JP2002124648A - Magnetoresistive memory - Google Patents

Magnetoresistive memory

Info

Publication number
JP2002124648A
JP2002124648A JP2000318350A JP2000318350A JP2002124648A JP 2002124648 A JP2002124648 A JP 2002124648A JP 2000318350 A JP2000318350 A JP 2000318350A JP 2000318350 A JP2000318350 A JP 2000318350A JP 2002124648 A JP2002124648 A JP 2002124648A
Authority
JP
Japan
Prior art keywords
film
magnetoresistive
magnetic
layer
magnetoresistive memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000318350A
Other languages
Japanese (ja)
Inventor
Masaki Onoe
正樹 尾上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2000318350A priority Critical patent/JP2002124648A/en
Publication of JP2002124648A publication Critical patent/JP2002124648A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)
  • Semiconductor Memories (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetoresistive memory in which the oxidations of its magnetic layers are eliminated, i.e., magnetic deteriorations of its magnetic layers caused by their oxidation are not generated, and even if its elements are made fine, the good magnetic-resistance changes of its elements are obtained. SOLUTION: The magnetoresistive memory has insulators 7 made of a nitride formed on the side surface of a magneto-resistance film, where first an second magnetic layers 3, 5 are laminated via a nonmagnetic layer (an insulation layer 4).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二つの磁性層を非
磁性層を介して積層した磁気抵抗効果膜を用いた磁気抵
抗メモリに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive memory using a magnetoresistive film in which two magnetic layers are stacked via a nonmagnetic layer.

【0002】[0002]

【従来の技術】従来より、軟磁性材料の持つ異方性磁気
抵抗効果(AMR効果)を利用した磁気ヘッドの開発が
進められ、ハードディスクの高密度記録が達成されてい
る。このAMR効果とは、パーマロイ合金などの磁性材
料に任意の方向に電流を流し、電流の方向と磁性材料の
磁化の方向のなす角度に依存して磁性材料の抵抗が変化
する現象であり、磁気ヘッド以外では、例えば磁気セン
サなどにも利用されている。
2. Description of the Related Art Hitherto, the development of magnetic heads utilizing the anisotropic magnetoresistive effect (AMR effect) of soft magnetic materials has been promoted, and high-density recording on hard disks has been achieved. The AMR effect is a phenomenon in which a current flows in a magnetic material such as a permalloy alloy in an arbitrary direction, and the resistance of the magnetic material changes depending on the angle between the current direction and the magnetization direction of the magnetic material. Other than the head, it is also used for a magnetic sensor, for example.

【0003】AMR効果を持つ磁性材料を用いた磁気ヘ
ッドや磁気センサは、温度安定性が良く、広い機器用途
で使用できるという特徴を有する。さらに、このAMR
効果膜を用いた固体メモリデバイスが L.J.Schwee によ
って提案されている(Proc.INTERMAG Conf. IEEE Tran
s. Magn., Kyoto, p.405)。このメモリデバイスは、既
存のDRAM、SRAM等の電子の電荷を利用した半導
体固体メモリ素子とは異なり、電子のスピンを利用して
いるので、記録された情報の保存性が高く、かつ高速な
記録や消去が可能である。
A magnetic head or a magnetic sensor using a magnetic material having the AMR effect has a characteristic that it has good temperature stability and can be used in a wide range of equipment applications. Furthermore, this AMR
A solid-state memory device using an effect film has been proposed by LJSchwee (Proc. INTERMAG Conf. IEEE Tran
s. Magn., Kyoto, p.405). Unlike conventional semiconductor solid-state memory devices such as DRAMs and SRAMs, which use the electric charge of electrons, the memory devices utilize the spin of electrons, so that the stored information has high preservability and high-speed recording. And can be erased.

【0004】しかし、AMR効果による磁気抵抗変化率
は、室温で6%程度と小さく、例えばハードディスクの
記録密度がさらに高くなった場合に十分な検出出力が得
られないという問題がある。
However, the rate of change in magnetoresistance due to the AMR effect is as small as about 6% at room temperature. For example, when the recording density of a hard disk is further increased, there is a problem that a sufficient detection output cannot be obtained.

【0005】そこで近年、さらに高い記録密度を持つハ
ードディスクの磁気ヘッドに巨大磁気抵抗効果(GMR
効果)を利用したものが用いられつつある。このGMR
効果は、1988年に Baibich らによって報告された現象
であり、その磁気抵抗変化率は室温で20%程度で、A
MR効果よりも大きな値を示す(M.N.Baibich, J.M.Bro
to, A.Fert, F.Nguyen van Dau, F.Petroff, P.Etienn
e, G.Greuzet, A.Friederich and J.Chazelas: Phys. R
ev. Lett., 61, 2473(1988))。この報告では、磁性金
属薄膜と非磁性金属薄膜とが交互に幾層にも積層された
構造を持ち、非磁性層を介して並ぶ磁性層の磁気モーメ
ントが反平行状態で磁気的に結合された金属人工格子膜
が用いられている。
In recent years, a giant magnetoresistive effect (GMR effect) has been applied to the magnetic head of a hard disk having a higher recording density.
Effect) is being used. This GMR
The effect is a phenomenon reported by Baibich et al. In 1988, and its magnetoresistance ratio is about 20% at room temperature.
Shows a value larger than the MR effect (MNBaibich, JMBro
to, A. Fert, F. Nguyen van Dau, F. Petroff, P. Etienn
e, G. Greuzet, A. Friederich and J. Chazelas: Phys. R
ev. Lett., 61, 2473 (1988)). In this report, a magnetic metal thin film and a non-magnetic metal thin film are alternately stacked in multiple layers, and the magnetic moments of the magnetic layers arranged side by side through the non-magnetic layer are magnetically coupled in an antiparallel state. A metal artificial lattice film is used.

【0006】GMR効果を示す材料として、様々なもの
があるが、例えば、Fe/Cr金属人工格子膜やCo/
Cu金属人工格子膜などが見出されている。また、GM
R効果の発現機構はAMR効果のそれとは異なってお
り、磁性層と非磁性層の界面における伝導電子の散乱が
磁性層のスピンの向きに依存することが主因と考えられ
ている。
There are various materials exhibiting the GMR effect. For example, Fe / Cr metal artificial lattice films and Co /
Cu metal artificial lattice films and the like have been found. Also, GM
The mechanism of developing the R effect is different from that of the AMR effect, and it is considered that the main factor is that the scattering of conduction electrons at the interface between the magnetic layer and the nonmagnetic layer depends on the spin direction of the magnetic layer.

【0007】しかし、このような金属人工格子膜におい
てGMR効果を得る為には、数百Oe(エルステッド)
以上の飽和磁界が必要であり、また多くの積層数が必要
なので、磁気ヘッド等の材料としては不適当である。
However, in order to obtain the GMR effect in such a metal artificial lattice film, several hundred Oe (Oersted) are required.
Since the above-mentioned saturation magnetic field is required and a large number of laminations are required, it is unsuitable as a material for a magnetic head or the like.

【0008】また、GMR効果を示す材料として、さら
にスピンバルブ膜が提案されている。これは強磁性層/
非磁性層/強磁性層/反強磁性層からなる積層膜であ
り、一方の強磁性層の磁化を反強磁性層により固定し、
他方の強磁性層を外部磁界により容易に磁化反転できる
ようにしておく。この非磁性層としては、Cu等の導体
を用いる。スピンバルブ膜においては、両方の強磁性層
のスピンが平行な場合は抵抗が低く、スピンが反平行な
場合には抵抗が高くなるという特徴がある。このスピン
バルブ膜の飽和磁界は数Oeと小さく、金属人工格子膜
のように大きな磁界を印加することなくGMR効果を得
ることが可能である。ただし、磁気抵抗変化率は室温で
10%程度と比較的小さい。
As a material exhibiting the GMR effect, a spin valve film has been further proposed. This is the ferromagnetic layer /
A multilayer film composed of a nonmagnetic layer / a ferromagnetic layer / an antiferromagnetic layer, wherein the magnetization of one ferromagnetic layer is fixed by the antiferromagnetic layer;
The magnetization of the other ferromagnetic layer can be easily inverted by an external magnetic field. As the nonmagnetic layer, a conductor such as Cu is used. The spin valve film is characterized in that the resistance is low when the spins of both ferromagnetic layers are parallel and high when the spins are antiparallel. The saturation magnetic field of this spin valve film is as small as several Oe, and the GMR effect can be obtained without applying a large magnetic field unlike a metal artificial lattice film. However, the magnetoresistance ratio is relatively small at room temperature, about 10%.

【0009】スピンバルブ膜では、一方の磁性層の磁化
方向を固定しているが、特に磁化方向を固定しなくて
も、2つの磁性層の磁化方向が平行である状態と反平行
である状態を作り出すことができれば、GMR効果は出
現する。したがって、例えば、反強磁性層を設けずに2
つの磁性層の保磁力の大きさを異なるものにし、印加す
る磁界の大きさを調整してもよい。このような膜構成の
GMR膜を保磁力差型GMR膜あるいは弱結合型GMR
膜などと呼んでいる。
In the spin valve film, the magnetization direction of one of the magnetic layers is fixed. However, the state in which the magnetization directions of the two magnetic layers are parallel and anti-parallel is achieved without fixing the magnetization direction. Can be created, the GMR effect appears. Therefore, for example, without providing an antiferromagnetic layer,
The magnitude of the coercive force of the two magnetic layers may be different, and the magnitude of the applied magnetic field may be adjusted. A GMR film having such a film configuration is used as a coercive force difference type GMR film or a weakly coupled GMR film.
It is called a membrane.

【0010】薄い絶縁膜の膜厚方向に電圧を印加する
と、トンネリングによって電子が流れるが、この絶縁薄
膜を磁性体によって挟み込むと、トンネリング現象が磁
性層の磁化の方向に依存するようになる。この現象は強
磁性スピントンネル効果(TMR効果)と呼ばれてい
て、磁気抵抗効果の一種である。膜構造は上述したよう
に基本的に強磁性層/絶縁層/強磁性層のサンドイッチ
構造であり、非磁性層が絶縁体であること以外は先に述
べたGMR膜と同じである。もちろん膜構造をスピンバ
ルブ型にしてもよい。TMR膜では、室温で40%以上
もの高い磁気抵抗変化率が得られる特徴を持っている。
When a voltage is applied in the thickness direction of a thin insulating film, electrons flow by tunneling. If the insulating thin film is sandwiched between magnetic materials, the tunneling phenomenon depends on the direction of magnetization of the magnetic layer. This phenomenon is called a ferromagnetic spin tunnel effect (TMR effect), and is a type of magnetoresistance effect. The film structure is basically a sandwich structure of a ferromagnetic layer / insulating layer / ferromagnetic layer as described above, and is the same as the above-described GMR film except that the nonmagnetic layer is an insulator. Of course, the film structure may be a spin valve type. The TMR film has a feature that a high magnetoresistance ratio of 40% or more can be obtained at room temperature.

【0011】最近、このTMR膜を用いたメモリの研究
が盛んに行われている。磁気抵抗効果を利用したメモリ
は以前にも提案されていたが、GMR膜を用いていたた
めに出力信号の大きさや記録密度といった点で十分では
なかった。また、これまでTMR膜において2nm程度
と非常に薄い強磁性層間に形成された絶縁膜の組成、形
状、膜厚を制御するといった点が技術的な課題であった
が、この問題も徐々に解決されつつある。
Recently, researches on memories using the TMR film have been actively conducted. Although a memory using the magnetoresistance effect has been proposed before, it was not sufficient in terms of the output signal size and the recording density due to the use of the GMR film. In the past, there was a technical problem of controlling the composition, shape, and thickness of an insulating film formed between ferromagnetic layers as extremely thin as about 2 nm in a TMR film, but this problem has been gradually solved. Is being done.

【0012】[0012]

【発明が解決しようとする課題】磁気抵抗効果膜を用い
たメモリは、基板上に多数の磁気抵抗効果膜、その磁気
抵抗効果膜に電流を流す回路、磁気抵抗効果膜に磁界を
印加するための配線等が形成されていて、その間を電気
的に絶縁するために絶縁体が形成されている。また、磁
気抵抗効果膜を保護するために絶縁体が形成されてい
る。その絶縁体として一般にSiOやAl23といった
酸化物が用いられている。
A memory using a magnetoresistive film has a large number of magnetoresistive films on a substrate, a circuit for passing a current through the magnetoresistive film, and a magnetic field applied to the magnetoresistive film. Are formed, and an insulator is formed to electrically insulate them. An insulator is formed to protect the magnetoresistive film. An oxide such as SiO or Al 2 O 3 is generally used as the insulator.

【0013】この酸化物は十分な絶縁性あるいは耐圧性
を得るために、成膜時に酸素ガスを供給しながら形成さ
れるが、このような成膜方法では磁気抵抗効果膜に用い
られている磁性体までも酸化してしまう。したがって、
特に磁気抵抗効果膜のサイズを小さくしていくと、全磁
性原子に対して酸化された磁性原子の割合が増加するの
で所望の磁性が得られず、情報の記録が不十分であった
り、検出された信号が小さくなり、記録された情報を正
確に読み出せないといった問題が生じる。特に磁性体に
希土類金属等の酸化しやすい元素を用いた場合、その現
象は顕著である。
This oxide is formed while supplying oxygen gas at the time of film formation in order to obtain sufficient insulation or pressure resistance. In such a film formation method, the oxide used in the magnetoresistive film is used. Even the body is oxidized. Therefore,
In particular, as the size of the magnetoresistive film is reduced, the ratio of oxidized magnetic atoms to all magnetic atoms increases, so that desired magnetism cannot be obtained, and insufficient information recording or detection is performed. The recorded signal becomes small, and the recorded information cannot be read accurately. This phenomenon is particularly remarkable when an easily oxidizable element such as a rare earth metal is used for the magnetic material.

【0014】本発明は、これら従来技術の課題に鑑みな
されたものであり、磁性層の側面に形成される絶縁体に
よる磁性層の酸化が無く、すなわち酸化による磁性層の
磁性劣化が生じず、素子を微細化した場合であっても良
好な磁気抵抗変化が得られる磁気抵抗メモリを提供する
ことを目的とする。
The present invention has been made in view of these problems of the prior art, and there is no oxidation of the magnetic layer by an insulator formed on the side surface of the magnetic layer, that is, no magnetic deterioration of the magnetic layer due to the oxidation occurs. It is an object of the present invention to provide a magnetoresistive memory capable of obtaining a favorable magnetoresistance change even when the element is miniaturized.

【0015】[0015]

【課題を解決するための手段】本発明者は、上記目的を
達成すべく鋭意検討を重ねた結果、窒化物からなる絶縁
体を用いれば、磁性層の磁性の劣化を防ぎ、微細に加工
した場合においても十分に特性を維持できること見出
し、本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies to achieve the above object, the present inventor has found that the use of an insulator made of a nitride prevents the magnetic layer from deteriorating in magnetism and allows fine processing. The inventors have found that the characteristics can be sufficiently maintained even in such a case, and have completed the present invention.

【0016】すなわち本発明は、第1磁性層と第2磁性
層が非磁性層を介して積層されてなる磁気抵抗効果膜の
側面に、窒化物からなる絶縁体を形成したこと特徴とす
る磁気抵抗メモリである。
That is, the present invention is characterized in that an insulator made of a nitride is formed on a side surface of a magnetoresistive film in which a first magnetic layer and a second magnetic layer are laminated via a nonmagnetic layer. It is a resistance memory.

【0017】[0017]

【発明の実施の形態】図1は、本発明の磁気抵抗メモリ
の素子の一実施形態を示す模式的断面図である。この図
に示す例では、基板1上に金属電極2(下部電極)が配
置されており、その上に第1磁性層3が形成され、その
上部に絶縁層4(非磁性層)が形成されている。絶縁層
4の上には第2磁性層5が形成されており、その上部に
は金属電極6(上部電極)が形成されている。そして、
素子と電極2間には窒化物からなる絶縁体7が形成され
ている。
FIG. 1 is a schematic sectional view showing an embodiment of the element of the magnetoresistive memory of the present invention. In the example shown in this figure, a metal electrode 2 (lower electrode) is disposed on a substrate 1, a first magnetic layer 3 is formed thereon, and an insulating layer 4 (non-magnetic layer) is formed thereon. ing. A second magnetic layer 5 is formed on the insulating layer 4, and a metal electrode 6 (upper electrode) is formed thereon. And
An insulator 7 made of a nitride is formed between the element and the electrode 2.

【0018】基板1としては、表面が平滑なものが好ま
しい。例えば結晶配向(1.0.0)の表面に熱酸化処理
を施してあるシリコンウェハー等を好適に使用できる。
The substrate 1 preferably has a smooth surface. For example, a silicon wafer or the like having a surface having a crystal orientation (1.0.0) subjected to a thermal oxidation treatment can be suitably used.

【0019】金属電極2(下部電極)の材料としては、
電極2の上部表面が平滑であり、電気抵抗が小さく、さ
らに加工の容易であるものが好ましい。そのような材料
としては、例えば、Al、Cu、Ta、W等の金属及び
それらの合金が挙げられる。なかでも、AlCu合金は
上部表面が平滑なので特に好ましい。
As the material of the metal electrode 2 (lower electrode),
It is preferable that the upper surface of the electrode 2 be smooth, have a low electric resistance, and be easily processed. Examples of such a material include metals such as Al, Cu, Ta, and W and alloys thereof. Among them, an AlCu alloy is particularly preferable because its upper surface is smooth.

【0020】第1磁性層3及び第2磁性層5としては、
磁気抵抗メモリとしての所望の作用効果を十分に奏する
強磁性層が好ましい。具体的には、Ni、Fe、Co等
の遷移金属やこれらの合金、あるいは、Gd、Tb、D
y、Nd等の希土類金属と遷移金属の合金等が使用可能
である。特に、遷移金属及び希土類金属の合金によって
構成することが好ましい。ただし、第1磁性層3と第2
磁性層5は、磁気抵抗メモリとしての所望の作用効果を
奏するように、二つの強磁性層に保磁力差が生じればよ
く、その磁性材料は特に限定されるものではない。
As the first magnetic layer 3 and the second magnetic layer 5,
It is preferable to use a ferromagnetic layer sufficiently exhibiting the desired effects as the magnetoresistive memory. Specifically, transition metals such as Ni, Fe, and Co and alloys thereof, or Gd, Tb, D
An alloy of a rare earth metal such as y or Nd and a transition metal can be used. In particular, it is preferable to be composed of an alloy of a transition metal and a rare earth metal. However, the first magnetic layer 3 and the second
The magnetic layer 5 is only required to have a difference in coercive force between the two ferromagnetic layers so that a desired function and effect as a magnetoresistive memory can be obtained, and the magnetic material is not particularly limited.

【0021】絶縁層4(非磁性層)としては、特に限定
は無いが、一般にCuやAl23等からなるトンネル絶
縁層が用いられる。特に、Al23を用いると、より大
きな磁気抵抗変化率が得られるので好ましい。Al23
を用いる場合、その層厚は1〜2nm程度が好ましい。
トンネル絶縁層の作製方法としては、Al23等の酸化
物ターゲットを直接スパッタリングする方法が代表的で
ある。また、はじめにAl等の膜をスパッタリングで形
成した後、大気中で数時間放置させ自然酸化させる方
法、あるいは、Al等の膜を形成した後、成膜装置内に
酸素を導入してRF電力によりプラズマを発生させAl
膜を酸化させるといった方法があるが、絶縁層が十分に
酸化され、かつ磁性膜が酸化されない条件であればどの
方法を用いても良い。
The insulating layer 4 (non-magnetic layer) is not particularly limited, but is generally a tunnel insulating layer made of Cu, Al 2 O 3 or the like. In particular, it is preferable to use Al 2 O 3 because a higher magnetoresistance ratio can be obtained. Al 2 O 3
Is preferred, the layer thickness is preferably about 1 to 2 nm.
A typical example of a method for forming a tunnel insulating layer is a method in which an oxide target such as Al 2 O 3 is directly sputtered. Also, after a film of Al or the like is first formed by sputtering, the film is allowed to stand in the air for several hours to be spontaneously oxidized, or after a film of Al or the like is formed, oxygen is introduced into the film forming apparatus and RF power is applied. Generate plasma and Al
Although there is a method of oxidizing the film, any method may be used as long as the insulating layer is sufficiently oxidized and the magnetic film is not oxidized.

【0022】本発明においては、この第1磁性層3と第
2磁性層5が絶縁層4(非磁性層)を介して積層され
て、これが磁気抵抗効果膜を構成する。この磁性抵抗効
果膜は、特に強磁性スピントンネル効果膜であることが
好ましい。この磁性抵抗効果膜において、例えば、二つ
の磁性層のうちどちらか一方の磁化方向を固定し他方の
磁性層の磁化方向は任意の方向に向けることにより、磁
気抵抗メモリとして利用することができる。また、この
磁気抵抗効果膜の表面に、最上部の強磁性層の酸化を防
ぐ等の目的で保護層を設けることも好ましい。保護層を
構成する材料は、そのような機能を持ちかつ非磁性材料
であれば特に限定されない。
In the present invention, the first magnetic layer 3 and the second magnetic layer 5 are laminated via an insulating layer 4 (non-magnetic layer), and constitute a magnetoresistive film. This magnetoresistive film is particularly preferably a ferromagnetic spin tunnel effect film. In this magnetoresistive effect film, for example, one of the two magnetic layers is fixed in magnetization direction and the other magnetic layer is oriented in an arbitrary direction so that it can be used as a magnetoresistive memory. It is also preferable to provide a protective layer on the surface of the magnetoresistive film for the purpose of preventing oxidation of the uppermost ferromagnetic layer. The material forming the protective layer is not particularly limited as long as it has such a function and is a nonmagnetic material.

【0023】金属電極6(上部電極)の材料としては、
電気抵抗が小さく、さらに加工の容易であるものが好ま
しい。そのような材料には、例えばAl、Cu、Ta、
W等やそれらの合金等がある。
As a material of the metal electrode 6 (upper electrode),
It is preferable that the material has low electric resistance and is easy to process. Such materials include, for example, Al, Cu, Ta,
W and their alloys.

【0024】絶縁体7には、窒化物からなる絶縁材料が
用いられる。その窒化物としては特に制限は無く、磁気
抵抗メモリの磁気抵抗効果膜の側面に設けられる絶縁体
として機能し得る窒化物であればよい。特に、窒化物と
してAlNを用いた場合は、Al23と同等の絶縁性を
保つことができ、しかも耐アルカリ性を高めることが可
能なので好ましい。一方、例えばSi34を用いた場合
は、アルカリ物質との反応で劣化が生じることがあるの
で、あまり好ましくない。
For the insulator 7, an insulating material made of nitride is used. The nitride is not particularly limited, and may be any nitride that can function as an insulator provided on the side surface of the magnetoresistive film of the magnetoresistive memory. In particular, the use of AlN as the nitride is preferable because the same insulating properties as Al 2 O 3 can be maintained and the alkali resistance can be increased. On the other hand, the use of, for example, Si 3 N 4 is not preferred because the reaction with an alkali substance may cause deterioration.

【0025】このような磁気抵抗効果膜を用いたメモリ
は、一般的には、基板上に多数の磁気抵抗効果膜、その
磁気抵抗効果膜に電流を流す回路、磁気抵抗効果膜に磁
界を印加するための配線等が形成されていて、その間を
電気的に絶縁するために絶縁体が形成されている。ま
た、磁気抵抗効果膜を保護するために絶縁体が形成され
ている。本発明においては、それら絶縁体として窒化物
を用いるので、従来技術の課題を解決することができ
る。
A memory using such a magnetoresistive film generally has a large number of magnetoresistive films on a substrate, a circuit for passing a current through the magnetoresistive film, and a magnetic field applied to the magnetoresistive film. Wiring and the like are formed, and an insulator is formed to electrically insulate them. An insulator is formed to protect the magnetoresistive film. In the present invention, since the nitride is used as the insulator, the problem of the related art can be solved.

【0026】特に、少なくとも磁気抵抗効果膜の側面の
絶縁体に窒化物を用いることは、磁性体の酸化の問題を
解決する上で重要である。つまり従来技術においては、
特に、素子を微細化した場合や、磁性体に希土類金属等
の酸化しやすい元素を用いた場合は、磁性体の酸化の問
題が生じることがあったが、本発明はこのような問題を
解決することができるのである。さらには、素子側面の
みならず、磁気抵抗効果膜に情報の記録を行なう為の記
録手段と、記録された情報を読み出す為の読み出し手段
の側面の絶縁体(配線間の絶縁体)にも窒化物(AlN
等)を用いることは、非常に好ましい態様である。
In particular, it is important to use a nitride as an insulator at least on the side surface of the magnetoresistive film in order to solve the problem of oxidation of the magnetic material. In other words, in the prior art,
In particular, when the element is miniaturized or when an easily oxidizable element such as a rare earth metal is used for the magnetic material, the problem of oxidation of the magnetic material may occur. The present invention solves such a problem. You can do it. Furthermore, not only the side surface of the element, but also the recording means for recording information on the magnetoresistive film and the insulator on the side surface of the reading means for reading out the recorded information (insulator between wirings) are nitrided. Object (AlN
Is a very preferred embodiment.

【0027】[0027]

【実施例】以下、実施例により本発明をさらに詳細に説
明する。
The present invention will be described in more detail with reference to the following examples.

【0028】<実施例1>はじめに、次の順序でTMR
膜を作製した。まず、表面を酸化処理したシリコンウェ
ハー(結晶方位1.0.0)を基板として用い、その基板
上に下部電極としてAlCu合金を膜厚20nmスパッ
タリングで形成した。連続して第1強磁性層であるNi
80Fe20を膜厚20nm形成した。さらに、Al23
ーゲットを直接スパッタリングし、2nmのトンネル絶
縁層(非磁性層)を形成した。続いて、第2強磁性層と
して、Coを20nm形成した。すなわち、本実施例に
おいては第1強磁性層にNi80Fe20、第2強磁性層を
Coによって形成した。最後に積層された薄膜の表面の
保護層として、Pt膜を5nmスパッタリングにより形
成した。
<Embodiment 1> First, TMR is performed in the following order.
A film was prepared. First, a silicon wafer (crystal orientation 1.0.0) whose surface was oxidized was used as a substrate, and an AlCu alloy was formed as a lower electrode on the substrate by sputtering to a thickness of 20 nm. The first ferromagnetic layer Ni
80 Fe 20 was formed to a thickness of 20 nm. Further, an Al 2 O 3 target was directly sputtered to form a 2 nm tunnel insulating layer (nonmagnetic layer). Subsequently, 20 nm of Co was formed as a second ferromagnetic layer. That is, in this embodiment, the first ferromagnetic layer is formed of Ni 80 Fe 20 , and the second ferromagnetic layer is formed of Co. Finally, as a protective layer on the surface of the laminated thin film, a Pt film was formed by 5 nm sputtering.

【0029】次に、このスパッタリングで基板上に積層
されたTMR薄膜を、次の順序で、フォトリソグラフィ
法とリフトオフ法を併用して数μmサイズに加工した。
はじめに、基板上に感光性硬化樹脂(フォトレジスト)
をスピンコーターを用いて1μmの厚さに塗布した。こ
の場合、粘度が6cPのフォトレジストを用いてスピン
コーターを3000rpmで制御することで所望の膜厚
を実現した。次に、約90℃に保たれたヒーターで、3
0秒ベーク処理を施した。このベーク後、室温に戻し、
上記スピンコーターでフォトレジストが塗布された基板
を、露光装置(波長436nm)でCrを材質としてい
るメタルマスクで、第1パターンを形成した。
Next, the TMR thin film laminated on the substrate by this sputtering was processed to a size of several μm by using the photolithography method and the lift-off method in the following order.
First, a photosensitive cured resin (photoresist) on the substrate
Was applied to a thickness of 1 μm using a spin coater. In this case, a desired film thickness was realized by controlling the spin coater at 3000 rpm using a photoresist having a viscosity of 6 cP. Next, a heater maintained at about 90 ° C.
A 0 second bake treatment was performed. After this baking, return to room temperature,
The substrate on which the photoresist was applied by the spin coater was used to form a first pattern with a metal mask made of Cr using an exposure apparatus (wavelength: 436 nm).

【0030】次に、フォトレジストマスクを形成された
基板を、Arイオンガスによるドライエッチングにより
第1パターンの切削処理を行った。切削された素子側
面、素子と配線間に絶縁層の形成としてAlN膜をスパ
ッタリングで切削した深さと同じか数nm厚く形成し
た。このとき、第1の磁性層及び第2の磁性層の寸法
は、0.6ミクロン×0.3ミクロンとした。
Next, the substrate on which the photoresist mask was formed was subjected to a first pattern cutting process by dry etching using Ar ion gas. An AlN film was formed to have a thickness equal to or several nm thick as the depth of the AlN film cut by sputtering as a formation of an insulating layer between the cut element side surface and the element and the wiring. At this time, the dimensions of the first magnetic layer and the second magnetic layer were set to 0.6 μm × 0.3 μm.

【0031】その後、AlN膜による絶縁膜が形成され
た上記ウェハーを、超音波洗浄機でリフトオフさせた。
レジストマスクが取り除かれた後、第1パターン形成時
と同じ手順で第2パターンのフォトレジストを形成し、
スパッタリングによりAl膜を50nm成膜した。その
後、超音波洗浄機を用いてリフトオフし、上部電極とし
た。次に、得られた磁気抵抗メモリ素子を、真空チャン
バー内で磁場中アニールした。このアニール温度は25
0℃とし、300Oeの磁界を磁性層の長手方向に印加
した。
Thereafter, the wafer on which the insulating film of the AlN film was formed was lifted off by an ultrasonic cleaner.
After the resist mask is removed, a second pattern of photoresist is formed in the same procedure as when forming the first pattern,
An Al film was formed to a thickness of 50 nm by sputtering. Thereafter, lift-off was performed using an ultrasonic cleaning machine to obtain an upper electrode. Next, the obtained magnetoresistive memory element was annealed in a magnetic field in a vacuum chamber. The annealing temperature is 25
At 0 ° C., a magnetic field of 300 Oe was applied in the longitudinal direction of the magnetic layer.

【0032】このようにして作製した磁気抵抗メモリ素
子の磁気抵抗曲線を図2に示す。図2から分かるよう
に、磁気抵抗変化率は26%と大きく、変化は急峻であ
る。
FIG. 2 shows a magnetoresistive curve of the magnetoresistive memory element thus manufactured. As can be seen from FIG. 2, the magnetoresistance change rate is as large as 26%, and the change is steep.

【0033】<比較例1>アルゴンガス50sccm及
び酸素ガス30sccmの混合ガスをスパッタリングガ
スとし、シリコンターゲットをスパッタリングすること
により、素子側面及び素子と配線間に形成する絶縁体を
Al23としたこと以外は、実施例と同様にして磁気抵
抗メモリ素子を作製した。図3に、この磁気抵抗メモリ
素子の磁気抵抗曲線を示す。図3から分かるように、磁
気抵抗変化率は5%で、図2(実施例1)で示した磁気
抵抗変化率よりも著しく小さく、かつ抵抗の変化は緩や
かである。
COMPARATIVE EXAMPLE 1 A sputtering gas was used as a mixed gas of 50 sccm of argon gas and 30 sccm of oxygen gas, and a silicon target was sputtered to make Al 2 O 3 an insulator formed on the side surface of the element and between the element and the wiring. Except for this, a magnetoresistive memory element was manufactured in the same manner as in the example. FIG. 3 shows a magnetoresistance curve of the magnetoresistance memory element. As can be seen from FIG. 3, the rate of change in magnetoresistance is 5%, which is significantly smaller than the rate of change in magnetoresistance shown in FIG. 2 (Example 1), and the change in resistance is gradual.

【0034】[0034]

【発明の効果】以上説明したように、本発明の磁気抵抗
メモリは、磁性層の酸化が無く、すなわち酸化による磁
性層の磁性劣化が生じず、素子を微細化した場合であっ
ても良好な磁気抵抗変化が得られるものである。
As described above, in the magnetoresistive memory of the present invention, the magnetic layer is not oxidized, that is, the magnetic layer is not degraded by the oxidation, and even if the element is miniaturized, the magnetoresistive memory is excellent. A change in magnetoresistance can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の磁気抵抗メモリの素子の一実施形態を
示す模式的断面図である。
FIG. 1 is a schematic cross-sectional view showing one embodiment of an element of a magnetoresistive memory of the present invention.

【図2】実施例1の磁気抵抗メモリの磁気抵抗曲線を示
すグラフである。
FIG. 2 is a graph showing a magnetoresistance curve of the magnetoresistance memory of Example 1.

【図3】比較例1の磁気抵抗メモリの磁気抵抗曲線を示
すグラフである。
FIG. 3 is a graph showing a magnetoresistance curve of the magnetoresistance memory of Comparative Example 1.

【符号の説明】[Explanation of symbols]

1 基板 2 金属電極(下部電極) 3 第1磁性層 4 絶縁層(非磁性層) 5 第2磁性層 6 金属電極(上部電極) 7 絶縁体 REFERENCE SIGNS LIST 1 substrate 2 metal electrode (lower electrode) 3 first magnetic layer 4 insulating layer (non-magnetic layer) 5 second magnetic layer 6 metal electrode (upper electrode) 7 insulator

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 10/14 H01L 43/08 Z 10/26 H H01L 43/08 27/10 447 G01R 33/06 R ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01F 10/14 H01L 43/08 Z 10/26 H H01L 43/08 27/10 447 G01R 33/06 R

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 第1磁性層と第2磁性層が非磁性層を介
して積層されてなる磁気抵抗効果膜の側面に、窒化物か
らなる絶縁体を形成したこと特徴とする磁気抵抗メモ
リ。
1. A magnetoresistive memory, wherein an insulator made of a nitride is formed on a side surface of a magnetoresistive film in which a first magnetic layer and a second magnetic layer are laminated via a nonmagnetic layer.
【請求項2】 磁気抵抗効果膜に情報の記録を行なう為
の記録手段と、記録された情報を読み出す為の読み出し
手段を具備し、該記録手段及び該読み出し手段の側面に
も窒化物からなる絶縁体を形成した請求項1記載の磁気
抵抗メモリ。
2. A recording device for recording information on a magnetoresistive film, and a reading device for reading the recorded information, wherein the recording device and the side surface of the reading device are also made of nitride. 2. The magnetoresistive memory according to claim 1, wherein an insulator is formed.
【請求項3】 絶縁体を構成する窒化物は、窒化アルミ
ニウムである請求項1又は2記載の磁気抵抗メモリ。
3. The magnetoresistive memory according to claim 1, wherein the nitride forming the insulator is aluminum nitride.
【請求項4】 磁気抵抗効果膜は、強磁性スピントンネ
ル効果膜である請求項1〜3の何れか一項記載の磁気抵
抗メモリ。
4. The magnetoresistive memory according to claim 1, wherein said magnetoresistive effect film is a ferromagnetic spin tunnel effect film.
【請求項5】 磁気抵抗効果膜は、二つの磁性層のうち
どちらか一方の磁化方向を固定し、他方の磁性層の磁化
方向は任意の方向に向けることが可能なものである請求
項1〜4の何れか一項記載の磁気抵抗メモリ。
5. The magnetoresistive film can fix the magnetization direction of one of the two magnetic layers and the magnetization direction of the other magnetic layer can be directed to an arbitrary direction. The magnetoresistive memory according to any one of claims 1 to 4.
【請求項6】 磁気抵抗効果膜に用いられる磁性層は、
遷移金属及び希土類金属の合金によって構成されている
請求項1〜5の何れか一項記載の磁気抵抗メモリ。
6. A magnetic layer used for a magnetoresistive film,
The magnetoresistive memory according to claim 1, wherein the magnetoresistive memory is made of an alloy of a transition metal and a rare earth metal.
JP2000318350A 2000-10-18 2000-10-18 Magnetoresistive memory Pending JP2002124648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000318350A JP2002124648A (en) 2000-10-18 2000-10-18 Magnetoresistive memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000318350A JP2002124648A (en) 2000-10-18 2000-10-18 Magnetoresistive memory

Publications (1)

Publication Number Publication Date
JP2002124648A true JP2002124648A (en) 2002-04-26

Family

ID=18796993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000318350A Pending JP2002124648A (en) 2000-10-18 2000-10-18 Magnetoresistive memory

Country Status (1)

Country Link
JP (1) JP2002124648A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010232374A (en) * 2009-03-26 2010-10-14 Nippon Hoso Kyokai <Nhk> Magnetoresistive element, and magnetic random access memory and spatial light modulator using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010232374A (en) * 2009-03-26 2010-10-14 Nippon Hoso Kyokai <Nhk> Magnetoresistive element, and magnetic random access memory and spatial light modulator using the same

Similar Documents

Publication Publication Date Title
JP3954573B2 (en) Magnetoresistive element, magnetic head, magnetic memory and magnetic recording apparatus using the same
JP2771128B2 (en) Magnetoresistive element, magnetoresistive head using the same, memory element, and amplifying element
KR100376028B1 (en) Magnetoresistance effect element and method for producing the same, and magnetoresistance effect type head, magnetic recording apparatus, and magnetoresistance effect memory element
JP3137580B2 (en) Magnetic multilayer film, magnetoresistive element and magnetic transducer
JP3255872B2 (en) Spin valve type thin film element and method of manufacturing the same
JPH11134620A (en) Ferromagnetic tunnel junction element sensor and its manufacture
JP3601690B2 (en) Magnetoresistive element and manufacturing method thereof, magnetoresistive head, magnetic recording device, magnetoresistive memory element
JP2004524708A (en) Magnetoresistive element, magnetoresistive magnetic head using the same, magnetic recording device, and magnetoresistive memory device
US20060125034A1 (en) Magnetoresistant device and magnetic memory device further comments
JP2003318461A (en) Magnetoresistance effect element, magnetic head, magnetic memory and magnetic recorder employing it
JP3593472B2 (en) Magnetic element, magnetic memory and magnetic sensor using the same
JP3697369B2 (en) Magnetic element, magnetic memory device, magnetoresistive head, magnetic head gimbal assembly, and magnetic recording system
JP3691898B2 (en) Magnetoresistive effect element, magnetic information reading method, and recording element
JP3946355B2 (en) Magnetic element, magnetic sensor and magnetic storage device using the same
JP3473016B2 (en) Ferromagnetic tunnel junction device, magnetic head and magnetic memory
JP3524486B2 (en) Magnetoresistance element and memory element using the element
JP3559722B2 (en) Magnetoresistive element, solid-state memory
JP2001084532A (en) Manufacture of magnetoresistance effect element
KR100833260B1 (en) Method of manufacturing a spin valve structure
JP2003304012A (en) Tunnel magnetoresistive element
JP2003258335A (en) Manufacturing method for tunneling magneto resistive effect device
JP3420152B2 (en) Magnetoresistive head and magnetic recording / reproducing device
JP2006237154A (en) Magnetoresistive effect element and magnetic head
JP2003318462A (en) Magnetoresistance effect element and magnetic head and magnetic memory using the element
JP3647306B2 (en) Magnetoresistive element and magnetoresistive memory element