and 2A (not shown in FIG. 6) to insulate the wirings from each other, and seals the side surface of the magnetoresistive element 1 To do. Here, Si-N is applied to the insulating layer 6 disposed at least between the magnetoresistive elements 1, 1, that is, between the bit line 2 </ b> A and the lower electrode 3 </ b> A, as in the pixel array 40 of the spatial light modulator 10. Thereby, the RE-TM alloy contained in the magnetization fixed layer 11 or the magnetization reversal layer 13 of the magnetoresistive element 1 is oxidized on the side surface of the magnetoresistive element 1 during or after the formation of the insulating layer 6 (film formation). Therefore, characteristics such as magnetization reversal operation of the magnetoresistive element 1 can be maintained. A conventionally known insulating material such as SiO 2 or Al 2 O 3 is applied to the insulating material disposed between the bit lines 2A and 2A, between the lower electrodes 3A and 3A, between the other wirings and in the MOSFET region. Also good.

(メモリセルの動作)
次に、メモリセル7における磁気抵抗素子1の動作について図6および図2を参照して説明する。メモリセル7(MRAM70)においては、ビット線2Aおよびワード線5からの電流供給により、磁気抵抗素子1の磁化が平行/反平行に反転する。図2(a)に示すように磁化が平行な磁気抵抗素子1は、膜面垂直方向の抵抗が低く、このとき「0」の値が記録されている。一方、図2(b)に示すように磁化が反平行な磁気抵抗素子1は、抵抗が高く、「1」の値が記録されている。メモリセル7の初期状態においては、磁気抵抗素子1は、この磁化が反平行の状態である。
(Memory cell operation)
Next, the operation of the magnetoresistive element 1 in the memory cell 7 will be described with reference to FIGS. In the memory cell 7 (MRAM 70), the magnetization of the magnetoresistive element 1 is reversed in parallel / antiparallel by the current supply from the bit line 2A and the word line 5. As shown in FIG. 2A, the magnetoresistive element 1 having parallel magnetization has a low resistance in the direction perpendicular to the film surface, and a value of “0” is recorded at this time. On the other hand, as shown in FIG. 2B, the magnetoresistive element 1 having the antiparallel magnetization has a high resistance and a value of “1” is recorded. In the initial state of the memory cell 7, the magnetoresistive element 1 is in a state in which this magnetization is antiparallel.

この初期状態において、ゲート電極に所定の電圧を印加してMOSFETをオン状態にして、電流制御部80Aにより、ビット線2AからMOSFETへ下向きに磁気抵抗素子1に電流が流れるようにすると、磁気抵抗素子1が磁化反転して磁化が平行となり、「0」の値が書き込まれる。反対に、ワード線5からMOSFETを介してビット線2Aへ上向きに磁気抵抗素子1に電流を供給すると、再び磁気抵抗素子1の磁化が反平行となって「1」の値が書き込まれる。なお、読み出しにおいては、ビット線2Aとワード線5との間に所定の電圧を印加して、磁気抵抗素子1を流れる電流の大きさを検出すればよい。   In this initial state, when a predetermined voltage is applied to the gate electrode to turn on the MOSFET and the current control unit 80A causes a current to flow downward from the bit line 2A to the MOSFET, The element 1 undergoes magnetization reversal and the magnetization becomes parallel, and a value of “0” is written. Conversely, when a current is supplied from the word line 5 to the bit line 2A upward via the MOSFET to the magnetoresistive element 1, the magnetization of the magnetoresistive element 1 becomes antiparallel again and a value of “1” is written. In reading, a predetermined voltage may be applied between the bit line 2A and the word line 5 to detect the magnitude of the current flowing through the magnetoresistive element 1.

以上のように、本発明の実施形態に係る磁気ランダムアクセスメモリによれば、RE−TM合金を備えた磁気抵抗素子を用いて、大容量かつ高速応答の優れた記録装置が得られる。そして、磁気抵抗素子間に埋め込む絶縁材料をSi−Nとすることで、磁気抵抗素子に含まれるRE−TM合金が酸化することなくその特性が維持できる。   As described above, according to the magnetic random access memory according to the embodiment of the present invention, a recording apparatus having a large capacity and an excellent high-speed response can be obtained using the magnetoresistive element including the RE-TM alloy. In addition, when the insulating material embedded between the magnetoresistive elements is Si—N, the RE-TM alloy contained in the magnetoresistive elements can be maintained without being oxidized.

以上、本発明の磁気抵抗素子、空間光変調器、および磁気ランダムアクセスメモリを実施するための各実施形態について述べてきたが、本発明はこれらの実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。   As mentioned above, although each embodiment for implementing the magnetoresistive element, the spatial light modulator, and the magnetic random access memory of the present invention has been described, the present invention is not limited to these embodiments. Various modifications are possible within the range shown in.

本発明の効果を確認するために、本発明の実施形態に係る磁気抵抗素子(図1参照)ののサンプルを作製した。磁気抵抗素子は、下部電極側から、磁化固定層:Tb−Fe−Co(20nm)/Co−Fe(1nm)、中間層:Cu(6nm)、磁化反転層:Gd−Fe(10nm)、保護層:Ru(3nm)を積層したCPP−GMR素子とした。サンプルにおいて、磁気抵抗素子は1個のみを備えて、平面視形状を120nm×120nmの矩形とし、また、上部電極および下部電極はCuを適用した。詳しくは、まず、表面を熱酸化したSi基板上に、下部電極としてCu、および前記磁気抵抗素子の各層を順に成膜して積層した。次に、前記磁気抵抗素子の平面視形状より大きい下部電極用のレジストマスクを形成して、イオンビームミリング法で磁気抵抗素子の各層およびCu(下部電極)を加工した後、レジストの上からSiO2を成膜して、レジストをその上のSiO2ごと除去して(リフトオフ)下部電極の周囲の絶縁層を形成した。次に、前記磁気抵抗素子の平面視形状のレジストマスクを用いて、磁気抵抗素子の各層を前記と同様に加工して(下部電極表面まで削って)磁気抵抗素子を形成した後、Si−Nを成膜して、リフトオフにて磁気抵抗素子の周囲(側面)の絶縁層を形成した。そして、磁気抵抗素子上に上部電極を形成して、実施例のサンプルとした。また、比較例として、同じ磁気抵抗素子を備え、Si−Nに代えてSiO2を磁気抵抗素子の周囲の絶縁層として成膜したサンプルを作製した。 In order to confirm the effect of the present invention, a sample of the magnetoresistive element (see FIG. 1) according to the embodiment of the present invention was produced. The magnetoresistive element includes, from the lower electrode side, a magnetization fixed layer: Tb—Fe—Co (20 nm) / Co—Fe (1 nm), an intermediate layer: Cu (6 nm), a magnetization reversal layer: Gd—Fe (10 nm), protection Layer: A CPP-GMR element in which Ru (3 nm) was laminated. In the sample, only one magnetoresistive element was provided, the shape in plan view was a rectangle of 120 nm × 120 nm, and Cu was applied to the upper electrode and the lower electrode. Specifically, first, Cu and each layer of the magnetoresistive element were sequentially formed and stacked on a Si substrate whose surface was thermally oxidized as a lower electrode. Next, a resist mask for the lower electrode that is larger than the planar shape of the magnetoresistive element is formed, and each layer of the magnetoresistive element and Cu (lower electrode) are processed by an ion beam milling method. 2 was formed, and the resist was removed together with the SiO 2 thereon (lift-off) to form an insulating layer around the lower electrode. Next, each layer of the magnetoresistive element is processed in the same manner as described above using the resist mask having a plan view shape of the magnetoresistive element (to the surface of the lower electrode) to form the magnetoresistive element, and then Si—N And an insulating layer around the magnetoresistive element (side surface) was formed by lift-off. And the upper electrode was formed on the magnetoresistive element, and it was set as the sample of the Example. Further, as a comparative example, a sample having the same magnetoresistive element and having SiO 2 formed as an insulating layer around the magnetoresistive element instead of Si—N was produced.

作製したサンプルに、外部から一様な磁界を印加して、初期状態として磁気抵抗素子の磁化が平行となるようにした。このサンプルに上下電極間で磁気抵抗素子の抵抗を測定しながら外部から磁界を漸増させて印加して、磁化反転層および磁化固定層のそれぞれの磁化が反転する磁界を測定した。図7に外部磁界による磁気抵抗素子の抵抗の変化のグラフを示す。   A uniform magnetic field was applied from the outside to the manufactured sample so that the magnetization of the magnetoresistive element was parallel as an initial state. A magnetic field was gradually applied from the outside while measuring the resistance of the magnetoresistive element between the upper and lower electrodes, and the magnetic field at which the magnetizations of the magnetization reversal layer and the magnetization fixed layer were reversed was measured. FIG. 7 shows a graph of a change in resistance of the magnetoresistive element due to an external magnetic field.

図7に示すように、実施例、比較例のサンプルは共に、磁界が±1kOe近傍に到達した時点で磁気抵抗素子が高抵抗に変化した。これは、磁化反転層が反転して磁気抵抗素子の磁化が反平行となったことを示す。さらに磁界を増加させると、比較例では磁界が±3kOe近傍に到達した時点で磁気抵抗素子が初期状態と同程度の低抵抗に変化した(戻った)。これは、磁化固定層の磁化が反転して、先に磁化反転した磁化反転層の磁化方向に平行になった、すなわち磁気抵抗素子の磁化が再び平行となったことを示す。一方、実施例では、±5kOe近傍まで磁界を増加させると磁化固定層の磁化が反転した。これらの結果から、磁気抵抗素子が含むRE−TM合金、特に磁化固定層のTb−Fe−Co合金が、比較例では、側面で接触するSiO2の成膜時等に酸化して保磁力が低下したと推測できる。これに対して、実施例では絶縁層にSi−Nを適用したことで、RE−TM合金が有する本来の磁気特性が維持されたといえる。 As shown in FIG. 7, in both the example and comparative samples, the magnetoresistive element changed to high resistance when the magnetic field reached around ± 1 kOe. This indicates that the magnetization reversal layer is reversed and the magnetization of the magnetoresistive element is antiparallel. When the magnetic field was further increased, in the comparative example, when the magnetic field reached around ± 3 kOe, the magnetoresistive element changed to a low resistance comparable to the initial state (returned). This indicates that the magnetization of the magnetization fixed layer is inverted and becomes parallel to the magnetization direction of the magnetization inversion layer that has been previously inverted, that is, the magnetization of the magnetoresistive element is again parallel. On the other hand, in the example, when the magnetic field was increased to around ± 5 kOe, the magnetization of the magnetization fixed layer was reversed. From these results, the RE-TM alloy included in the magnetoresistive element, in particular, the Tb—Fe—Co alloy of the magnetization fixed layer, is oxidized in the case of film formation of SiO 2 that is in contact with the side surface and has a coercive force. It can be assumed that it has declined. On the other hand, it can be said that the original magnetic properties of the RE-TM alloy were maintained by applying Si—N to the insulating layer in the examples.

10 空間光変調器
1 磁気抵抗素子(スピン注入磁化反転素子)
11 磁化固定層
12 中間層
13 磁化反転層
14 保護層
2 上部電極
2A ビット線(上部電極)
3,3A 下部電極
40 画素アレイ
4 画素
5 ワード線
6 絶縁層
70 MRAM(磁気ランダムアクセスメモリ)
7 メモリセル
80 電流制御部
81 電源(電流供給手段)
84 画素選択部(画素選択手段)
9 記録装置
10 Spatial light modulator 1 Magnetoresistive element (spin injection magnetization reversal element)
DESCRIPTION OF SYMBOLS 11 Magnetization fixed layer 12 Intermediate layer 13 Magnetization inversion layer 14 Protective layer 2 Upper electrode 2A Bit line (upper electrode)
3, 3A Lower electrode 40 Pixel array 4 Pixel 5 Word line 6 Insulating layer 70 MRAM (magnetic random access memory)
7 Memory cell 80 Current control unit 81 Power supply (current supply means)
84 Pixel selection unit (pixel selection means)
9 Recording device

Claims (3)

磁化固定層と中間層と磁化反転層とを積層して備えるスピン注入磁化反転素子と、このスピン注入磁化反転素子の上下に接続された一対の電極と、この一対の電極間を絶縁する絶縁層と、を備えた磁気抵抗素子であって、
前記スピン注入磁化反転素子は、前記磁化固定層および前記磁化反転層の少なくとも一方が希土類金属と遷移金属との合金を含み、
前記絶縁層は、前記スピン注入磁化反転素子に接触して配され、シリコン窒化物からなることを特徴とする磁気抵抗素子。
A spin-injection magnetization reversal element comprising a stack of a magnetization fixed layer, an intermediate layer, and a magnetization reversal layer, a pair of electrodes connected above and below the spin-injection magnetization reversal element, and an insulating layer that insulates between the pair of electrodes A magnetoresistive element comprising:
In the spin-injection magnetization switching element, at least one of the magnetization fixed layer and the magnetization switching layer includes an alloy of a rare earth metal and a transition metal,
The magnetoresistive element according to claim 1, wherein the insulating layer is disposed in contact with the spin injection magnetization switching element and is made of silicon nitride.
2次元配列された複数のメモリセルを備える磁気ランダムアクセスメモリであって、
前記メモリセルは、磁化固定層と中間層と磁化反転層とを積層して備えるスピン注入磁化反転素子と、このスピン注入磁化反転素子の上下に接続された一対の電極と、を備え、
前記スピン注入磁化反転素子は、前記磁化固定層および前記磁化反転層の少なくとも一方が希土類金属と遷移金属との合金を含み、
前記スピン注入磁化反転素子に接触して、隣り合う前記スピン注入磁化反転素子間および前記一対の電極間をそれぞれ絶縁するシリコン窒化物からなる絶縁層を備えることを特徴とする磁気ランダムアクセスメモリ。
A magnetic random access memory comprising a plurality of memory cells arranged two-dimensionally,
The memory cell includes a spin injection magnetization reversal element comprising a magnetization fixed layer, an intermediate layer, and a magnetization reversal layer stacked, and a pair of electrodes connected to the top and bottom of the spin injection magnetization reversal element,
In the spin-injection magnetization switching element, at least one of the magnetization fixed layer and the magnetization switching layer includes an alloy of a rare earth metal and a transition metal,
A magnetic random access memory comprising an insulating layer made of silicon nitride in contact with the spin-injection magnetization reversal element to insulate between the adjacent spin-injection magnetization reversal elements and between the pair of electrodes.
2次元配列された複数の画素と、前記複数の画素から1つ以上の画素を選択する画素選択手段と、この画素選択手段が選択した画素に所定の電流を供給する電流供給手段と、を備えて、前記画素選択手段が選択した画素に入射した光の偏光方向を特定の方向に変化させて出射する空間光変調器であって、
前記画素は、磁化固定層と中間層と磁化反転層とを積層して備えるスピン注入磁化反転素子と、このスピン注入磁化反転素子の上下に接続された一対の電極と、を備え、
前記スピン注入磁化反転素子は、前記磁化固定層および前記磁化反転層の少なくとも一方が希土類金属と遷移金属との合金を含み、
前記スピン注入磁化反転素子に接触して、隣り合う前記スピン注入磁化反転素子間および前記一対の電極間をそれぞれ絶縁するシリコン窒化物からなる絶縁層を備えることを特徴とする空間光変調器。
A plurality of pixels arranged two-dimensionally, pixel selection means for selecting one or more pixels from the plurality of pixels, and current supply means for supplying a predetermined current to the pixels selected by the pixel selection means. A spatial light modulator that emits light by changing the polarization direction of the light incident on the pixel selected by the pixel selection means to a specific direction,
The pixel includes a spin injection magnetization reversal element including a magnetization fixed layer, an intermediate layer, and a magnetization reversal layer, and a pair of electrodes connected above and below the spin injection magnetization reversal element,
In the spin-injection magnetization switching element, at least one of the magnetization fixed layer and the magnetization switching layer includes an alloy of a rare earth metal and a transition metal,
A spatial light modulator comprising: an insulating layer made of silicon nitride that is in contact with the spin injection magnetization reversal element and insulates between the adjacent spin injection magnetization reversal elements and the pair of electrodes.
JP2009077501A 2009-03-26 2009-03-26 Magnetoresistive element, and magnetic random access memory and spatial light modulator using the same Pending JP2010232374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009077501A JP2010232374A (en) 2009-03-26 2009-03-26 Magnetoresistive element, and magnetic random access memory and spatial light modulator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009077501A JP2010232374A (en) 2009-03-26 2009-03-26 Magnetoresistive element, and magnetic random access memory and spatial light modulator using the same

Publications (1)

Publication Number Publication Date
JP2010232374A true JP2010232374A (en) 2010-10-14

Family

ID=43047936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009077501A Pending JP2010232374A (en) 2009-03-26 2009-03-26 Magnetoresistive element, and magnetic random access memory and spatial light modulator using the same

Country Status (1)

Country Link
JP (1) JP2010232374A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012088667A (en) * 2010-10-22 2012-05-10 Nippon Hoso Kyokai <Nhk> Light modulation element and spatial light modulator using the same
KR20120080531A (en) * 2011-01-07 2012-07-17 소니 주식회사 Storage element and storage device
JP2013148698A (en) * 2012-01-19 2013-08-01 Nippon Hoso Kyokai <Nhk> Spin injection-type light modulating element and spatial light modulator
WO2013123812A1 (en) * 2012-02-24 2013-08-29 北京京东方光电科技有限公司 Array substrate, method for preparing same, and display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002124648A (en) * 2000-10-18 2002-04-26 Canon Inc Magnetoresistive memory
JP2007305645A (en) * 2006-05-09 2007-11-22 Nec Corp Magnetic memory device and manufacturing method thereof
JP2008083686A (en) * 2006-08-31 2008-04-10 Nippon Hoso Kyokai <Nhk> Optical modulator, display device, holography device, and hologram recording device
JP2008186861A (en) * 2007-01-26 2008-08-14 Toshiba Corp Magnetoresistive element and magnetic memory
JP2009026944A (en) * 2007-07-19 2009-02-05 Sony Corp Storage element and memory

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002124648A (en) * 2000-10-18 2002-04-26 Canon Inc Magnetoresistive memory
JP2007305645A (en) * 2006-05-09 2007-11-22 Nec Corp Magnetic memory device and manufacturing method thereof
JP2008083686A (en) * 2006-08-31 2008-04-10 Nippon Hoso Kyokai <Nhk> Optical modulator, display device, holography device, and hologram recording device
JP2008186861A (en) * 2007-01-26 2008-08-14 Toshiba Corp Magnetoresistive element and magnetic memory
JP2009026944A (en) * 2007-07-19 2009-02-05 Sony Corp Storage element and memory

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012088667A (en) * 2010-10-22 2012-05-10 Nippon Hoso Kyokai <Nhk> Light modulation element and spatial light modulator using the same
KR20120080531A (en) * 2011-01-07 2012-07-17 소니 주식회사 Storage element and storage device
JP2012146726A (en) * 2011-01-07 2012-08-02 Sony Corp Storage element and storage device
KR101943651B1 (en) * 2011-01-07 2019-01-29 소니 주식회사 Storage element and storage device
JP2013148698A (en) * 2012-01-19 2013-08-01 Nippon Hoso Kyokai <Nhk> Spin injection-type light modulating element and spatial light modulator
WO2013123812A1 (en) * 2012-02-24 2013-08-29 北京京东方光电科技有限公司 Array substrate, method for preparing same, and display device

Similar Documents

Publication Publication Date Title
JP5238619B2 (en) Magneto-optic spatial light modulator and manufacturing method thereof
JP5852363B2 (en) Spatial light modulator
JP2010232374A (en) Magnetoresistive element, and magnetic random access memory and spatial light modulator using the same
JP2011100790A (en) Magnetoresistive element structure, magnetic random access memory, and spatial light modulator
JP5679690B2 (en) Spin injection magnetization reversal device, magnetic random access memory and spatial light modulator using the same
JP6017165B2 (en) Spatial light modulator
JP5054639B2 (en) Light modulator and spatial light modulator
JP5836858B2 (en) Light modulator and spatial light modulator
JP2014110356A (en) Spin injection magnetization reversal element
JP2014175429A (en) Spin injection magnetization reversal element
JP5249876B2 (en) Reflective spatial light modulator
JP2010145462A (en) Multi-element spatial light modulator
JP5581171B2 (en) Light modulator and spatial light modulator using the same
JP5281522B2 (en) Spatial light modulator
JP5567970B2 (en) Light modulator and spatial light modulator using the same
JP2011180355A (en) Optical modulation element and spatial light modulator
JP5873363B2 (en) Light modulator and spatial light modulator
JP6329384B2 (en) Spin injection magnetization reversal element
JP2015173186A (en) spin injection magnetization reversal element
JP6546745B2 (en) Light modulation element and spatial light modulator
JP5836857B2 (en) Light modulator and spatial light modulator
JP5238616B2 (en) Light modulation element
JP5054640B2 (en) Light modulation element, light modulator, display device, holography device, and hologram recording device
JP6321927B2 (en) Spatial light modulator
JP5667417B2 (en) Light modulator and spatial light modulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121113