JP2014110356A - Spin injection magnetization reversal element - Google Patents

Spin injection magnetization reversal element Download PDF

Info

Publication number
JP2014110356A
JP2014110356A JP2012264770A JP2012264770A JP2014110356A JP 2014110356 A JP2014110356 A JP 2014110356A JP 2012264770 A JP2012264770 A JP 2012264770A JP 2012264770 A JP2012264770 A JP 2012264770A JP 2014110356 A JP2014110356 A JP 2014110356A
Authority
JP
Japan
Prior art keywords
layer
magnetization
film
mgo
lower electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012264770A
Other languages
Japanese (ja)
Inventor
Hidekazu Kinjo
秀和 金城
Kenji Machida
賢司 町田
Daisuke Kato
大典 加藤
Kenichi Aoshima
賢一 青島
Atsushi Kuga
淳 久我
Hiroshi Kikuchi
宏 菊池
Naoki Shimizu
直樹 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP2012264770A priority Critical patent/JP2014110356A/en
Publication of JP2014110356A publication Critical patent/JP2014110356A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Hall/Mr Elements (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical modulation element including a TMR element structure reduced in magnetization reversal current using MgO as a barrier layer.SOLUTION: An optical modulation element 5 includes: a TMR element structure 1 formed by stacking a magnetization fixed layer 11, a barrier layer 12 comprising MgO, and a magnetization free layer 13; and an upper electrode 3 and a lower electrode 2 connected to above and below the TMR element structure. The lower electrode 2 comprises an amorphous Cu-Cr alloy. The magnetization fixed layer 11 comprises GdFe or is formed by stacking a CoFeB layer on a TbFeCo layer. Since an MgO film as the barrier layer 12 is formed on the magnetization fixed layer 11 comprising GdFe or on the CoFeB layer, the MgO film exhibits a strong (001) plane orientation, and since the lower electrode 2 is amorphous, the MgO film is not prevented from forming a (001) plane orientation. Accordingly, magnetization reversal current in the TMR element structure 1 can be reduced.

Description

本発明は、入射した光を磁気光学効果により光の位相や振幅等を空間的に変調して出射する空間光変調器に用いる光変調素子に好適なスピン注入磁化反転素子に関する。   The present invention relates to a spin-injection magnetization reversal element suitable for an optical modulation element used in a spatial light modulator that emits incident light by spatially modulating the phase and amplitude of the light by a magneto-optic effect.

スピン注入磁化反転素子は、2層以上の磁性体膜(磁性膜)を備え、上下に接続された電極(配線)から膜面に垂直に電流を供給されることで、スピン注入磁化反転により一部の磁性膜の磁化方向が180°回転(反転)し、磁化方向が変化しない別の磁性膜と同じ方向または反対方向になる。このスピン注入磁化反転素子は、磁性膜同士の磁化が同じ方向の状態と異なる方向の状態とで上下の電極間の抵抗が変化するため、磁気抵抗効果素子として1ビットのデータの書込み/読出しを行うことができる。すなわち、スピン注入磁化反転素子は、これを備えたメモリセルをマトリクス状に配列して磁気ランダムアクセスメモリ(MRAM)を構成することができる。スピン注入磁化反転素子は、その寸法が極めて小さい上、磁化反転の動作が高速であるため、大容量磁気メモリとしてMRAMおよびスピン注入磁化反転素子の研究・開発が進められている。   A spin-injection magnetization reversal element includes two or more magnetic films (magnetic films), and is supplied with current from a vertically connected electrode (wiring) perpendicularly to the film surface. The magnetization direction of the part of the magnetic film is rotated (reversed) by 180 °, and is in the same direction as that of another magnetic film in which the magnetization direction does not change or in the opposite direction. In this spin-injection magnetization reversal element, the resistance between the upper and lower electrodes changes depending on whether the magnetizations of the magnetic films are in the same direction or in different directions, so that 1-bit data can be written / read as a magnetoresistive effect element. It can be carried out. That is, the spin-injection magnetization reversal element can constitute a magnetic random access memory (MRAM) by arranging memory cells having the spin injection magnetization reversal element in a matrix. Since the spin injection magnetization reversal element is extremely small in size and operates at a high speed, the RRAM is being studied and developed as a large-capacity magnetic memory.

スピン注入磁化反転素子としては、CPP−GMR(Current Perpendicular to the Plane Giant MagnetoResistance:垂直通電型巨大磁気抵抗)素子やTMR(Tunnel MagnetoResistance:トンネル磁気抵抗)素子が知られているが、磁気抵抗効果素子として、より磁気抵抗比の高いTMR素子について特に研究されている。また、近年では、MRAMのさらなる大容量化および省電力化のために、膜面に垂直方向の磁化を示す(垂直磁気異方性を有する)磁性体材料がスピン注入磁化反転素子に適用されている。垂直磁気異方性を有するスピン注入磁化反転素子は、いっそうの微細化が可能で、かつ磁化反転に要する電流(反転電流)を低減することができる。TMR素子は、2枚の磁性膜の間に、トンネル障壁または障壁層と呼ばれる極めて薄い絶縁体膜を挟んだ構造である。障壁層の材料としては、磁化反転に要する電流をいっそう低減できる酸化マグネシウム(MgO)が好適とされている。   Known spin injection magnetization reversal elements include CPP-GMR (Current Perpendicular to the Plane Giant MagnetoResistance) elements and TMR (Tunnel MagnetoResistance) elements. In particular, a TMR element having a higher magnetoresistance ratio has been particularly studied. In recent years, in order to further increase the capacity and power saving of the MRAM, a magnetic material exhibiting magnetization in the direction perpendicular to the film surface (having perpendicular magnetic anisotropy) has been applied to a spin-injection magnetization switching element. Yes. A spin-injection magnetization reversal element having perpendicular magnetic anisotropy can be further miniaturized and can reduce a current (reversal current) required for magnetization reversal. The TMR element has a structure in which an extremely thin insulator film called a tunnel barrier or a barrier layer is sandwiched between two magnetic films. As a material for the barrier layer, magnesium oxide (MgO) that can further reduce the current required for magnetization reversal is suitable.

また、スピン注入磁化反転素子の別の用途として、空間光変調器の画素に搭載される光変調素子が挙げられる。光変調素子としてのスピン注入磁化反転素子は、磁性膜で反射または透過した光の偏光の向きが変化する(旋光する)磁気光学効果により、磁性膜の磁化方向を反転させて光の偏光の向きを2値に変化させるものである。空間光変調器においても、高精細化および高速化のために、従来の液晶に代わる材料として、MRAMと同様に研究・開発が進められている(例えば、特許文献1,2参照)。光変調素子として使用するスピン注入磁化反転素子は、偏光の向きの変化が大きい(光変調度が大きい)ことが望ましい。そのため、光変調素子においても、垂直磁気異方性のスピン注入磁化反転素子を用いて、膜面にほぼ垂直に光を入射することにより、極カー効果で光変調度を大きくすることが望ましい(例えば、非特許文献1、特許文献2参照)。また、高精細化するべく画素数を増大しても好適に駆動し、かつ省電力化のために反転電流を低減できる材料が要求されている。   Another application of the spin injection magnetization reversal element is a light modulation element mounted on a pixel of a spatial light modulator. The spin-injection magnetization reversal element as the light modulation element reverses the magnetization direction of the magnetic film by the magneto-optic effect in which the polarization direction of the light reflected or transmitted by the magnetic film changes (rotates), and the polarization direction of the light Is changed to a binary value. Also in the spatial light modulator, research and development are being conducted in the same manner as the MRAM as a material replacing the conventional liquid crystal for high definition and high speed (for example, see Patent Documents 1 and 2). The spin-injection magnetization reversal element used as the light modulation element desirably has a large change in the direction of polarization (high degree of light modulation). Therefore, also in the light modulation element, it is desirable to increase the degree of light modulation by the polar Kerr effect by using a perpendicular magnetic anisotropy spin-injection magnetization reversal element and making light incident substantially perpendicular to the film surface ( For example, see Non-Patent Document 1 and Patent Document 2.) Further, there is a demand for a material that can be suitably driven even when the number of pixels is increased to achieve higher definition and that can reduce the inversion current for power saving.

特開2008−83686号公報JP 2008-83686 A 特開2011−2522号公報JP 2011-2522 A

K. Aoshima et. al, “Spin transfer switching in current-perpendicular-to-plane spin valve observed by magneto-optical Kerr effect using visible light”, Appl. Phys. Lett. 91, 052507 (2007)K. Aoshima et. Al, “Spin transfer switching in current-perpendicular-to-plane spin valve observed by magneto-optical Kerr effect using visible light”, Appl. Phys. Lett. 91, 052507 (2007) S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, S. H. Yang, “Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers”, Nature Materials, vol.3, p.862, Dec. 2004SSP Parkin, C. Kaiser, A. Panchula, PM Rice, B. Hughes, M. Samant, SH Yang, “Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers”, Nature Materials, vol. 3, p. 862, Dec. 2004 Shinji Yuasa, Taro Nagahama, Akio Fukushima, Yoshishige Suzuki, Koji Ando, “Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions”, Nature Materials, vol.3, p.868, Dec. 2004.Shinji Yuasa, Taro Nagahama, Akio Fukushima, Yoshishige Suzuki, Koji Ando, “Giant room-temperature magnetoresistance in single-crystal Fe / MgO / Fe magnetic tunnel junctions”, Nature Materials, vol.3, p.868, Dec. 2004. M. Nakayama, T. Kai, N. Shimomura, M. Amano, E. Kitagawa, T. Nagase, M. Yoshikawa, T. Kishi, S. Ikegawa, H. Yoda, “Spin transfer switching in TbCoFe/CoFeB/MgO/CoFeB/TbCoFe magnetic tunnel junctions with perpendicular magnetic anisotropy”, J. Appl. Phys. 103, 07A710 (2008).M. Nakayama, T. Kai, N. Shimomura, M. Amano, E. Kitagawa, T. Nagase, M. Yoshikawa, T. Kishi, S. Ikegawa, H. Yoda, “Spin transfer switching in TbCoFe / CoFeB / MgO / CoFeB / TbCoFe magnetic tunnel junctions with perpendicular magnetic anisotropy ”, J. Appl. Phys. 103, 07A710 (2008). 久保田均,他,“MgOバリアを用いたMTJにおけるスピン注入磁化反転”,日本応用磁気学会研究会資料145巻, p.43-48, 2006.01.30Hitoshi Kubota, et al., “Spin-injection magnetization reversal in MTJ using MgO barrier”, Japanese Society of Applied Magnetics, Vol.145, p.43-48, 2006.01.30 D. D. Djayaprawira, et. al, “230% room-temperature magnetoresistance in CoFeB/MgO/CoFeB magnetic tunnel junctions”, Appl. Phys. Lett. 86, 092502 (2005)D. D. Djayaprawira, et. Al, “230% room-temperature magnetoresistance in CoFeB / MgO / CoFeB magnetic tunnel junctions”, Appl. Phys. Lett. 86, 092502 (2005)

障壁層としてMgOを適用したTMR素子においては、この障壁層を挟む2枚の磁性膜の少なくとも一方について、当該障壁層との界面に(001)面配向のFeやCoFeからなる薄膜を設けることで、スピン注入効率が飛躍的に向上し、反転電流が低減することが知られている(非特許文献2〜5)。これは、障壁層としてのMgOが、結晶を(001)面配向として原子が規則正しく配列され、このことにより電子が散乱せずに注入されるためである(非特許文献2〜4)。   In a TMR element using MgO as a barrier layer, a thin film made of (001) -oriented Fe or CoFe is provided on at least one of two magnetic films sandwiching the barrier layer at the interface with the barrier layer. It is known that the spin injection efficiency is dramatically improved and the reversal current is reduced (Non-Patent Documents 2 to 5). This is because MgO as the barrier layer has the crystals arranged in the (001) plane and the atoms are regularly arranged, so that electrons are injected without being scattered (Non-Patent Documents 2 to 4).

ところが、MgO膜の結晶構造は、下地に大きく依存する傾向がある。例えば、MgO膜を、多結晶のCoFe膜の上よりも非晶質のCoFeB膜の上に設けた方が、(001)面配向を示すことが知られている(非特許文献6)。   However, the crystal structure of the MgO film tends to largely depend on the base. For example, it is known that an MgO film is provided on an amorphous CoFeB film rather than on a polycrystalline CoFe film (non-patent document 6).

さらに、TMR素子等のスピン注入磁化反転素子は、膜面に垂直方向に電流を流すために、通常、一対の電極を上下に接続されている。この電極には、一般的な金属電極材料のCu,Au,Ag,Pt,Pd等が用いられている。これらの金属電極材料は、面心立方格子(fcc)構造の(111)面構造をとり易く、このような結晶構造の電極の上にMgO膜を形成すると、間にTMR素子の磁性膜、前記のCoFe等の薄膜、さらにTMR素子の下地として設けたTa等の薄膜を介しても、MgO膜が(001)面構造になり難いという問題がある。   Further, a spin-injection magnetization reversal element such as a TMR element usually has a pair of electrodes connected vertically in order to pass a current in a direction perpendicular to the film surface. For this electrode, common metal electrode materials such as Cu, Au, Ag, Pt, and Pd are used. These metal electrode materials are easy to have a (111) plane structure having a face-centered cubic lattice (fcc) structure. When an MgO film is formed on an electrode having such a crystal structure, the magnetic film of the TMR element, There is a problem that the MgO film is difficult to have a (001) plane structure even through a thin film of CoFe or the like and a thin film of Ta or the like provided as a base of the TMR element.

また、前記のCoFeやCoFeBは、磁性体としてスピン注入磁化反転素子に適用することができるものの、これらの材料は面内磁気異方性を有するものであり、垂直磁気異方性のスピン注入磁化反転素子にならないという問題がある。   In addition, although the above-mentioned CoFe and CoFeB can be applied to a spin-injection magnetization reversal element as a magnetic material, these materials have in-plane magnetic anisotropy, and spin-injection magnetization with perpendicular magnetic anisotropy. There is a problem of not being an inverting element.

また、TMR素子全般において、障壁層とこれを挟む2枚の磁性膜のそれぞれとの界面の平坦性が良好であることが、磁気トンネル接合のために好ましい。しかし、TMR素子の下に接続される電極を、例えばCuの単層膜として50nm以上の膜厚にスパッタリング法で成膜した場合、その表面粗さ(算術平均粗さ)Raは通常1nmを超えるため、その上に形成される磁性膜等も表面形状が保持されて同程度の表面粗さとなって、障壁層と磁性膜との界面の平坦性が十分に得られ難いという問題がある。   In addition, in the TMR element in general, it is preferable for the magnetic tunnel junction that the flatness of the interface between the barrier layer and each of the two magnetic films sandwiching the barrier layer is good. However, when the electrode connected under the TMR element is formed by sputtering, for example, as a Cu single layer film to a thickness of 50 nm or more, the surface roughness (arithmetic average roughness) Ra usually exceeds 1 nm. For this reason, the magnetic film and the like formed thereon have the same surface roughness and the same surface roughness, and it is difficult to obtain sufficient flatness at the interface between the barrier layer and the magnetic film.

本発明は前記問題点に鑑み創案されたもので、反転電流を低減できて空間光変調器の光変調素子に好適な垂直磁気異方性のTMR素子を提供することを目的として、TMR素子の障壁層とするMgOを(001)面配向として、さらにこの障壁層と磁性膜との界面の平坦性を向上させることが課題である。   The present invention has been devised in view of the above problems, and it is an object of the present invention to provide a TMR element having perpendicular magnetic anisotropy that can reduce the reversal current and is suitable for a light modulation element of a spatial light modulator. It is a problem to improve the flatness of the interface between the barrier layer and the magnetic film by setting MgO as the barrier layer to (001) plane orientation.

前記課題を解決するために、下地が非晶質であればMgO膜が強い(001)面配向を示すことから、本発明者らは、非晶質の電極材料、特に光変調素子の下部電極として光反射性の高い金属電極材料について、鋭意研究した。さらに、本発明者らは、MgO膜の下地となる磁性材料について、MgO膜が(001)面配向を示し、かつ垂直磁気異方性を有する材料について、鋭意研究した。   In order to solve the above-mentioned problems, the MgO film exhibits a strong (001) plane orientation if the base is amorphous. Therefore, the present inventors have proposed an amorphous electrode material, particularly a lower electrode of a light modulation element. As a result, we have intensively studied metal electrode materials with high light reflectivity. Furthermore, the present inventors diligently researched on a magnetic material serving as a base for the MgO film, on a material in which the MgO film exhibits (001) plane orientation and has perpendicular magnetic anisotropy.

すなわち、本発明に係るスピン注入磁化反転素子は、垂直磁気異方性を有する磁化固定層、MgOからなる障壁層、および垂直磁気異方性を有する磁化自由層を積層してなるトンネル磁気抵抗素子構造と、このトンネル磁気抵抗素子構造の下に接続した電極とを備え、前記電極は、組成がCu1-xCrx(0.07<x<0.42)である非晶質のCu−Cr合金からなる。そして、前記磁化固定層は、Tb−Fe−Coからなる層およびCo−Fe−Bからなる層を積層して備え、前記障壁層は、前記磁化固定層のCo−Fe−Bからなる層に積層されていることを特徴とする。 That is, the spin injection magnetization reversal element according to the present invention is a tunnel magnetoresistive element formed by laminating a magnetization fixed layer having perpendicular magnetic anisotropy, a barrier layer made of MgO, and a magnetization free layer having perpendicular magnetic anisotropy. And an electrode connected under the tunnel magnetoresistive element structure, the electrode having an amorphous Cu— composition of Cu 1-x Cr x (0.07 <x <0.42) Made of Cr alloy. The magnetization fixed layer includes a layer made of Tb-Fe-Co and a layer made of Co-Fe-B, and the barrier layer is formed on a layer made of Co-Fe-B of the magnetization fixed layer. It is characterized by being laminated.

かかる構成により、MgO膜が、非晶質合金からなる電極の上に形成されるために界面の平坦性がよく、さらに磁化固定層のCo−Fe−Bからなる層に積層されるために強い(001)面配向に容易に形成され、また、磁化固定層がTb−Fe−Coからなる層を備えるために垂直磁気異方性を示す。   With such a configuration, the MgO film is formed on the electrode made of an amorphous alloy, so that the flatness of the interface is good, and further, the MgO film is strong because it is laminated on the layer of Co—Fe—B of the magnetization fixed layer. Since it is easily formed in (001) plane orientation and the magnetization fixed layer includes a layer made of Tb—Fe—Co, it exhibits perpendicular magnetic anisotropy.

また、本発明に係る別のスピン注入磁化反転素子は、前記トンネル磁気抵抗効果素子構造の磁化固定層がGd−Feからなる層を備え、前記障壁層が、前記磁化固定層のGd−Feからなる層に積層されていることを特徴とする。   In another spin injection magnetization reversal element according to the present invention, the magnetization fixed layer of the tunnel magnetoresistive effect element structure includes a layer made of Gd-Fe, and the barrier layer is made of Gd-Fe of the magnetization fixed layer. It is characterized by being laminated in a layer.

あるいは、本発明に係るスピン注入磁化反転素子は、前記トンネル磁気抵抗効果素子構造が、垂直磁気異方性を有する磁化自由層、MgOからなる障壁層、および垂直磁気異方性を有する磁化固定層を積層してもよい。このような構造の場合は、磁化固定層に代えて磁化自由層がGd−Feからなる層を備え、前記障壁層が、前記磁化自由層のGd−Feからなる層に積層されていることを特徴とする。   Alternatively, in the spin-injection magnetization switching element according to the present invention, the tunnel magnetoresistive element structure has a magnetization free layer having perpendicular magnetic anisotropy, a barrier layer made of MgO, and a magnetization fixed layer having perpendicular magnetic anisotropy May be laminated. In the case of such a structure, the magnetization free layer includes a layer made of Gd—Fe instead of the magnetization fixed layer, and the barrier layer is laminated on the layer of Gd—Fe of the magnetization free layer. Features.

かかる構成により、MgO膜が、非晶質合金からなる電極、および磁化固定層または磁化自由層のGd−Feからなる層に積層されるため、強い(001)面配向に容易に形成され、Gd−Feにより垂直磁気異方性のスピン注入磁化反転素子とすることができる。   With this configuration, since the MgO film is laminated on the electrode made of an amorphous alloy and the Gd—Fe layer of the magnetization fixed layer or the magnetization free layer, it is easily formed in a strong (001) plane orientation, A spin injection magnetization reversal element having perpendicular magnetic anisotropy can be formed by -Fe.

さらに、本発明に係るスピン注入磁化反転素子は、前記電極にTa膜を積層して備えることが好ましい。かかる構成により、MgO膜は、いっそう強い(001)面配向に形成できる。   Furthermore, it is preferable that the spin transfer magnetization switching element according to the present invention includes a Ta film stacked on the electrode. With this configuration, the MgO film can be formed with a stronger (001) plane orientation.

また、本発明に係るスピン注入磁化反転素子は、入射した光の偏光の向きを変化させて出射する光変調素子であることを特徴とする。かかる構成により、上方から光を入射することで下に接続された電極で光を反射する光変調素子とすることができる。   The spin-injection magnetization reversal element according to the present invention is a light modulation element that emits light while changing the direction of polarization of incident light. With such a configuration, it is possible to obtain a light modulation element that reflects light by an electrode connected to the lower side when light is incident from above.

本発明に係るスピン注入磁化反転素子によれば、強い(001)面配向を示すMgO膜を障壁層に備えることにより、低電流で磁化反転可能なトンネル磁気抵抗効果素子構造となり、かつ垂直磁気異方性を有するため、光変調素子として、磁気光学効果が高く、高精細化しても省電力化された反射型の空間光変調器とすることができる。   According to the spin-injection magnetization reversal element according to the present invention, by providing the barrier layer with the MgO film exhibiting a strong (001) plane orientation, a tunnel magnetoresistive effect element structure capable of reversal of magnetization with a low current is obtained, and a perpendicular magnetic anomaly is obtained. Since the optical modulation element has a directivity, it can be a reflective spatial light modulator that has a high magneto-optical effect and saves power even when the resolution is increased.

本発明の第1実施形態に係るスピン注入磁化反転素子からなる光変調素子の構成を示す断面図である。It is sectional drawing which shows the structure of the light modulation element which consists of a spin injection magnetization reversal element concerning 1st Embodiment of this invention. 本発明の実施形態に係るスピン注入磁化反転素子の動作を説明する模式図であり、(a)、(b)はスピン注入磁化反転を、(c)、(d)は光変調素子および磁気抵抗効果素子としての動作を説明する断面図である。It is a schematic diagram explaining operation | movement of the spin injection magnetization reversal element which concerns on embodiment of this invention, (a), (b) is spin injection magnetization reversal, (c), (d) is a light modulation element and magnetoresistive. It is sectional drawing explaining the operation | movement as an effect element. (a)、(b)は、本発明の第1実施形態の変形例に係るスピン注入磁化反転素子からなる光変調素子の構成を示す断面図である。(A), (b) is sectional drawing which shows the structure of the light modulation element which consists of a spin injection magnetization reversal element based on the modification of 1st Embodiment of this invention. 本発明の第2実施形態に係るスピン注入磁化反転素子からなる光変調素子の構成を示す断面図である。It is sectional drawing which shows the structure of the light modulation element which consists of a spin injection magnetization reversal element concerning 2nd Embodiment of this invention. 本発明の第3実施形態に係るスピン注入磁化反転素子からなる磁気抵抗効果素子を備えるメモリセルの構成を示す断面図である。It is sectional drawing which shows the structure of a memory cell provided with the magnetoresistive effect element which consists of a spin injection magnetization reversal element concerning 3rd Embodiment of this invention. 本発明の第4実施形態およびその変形例に係るスピン注入磁化反転素子からなる磁気抵抗効果素子の構成を示す断面図であり、(a)は第4実施形態、(b)は第4実施形態の変形例である。It is sectional drawing which shows the structure of the magnetoresistive effect element which consists of a spin injection magnetization reversal element concerning 4th Embodiment of this invention, and its modification, (a) is 4th Embodiment, (b) is 4th Embodiment. It is a modified example of. 本発明の実施形態に係るスピン注入磁化反転素子の動作を説明する模式図であり、(a)、(b)はスピン注入磁化反転を、(c)、(d)は磁気抵抗効果素子としての動作を説明する断面図である。It is a schematic diagram explaining operation | movement of the spin injection magnetization reversal element which concerns on embodiment of this invention, (a), (b) is spin injection magnetization reversal, (c), (d) is a magnetoresistive effect element. It is sectional drawing explaining operation | movement. 本発明の第5実施形態に係るスピン注入磁化反転素子からなる光変調素子の構成を示す断面図である。It is sectional drawing which shows the structure of the light modulation element which consists of a spin injection magnetization reversal element based on 5th Embodiment of this invention. 本発明の第5実施形態の変形例に係るスピン注入磁化反転素子からなる光変調素子の構成を示す断面図である。It is sectional drawing which shows the structure of the light modulation element which consists of a spin injection magnetization reversal element based on the modification of 5th Embodiment of this invention. 実施例のスピン注入磁化反転素子のトンネル磁気抵抗素子構造を模擬したサンプルのX線回折パターンであり、(a)は第1実施形態に係るスピン注入磁化反転素子、(b)は第2実施形態に係るスピン注入磁化反転素子である。It is an X-ray diffraction pattern of the sample which simulated the tunnel magnetoresistive element structure of the spin injection magnetization reversal element of an Example, (a) is the spin injection magnetization reversal element which concerns on 1st Embodiment, (b) is 2nd Embodiment. Is a spin-injection magnetization reversal element. 実施例のスピン注入磁化反転素子を模擬したサンプルのX線回折パターンであり、(a)は第1実施形態に係るスピン注入磁化反転素子、(b)は第1実施形態の変形例に係るスピン注入磁化反転素子、(c)は比較例のスピン注入磁化反転素子、(d)は従来のスピン注入磁化反転素子である。It is a X-ray diffraction pattern of the sample which simulated the spin injection magnetization reversal element of an Example, (a) is the spin injection magnetization reversal element which concerns on 1st Embodiment, (b) is the spin which concerns on the modification of 1st Embodiment. An injection magnetization reversal element, (c) is a spin injection magnetization reversal element of a comparative example, and (d) is a conventional spin injection magnetization reversal element. 実施例のスピン注入磁化反転素子のサンプルのカー回転角の磁場依存性で表した磁化曲線であり、(a)は第1実施形態に係るスピン注入磁化反転素子、(b)は第2実施形態に係るスピン注入磁化反転素子、(c)は比較例のスピン注入磁化反転素子である。FIG. 3 is a magnetization curve expressed by magnetic field dependence of the Kerr rotation angle of a sample of the spin injection magnetization reversal element of the example, (a) is the spin injection magnetization reversal element according to the first embodiment, and (b) is the second embodiment. (C) is a spin-injection magnetization reversal element of a comparative example. 実施例のスピン注入磁化反転素子の下部電極を模擬したサンプルのX線回折パターンであり、(a)〜(e)はCu−Cr合金の組成を変化させた第1実施形態に係るスピン注入磁化反転素子である。It is an X-ray diffraction pattern of the sample which simulated the lower electrode of the spin injection magnetization reversal element of an Example, (a)-(e) is spin injection magnetization which concerns on 1st Embodiment which changed the composition of Cu-Cr alloy. It is an inverting element.

以下、本発明に係るスピン注入磁化反転素子を実現するための形態について、図を参照して説明する。
本発明の一実施形態に係るスピン注入磁化反転素子は、空間光変調器の画素(空間光変調器による表示の最小単位での情報(明/暗)を表示する手段)を構成する光変調素子であり、上方から入射した光を異なる2値の光(偏光成分)に変調し、下に接続した電極で反射させて上方へ出射する。
Hereinafter, embodiments for realizing a spin transfer magnetization switching element according to the present invention will be described with reference to the drawings.
A spin injection magnetization reversal element according to an embodiment of the present invention is a light modulation element constituting a pixel of a spatial light modulator (means for displaying information (bright / dark) in a minimum unit of display by the spatial light modulator) The light incident from above is modulated into different binary light (polarized light component), reflected by the electrode connected below, and emitted upward.

[第1実施形態]
本発明の第1実施形態に係る光変調素子(スピン注入磁化反転素子)5は、図1に示すように、下部電極(電極)2、磁化固定層11、障壁層12、磁化自由層13、保護膜16、上部電極3の順に積層された構成である。光変調素子5は、磁化が一方向に固定された磁化固定層11および磁化の方向が回転可能な磁化自由層13を、絶縁体であるMgOからなる障壁層12を挟んで積層してなるTMR素子構造(トンネル磁気抵抗素子構造)1を備える。そして、光変調素子5は、TMR素子構造1に、下部電極2と上部電極3と(以下、適宜、電極2,3)を一対の電極として、膜面に垂直に双方向に(上下方向に)電流を供給される。光変調素子5はさらに、必要に応じて、TMR素子構造1(磁化自由層13)の上に、光変調素子5の製造工程におけるダメージからTMR素子構造1の各層を保護するために保護膜16が設けられる。光変調素子5はさらに、TMR素子構造1の下に、下部電極2への密着性を得るために、金属薄膜からなる下地膜を備えてもよい(図示せず)。
[First Embodiment]
As shown in FIG. 1, the light modulation element (spin injection magnetization reversal element) 5 according to the first embodiment of the present invention includes a lower electrode (electrode) 2, a magnetization fixed layer 11, a barrier layer 12, a magnetization free layer 13, In this configuration, the protective film 16 and the upper electrode 3 are laminated in this order. The optical modulation element 5 is a TMR formed by laminating a magnetization fixed layer 11 whose magnetization is fixed in one direction and a magnetization free layer 13 whose magnetization direction is rotatable with a barrier layer 12 made of MgO as an insulator interposed therebetween. An element structure (tunnel magnetoresistive element structure) 1 is provided. The light modulation element 5 includes the TMR element structure 1, the lower electrode 2 and the upper electrode 3 (hereinafter referred to as electrodes 2 and 3 as appropriate) as a pair of electrodes, in both directions perpendicular to the film surface (in the vertical direction). ) Supply current. The light modulation element 5 further includes a protective film 16 on the TMR element structure 1 (magnetization free layer 13) as necessary to protect each layer of the TMR element structure 1 from damage in the manufacturing process of the light modulation element 5. Is provided. The light modulation element 5 may further include a base film made of a metal thin film (not shown) under the TMR element structure 1 in order to obtain adhesion to the lower electrode 2.

光変調素子5は、空間光変調器の画素とするため、基板7上に、膜面方向において2次元アレイ状に配列されて、一対の電極2,3の一方を行方向に、他方を列方向にそれぞれ延設して共有される(図示省略)。そのため、光変調素子5,5間に、具体的にはTMR素子構造1,1間、電極2,3間、下部電極2,2間および上部電極3,3間(配線間)のそれぞれに、絶縁層6が充填される。TMR素子構造1は、平面視が例えば矩形であり(図示省略)、好適に磁化反転するためには、300nm×400nm相当の面積以下とすることが好ましく、一方、光変調のために、一辺の長さを少なくとも入射光の回折限界(波長の1/2程度)以上とする。TMR素子構造1を構成する各層11,12,13および保護膜16は、例えばスパッタリング法や分子線エピタキシー(MBE)法等の公知の方法で連続的に成膜されて基板7に積層され、電子線リソグラフィおよびイオンビームミリング法等で所望の平面視形状に加工される。   The light modulation elements 5 are arranged in a two-dimensional array in the film surface direction on the substrate 7 so as to be pixels of the spatial light modulator, and one of the pair of electrodes 2 and 3 is arranged in the row direction and the other is arranged in the column. Each extends in the direction and is shared (not shown). Therefore, between the light modulation elements 5 and 5, specifically, between the TMR element structures 1 and 1, between the electrodes 2 and 3, between the lower electrodes 2 and 2, and between the upper electrodes 3 and 3 (between wirings), The insulating layer 6 is filled. The TMR element structure 1 has, for example, a rectangular shape in plan view (not shown), and preferably has an area corresponding to 300 nm × 400 nm or less in order to suitably reverse magnetization. The length is at least equal to or greater than the diffraction limit of incident light (about ½ of the wavelength). The layers 11, 12, 13 and the protective film 16 constituting the TMR element structure 1 are continuously formed by a known method such as a sputtering method or a molecular beam epitaxy (MBE) method, and are stacked on the substrate 7 to form an electron. It is processed into a desired planar view shape by line lithography, ion beam milling, or the like.

(磁化反転動作)
ここで、光変調素子5におけるTMR素子構造1の磁化反転の動作を、図2(a)、(b)を参照して説明する。なお、図2において保護膜16は図示を省略する。スピン注入磁化反転素子であるTMR素子構造1は、磁化自由層13が逆方向のスピンを持つ電子を注入されることにより、その磁化方向が反転(スピン注入磁化反転、以下、適宜磁化反転という)する。具体的には、図2(a)に示すように、上部電極3を「+」、下部電極2を「−」にして、TMR素子構造1に、磁化自由層13側から磁化固定層11へ電流IWを供給して、磁化固定層11側から電子を注入する。すると、磁化を上向きに固定された磁化固定層11により当該磁化固定層11の磁化と逆方向の下向きのスピンを持つ電子dDが弁別されて、磁化自由層13は上向きのスピンを持つ電子dUが偏って注入されて、磁化が上向きに反転する。反対に、図2(b)に示すように、上部電極3を「−」、下部電極2を「+」にして、TMR素子構造1に、磁化固定層11側から磁化自由層13へ電流IWを供給して、磁化自由層13側から電子を注入する。すると、下向きのスピンを持つ電子dDが磁化固定層11により弁別されて磁化自由層13に留まるため、磁化自由層13の磁化は下向きに反転する。
(Magnetization reversal operation)
Here, the magnetization reversal operation of the TMR element structure 1 in the light modulation element 5 will be described with reference to FIGS. In FIG. 2, the protective film 16 is not shown. In the TMR element structure 1 which is a spin injection magnetization reversal element, the magnetization direction is reversed when the magnetization free layer 13 is injected with electrons having spins in the reverse direction (spin injection magnetization reversal, hereinafter referred to as magnetization reversal as appropriate). To do. Specifically, as shown in FIG. 2A, the upper electrode 3 is set to “+” and the lower electrode 2 is set to “−”, and the TMR element structure 1 is changed from the magnetization free layer 13 side to the magnetization fixed layer 11. A current I W is supplied to inject electrons from the magnetization fixed layer 11 side. Then, an electron d D having a downward spin opposite to the magnetization of the magnetization fixed layer 11 is discriminated by the magnetization fixed layer 11 whose magnetization is fixed upward, and the magnetization free layer 13 has an electron d having an upward spin. U is biased and the magnetization reverses upward. On the other hand, as shown in FIG. 2B, the upper electrode 3 is set to “−”, the lower electrode 2 is set to “+”, and the current I is transferred from the magnetization fixed layer 11 side to the magnetization free layer 13 in the TMR element structure 1. W is supplied to inject electrons from the magnetization free layer 13 side. Then, electrons d D having a downward spin are discriminated by the magnetization fixed layer 11 and remain in the magnetization free layer 13, so that the magnetization of the magnetization free layer 13 is reversed downward.

このように、TMR素子構造1は、上下面に接続した一対の電極3,2で膜面垂直方向に電流を供給されることで、磁化自由層13の磁化方向が磁化固定層11と同じ方向(平行)または180°異なる方向(反平行)になる。なお、TMR素子構造1の障壁層12は、絶縁体であるが、数nm以下と極めて薄いため、微小な電流(トンネル電流)が流れる。さらに、障壁層12が(001)面配向を示すMgOであることで、スピン注入効率が向上する。また、TMR素子構造1において、磁化自由層13の磁化が平行、反平行いずれかの磁化を示していれば、その磁化を反転させる電流(IW)が供給されるまでは、当該磁化自由層13の保磁力により磁化が保持される(図2(c)、(d)参照)。そのため、TMR素子構造1に供給する電流としては、パルス電流のように、磁化方向を反転させる電流値に一時的に到達する電流(直流パルス電流)を用いることができる。以下、光変調素子5を構成する要素について詳しく説明する。 As described above, in the TMR element structure 1, the magnetization direction of the magnetization free layer 13 is the same as that of the magnetization fixed layer 11 by supplying a current in a direction perpendicular to the film surface by the pair of electrodes 3 and 2 connected to the upper and lower surfaces. (Parallel) or 180 ° different directions (anti-parallel). Although the barrier layer 12 of the TMR element structure 1 is an insulator, a very small current (tunnel current) flows because the barrier layer 12 is extremely thin, such as several nm or less. Furthermore, since the barrier layer 12 is MgO exhibiting (001) plane orientation, the spin injection efficiency is improved. Further, in the TMR element structure 1, if the magnetization of the magnetization free layer 13 exhibits either parallel or antiparallel magnetization, the magnetization free layer until the current (I W ) for reversing the magnetization is supplied. Magnetization is held by the coercive force of 13 (see FIGS. 2C and 2D). Therefore, as a current supplied to the TMR element structure 1, a current (DC pulse current) that temporarily reaches a current value that reverses the magnetization direction, such as a pulse current, can be used. Hereinafter, elements constituting the light modulation element 5 will be described in detail.

(TMR素子構造)
本実施形態に係る光変調素子5のTMR素子構造1において、磁化固定層11は、非晶質で垂直磁気異方性を有する磁性材料である遷移金属(TM)と希土類金属(RE)との合金(RE−TM合金)の一種であるGd−Fe合金で形成される。磁化固定層11は、後記する下部電極2と共にMgOからなる障壁層12の下層に設けられ、さらに直接の下地となるため、非晶質材料であるGd−Fe合金で形成されることで、後記するように、MgOを強い(001)面配向の結晶とすることができる。また、磁化固定層11は、磁化が固定されているために、磁化自由層13よりも保磁力が大きくなるように、Gd−Fe合金の組成や厚さが設定され、具体的には厚さが3〜50nmの範囲で、磁化自由層13に応じて設定されることが好ましい。
(TMR element structure)
In the TMR element structure 1 of the light modulation element 5 according to the present embodiment, the magnetization fixed layer 11 is composed of a transition metal (TM) and a rare earth metal (RE), which are amorphous and have a perpendicular magnetic anisotropy. It is formed of a Gd—Fe alloy which is a kind of alloy (RE-TM alloy). The magnetization fixed layer 11 is provided in the lower layer of the barrier layer 12 made of MgO together with the lower electrode 2 which will be described later, and further serves as a direct base, so that it is formed of a Gd—Fe alloy which is an amorphous material. Thus, MgO can be made into a strong (001) plane oriented crystal. In addition, since the magnetization fixed layer 11 is fixed in magnetization, the composition and thickness of the Gd—Fe alloy are set so that the coercive force is larger than that of the magnetization free layer 13. Is preferably set in accordance with the magnetization free layer 13 in the range of 3 to 50 nm.

本発明において非晶質とは、X線回折(XRD)による検出が困難なほど微細な結晶構造を持つ材料、すなわち微結晶構造体を指す。障壁層12の下層に設けられる磁化固定層11および下部電極2を非晶質とすることで、障壁層12を形成するMgOを強い(001)面配向の結晶とすることができる。   In the present invention, the term “amorphous” refers to a material having a fine crystal structure that is difficult to detect by X-ray diffraction (XRD), that is, a microcrystalline structure. By making the magnetization fixed layer 11 and the lower electrode 2 provided below the barrier layer 12 amorphous, MgO forming the barrier layer 12 can be made a strong (001) -oriented crystal.

障壁層12は、(001)面配向のMgOで形成され、その厚さは0.1〜2nmとすることが好ましい。障壁層12は、このような結晶構造のMgOとすることにより、TMR素子構造1において電子が散乱せずに注入されるために、TMR素子構造1の反転電流を低減させることができる。   The barrier layer 12 is made of (001) -oriented MgO, and its thickness is preferably 0.1 to 2 nm. By using MgO having such a crystal structure as the barrier layer 12, electrons are injected without being scattered in the TMR element structure 1, so that the inversion current of the TMR element structure 1 can be reduced.

磁化自由層13は、垂直磁気異方性を有するTMR素子の磁化自由層として公知の磁性材料にて形成することができ、磁気光学効果の高い材料を適用することが好ましい。具体的には、Fe,Co,Ni等の遷移金属とPt,Pd等の貴金属とを含む、例えば[Co/Pt]×n、[Co/Pd]×nの多層膜、あるいは前記遷移金属とNd,Gd,Tb,Dy,Ho等の希土類金属との合金(RE−TM合金)が挙げられる。磁化自由層13は、厚さを1〜20nmの範囲とすることが好ましく、さらに、磁化固定層11よりも保磁力を小さくするために、保磁力の小さい磁性材料で形成したり、その厚さを磁化固定層11よりも薄くすることが好ましい。磁化自由層13は、例えば、磁化固定層11と同様にGd−Fe合金を適用する場合は、保磁力を小さくするために磁化固定層11よりもFeの組成を多くすればよい。   The magnetization free layer 13 can be formed of a known magnetic material as a magnetization free layer of a TMR element having perpendicular magnetic anisotropy, and a material having a high magneto-optic effect is preferably applied. Specifically, for example, a [Co / Pt] × n, [Co / Pd] × n multilayer film including a transition metal such as Fe, Co, or Ni and a noble metal such as Pt or Pd, or the transition metal Examples include alloys (RE-TM alloys) with rare earth metals such as Nd, Gd, Tb, Dy, and Ho. The magnetization free layer 13 preferably has a thickness in the range of 1 to 20 nm. Further, in order to make the coercive force smaller than that of the magnetization fixed layer 11, the magnetization free layer 13 may be formed of a magnetic material having a small coercive force, Is preferably made thinner than the magnetization fixed layer 11. For example, when a Gd—Fe alloy is applied to the magnetization free layer 13 in the same manner as the magnetization fixed layer 11, the composition of Fe may be larger than that of the magnetization fixed layer 11 in order to reduce the coercive force.

TMR素子構造1において、磁化自由層13は、さらに障壁層12との界面に遷移金属を含む磁性金属膜を備えてもよい(図示せず)。この磁性金属膜は、具体的には、Fe,Co,Niから選択される少なくとも1種の遷移金属、またはこの遷移金属を含む合金、例えばCo−Fe,Co−Fe−B,Ni−Fe,Co−Fe−Siからなり、あるいはスピン分極率の特に高い(理論的に1の)ホイスラー合金等を用いることもできる。また、磁性金属膜は、厚さを0.1〜1nmの範囲とすることが好ましい。磁化自由層13が、障壁層12との界面にこのような磁性金属膜を備えることで、当該界面でのスピン偏極率を高くして、障壁層12を介して磁化自由層13に注入されるスピンによるスピントルクが増大するため、TMR素子構造1の反転電流を低減することができる。特に、障壁層12であるMgOと同じ(001)面配向であるFe、(001)面配向のMgO表面に成膜されることで(001)面配向となるCo、および成膜後に熱処理した場合に障壁層12との界面から結晶化して(001)面配向を示すようになるCo−Fe−Bが好ましい。これらの材料からなる磁性金属膜はMgOとの格子整合がよく、TMR素子構造1は、コヒーレントなトンネル電流が流れることにより、いっそう反転電流を低減することができる。ただし、磁化自由層13がGd−Fe合金からなる場合は、磁性金属膜と組み合わされると垂直磁気異方性を示さない(面内磁気異方性になる)場合があるため、磁性金属膜を設けないことが好ましい。これは、Co−Fe−B等のFeによって、Gd−Fe合金におけるFeの反磁界成分の影響が強くなることによると考えられる。   In the TMR element structure 1, the magnetization free layer 13 may further include a magnetic metal film containing a transition metal at the interface with the barrier layer 12 (not shown). Specifically, the magnetic metal film includes at least one transition metal selected from Fe, Co, and Ni, or an alloy containing the transition metal, such as Co—Fe, Co—Fe—B, Ni—Fe, A Heusler alloy made of Co—Fe—Si or having a particularly high spin polarizability (theoretically 1) can also be used. The magnetic metal film preferably has a thickness in the range of 0.1 to 1 nm. The magnetization free layer 13 is provided with such a magnetic metal film at the interface with the barrier layer 12, thereby increasing the spin polarization at the interface and being injected into the magnetization free layer 13 through the barrier layer 12. Therefore, the reversal current of the TMR element structure 1 can be reduced. Particularly, when the barrier layer 12 has the same (001) orientation Fe as the MgO, the (001) orientation oriented Co by being formed on the (001) orientation MgO surface, and heat treatment after the formation Further, Co—Fe—B that crystallizes from the interface with the barrier layer 12 and exhibits (001) plane orientation is preferable. Magnetic metal films made of these materials have good lattice matching with MgO, and the TMR element structure 1 can further reduce the reversal current when a coherent tunnel current flows. However, when the magnetization free layer 13 is made of a Gd—Fe alloy, it may not show perpendicular magnetic anisotropy (becomes in-plane magnetic anisotropy) when combined with the magnetic metal film. It is preferable not to provide it. This is considered to be due to the influence of the demagnetizing field component of Fe in the Gd—Fe alloy being enhanced by Fe such as Co—Fe—B.

保護膜16は、光変調素子5の製造工程におけるダメージからTMR素子構造1の各層、特に最上層の磁化自由層13を保護するために、TMR素子構造1の上に設けられる。製造工程におけるダメージとは、例えばレジスト形成時の現像液の含浸等、また、特に最上層の磁化自由層13が酸化し易いRE−TM合金で形成される場合には酸化が挙げられる。保護膜16は、Ru,Ta,Cu,Pt,Au等の非磁性金属材料からなる単層膜、またはCu/Ta,Cu/Ru等の異なる金属材料からなる金属膜を2層以上積層した積層膜から構成される。保護膜16の厚さは、1nm未満であると連続した(ピンホールのない)膜を形成し難く、一方、10nmを超えて厚くしても、製造工程において磁化自由層13等を保護する効果がそれ以上には向上せず、その上、光変調素子5の上方からの入射光の透過光量を減衰させる。したがって、保護膜16の厚さは1〜10nmとすることが好ましい。   The protective film 16 is provided on the TMR element structure 1 in order to protect each layer of the TMR element structure 1, particularly the uppermost magnetization free layer 13 from damage in the manufacturing process of the light modulation element 5. The damage in the manufacturing process includes, for example, impregnation with a developing solution at the time of resist formation, and oxidation in particular when the uppermost magnetic free layer 13 is formed of an easily oxidizable RE-TM alloy. The protective film 16 is a laminate in which two or more metal films made of a non-magnetic metal material such as Ru, Ta, Cu, Pt, or Au, or metal films made of different metal materials such as Cu / Ta, Cu / Ru are laminated. Consists of a membrane. If the thickness of the protective film 16 is less than 1 nm, it is difficult to form a continuous (pinhole-free) film. On the other hand, even if the thickness exceeds 10 nm, the effect of protecting the magnetization free layer 13 and the like in the manufacturing process However, the transmitted light quantity of incident light from above the light modulation element 5 is attenuated. Therefore, the thickness of the protective film 16 is preferably 1 to 10 nm.

TMR素子構造1(磁化固定層11)の下に設けて下部電極2への密着性を付与する下地膜(図示せず)は、非磁性金属材料の中で、Ru,Taを適用することが好ましい。これらの金属膜であれば、磁化固定層11を挟んで設けられる障壁層12とするMgOの(001)面配向を妨げない。下地膜の厚さは、保護膜16と同様に、1nm未満であると連続した(ピンホールのない)膜を形成し難く、一方、10nmを超えて厚くしても、密着性がそれ以上には向上しないので、1〜10nmとすることが好ましい。   A base film (not shown) provided under the TMR element structure 1 (magnetization pinned layer 11) to provide adhesion to the lower electrode 2 may be made of Ru or Ta among nonmagnetic metal materials. preferable. With these metal films, the (001) plane orientation of MgO serving as the barrier layer 12 provided with the magnetization fixed layer 11 interposed therebetween is not hindered. If the thickness of the underlying film is less than 1 nm, it is difficult to form a continuous film (without pinholes) as in the case of the protective film 16, while even if the thickness exceeds 10 nm, the adhesion is more than that. Since it does not improve, it is preferable to set it as 1-10 nm.

(下部電極)
下部電極2は、非晶質のCu−Cr合金で形成されたCuCr合金層21からなる。下部電極2が非晶質のCu−Cr合金であることで、磁化固定層11を挟んで上に形成される障壁層12とするMgOの(001)面配向を妨げない。また、非晶質のCu−Cr合金はスパッタリング法で厚く成膜されても表面が粗くならない(算術平均粗さRa:数Å)ため、その上に形成されるTMR素子構造1において、障壁層12と層11,13のそれぞれとの界面の平坦性が良好となり、磁気トンネル接合に好ましい。CuCr合金層21は、非晶質とするために、組成がCu1-xCrx(0.07<x<0.42)である(Crの含有率が7at%超42at%未満である)Cu−Cr合金からなる。Cu−Cr合金は、組成がこの範囲外では非晶質となり難く、特に、Crの含有率が7at%以下では、Cuの結晶構造である(111)面構造を示す合金となり、間に設けられる磁化固定層11が非晶質であっても、障壁層12とするMgOの(001)面配向を妨げることになる。一方、Cu−Cr合金は、Crの含有率が42at%以上では、Crの結晶構造である(110)面構造を示す合金となる。なお、非晶質とは前記した通り、微結晶構造体であり、さらに非晶質のCu−Cr合金とは、X線回折(XRD)による検出で、(111)面、(110)面の検出強度が、それぞれCu単体、Cr単体よりも低い構造を指す。また、Crは、Cuよりも抵抗が高い(Cuの約9倍)ので、含有率が前記組成の範囲においてより少ないことが、下部電極2の抵抗を抑制するために好ましい。CuCr合金層21は、その上に形成される障壁層12とするMgOを(001)面配向とするために、厚さを10nm以上とすることが好ましい。また、下部電極2は、CuCr合金層21を形成するための下地としてTa膜を備えてもよい(図示せず)。
(Lower electrode)
The lower electrode 2 is composed of a CuCr alloy layer 21 made of an amorphous Cu—Cr alloy. Since the lower electrode 2 is made of an amorphous Cu—Cr alloy, the (001) plane orientation of MgO serving as the barrier layer 12 formed on the magnetization fixed layer 11 is not disturbed. In addition, since the amorphous Cu—Cr alloy does not become rough even when it is formed thick by sputtering (arithmetic average roughness Ra: several Å), in the TMR element structure 1 formed thereon, the barrier layer 12 is excellent in flatness of the interface between each of the layers 11 and 13 and is preferable for a magnetic tunnel junction. In order to make the CuCr alloy layer 21 amorphous, the composition is Cu 1-x Cr x (0.07 <x <0.42) (the Cr content is more than 7 at% and less than 42 at%). It consists of a Cu-Cr alloy. A Cu—Cr alloy is unlikely to be amorphous when the composition is outside this range. In particular, when the Cr content is 7 at% or less, the Cu—Cr alloy becomes an alloy showing a (111) plane structure which is a crystal structure of Cu, and is provided therebetween. Even if the magnetization fixed layer 11 is amorphous, the (001) plane orientation of MgO serving as the barrier layer 12 is hindered. On the other hand, the Cu—Cr alloy is an alloy having a (110) plane structure which is a crystal structure of Cr when the Cr content is 42 at% or more. As described above, amorphous is a microcrystalline structure, and amorphous Cu—Cr alloy is detected by X-ray diffraction (XRD) and has (111) plane and (110) plane. The detection intensity indicates a structure lower than that of Cu alone and Cr alone, respectively. Moreover, since Cr has a higher resistance than Cu (about 9 times that of Cu), it is preferable for the content rate to be lower in the composition range in order to suppress the resistance of the lower electrode 2. The thickness of the CuCr alloy layer 21 is preferably 10 nm or more so that MgO serving as the barrier layer 12 formed thereon has a (001) plane orientation. Further, the lower electrode 2 may include a Ta film (not shown) as a base for forming the CuCr alloy layer 21.

(上部電極)
上部電極3は、光が透過するように透明電極材料で構成される。透明電極材料は、例えば、インジウム亜鉛酸化物(Indium Zinc Oxide:IZO)、インジウム−スズ酸化物(Indium Tin Oxide:ITO)、酸化スズ(SnO2)、酸化アンチモン−酸化スズ系(ATO)、酸化亜鉛(ZnO)、フッ素ドープ酸化スズ(FTO)、酸化インジウム(In23)等の公知の透明電極材料からなる。特に、比抵抗と成膜の容易さとの点からIZOが最も好ましい。これらの透明電極材料は、スパッタリング法、真空蒸着法、塗布法等の公知の方法により成膜される。
(Upper electrode)
The upper electrode 3 is made of a transparent electrode material so that light can pass therethrough. Transparent electrode materials include, for example, indium zinc oxide (IZO), indium tin oxide (ITO), tin oxide (SnO 2 ), antimony oxide-tin oxide system (ATO), oxidation zinc (ZnO), fluorine-doped tin oxide (FTO), consisting of a known transparent electrode material such as indium oxide (in 2 O 3). In particular, IZO is most preferable in terms of specific resistance and ease of film formation. These transparent electrode materials are formed into a film by a known method such as a sputtering method, a vacuum deposition method, or a coating method.

電極(配線)を透明電極材料で構成する場合、電極とこの電極に接続するTMR素子構造1との間に金属膜を設けることが好ましい。すなわち透明電極材料で構成された上部電極3においては、TMR素子構造1との間の下地として金属膜を積層することが好ましい(図示せず)。TMR素子構造1との間に金属膜を介在させることで、電極用金属材料より抵抗が大きい透明電極材料からなる上部電極3においても、上部電極3−TMR素子構造1間の接触抵抗を低減させて応答速度を上げることができる。   When the electrode (wiring) is made of a transparent electrode material, it is preferable to provide a metal film between the electrode and the TMR element structure 1 connected to the electrode. That is, in the upper electrode 3 made of a transparent electrode material, it is preferable to laminate a metal film as a base between the TMR element structure 1 (not shown). By interposing a metal film between the TMR element structure 1 and the upper electrode 3 made of a transparent electrode material having a higher resistance than the electrode metal material, the contact resistance between the upper electrode 3 and the TMR element structure 1 is reduced. To increase the response speed.

透明電極の下地を構成する金属膜としては、例えば、Au,Ru,Ta、またはそれらの金属の2種以上からなる合金等を用いることができ、これらの金属はスパッタリング法等の公知の方法により成膜される。そして、金属膜とその上の層すなわち透明電極との密着性をよくして接触抵抗をさらに低減するため、金属膜は、透明電極材料と連続的に真空処理室にて成膜されることが好ましい。金属膜の厚さは、1nm未満であると連続した(ピンホールのない)膜を形成し難く、一方、10nmを超えると光の透過量を低下させるので、1〜10nmが好ましい。   As the metal film constituting the base of the transparent electrode, for example, Au, Ru, Ta, or an alloy composed of two or more of these metals can be used, and these metals are obtained by a known method such as a sputtering method. A film is formed. In order to further improve the adhesion between the metal film and the upper layer, that is, the transparent electrode and further reduce the contact resistance, the metal film may be continuously formed in the vacuum processing chamber with the transparent electrode material. preferable. When the thickness of the metal film is less than 1 nm, it is difficult to form a continuous film (without pinholes). On the other hand, when the thickness exceeds 10 nm, the amount of transmitted light is reduced.

基板7は、光変調素子5を2次元配列するための土台であり、光変調素子5を製造するための広義の基板である。基板7は、例えば表面を熱酸化したSi基板やガラス等の公知の基板が適用できる。   The substrate 7 is a base for arranging the light modulation elements 5 two-dimensionally, and is a broad substrate for manufacturing the light modulation elements 5. As the substrate 7, for example, a known substrate such as a Si substrate or glass whose surface is thermally oxidized can be applied.

絶縁層6は、2次元アレイ状に配列された光変調素子5,5間に、すなわちTMR素子構造1,1間、電極2,3間(層間)、下部電極2,2間および上部電極3,3間(配線間)を、それぞれ絶縁するために設けられる。絶縁層6は、例えばSiO2やAl23等の酸化膜やSi窒化物(Si34)等の公知の絶縁材料を適用することができる。ただし、TMR素子構造1が、Gd−Fe合金のような極めて酸化し易いRE−TM合金からなる層を含むため、TMR素子構造1に接触する部分(TMR素子構造1,1間)に設けられる絶縁層6は、Si窒化物やMgF2等のO(酸素)を含有しない非酸化物を適用することが好ましい。 The insulating layer 6 is formed between the light modulation elements 5 and 5 arranged in a two-dimensional array, that is, between the TMR element structures 1 and 1, between the electrodes 2 and 3 (interlayer), between the lower electrodes 2 and 2, and the upper electrode 3. , 3 (between wirings) are provided to insulate each other. For the insulating layer 6, for example, a known insulating material such as an oxide film such as SiO 2 or Al 2 O 3 or Si nitride (Si 3 N 4 ) can be applied. However, since the TMR element structure 1 includes a layer made of a highly oxidizable RE-TM alloy such as a Gd—Fe alloy, the TMR element structure 1 is provided in a portion in contact with the TMR element structure 1 (between the TMR element structures 1 and 1). The insulating layer 6 is preferably made of a non-oxide that does not contain O (oxygen) such as Si nitride or MgF 2 .

(光変調素子の製造方法)
次に、光変調素子5の製造方法について、その一例を説明する。本実施形態に係る光変調素子は、前記したように、基板上に2次元アレイ状に配列された空間光変調器として製造される。
(Manufacturing method of light modulation element)
Next, an example of a method for manufacturing the light modulation element 5 will be described. As described above, the light modulation element according to this embodiment is manufactured as a spatial light modulator arranged in a two-dimensional array on a substrate.

まず、下部電極2を形成する。基板7の表面に、スパッタリング法等で所望の組成のCu−Cr合金を成膜して、ストライプ状の下部電極2を形成する。そして、下部電極2,2間にSiO2等の絶縁膜(絶縁層6となる)を堆積させる。 First, the lower electrode 2 is formed. A Cu—Cr alloy having a desired composition is formed on the surface of the substrate 7 by a sputtering method or the like to form the stripe-shaped lower electrode 2. Then, an insulating film such as SiO 2 (which becomes the insulating layer 6) is deposited between the lower electrodes 2 and 2 .

次に、TMR素子構造1を形成する。下部電極2(および絶縁層6)の上に、磁化固定層11、障壁層12、磁化自由層13、保護膜16の各材料を連続して成膜し、これらの層を電子線リソグラフィおよびイオンビームミリング法等により前記平面視形状に成形加工して、TMR素子構造1とする。前記成形加工においてマスクとしたレジストを残した状態で、絶縁膜を成膜して、TMR素子構造1,1間に堆積させ、レジストをその上の絶縁膜ごと除去して(リフトオフ)絶縁層6とする。   Next, the TMR element structure 1 is formed. On the lower electrode 2 (and the insulating layer 6), each material of the magnetization fixed layer 11, the barrier layer 12, the magnetization free layer 13, and the protective film 16 is continuously formed, and these layers are formed by electron beam lithography and ion The TMR element structure 1 is formed by molding into the shape in plan view by a beam milling method or the like. An insulating film is formed with the resist used as a mask in the molding process remaining, and is deposited between the TMR element structures 1 and 1, and the resist is removed together with the insulating film thereon (lift-off). And

次に、上部電極3を形成する。TMR素子構造1および絶縁層6の上に、下地としての金属膜、透明電極材料を連続して成膜し、下部電極2と直交するストライプ状に形成して上部電極3とする。最後に、上部電極3,3間に絶縁膜を堆積して絶縁層6とし、光変調素子5とする。   Next, the upper electrode 3 is formed. On the TMR element structure 1 and the insulating layer 6, a metal film as a base and a transparent electrode material are continuously formed and formed in a stripe shape orthogonal to the lower electrode 2 to form the upper electrode 3. Finally, an insulating film is deposited between the upper electrodes 3 and 3 to form the insulating layer 6 and the light modulation element 5.

空間光変調器におけるすべての画素の光変調素子5は、磁化固定層11の磁化が同じ向きに固定されている必要がある。磁化固定層11は電流供給では磁化反転しないので、外部から磁化固定層11の保磁力よりも大きな磁界を印加して、磁化固定層11の磁化方向を、例えば上向きに(図2参照)揃える初期設定を行う。この初期設定は、完成した、すなわち製造後の光変調素子5(空間光変調器)に限られず、製造工程途中において磁化固定層11用の磁性材料を成膜した後以降であれば、どの段階であっても実施することができる。   In the light modulation elements 5 of all the pixels in the spatial light modulator, the magnetization of the magnetization fixed layer 11 needs to be fixed in the same direction. Since the magnetization fixed layer 11 does not reverse the magnetization when supplied with current, an initial magnetic field that is larger than the coercive force of the magnetization fixed layer 11 is applied from the outside to align the magnetization direction of the magnetization fixed layer 11 upward (see FIG. 2), for example. Set up. This initial setting is not limited to the completed light modulation element 5 (spatial light modulator), that is, after the deposition of the magnetic material for the magnetization fixed layer 11 in the middle of the production process. Even it can be implemented.

(光変調素子の動作)
本実施形態に係る光変調素子の動作を、図2(c)、(d)を参照して説明する。上方から光変調素子5に入射した光は、上部電極3を透過してTMR素子構造1に到達し、下部電極2により反射し、再び上部電極3を透過して上方へ出射する。その際、磁性体である磁化自由層13の磁気光学効果により、光はその偏光面が回転(旋光)して出射する。さらに、磁性体の磁化方向が180°異なると、当該磁性体の磁気光学効果による旋光の向きは反転する。したがって、図2(c)、(d)にそれぞれ示す、磁化自由層13の磁化方向が互いに180°異なる光変調素子5(TMR素子構造1)における旋光角は−θk,+θkで、互いに逆方向に偏光面が回転する。光変調素子5のTMR素子構造1の磁化反転動作は、図2(a)、(b)を参照して説明した通りである。したがって、光変調素子5は、その出射光の偏光の向きを、電流IWの向き(正負)を入れ替えて供給することで変化させる。なお、旋光角−θk,+θkは、磁化自由層13での1回の反射による旋光(カー回転)に限られず、例えば光変調素子5における多重反射により累積された角度も含める。
(Operation of light modulator)
The operation of the light modulation element according to this embodiment will be described with reference to FIGS. Light incident on the light modulation element 5 from above passes through the upper electrode 3 and reaches the TMR element structure 1, is reflected by the lower electrode 2, passes through the upper electrode 3 again, and is emitted upward. At that time, the polarization plane of the light rotates (rotates) and is emitted by the magneto-optic effect of the magnetization free layer 13 which is a magnetic material. Further, if the magnetization direction of the magnetic material is different by 180 °, the direction of optical rotation due to the magneto-optical effect of the magnetic material is reversed. Therefore, the optical rotation angles in the light modulation element 5 (TMR element structure 1) in which the magnetization directions of the magnetization free layer 13 are different from each other by 180 ° as shown in FIGS. 2C and 2D are −θk and + θk, which are opposite to each other. The plane of polarization rotates. The magnetization reversal operation of the TMR element structure 1 of the light modulation element 5 is as described with reference to FIGS. 2 (a) and 2 (b). Therefore, the light modulation element 5 changes the direction of polarization of the emitted light by switching the direction (positive / negative) of the current I W and supplying it. The optical rotation angles −θk and + θk are not limited to optical rotation (Kerr rotation) by one reflection on the magnetization free layer 13, and include, for example, angles accumulated by multiple reflections in the light modulation element 5.

光変調素子5は、画素として2次元配列して、公知の反射型の空間光変調器(例えば、特許文献2参照)と同様に動作させることができる。光変調素子5への入射光は、例えばレーザー光源から偏光子を透過させた特定の1つの偏光成分の光であり、出射光は別の偏光子で、前記入射光に対して−θk,+θkの一方に旋光した光を遮光して、他方に旋光した光を取り出すことができる(図示省略)。   The light modulation elements 5 can be two-dimensionally arranged as pixels and operated in the same manner as a known reflection type spatial light modulator (see, for example, Patent Document 2). The incident light to the light modulation element 5 is, for example, light of a specific polarization component transmitted through a polarizer from a laser light source, and the emitted light is another polarizer, and −θk, + θk with respect to the incident light. It is possible to block the light rotated to one of the light and take out the light rotated to the other (not shown).

図2(c)、(d)においては、入射光と出射光の経路を識別し易くするために、入射光の入射角を傾斜させて示しているが、磁化自由層13の極カー効果でカー回転角を大きくするために、膜面により垂直に入射、すなわち入射角を0°に近付けることが好ましく、具体的には入射角を30°以内にすることが好ましい。最も好ましくは、膜面に垂直に入射、すなわち入射角を0°とすることであり、この場合は入射光と出射光の経路が一致するため、光変調素子5の上(入射光用の偏光子との間)にハーフミラーを配置して、出射光のみを側方へ反射させてもよく、反射させた先に出射光用の偏光子を配置する。   In FIGS. 2C and 2D, the incident angle of incident light is shown to be inclined in order to make it easy to distinguish the paths of incident light and outgoing light. In order to increase the Kerr rotation angle, it is preferable that the incidence is perpendicular to the film surface, that is, the incidence angle is close to 0 °, and specifically, the incidence angle is preferably within 30 °. Most preferably, the incident light is perpendicular to the film surface, that is, the incident angle is set to 0 °. In this case, since the paths of the incident light and the emitted light coincide with each other, the light is incident on the light modulator 5 (the polarization for incident light). A half mirror may be arranged between the optical element and the outgoing light alone, and the outgoing light polarizer may be arranged on the reflected side.

(変形例)
本発明に係るスピン注入磁化反転素子は、非晶質合金からなる下部電極に、さらにTa膜を積層することで、障壁層とするMgOをいっそう強い(001)面配向とすることができる。以下、第1実施形態の変形例に係るスピン注入磁化反転素子について説明する。第1実施形態(図1参照)と同一の要素については同じ符号を付し、説明を省略する。
(Modification)
In the spin-injection magnetization switching element according to the present invention, MgO serving as a barrier layer can have a stronger (001) plane orientation by further stacking a Ta film on the lower electrode made of an amorphous alloy. Hereinafter, a spin transfer magnetization switching element according to a modification of the first embodiment will be described. The same elements as those in the first embodiment (see FIG. 1) are denoted by the same reference numerals, and description thereof is omitted.

第1実施形態の変形例に係る光変調素子(スピン注入磁化反転素子)5は、TMR素子構造1の下に接続した下部電極(電極)2以外は、第1実施形態と同じ構造である。図3(a)に示すように、下部電極2Bは、第1実施形態の下部電極2(CuCr合金層21)に、Ta膜22、Ru膜23をさらに積層してなる。Taは、体心立方格子(bcc)構造の(110)面構造をとり易く、その上に、非晶質の磁性膜等を介して成膜されるMgOを、いっそう強い(001)面配向とすることができる。ただし、Taは酸化し易いため、Ta膜22の保護膜としてRu膜23が設けられる。Ta膜22は、前記効果を十分に得るために、厚さ1nm以上とすることが好ましく、一方、厚くなり過ぎると却ってこの効果が低下するため、厚さ50nm以下とすることが好ましい。Ru膜23は、連続した膜を形成するように、厚さ2nm以上とすることが好ましい。   The light modulation element (spin injection magnetization reversal element) 5 according to the modification of the first embodiment has the same structure as that of the first embodiment except for the lower electrode (electrode) 2 connected under the TMR element structure 1. As shown in FIG. 3A, the lower electrode 2B is formed by further laminating a Ta film 22 and a Ru film 23 on the lower electrode 2 (CuCr alloy layer 21) of the first embodiment. Ta easily adopts a (110) plane structure having a body-centered cubic lattice (bcc) structure, and MgO formed thereon via an amorphous magnetic film or the like has a stronger (001) plane orientation. can do. However, since Ta is easily oxidized, a Ru film 23 is provided as a protective film for the Ta film 22. The Ta film 22 is preferably set to a thickness of 1 nm or more in order to sufficiently obtain the above-described effect. On the other hand, if the thickness is excessively increased, the effect is reduced. Therefore, the thickness is preferably set to 50 nm or less. The Ru film 23 is preferably 2 nm or more in thickness so as to form a continuous film.

また、前記したように、TMR素子構造1の下地膜として、Taを適用することができる。この場合は、下部電極2(CuCr合金層21)の上に直接に下地膜(Ta膜)を形成することで、下部電極2Bと同様の効果が得られ、さらに下地膜(Ta膜)と連続してTMR素子構造1の各層が成膜されるので、Ru膜を積層しなくてよい。   As described above, Ta can be applied as the base film of the TMR element structure 1. In this case, by forming the base film (Ta film) directly on the lower electrode 2 (CuCr alloy layer 21), the same effect as that of the lower electrode 2B can be obtained, and further, the base film (Ta film) can be continuously formed. Since each layer of the TMR element structure 1 is formed, it is not necessary to stack the Ru film.

ここで、下部電極2,2Bは、要求される配線抵抗等に応じて厚さを設定することができる。しかし、非晶質のCu−Cr合金で形成されたCuCr合金層21は、一般的なCu電極と比較して、Cu(抵抗:1.67μΩ・cm)よりも抵抗の高いCr(抵抗:12.9μΩ・cm)との合金であり、さらに非晶質であることから、抵抗が約10倍に高くなる場合がある。また、Ta(抵抗:12.5μΩ・cm)も抵抗が高いため、Ta膜22が積層された下部電極2Bも抵抗がCu電極よりも高くなる。したがって、配線抵抗を低減するためには、下部電極2,2B(CuCr合金層21、Ta膜22)が厚く形成されてもよいが、CuCr合金層21の下に低抵抗の材料からなる層を設ける方が、全体の厚さが抑えられて好ましい。   Here, the thickness of the lower electrodes 2 and 2B can be set according to the required wiring resistance and the like. However, the CuCr alloy layer 21 formed of an amorphous Cu—Cr alloy has a higher resistance to Cr (resistance: 12) than Cu (resistance: 1.67 μΩ · cm) compared to a general Cu electrode. .9 .mu..OMEGA..multidot.cm) and further amorphous, the resistance may be increased about 10 times. Further, since Ta (resistance: 12.5 μΩ · cm) is also high in resistance, the lower electrode 2B on which the Ta film 22 is laminated also has higher resistance than the Cu electrode. Therefore, in order to reduce the wiring resistance, the lower electrodes 2 and 2B (CuCr alloy layer 21, Ta film 22) may be formed thick, but a layer made of a low resistance material is formed under the CuCr alloy layer 21. It is preferable to provide it because the entire thickness is suppressed.

例えば下層に(111)面構造のCuの層が存在しても、その上に十分な厚さの非晶質のCuCr合金層21が設けられていることにより、さらにその上に設けられるMgOを(001)面配向とすることができる。すなわち図3(b)に示すように、CuCr合金層21が、一般的な電極材料として用いられる低抵抗のCu(純Cu、または結晶性のCu合金)を有する層(Cu層)24に積層されていてもよい。図3(b)に示す下部電極2Cは、下部電極2B(図3(a)参照)と同様に、CuCr合金層21の上に、Ta膜22、Ru膜23をさらに積層してなるが、Cu層24とCuCr合金層21との2層構造の下部電極2A(図4参照)でもよい。なお、Cuを単層で50nm以上の膜厚にスパッタリング法で成膜すると表面が粗くなって(算術平均粗さRa:1nm超)、その上に形成されるCuCr合金層21等も表面形状が保持されるため、TMR素子構造1において障壁層12と層11,13との各界面の平坦性が低下し、磁気トンネル接合に好ましくない。したがって、下部電極2A,2Cは、Cu層24において、Cu単層は厚さ15nm程度として、例えば厚さ3nm程度のTa膜を挟んで積層を繰り返して必要な総厚としたCu/Ta多層膜とすることがさらに好ましい。   For example, even when a Cu layer having a (111) plane structure is present in the lower layer, a sufficient thickness of the amorphous CuCr alloy layer 21 is provided on the Cu layer. It can be (001) plane orientation. That is, as shown in FIG. 3B, the CuCr alloy layer 21 is laminated on a layer (Cu layer) 24 having low resistance Cu (pure Cu or crystalline Cu alloy) used as a general electrode material. May be. The lower electrode 2C shown in FIG. 3B is formed by further laminating a Ta film 22 and a Ru film 23 on the CuCr alloy layer 21 in the same manner as the lower electrode 2B (see FIG. 3A). The lower electrode 2A (see FIG. 4) having a two-layer structure of the Cu layer 24 and the CuCr alloy layer 21 may be used. When a single layer of Cu is formed by sputtering to a thickness of 50 nm or more, the surface becomes rough (arithmetic average roughness Ra: more than 1 nm), and the surface shape of the CuCr alloy layer 21 and the like formed thereon is also increased. Therefore, the flatness of each interface between the barrier layer 12 and the layers 11 and 13 in the TMR element structure 1 is lowered, which is not preferable for the magnetic tunnel junction. Accordingly, the lower electrodes 2A and 2C are Cu / Ta multilayer films in which the Cu single layer is about 15 nm thick in the Cu layer 24, and, for example, a laminated film is repeatedly stacked with a Ta film having a thickness of about 3 nm interposed therebetween. More preferably.

以上のように、本発明の第1実施形態およびその変形例に係る光変調素子は、スピン注入効率の優れたTMR素子構造により、小さな電流密度で磁化反転させることできるため、高精細な空間光変調器としても省電力化され、また垂直磁気異方性を有するTMR素子構造により、極カー効果で光変調度が大きくすることができるため、コントラストのよい空間光変調器となる。   As described above, since the light modulation element according to the first embodiment of the present invention and the modification thereof can be reversed in magnetization with a small current density by the TMR element structure having excellent spin injection efficiency, high-definition spatial light Since the TMR element structure that saves power as a modulator and has perpendicular magnetic anisotropy can increase the degree of light modulation by the polar Kerr effect, the spatial light modulator has good contrast.

[第2実施形態]
本発明に係るスピン注入磁化反転素子は、より保磁力の大きく強い垂直磁気異方性を有する、磁化固定層に好適なTb−Fe−Coを適用したTMR素子構造を備えることもできる。ただし、Tb−Fe−Coは、MgOを十分に強い(001)面配向とすることができないため、次のような構成とする。以下、第2実施形態に係る光変調素子について説明する。第1実施形態およびその変形例(図1〜3参照)と同一の要素については同じ符号を付し、説明を省略する。
[Second Embodiment]
The spin-injection magnetization reversal element according to the present invention can also have a TMR element structure in which Tb—Fe—Co suitable for the magnetization fixed layer is applied and has a strong perpendicular magnetic anisotropy with a larger coercive force. However, Tb—Fe—Co cannot make MgO sufficiently strong (001) plane orientation, and thus has the following configuration. The light modulation element according to the second embodiment will be described below. The same elements as those in the first embodiment and the modifications thereof (see FIGS. 1 to 3) are denoted by the same reference numerals, and description thereof is omitted.

図4に示すように、第2実施形態に係る光変調素子5AのTMR素子構造1Aは、磁化固定層11AがTb−Fe−Coからなる層(TbFeCo層)11aを備え、さらにその上にCo−Fe−Bからなる層(CoFeB層)11bを積層して備える。すなわち、TMR素子構造1Aの磁化固定層11Aは、2層の積層構造からなり、TbFeCo層11aにより、大きな保磁力と強い垂直磁気異方性を有し、障壁層12の下地としてCoFeB層11bを積層することで、その表面に形成されるMgO(障壁層12)を強い(001)面配向の結晶とすることができる。   As shown in FIG. 4, in the TMR element structure 1A of the light modulation element 5A according to the second embodiment, the magnetization fixed layer 11A includes a layer (TbFeCo layer) 11a made of Tb—Fe—Co, and further, Co A layer (CoFeB layer) 11b made of -Fe-B is provided. That is, the magnetization fixed layer 11A of the TMR element structure 1A has a laminated structure of two layers. The TbFeCo layer 11a has a large coercive force and a strong perpendicular magnetic anisotropy, and the CoFeB layer 11b is used as a base of the barrier layer 12. By laminating, MgO (barrier layer 12) formed on the surface can be made a strong (001) plane crystal.

TbFeCo層11aは、Gd−Feと同じく非晶質であるRE−TM合金の一種のTb−Fe−Coからなるため、障壁層12とするMgOの(001)面配向を妨げない。TbFeCo層11aは、垂直磁気異方性のスピン注入磁化反転素子の磁化固定層として適用されるものと同様の組成、厚さとすることができ、第1実施形態の磁化固定層11と同様に厚さを3〜50nmの範囲とすることが好ましい。   Since the TbFeCo layer 11a is made of a kind of Tb—Fe—Co, which is an amorphous RE-TM alloy like Gd—Fe, the (001) plane orientation of MgO serving as the barrier layer 12 is not hindered. The TbFeCo layer 11a can have the same composition and thickness as those applied as the magnetization fixed layer of the perpendicular magnetic anisotropy spin-injection magnetization switching element, and the thickness is the same as that of the magnetization fixed layer 11 of the first embodiment. The thickness is preferably in the range of 3 to 50 nm.

CoFeB層11bは、その表面に形成されるMgOを強い(001)面配向の結晶とするために、障壁層12の下地として設けられる。また、CoFeB層11bは、その成膜時(TMR素子構造1Aの製造時)においてTbFeCo層11aと同じく非晶質であるが、前記したように、熱処理した場合には、障壁層12との界面から結晶化して(001)面配向のMgOと格子整合のよいbcc構造になる。TMR素子構造1Aは、磁化固定層11Aが障壁層12との界面にこのようなCoFeB層11bを備えることで、当該界面でのスピン偏極率を高くして、障壁層12を介して磁化自由層13へ注入するスピンによるスピントルクが増大するため、またコヒーレントなトンネル電流が流れるために、反転電流を低減することができる。なお、Co−Fe−B自体は面内磁気異方性を有するが、CoFeB層11bは強い垂直磁気異方性を有するTbFeCo層11aに積層されることで、磁化固定層11Aが全体で垂直磁気異方性を示す。CoFeB層11bは、障壁層12を形成するMgOを(001)面配向とするために、厚さを1.0nm以上とすることが好ましい。一方、CoFeB層11bは、厚くなると面内磁気異方性が強くなるので、2.0nm以下とすることが好ましい。   The CoFeB layer 11b is provided as a base of the barrier layer 12 in order to make MgO formed on the surface thereof into a strong (001) -oriented crystal. Further, the CoFeB layer 11b is amorphous in the same way as the TbFeCo layer 11a at the time of film formation (when manufacturing the TMR element structure 1A). However, as described above, when the heat treatment is performed, the interface with the barrier layer 12 is used. From this, it is crystallized into a bcc structure with good lattice matching with (001) -oriented MgO. In the TMR element structure 1A, the magnetization fixed layer 11A includes such a CoFeB layer 11b at the interface with the barrier layer 12, thereby increasing the spin polarization at the interface and allowing the magnetization free through the barrier layer 12. Since the spin torque due to the spin injected into the layer 13 increases and a coherent tunnel current flows, the inversion current can be reduced. Although Co—Fe—B itself has in-plane magnetic anisotropy, the CoFeB layer 11b is laminated on the TbFeCo layer 11a having strong perpendicular magnetic anisotropy, so that the magnetization fixed layer 11A as a whole becomes perpendicular magnetic. Shows anisotropy. The CoFeB layer 11b preferably has a thickness of 1.0 nm or more so that MgO forming the barrier layer 12 has a (001) orientation. On the other hand, since the in-plane magnetic anisotropy becomes stronger as the CoFeB layer 11b becomes thicker, the thickness is preferably set to 2.0 nm or less.

障壁層12および磁化自由層13は、それぞれ第1実施形態と同様の構成であり、磁化自由層13が障壁層12との界面に磁性金属膜を備えてもよいことも同様である。そして、このようなTMR素子構造1Aは、第1実施形態に係る光変調素子5のTMR素子構造1と同様に、磁化反転および光変調動作をする(図2参照)。   The barrier layer 12 and the magnetization free layer 13 have the same configurations as those in the first embodiment, and the magnetization free layer 13 may include a magnetic metal film at the interface with the barrier layer 12. Such a TMR element structure 1A performs the magnetization reversal and light modulation operations (see FIG. 2), similarly to the TMR element structure 1 of the light modulation element 5 according to the first embodiment.

図4に示すように、光変調素子5Aは、CuCr合金層21をCu層24に積層してなる下部電極2Aを備えるが、CuCr合金層21のみの下部電極2(図1参照)やCuCr合金層21上にTa膜22、Ru膜23を積層した下部電極2B,2C(図3参照)を備えてもよく、それぞれ第1実施形態およびその変形例と同様の効果が得られる。   As shown in FIG. 4, the light modulation element 5 </ b> A includes a lower electrode 2 </ b> A formed by laminating a CuCr alloy layer 21 on a Cu layer 24, but the lower electrode 2 (see FIG. 1) including only the CuCr alloy layer 21 or a CuCr alloy. The lower electrodes 2B and 2C (see FIG. 3) in which the Ta film 22 and the Ru film 23 are stacked on the layer 21 may be provided, and the same effects as those of the first embodiment and the modification thereof are obtained.

以上のように、本発明の第2実施形態に係る光変調素子は、第1実施形態と同様に、省電力化され、コントラストのよい空間光変調器とすることができ、さらに、Tb−Fe−CoをTMR素子構造の磁化固定層に適用していることで安定した動作となる。   As described above, similarly to the first embodiment, the light modulation element according to the second embodiment of the present invention can be a power-saving and high-contrast spatial light modulator, and further, Tb-Fe. By applying -Co to the magnetization fixed layer having the TMR element structure, stable operation is achieved.

[第3実施形態]
本発明の別の実施形態に係るスピン注入磁化反転素子は、磁気抵抗効果素子であり、電極(配線)でトランジスタと接続されて、磁気ランダムアクセスメモリ(MRAM)のメモリセルを構成する。以下、第3実施形態に係るスピン注入磁化反転素子について説明する。第1、第2実施形態(図1〜4参照)と同一の要素については同じ符号を付し、説明を省略する。
[Third Embodiment]
A spin injection magnetization reversal element according to another embodiment of the present invention is a magnetoresistive effect element, and is connected to a transistor by an electrode (wiring) to constitute a memory cell of a magnetic random access memory (MRAM). The spin injection magnetization switching element according to the third embodiment will be described below. The same elements as those in the first and second embodiments (see FIGS. 1 to 4) are denoted by the same reference numerals, and the description thereof is omitted.

本発明の第3実施形態に係る磁気抵抗効果素子(スピン注入磁化反転素子)5Bは、図5に示すように、下部電極(電極)2B、磁化自由層13B、障壁層12、磁化固定層11B、保護膜16、上部電極3Aの順に積層された構成である。すなわち磁気抵抗効果素子5Bは、磁化固定層11Bおよび磁化自由層13BをMgOからなる障壁層12を挟んで積層してなるTMR素子構造(トンネル磁気抵抗素子構造)1Bを備え、このTMR素子構造1Bに、下部電極2Bと上部電極3Aとを一対の電極として接続して、膜面に垂直に電流を供給する。さらに、磁気抵抗効果素子5Bは、下部電極2Bおよびこの下部電極2Bに接続するドレイン接続部43で、基板7Aに形成されたMOSFET(金属酸化膜半導体電界効果トランジスタ)のドレイン7dに接続されて、MRAMのメモリセルを構成する。すなわち磁気抵抗効果素子5Bにおいて、下部電極2Bは、MOSFETのドレイン7dに接続するためのメモリセル内の配線である。一方、上部電極3Aは、MRAMのビット線として、面内における一方向(図5における左右方向)に延設される。   As shown in FIG. 5, a magnetoresistive effect element (spin injection magnetization reversal element) 5B according to the third embodiment of the present invention includes a lower electrode (electrode) 2B, a magnetization free layer 13B, a barrier layer 12, and a magnetization fixed layer 11B. The protective film 16 and the upper electrode 3A are stacked in this order. That is, the magnetoresistive element 5B includes a TMR element structure (tunnel magnetoresistive element structure) 1B formed by laminating a magnetization fixed layer 11B and a magnetization free layer 13B with a barrier layer 12 made of MgO interposed therebetween, and this TMR element structure 1B. The lower electrode 2B and the upper electrode 3A are connected as a pair of electrodes, and current is supplied perpendicular to the film surface. Further, the magnetoresistive effect element 5B is connected to the drain 7d of the MOSFET (metal oxide semiconductor field effect transistor) formed on the substrate 7A at the lower electrode 2B and the drain connection portion 43 connected to the lower electrode 2B. An MRAM memory cell is formed. That is, in the magnetoresistive effect element 5B, the lower electrode 2B is a wiring in the memory cell for connection to the drain 7d of the MOSFET. On the other hand, the upper electrode 3A is extended in one direction in the plane (left and right direction in FIG. 5) as an MRAM bit line.

TMR素子構造1Bは、第1実施形態に係る光変調素子(スピン注入磁化反転素子)5(図1参照)のTMR素子構造1の、磁化固定層11と磁化自由層13との積層順を入れ替えた構造である。また、TMR素子構造1Bは、第1、第2実施形態とは異なり、光変調のための平面視の大きさの下限(最小面積)がなく、磁化自由層13Bの磁化が保持されればよい。具体的には、TMR素子構造1Bは、より好適に磁化反転するために、平面視が一般的なスピン注入磁化反転素子の大きさである300nm×100nm程度相当の面積であることが好ましい。TMR素子構造1Bにおいては、障壁層12を形成するMgOを強い(001)面配向の結晶とするために、その下地となる磁化自由層13BをGd−Fe合金で形成する。Gd−Fe合金については、第1実施形態にて説明した通りである。また、障壁層12も、第1実施形態と同様の構成である。   In the TMR element structure 1B, the stacking order of the magnetization fixed layer 11 and the magnetization free layer 13 in the TMR element structure 1 of the light modulation element (spin injection magnetization switching element) 5 (see FIG. 1) according to the first embodiment is changed. Structure. Further, unlike the first and second embodiments, the TMR element structure 1B has no lower limit (minimum area) in plan view for light modulation, and the magnetization of the magnetization free layer 13B may be held. . Specifically, the TMR element structure 1B preferably has an area corresponding to about 300 nm × 100 nm, which is the size of a general spin-injection magnetization reversal element in plan view, in order to more suitably reverse the magnetization. In the TMR element structure 1B, in order to make MgO forming the barrier layer 12 into a crystal having a strong (001) plane orientation, the magnetization free layer 13B serving as the base is formed of a Gd—Fe alloy. The Gd—Fe alloy is as described in the first embodiment. Further, the barrier layer 12 has the same configuration as that of the first embodiment.

磁化固定層11Bは、上に障壁層(MgO)が設けられないので非晶質に限られず、垂直磁気異方性を有するTMR素子の磁化固定層として公知の磁性材料にて形成することができ、保磁力の大きな材料を適用することが好ましい。具体的には、Fe,Co,Ni等の遷移金属とPt,Pd等の貴金属とを含む、例えば[Co/Pt]×n、[Co/Pd]×nの多層膜、あるいはTb−Fe−Co等のRE−TM合金や、L10系の規則合金としたFePt, FePd等が挙げられる。また、磁化固定層11Bは、第1実施形態における磁化自由層13と同様に、障壁層12との界面に遷移金属を含む磁性金属膜を備えてもよい(図示せず)。 The magnetization fixed layer 11B is not limited to amorphous because no barrier layer (MgO) is provided thereon, and can be formed of a known magnetic material as a magnetization fixed layer of a TMR element having perpendicular magnetic anisotropy. It is preferable to apply a material having a large coercive force. Specifically, for example, a multilayer film of [Co / Pt] × n, [Co / Pd] × n, or Tb—Fe— containing a transition metal such as Fe, Co, and Ni and a noble metal such as Pt and Pd. and RE-TM alloy, such as Co, FePt was L1 0 type ordered alloys, FePd, and the like. Further, the magnetization fixed layer 11B may include a magnetic metal film containing a transition metal at the interface with the barrier layer 12 (not shown), like the magnetization free layer 13 in the first embodiment.

図5に示すように、磁気抵抗効果素子5Bは、CuCr合金層21上にTa膜22、Ru膜23を積層してなる下部電極2Bを備えるが、CuCr合金層21のみの下部電極2(図1参照)やCuCr合金層21をCu層24に積層した下部電極2A,2C(図3(b)、図4参照)を備えてもよい。また、TMR素子構造1Bの下に接続される電極について、このようにCuCr合金層21を含む部分、すなわち下部電極2B(2,2A,2C)は、TMR素子構造1Bが形成される領域のみでよく、すなわちドレイン7dに接続するコンタクト部分(ドレイン接続部43)は、Cu等の金属電極材料で形成されてよい。なお、ドレイン接続部43は、下部電極2BにおけるTMR素子構造1Bの下地表面となる領域が粗くならないように、TMR素子構造1Bの直下(平面視領域)を避けて設けられることが好ましく、そのために下部電極2Bは、ドレイン接続部43に接続した領域外にTMR素子構造1Bが設けられるように、拡張して形成される。   As shown in FIG. 5, the magnetoresistive element 5 </ b> B includes a lower electrode 2 </ b> B formed by laminating a Ta film 22 and a Ru film 23 on a CuCr alloy layer 21, but the lower electrode 2 including only the CuCr alloy layer 21 (FIG. 5). 1) and a lower electrode 2A, 2C (see FIGS. 3B and 4) in which a CuCr alloy layer 21 is laminated on the Cu layer 24 may be provided. Further, regarding the electrode connected under the TMR element structure 1B, the portion including the CuCr alloy layer 21, that is, the lower electrode 2B (2, 2A, 2C) is only in the region where the TMR element structure 1B is formed. In other words, the contact portion (drain connection portion 43) connected to the drain 7d may be formed of a metal electrode material such as Cu. In addition, it is preferable that the drain connection portion 43 is provided so as to avoid a region immediately below the TMR element structure 1B (planar view region) so that a region serving as a base surface of the TMR element structure 1B in the lower electrode 2B is not roughened. The lower electrode 2B is formed so as to be extended so that the TMR element structure 1B is provided outside the region connected to the drain connection portion 43.

本実施形態に係る磁気抵抗効果素子5Bにおいては、上部電極3Aは光を透過する必要がないので、Cu等の金属電極材料で形成される。   In the magnetoresistive effect element 5B according to the present embodiment, the upper electrode 3A does not need to transmit light, and thus is formed of a metal electrode material such as Cu.

基板7Aは、表層にMOSFETを形成されるため、p型シリコン(Si)基板を適用される。MOSFETは、公知の方法で形成される。また、MOSFETのソース7s、ゲート7g、ドレイン7dにそれぞれ接続するソース線41、ワード線42、ドレイン接続部43は、上部電極3Aと同様にCu等の金属電極材料で形成される。   As the substrate 7A, since a MOSFET is formed on the surface layer, a p-type silicon (Si) substrate is used. The MOSFET is formed by a known method. Further, the source line 41, the word line 42, and the drain connection portion 43 connected to the source 7s, gate 7g, and drain 7d of the MOSFET, respectively, are formed of a metal electrode material such as Cu similarly to the upper electrode 3A.

(磁気抵抗効果素子の動作)
メモリセルの書込みとして、磁気抵抗効果素子5BにおけるTMR素子構造1Bの磁化反転が行われる。TMR素子構造1Bの磁化反転動作は、図2(a)、(b)に示すTMR素子構造1とは、上下電極3A(3),2B(2)から供給される電流の向きと磁化自由層13Bの磁化方向との関係が逆になる以外は同様である。一方、メモリセルの読出しは、図2(c)、(d)に示すように、TMR素子構造1B(1)が磁化反転しない所定の電流ITSTを供給したときの電極2,3間の電圧から、TMR素子構造1Bの、磁化自由層13Bの磁化方向が磁化固定層11Bと平行、反平行のときにおける抵抗RP,RAPを検出する。なお、磁気抵抗効果素子5Bにおいて、下部電極2Bは、ドレイン接続部43からMOSFETを経由して、上部電極(ビット線)3Aと直交して延設するソース線41に接続し、この接続はワード線42からの電流供給によりON/OFFする。したがって、書込み、読出しの電流IW,ITSTは、上部電極(ビット線)3Aとソース線41を一対の電極としてTMR素子構造1Bに供給される。
(Operation of magnetoresistive element)
As the memory cell write, the magnetization reversal of the TMR element structure 1B in the magnetoresistive effect element 5B is performed. The magnetization reversal operation of the TMR element structure 1B is different from that of the TMR element structure 1 shown in FIGS. 2A and 2B in the direction of current supplied from the upper and lower electrodes 3A (3) and 2B (2) and the magnetization free layer. This is the same except that the relationship with the magnetization direction of 13B is reversed. On the other hand, as shown in FIGS. 2C and 2D, the memory cell is read by the voltage between the electrodes 2 and 3 when the TMR element structure 1B (1) supplies a predetermined current I TST that does not reverse the magnetization. Thus, the resistances R P and R AP when the magnetization direction of the magnetization free layer 13B of the TMR element structure 1B is parallel or anti-parallel to the magnetization fixed layer 11B are detected. In the magnetoresistive effect element 5B, the lower electrode 2B is connected to the source line 41 extending perpendicularly to the upper electrode (bit line) 3A from the drain connecting portion 43 via the MOSFET, and this connection is connected to the word line. It is turned ON / OFF by supplying current from the line 42. Accordingly, the write and read currents I W and I TST are supplied to the TMR element structure 1B using the upper electrode (bit line) 3A and the source line 41 as a pair of electrodes.

磁気抵抗効果素子5Bは、第1、第2実施形態に係るスピン注入磁化反転素子5,5Aと同様に、磁化固定層を障壁層の下に積層したTMR素子構造1,1Aを備えてもよい。また、磁気抵抗効果素子5Bは、MOSFETに代えて、ダイオードを接続してメモリセルとしてもよい(図示せず)。ダイオードについても、MOSFETと同様に、Si基板の表層に形成することができる。   The magnetoresistive effect element 5B may include the TMR element structures 1 and 1A in which a magnetization fixed layer is stacked under the barrier layer, similarly to the spin-injection magnetization switching elements 5 and 5A according to the first and second embodiments. . The magnetoresistive element 5B may be a memory cell by connecting a diode instead of the MOSFET (not shown). The diode can also be formed on the surface layer of the Si substrate, like the MOSFET.

以上のように、第3実施形態に係る磁気抵抗効果素子によれば、第1、第2実施形態と同様に反転電流が低いため、書込みのための電流が小さく、また、MR比(RAP−RP)/RPの高いTMR素子構造を備えるため、微細化しても読出しが容易で、省電力化した大容量のMRAMを実現することができる。 As described above, according to the magnetoresistive effect element according to the third embodiment, since the reversal current is low as in the first and second embodiments, the current for writing is small, and the MR ratio (R AP Since the TMR element structure having a high −R P ) / R P is provided, it is possible to realize a large-capacity MRAM that can be read easily even when miniaturized and saves power.

第1、第2実施形態に係るスピン注入磁化反転素子(光変調素子)についても、第3実施形態に係る磁気抵抗効果素子のように、下部電極でMOSFETに接続してもよい(図5参照)。このようなMOSFET付きの光変調素子を画素に備えた空間光変調器とすることで、画素毎に光変調素子の磁化反転のエラー検出を行うことができる。本発明に係る光変調素子は、下部電極にIZO等の透明電極材料でなく金属材料を適用することができ、基板側(下方)から光を入出射しなくてよいので、MOSFETを形成したSi基板を適用することができる。   The spin-injection magnetization reversal element (light modulation element) according to the first and second embodiments may be connected to the MOSFET with the lower electrode as in the magnetoresistive effect element according to the third embodiment (see FIG. 5). ). By using such a light modulation element with a MOSFET as a spatial light modulator provided in a pixel, it is possible to detect an error in magnetization reversal of the light modulation element for each pixel. In the light modulation element according to the present invention, a metal material, not a transparent electrode material such as IZO, can be applied to the lower electrode, and light does not have to enter and exit from the substrate side (below). A substrate can be applied.

[第4実施形態]
本発明の第4実施形態に係るスピン注入磁化反転素子は、第3実施形態と同様に磁気抵抗効果素子であり、2つのTMR素子構造を積層して備える。以下、第4実施形態に係るスピン注入磁化反転素子について説明する。第1〜第3実施形態(図1〜5参照)と同一の要素については同じ符号を付し、説明を省略する。また、スピン注入磁化反転素子は、2つのTMR素子構造を備えることから、要素の名称に「第1」、「第2」を付したものがあるが、識別のためであり、符号が同じものは同一の要素である。
[Fourth Embodiment]
The spin transfer magnetization switching element according to the fourth embodiment of the present invention is a magnetoresistive effect element as in the third embodiment, and includes two TMR element structures stacked. The spin-injection magnetization switching element according to the fourth embodiment will be described below. The same elements as those in the first to third embodiments (see FIGS. 1 to 5) are denoted by the same reference numerals and description thereof is omitted. In addition, since the spin-injection magnetization reversal element has two TMR element structures, there are elements in which “first” and “second” are added to the names of the elements. Are the same elements.

本発明の第4実施形態に係る磁気抵抗効果素子(スピン注入磁化反転素子)5Cは、図6(a)に示すように、下部電極(電極)2B、第1磁化固定層(磁化固定層)11A、障壁層121、磁化自由層13B、障壁層122、第2磁化固定層(磁化固定層)11B、保護膜16、上部電極3Aの順に積層された構成である。障壁層121および障壁層122は、共に(001)面配向を示すMgOからなる第1実施形態等における障壁層12と同じ要素であり、識別するために互いに異なる符合を付す。すなわち磁気抵抗効果素子5Cは、第1磁化固定層11A、障壁層121、磁化自由層13Bを積層してなる第1TMR素子構造(トンネル磁気抵抗素子構造)1Cと、磁化自由層13B、障壁層122、第2磁化固定層11Bを積層してなる第2TMR素子構造(トンネル磁気抵抗素子構造)1Bと、の上下対称な積層順の2つのTMR素子構造を、磁化自由層13Bを共有して備える。そして、磁気抵抗効果素子5Cは、積層されたTMR素子構造1C,1Bのさらに上下両端に、下部電極2Bと上部電極3Aとを一対の電極として接続して備える。したがって、磁気抵抗効果素子5Cは、いわゆるデュアルピン構造のスピン注入磁化反転素子である。また、磁気抵抗効果素子5Cは、図5に示す磁気抵抗効果素子5Bと同様に、下部電極2Bで、基板7Aに形成されたMOSFETのドレイン7dに接続されて、MRAMのメモリセルを構成する(図示省略)。   As shown in FIG. 6A, a magnetoresistive effect element (spin injection magnetization reversal element) 5C according to the fourth embodiment of the present invention includes a lower electrode (electrode) 2B, a first magnetization fixed layer (magnetization fixed layer). 11A, barrier layer 121, magnetization free layer 13B, barrier layer 122, second magnetization fixed layer (magnetization fixed layer) 11B, protective film 16, and upper electrode 3A are stacked in this order. The barrier layer 121 and the barrier layer 122 are the same elements as the barrier layer 12 in the first embodiment and the like made of MgO exhibiting (001) plane orientation, and are given different signs for identification. That is, the magnetoresistive element 5C includes a first TMR element structure (tunnel magnetoresistive element structure) 1C formed by stacking the first magnetization fixed layer 11A, the barrier layer 121, and the magnetization free layer 13B, the magnetization free layer 13B, and the barrier layer 122. In addition, two TMR element structures that are vertically symmetrical to each other and a second TMR element structure (tunnel magnetoresistive element structure) 1B formed by laminating the second magnetization fixed layer 11B are provided in common with the magnetization free layer 13B. The magnetoresistive effect element 5C is provided with a lower electrode 2B and an upper electrode 3A connected as a pair of electrodes at both upper and lower ends of the laminated TMR element structures 1C and 1B. Therefore, the magnetoresistive effect element 5C is a so-called dual pin structure spin injection magnetization reversal element. Similarly to the magnetoresistive effect element 5B shown in FIG. 5, the magnetoresistive effect element 5C is connected to the drain 7d of the MOSFET formed on the substrate 7A by the lower electrode 2B to constitute an MRAM memory cell ( (Not shown).

第2TMR素子構造1B、すなわち磁化自由層13B、障壁層122、磁化固定層11Bは、それぞれ第3実施形態(図5参照)におけるものと同様の構成である。第1TMR素子構造1Cは、磁化自由層13Bを第2TMR素子構造1Bと共有するために、第2実施形態(図4参照)におけるTMR素子構造1Aについて、磁化自由層13から磁化自由層13Bに代えたものであり、それ以外はTMR素子構造1Aと同様の構成である。磁気抵抗効果素子5Cは、磁化自由層および下層側の磁化固定層(第1磁化固定層)をこのように材料を規定することで、(001)面配向のMgOを障壁層とした2つのTMR素子構造1C,1Bを備える。なお、磁気抵抗効果素子5Cは、下層側の第1磁化固定層11Aに代えて、第1実施形態に係るスピン注入磁化反転素子5(図1参照)におけるTMR素子構造1の磁化固定層11を備えてもよい(図6(b)参照)。   The second TMR element structure 1B, that is, the magnetization free layer 13B, the barrier layer 122, and the magnetization fixed layer 11B have the same configuration as that in the third embodiment (see FIG. 5). In order to share the magnetization free layer 13B with the second TMR element structure 1B, the first TMR element structure 1C replaces the magnetization free layer 13 with the magnetization free layer 13B in the TMR element structure 1A in the second embodiment (see FIG. 4). The rest of the configuration is the same as that of the TMR element structure 1A. In the magnetoresistive effect element 5C, by defining the material for the magnetization free layer and the lower magnetization fixed layer (first magnetization fixed layer) in this way, two TMRs using (001) -oriented MgO as barrier layers are used. Element structures 1C and 1B are provided. The magnetoresistive effect element 5C includes the magnetization fixed layer 11 of the TMR element structure 1 in the spin injection magnetization reversal element 5 (see FIG. 1) according to the first embodiment, instead of the first magnetization fixed layer 11A on the lower layer side. You may provide (refer FIG.6 (b)).

第2磁化固定層11Bは、第3実施形態に係るスピン注入磁化反転素子5B(図5参照)と同様に、上に障壁層(MgO)が設けられないので非晶質に限られず、また障壁層122との界面に遷移金属を含む磁性金属膜を備えてもよい(図示せず)。また、第2磁化固定層11Bは、第1磁化固定層11A(11)と同じ材料(Tb−Fe−Co、Gd−Fe)を適用してもよく、第1磁化固定層11A(11)と共に、磁化自由層13Bよりも保磁力が大きくなるように形成される。同時に、第2磁化固定層11Bは、第1磁化固定層11A(11)との保磁力が異なるように形成されることが好ましい。これは、後記の磁化反転の動作にて説明するように、第1磁化固定層11Aと第2磁化固定層11Bとで互いに異なる磁化方向に、具体的には反平行な磁化方向に固定することを容易にするためである。あるいはそのために、第2磁化固定層11Bは、第1磁化固定層11A(11)と保磁力の差を設けることに代えて、障壁層122の側(下側)に、交換結合した磁性膜を備えた多層構造としてもよい(図示せず)。   The second magnetization fixed layer 11B is not limited to an amorphous layer because a barrier layer (MgO) is not provided on the second magnetization fixed layer 11B, similarly to the spin-injection magnetization switching element 5B (see FIG. 5) according to the third embodiment. A magnetic metal film containing a transition metal may be provided at the interface with the layer 122 (not shown). Further, the same material (Tb—Fe—Co, Gd—Fe) as the first magnetization fixed layer 11A (11) may be applied to the second magnetization fixed layer 11B, and together with the first magnetization fixed layer 11A (11). The coercive force is larger than that of the magnetization free layer 13B. At the same time, the second magnetization fixed layer 11B is preferably formed so as to have a different coercivity from the first magnetization fixed layer 11A (11). This is because the first magnetization fixed layer 11A and the second magnetization fixed layer 11B are fixed in different magnetization directions, specifically, in antiparallel magnetization directions, as will be described later in the magnetization reversal operation. This is to make it easier. Alternatively, instead of providing a difference in coercivity with the first magnetization pinned layer 11A (11), the second magnetization pinned layer 11B has a magnetic film exchange-coupled on the barrier layer 122 side (lower side). A multi-layer structure may be provided (not shown).

(磁気抵抗効果素子の動作)
磁気抵抗効果素子5CにおけるTMR素子構造1C,1Bの磁化反転の動作を、図7(a)、(b)を参照して説明する。なお、図7において保護膜16は図示を省略する。また、第1磁化固定層11Aは上向きに、第2磁化固定層11Bは下向きに、それぞれ磁化を固定されている。図7(a)に示すように、上部電極3(3A)を「+」、下部電極2(2B)を「−」にして、TMR素子構造1C,1Bに、第2磁化固定層11B側から第1磁化固定層11Aへ電流を供給して、第1磁化固定層11A側から電子を注入する。すると、第1実施形態に係るスピン注入磁化反転素子5(図2(a)参照)と同様に、第1磁化固定層11Aにより当該第1磁化固定層11Aの磁化と逆方向の下向きのスピンを持つ電子dDが弁別されて、磁化自由層13Bは上向きのスピンを持つ電子dUが偏って注入される。さらに磁化自由層13Bに注入された電子dUは、磁化が逆方向の第2磁化固定層11Bにより弁別されるために磁化自由層13Bに留まり、その結果、磁化自由層13Bの磁化が上向きに反転する。反対に、図7(b)に示すように、上部電極3を「−」、下部電極2を「+」にして、TMR素子構造1C,1Bに、第1磁化固定層11A側から第2磁化固定層11Bへ電流を供給して、第2磁化固定層11B側から電子を注入すると、下向きのスピンを持つ電子dDが磁化自由層13Bに留まるため、磁化自由層13Bの磁化が下向きに反転する。
(Operation of magnetoresistive element)
The magnetization reversal operation of the TMR element structures 1C and 1B in the magnetoresistive element 5C will be described with reference to FIGS. 7 (a) and 7 (b). In FIG. 7, the protective film 16 is not shown. The magnetization of the first magnetization fixed layer 11A is fixed upward, and the second magnetization fixed layer 11B is fixed downward. As shown in FIG. 7A, the upper electrode 3 (3A) is set to “+” and the lower electrode 2 (2B) is set to “−”, so that the TMR element structures 1C and 1B are connected to the second magnetization fixed layer 11B side. A current is supplied to the first magnetization fixed layer 11A, and electrons are injected from the first magnetization fixed layer 11A side. Then, similarly to the spin-injection magnetization switching element 5 according to the first embodiment (see FIG. 2A), the first magnetization fixed layer 11A causes downward spin in the direction opposite to the magnetization of the first magnetization fixed layer 11A. The possessed electrons d D are discriminated, and electrons d U having upward spin are biased and injected into the magnetization free layer 13B. Further magnetization free layer 13B electrons d U injected into remains in magnetization free layer 13B because the magnetization is discriminated by the second magnetization fixed layer 11B in the reverse direction, as a result, upward magnetization of the magnetization free layer 13B Invert. On the other hand, as shown in FIG. 7B, the upper electrode 3 is set to “−”, the lower electrode 2 is set to “+”, and the TMR element structures 1C and 1B are subjected to the second magnetization from the first magnetization fixed layer 11A side. When a current is supplied to the fixed layer 11B and electrons are injected from the second magnetization fixed layer 11B side, the electrons d D having a downward spin remain in the magnetization free layer 13B, so that the magnetization of the magnetization free layer 13B is reversed downward. To do.

このように、磁気抵抗効果素子5Cは、1個のTMR素子構造を有するスピン注入磁化反転素子5等(図2(a)、(b)参照)と同様に、一対の電極2,3で膜面垂直方向に電流を供給されることで、磁化自由層13Bの磁化方向が180°反転し、さらに磁化自由層13Bの上下両側に磁化固定層11A,11Bを備えることで、磁化反転動作が安定する。   As described above, the magnetoresistive effect element 5C is formed of a pair of electrodes 2 and 3 as in the case of the spin injection magnetization reversal element 5 having one TMR element structure (see FIGS. 2A and 2B). By supplying current in the direction perpendicular to the plane, the magnetization direction of the magnetization free layer 13B is reversed by 180 °, and the magnetization fixed layers 11A and 11B are provided on both upper and lower sides of the magnetization free layer 13B, thereby stabilizing the magnetization reversal operation. To do.

磁気抵抗効果素子5Cの2つの磁化固定層11A,11Bを互いに反平行な磁化に固定するためには、初期設定を次のように行う。例えば第1磁化固定層11Aの方が第2磁化固定層11Bよりも保磁力が大きいのであれば、まず、磁気抵抗効果素子5Cに、第1磁化固定層11Aの保磁力よりも大きな磁界を印加して、磁化固定層11A,11B(および磁化自由層13B)をすべて上向きの磁化とし、次に、第1磁化固定層11Aの保磁力よりも小さくかつ第2磁化固定層11Bの保磁力よりも大きな磁界を印加して、第2磁化固定層11B(および磁化自由層13B)を下向きの磁化にする。あるいは、第2磁化固定層11Bが交換結合した磁性膜を備える場合は、磁化固定層11A,11Bの両方の保磁力を超える磁界を印加しながら、真空中で200℃程度の熱処理をすることにより、前記磁界印加の1回(1段階)で磁気抵抗効果素子5Cの初期設定を行うことができる。   In order to fix the two magnetization fixed layers 11A and 11B of the magnetoresistive effect element 5C to antiparallel magnetization, initial setting is performed as follows. For example, if the first magnetization fixed layer 11A has a larger coercive force than the second magnetization fixed layer 11B, first, a magnetic field larger than the coercivity of the first magnetization fixed layer 11A is applied to the magnetoresistive effect element 5C. Then, the magnetization fixed layers 11A and 11B (and the magnetization free layer 13B) are all magnetized upward, and then smaller than the coercivity of the first magnetization fixed layer 11A and the coercivity of the second magnetization fixed layer 11B. By applying a large magnetic field, the second magnetization fixed layer 11B (and the magnetization free layer 13B) is magnetized downward. Alternatively, when the second magnetization fixed layer 11B includes a magnetic film exchange-coupled, by performing a heat treatment at about 200 ° C. in a vacuum while applying a magnetic field exceeding the coercive force of both the magnetization fixed layers 11A and 11B. The initial setting of the magnetoresistive effect element 5C can be performed by one (one step) application of the magnetic field.

磁気抵抗効果素子5Cは、メモリセルの読出しとして、図2(c)、(d)に示すTMR素子構造1と同様に、磁化反転による抵抗の変化を検知するが、電極2,3間の電圧から測定される値はTMR素子構造1C,1Bの各抵抗の和である。ここで、第1TMR素子構造1Cの、磁化自由層13Bの磁化方向が第1磁化固定層11Aと平行、反平行のときにおける抵抗をR1P,R1AP(=R1P+ΔR1)とし、第2TMR素子構造1Bの、磁化自由層13Bの磁化方向が第2磁化固定層11Bと平行、反平行のときにおける抵抗をR2P,R2AP(=R2P+ΔR2)とする。すると、磁気抵抗効果素子5Bの抵抗は、図7(c)に示す磁化自由層13Bの磁化が上向きのときに、RU=R1P+R2AP、図7(d)に示す磁化自由層13Bの磁化が下向きのときに、RD=R1AP+R2Pとなり、磁化反転による変化量ΔRは、|RU−RD|=|ΔR2−ΔR1|、すなわちTMR素子構造1C,1Bの各抵抗の変化量の差となる。 The magnetoresistive effect element 5C detects a change in resistance due to magnetization reversal, as in the TMR element structure 1 shown in FIGS. The value measured from is the sum of the resistances of the TMR element structures 1C and 1B. Here, the resistance when the magnetization direction of the magnetization free layer 13B of the first TMR element structure 1C is parallel or antiparallel to the first magnetization fixed layer 11A is R1 P , R1 AP (= R1 P + ΔR1), and the second TMR element The resistance when the magnetization direction of the magnetization free layer 13B of the structure 1B is parallel or antiparallel to the second magnetization fixed layer 11B is R2 P and R2 AP (= R2 P + ΔR2). Then, the resistance of the magnetoresistive effect element 5B is such that when the magnetization of the magnetization free layer 13B shown in FIG. 7C is upward, R U = R1 P + R2 AP and the magnetization free layer 13B shown in FIG. When the magnetization is downward, R D = R 1 AP + R 2 P , and the amount of change ΔR due to magnetization reversal is | R U −R D | = | ΔR 2 −ΔR 1 | It becomes a difference in quantity.

したがって、磁気抵抗効果素子5Cは、第1TMR素子構造1Cおよび第2TMR素子構造1Bが、磁化自由層13Bの磁化反転によるそれぞれの抵抗の変化量に検知可能な程度に差があるような構造とすることが好ましい。例えば障壁層121および障壁層122を互いに異なる厚さとすることが挙げられる。   Therefore, the magnetoresistive effect element 5C has a structure in which the first TMR element structure 1C and the second TMR element structure 1B have a difference that can be detected in the amount of change in resistance due to the magnetization reversal of the magnetization free layer 13B. It is preferable. For example, the barrier layer 121 and the barrier layer 122 may have different thicknesses.

(変形例)
あるいは、2つのTMR素子構造が、互いに異なる材料の障壁層を備えてもよく、すなわち一方が(001)面配向のMgO以外の障壁層を備えてもよい。図6(b)に示すように、第4実施形態の変形例に係る磁気抵抗効果素子5Dは、下部電極(電極)2B、第1磁化固定層11、障壁層12、磁化自由層13、中間層(障壁層)14、第2磁化固定層11B、保護膜16、上部電極3Aの順に積層された構成である。すなわち磁気抵抗効果素子5Dは、TMR素子構造1と、TMR素子構造1の磁化自由層13を共有するMR素子構造1Dを積層して備える。
(Modification)
Alternatively, the two TMR element structures may include barrier layers made of different materials, that is, one may include a barrier layer other than (001) -oriented MgO. As shown in FIG. 6B, the magnetoresistive effect element 5D according to the modification of the fourth embodiment includes a lower electrode (electrode) 2B, a first magnetization fixed layer 11, a barrier layer 12, a magnetization free layer 13, an intermediate layer. The layer (barrier layer) 14, the second magnetization fixed layer 11B, the protective film 16, and the upper electrode 3A are stacked in this order. That is, the magnetoresistive effect element 5D includes the TMR element structure 1 and the MR element structure 1D that shares the magnetization free layer 13 of the TMR element structure 1 in a stacked manner.

TMR素子構造1、すなわち磁化固定層11、障壁層12、磁化自由層13は、それぞれ第1実施形態(図1参照)と同様の構成である。また、TMR素子構造1が、磁化固定層11に代えて磁化固定層11A(図6(a)参照)を備えたTMR素子構造1Aであってもよい。MR素子構造1Dの中間層14は、障壁層12とは異なるTMR素子の障壁層として公知の絶縁体にて形成され、Al23,HfO2、あるいは(001)面配向でないMgOからなる。あるいは、MR素子構造1DはCPP−GMR素子であってもよく、この場合に、中間層14は、Cu,Ag,Al,Auのような非磁性金属やZnO等の半導体からなり、厚さを1〜10nmとすることが好ましい。CPP−GMR素子は一般にTMR素子よりもMR比が低く、磁化反転による変化量が小さいため、磁化自由層13の磁化反転による磁気抵抗効果素子5Dの抵抗の変化がより検知し易くなる。 The TMR element structure 1, that is, the magnetization fixed layer 11, the barrier layer 12, and the magnetization free layer 13 have the same configuration as that of the first embodiment (see FIG. 1). Further, the TMR element structure 1 may be a TMR element structure 1A provided with a magnetization fixed layer 11A (see FIG. 6A) instead of the magnetization fixed layer 11. The intermediate layer 14 of the MR element structure 1D is formed of a known insulator as a barrier layer of a TMR element different from the barrier layer 12, and is made of Al 2 O 3 , HfO 2 , or MgO that is not (001) plane oriented. Alternatively, the MR element structure 1D may be a CPP-GMR element. In this case, the intermediate layer 14 is made of a nonmagnetic metal such as Cu, Ag, Al, or Au, or a semiconductor such as ZnO, and has a thickness. It is preferable to set it as 1-10 nm. Since the CPP-GMR element generally has an MR ratio lower than that of the TMR element and the amount of change due to magnetization reversal is small, the change in resistance of the magnetoresistive effect element 5D due to magnetization reversal of the magnetization free layer 13 becomes easier to detect.

以上のように、第4実施形態およびその変形例に係る磁気抵抗効果素子によれば、2つの磁化固定層により磁化反転動作が安定し、また少なくとも1つの障壁層が(001)面配向のMgOからなることで、第3実施形態と同様に、微細化しても読出しが容易で、省電力化した大容量のMRAMを実現することができる。   As described above, according to the magnetoresistive effect element according to the fourth embodiment and the modification thereof, the magnetization reversal operation is stabilized by the two magnetization fixed layers, and at least one barrier layer is MgO having (001) plane orientation. Thus, as in the third embodiment, it is possible to realize a large-capacity MRAM that can be read easily even when miniaturized and saves power.

[第5実施形態]
本発明の第5実施形態に係るスピン注入磁化反転素子は、光変調素子であり、第4実施形態と同様に磁化自由層を共有した2つのTMR素子構造を備えるが、膜面方向に並設されてなる並設デュアルピン構造のスピン注入磁化反転素子(特開2012−78579号公報参照)である。以下、第5実施形態に係るスピン注入磁化反転素子について説明する。第1〜第4実施形態(図1〜7参照)と同一の要素については同じ符号を付し、説明を省略する。
[Fifth Embodiment]
The spin-injection magnetization switching element according to the fifth embodiment of the present invention is a light modulation element and includes two TMR element structures sharing a magnetization free layer as in the fourth embodiment, but is arranged in parallel in the film surface direction. This is a spin injection magnetization reversal element having a parallel dual pin structure (see JP 2012-78579 A). The spin-injection magnetization switching element according to the fifth embodiment will be described below. The same elements as those in the first to fourth embodiments (see FIGS. 1 to 7) are denoted by the same reference numerals, and the description thereof is omitted.

図8に示すように、光変調素子5Eは、第1磁化固定層(磁化固定層)11Aと第2磁化固定層(磁化固定層)11とを互いに離間して面方向に並べて、これら磁化固定層11,11Aおよびその隙間も含めた全体に、それぞれ1つの障壁層12、磁化自由層13、保護膜16を積層して備え、さらに第1磁化固定層11Aの下に第1下部電極(電極)2A1を、第2磁化固定層11の下に第2下部電極(電極)2A2を、それぞれ接続して備える。すなわち光変調素子5Eは、第1磁化固定層11A、障壁層12、磁化自由層13を積層してなる第1TMR素子構造(トンネル磁気抵抗素子構造)1Aと、第2磁化固定層11、障壁層12、磁化自由層13を積層してなる第2TMR素子構造(トンネル磁気抵抗素子構造)1と、の並設された2つのTMR素子構造を、障壁層12および磁化自由層13を共有して備え、これらの部分の断面視が上下反転した凹字型である。なお、障壁層12は、2つに分離して、磁化固定層11A,11のそれぞれに積層されてもよい(図9の障壁層12と中間層14参照)。また、光変調素子5Eは、TMR素子構造1A,1の磁化固定層11,11A側に、すなわち下側に、一対の電極として第1下部電極2A1と第2下部電極2A2とを接続する。したがって、光変調素子5Eは、デュアルピン構造の磁気抵抗効果素子5C(図6(a)参照)を変形させて、アーチ型の電流経路をなす並設デュアルピン構造としたスピン注入磁化反転素子である。   As shown in FIG. 8, in the light modulation element 5E, the first magnetization fixed layer (magnetization fixed layer) 11A and the second magnetization fixed layer (magnetization fixed layer) 11 are spaced apart from each other and arranged in the plane direction, and these magnetization fixed The barrier layer 12, the magnetization free layer 13, and the protective film 16 are stacked on the entire layers 11 and 11A and the gap between them, and a first lower electrode (electrode) is provided below the first magnetization fixed layer 11A. ) 2A1 and a second lower electrode (electrode) 2A2 connected to the second magnetization fixed layer 11, respectively. That is, the light modulation element 5E includes a first TMR element structure (tunnel magnetoresistive element structure) 1A formed by stacking a first magnetization fixed layer 11A, a barrier layer 12, and a magnetization free layer 13, a second magnetization fixed layer 11, and a barrier layer. 12, the second TMR element structure (tunnel magnetoresistive element structure) 1 formed by laminating the magnetization free layer 13 and the two TMR element structures arranged side by side are provided in common with the barrier layer 12 and the magnetization free layer 13. These are concave shapes in which the cross-sectional views of these portions are upside down. The barrier layer 12 may be separated into two and stacked on each of the magnetization fixed layers 11A and 11 (see the barrier layer 12 and the intermediate layer 14 in FIG. 9). The light modulation element 5E connects the first lower electrode 2A1 and the second lower electrode 2A2 as a pair of electrodes to the magnetization fixed layers 11 and 11A side of the TMR element structures 1A and 1, that is, to the lower side. Therefore, the light modulation element 5E is a spin-injection magnetization reversal element having a parallel dual pin structure in which a dual-pin magnetoresistive element 5C (see FIG. 6A) is deformed to form an arch-shaped current path. is there.

TMR素子構造1,1A、すなわち磁化固定層11,11A、障壁層12、磁化自由層13は、それぞれ第1、第2実施形態(図1、図4参照)と同様の構成である。光変調素子5Eにおいては、磁気抵抗効果素子5Cと異なり、磁化自由層13は、上に障壁層12が形成されないのでGd−Fe合金(磁化自由層13B)に限定されない。また、光変調素子5Eにおいては、第1磁化固定層11A(TbFeCo層11a)をTb−Fe−Coで、第2磁化固定層11をGd−Fe合金で、それぞれ形成することで、これらの上に形成される障壁層12を(001)配向のMgOとしつつ、互いの保磁力の大きさを異なるものとする。光変調素子5Eは、このような構成とすることにより、第4実施形態に係る磁気抵抗効果素子5Cと同様に、第1磁化固定層11Aと第2磁化固定層11とで互いに反平行な磁化方向に固定することを容易にする(図7(a)、(b)参照)。なお、図8において、磁化固定層11A,11は同じ厚さかつ同じ高さ位置で示しているが、厚さおよび高さ位置を同じとすることを規定するものではなく、互いに異なる厚さで、また異なる高さ位置に形成されてよい。光変調素子5Eは、2つの磁化固定層11A,11の厚さが互いに異なる場合には、下部電極2A1,2A2上に下地膜を設けて、磁化固定層11A,11の上面の高さ位置を揃えればよい(図示せず)。さらに、光変調素子5Eは、2つの磁化固定層の両方を磁化固定層11または磁化固定層11Aとしてもよく、この場合は互いに異なる厚さとして保磁力が異なるように形成すればよい。   The TMR element structures 1 and 1A, that is, the magnetization fixed layers 11 and 11A, the barrier layer 12, and the magnetization free layer 13 have the same configurations as those in the first and second embodiments (see FIGS. 1 and 4), respectively. In the light modulation element 5E, unlike the magnetoresistive effect element 5C, the magnetization free layer 13 is not limited to the Gd—Fe alloy (magnetization free layer 13B) because the barrier layer 12 is not formed thereon. In the light modulation element 5E, the first magnetization fixed layer 11A (TbFeCo layer 11a) is formed of Tb—Fe—Co, and the second magnetization fixed layer 11 is formed of a Gd—Fe alloy. While the barrier layer 12 formed in the above is made of (001) -oriented MgO, the magnitude of the coercive force is different. By adopting such a configuration, the light modulation element 5E has magnetizations antiparallel to each other in the first magnetization fixed layer 11A and the second magnetization fixed layer 11 similarly to the magnetoresistive effect element 5C according to the fourth embodiment. It is easy to fix in the direction (see FIGS. 7A and 7B). In FIG. 8, the magnetization fixed layers 11 </ b> A and 11 are shown at the same thickness and the same height position, but this does not stipulate that the thickness and the height position are the same. , And may be formed at different height positions. In the light modulation element 5E, when the thicknesses of the two magnetization fixed layers 11A and 11 are different from each other, a base film is provided on the lower electrodes 2A1 and 2A2, and the height positions of the upper surfaces of the magnetization fixed layers 11A and 11 are set. They should be aligned (not shown). Furthermore, the light modulation element 5E may use both of the two magnetization fixed layers as the magnetization fixed layer 11 or the magnetization fixed layer 11A. In this case, the light modulation elements 5E may be formed to have different thicknesses and different coercive forces.

本実施形態に係る光変調素子5Eは、一対の電極が、面方向に並べて配置された磁化固定層11,11Aのそれぞれの下側に接続されるため、2つの下部電極2A1,2A2を備え、上部電極を有さない。磁化自由層13(保護膜16)上には、必要に応じて、SiO2等の光を透過する絶縁材料が設けられる(図示省略)。なお、第1下部電極2A1および第2下部電極2A2は、第1実施形態の変形例におけるCu層24およびCuCr合金層21からなる下部電極2Aと同じ要素であり、互いに識別するために異なる符合を付す。光変調素子5Eは、第1下部電極2A1および第2下部電極2A2(下部電極2A)に代えて、CuCr合金層21のみの下部電極2(図1参照)やCuCr合金層21上にTa膜22を積層した下部電極2B,2C(図3参照)を備えてもよい。 The light modulation element 5E according to the present embodiment includes two lower electrodes 2A1 and 2A2 because the pair of electrodes are connected to the lower sides of the magnetization fixed layers 11 and 11A arranged in the plane direction. Does not have an upper electrode. An insulating material that transmits light such as SiO 2 is provided on the magnetization free layer 13 (protective film 16) as necessary (not shown). The first lower electrode 2A1 and the second lower electrode 2A2 are the same elements as the lower electrode 2A composed of the Cu layer 24 and the CuCr alloy layer 21 in the modified example of the first embodiment, and have different signs to identify each other. Attached. In the light modulation element 5E, instead of the first lower electrode 2A1 and the second lower electrode 2A2 (lower electrode 2A), the Ta film 22 is formed on the lower electrode 2 (see FIG. 1) having only the CuCr alloy layer 21 or the CuCr alloy layer 21. The lower electrodes 2B and 2C (see FIG. 3) may be provided.

第1下部電極2A1および第2下部電極2A2は、第1実施形態における一対の電極2,3と同様に、一方を行方向に、他方を列方向にそれぞれ延設した配線により、2次元アレイ状に配列された光変調素子5Eにおいて共有される。第1下部電極2A1は、磁化固定層11,11Aの並び方向(図8における左右方向)に直交する方向に延設されて、当該第1下部電極2A1自体が、第1実施形態に係る光変調素子5等の下部電極2と同様に、第1磁化固定層11の下に直接に接続する配線状に形成される。一方、第1下部電極2A1に直交した方向(図8における左右方向)に延設された配線を介して共有される第2下部電極2A2は、第1磁化固定層11Aと第1下部電極2A1との接続を妨げないように、かつ第1下部電極2A1と短絡しないように、前記配線の部分(配線部41A)が、第1下部電極2A1の下(TMR素子構造1A,1から離れた側)に層間絶縁層(絶縁層6)を挟んで設けられる。そして、第2下部電極2A2は、配線部41Aに層間接続部(コンタクト)43Aで接続する。層間接続部43Aは、第2下部電極2A2における第2磁化固定層11の下地表面となる領域が粗くならないように、第2磁化固定層11の直下を避けて設けられることが好ましい。第2下部電極2A2に接続する配線部41Aおよび層間接続部43Aは、Cu等の金属電極材料で形成されてよい。   Similar to the pair of electrodes 2 and 3 in the first embodiment, the first lower electrode 2A1 and the second lower electrode 2A2 are two-dimensionally arrayed by wiring extending one in the row direction and the other in the column direction. Are shared by the light modulation elements 5E arranged in the same manner. The first lower electrode 2A1 extends in a direction orthogonal to the direction in which the magnetization fixed layers 11 and 11A are arranged (the left-right direction in FIG. 8), and the first lower electrode 2A1 itself is the light modulation according to the first embodiment. Similar to the lower electrode 2 of the element 5 or the like, it is formed in a wiring shape directly connected under the first magnetization fixed layer 11. On the other hand, the second lower electrode 2A2 shared via the wiring extending in the direction orthogonal to the first lower electrode 2A1 (the left-right direction in FIG. 8) includes the first magnetization fixed layer 11A, the first lower electrode 2A1, and The wiring portion (wiring portion 41A) is below the first lower electrode 2A1 (on the side away from the TMR element structures 1A and 1) so as not to prevent the connection of the first lower electrode 2A1. Are provided with an interlayer insulating layer (insulating layer 6) interposed therebetween. The second lower electrode 2A2 is connected to the wiring portion 41A by an interlayer connection portion (contact) 43A. The interlayer connection portion 43A is preferably provided so as to avoid a region immediately below the second magnetization fixed layer 11 so that the region serving as the base surface of the second magnetization fixed layer 11 in the second lower electrode 2A2 does not become rough. The wiring portion 41A and the interlayer connection portion 43A connected to the second lower electrode 2A2 may be formed of a metal electrode material such as Cu.

(光変調素子の動作)
光変調素子5EにおけるTMR素子構造1A,1の磁化反転の動作は、第4実施形態にかかる磁気抵抗効果素子5C(図7(a)、(b)参照)と同様である。すなわち、光変調素子5Eは、一対の電極(第1下部電極2A1、第2下部電極2A2)間の電流経路(電子dU,dDの注入経路)の形状が、磁気抵抗効果素子5Cの膜面に垂直な一直線に対してアーチ型になっただけである。光変調素子5Eにおいては、磁化自由層13の、磁化固定層11A,11のそれぞれに積層された領域の間にも注入された電子(dU,dDの一方)が留まるため、この領域の間においても磁化反転させることができる。
(Operation of light modulator)
The magnetization reversal operation of the TMR element structures 1A and 1 in the light modulation element 5E is the same as that of the magnetoresistive effect element 5C according to the fourth embodiment (see FIGS. 7A and 7B). That is, in the light modulation element 5E, the shape of the current path (electron d U , d D injection path) between the pair of electrodes (first lower electrode 2A1, second lower electrode 2A2) is the film of the magnetoresistive effect element 5C. It was only arched with respect to a straight line perpendicular to the surface. In the light modulation element 5E, the injected electrons (one of d U and d D ) remain between the regions of the magnetization free layer 13 stacked on the magnetization fixed layers 11A and 11 respectively. It is possible to reverse the magnetization even in between.

スピン注入磁化反転素子は平面視の面積が大きいと磁化反転し難いが、光変調素子5Eは、TMR素子構造1A,1を、磁気抵抗効果素子と同様に1つの面積を小さく設計して面方向に2つ並べて備え、共有させた磁化自由層13の面積を大きくすることで、反転電流を小さく抑えつつ、光変調の実効面積を大きくする。光変調素子5Eは、第1実施形態に係る光変調素子5(図2(c)、(d)参照)と同様に、磁化自由層13が設けられた側である上方から光を入出射して光変調する。また、光変調素子5Eは、一対の電極(第1下部電極2A1、第2下部電極2A2)の両方が、磁化固定層11A,11の側(下)のみに設けられて、磁化自由層13には直接に(保護膜16を除く)接続する必要がない。したがって、光変調素子5Eは、一対の電極のいずれも光を透過させる必要がなく、非晶質のCu−Cr合金(CuCr合金層21)よりもさらに抵抗の高い透明電極材料(光変調素子5の上部電極3(図1参照))を適用する必要がない。   The spin-injection magnetization reversal element is difficult to reverse the magnetization when the area in plan view is large, but the light modulation element 5E is designed so that the TMR element structures 1A and 1 are designed to have a small area as in the magnetoresistive effect element. By increasing the area of the shared magnetization free layer 13, the effective area of the light modulation is increased while suppressing the reversal current. Similarly to the light modulation element 5 according to the first embodiment (see FIGS. 2C and 2D), the light modulation element 5E inputs and outputs light from the upper side where the magnetization free layer 13 is provided. Light modulation. The light modulation element 5E includes a pair of electrodes (first lower electrode 2A1 and second lower electrode 2A2) both provided only on the magnetization fixed layers 11A and 11 (lower side). Need not be connected directly (except for the protective film 16). Therefore, the light modulation element 5E does not require any of the pair of electrodes to transmit light, and the transparent electrode material (light modulation element 5) having higher resistance than the amorphous Cu—Cr alloy (CuCr alloy layer 21). It is not necessary to apply the upper electrode 3 (see FIG. 1).

(変形例)
第4実施形態の変形例と同様に、デュアルピン構造のスピン注入磁化反転素子は、2つのTMR素子構造が、互いに異なる材料の障壁層を備えてもよく、すなわち一方が(001)面配向のMgO以外の障壁層を備えてもよい。図9に示すように、第5実施形態の変形例に係る光変調素子5Fは、磁化自由層13を共有したTMR素子構造1とMR素子構造1Dとを並設して備える。したがって、光変調素子5Fは、デュアルピン構造の磁気抵抗効果素子5D(図6(b)参照)を変形させて、アーチ型の電流経路をなす並設デュアルピン構造のスピン注入磁化反転素子とした光変調素子である。
(Modification)
Similar to the modification of the fourth embodiment, in the dual-pin structure spin transfer magnetization switching element, the two TMR element structures may include barrier layers made of different materials, that is, one of which has a (001) plane orientation. A barrier layer other than MgO may be provided. As shown in FIG. 9, the light modulation element 5F according to the modification of the fifth embodiment includes the TMR element structure 1 and the MR element structure 1D that share the magnetization free layer 13 in parallel. Accordingly, the optical modulation element 5F is a dual-pin structure spin-injection magnetization reversal element in which the dual-pin magnetoresistive element 5D (see FIG. 6B) is deformed to form an arch-shaped current path. It is a light modulation element.

TMR素子構造1およびMR素子構造1D、すなわち磁化固定層11,11B、障壁層12、磁化自由層13、中間層14は、それぞれ磁気抵抗効果素子5Dと同様の構成である。また、磁化固定層11Bは、磁化固定層11と保磁力の差を設けることに代えて、中間層14の側(上)に、交換結合した磁性膜を積層した多層構造としてもよい(図示せず)。なお、図9において、磁化固定層11と磁化固定層11B、障壁層12と中間層14は、それぞれ同じ厚さかつ同じ高さ位置で示しているが、厚さおよび高さ位置を同じとすることを規定するものではなく、互いに異なる厚さで、また異なる高さ位置に形成されてよい。   The TMR element structure 1 and the MR element structure 1D, that is, the magnetization fixed layers 11 and 11B, the barrier layer 12, the magnetization free layer 13, and the intermediate layer 14 have the same configuration as the magnetoresistive effect element 5D. Further, the fixed magnetization layer 11B may have a multilayer structure in which exchange-coupled magnetic films are stacked on the intermediate layer 14 side (upper side) instead of providing a difference in coercive force from the fixed magnetization layer 11 (not shown). ) In FIG. 9, the magnetization fixed layer 11 and the magnetization fixed layer 11B, and the barrier layer 12 and the intermediate layer 14 are shown with the same thickness and the same height position, but the thickness and the height position are the same. However, they may be formed with different thicknesses and at different height positions.

光変調素子5Fは、互いに異なる材料からなる、あるいはさらに異なる厚さの障壁層12と中間層14とを備えることで、磁化自由層13の磁化反転による当該光変調素子5F(下部電極2A1,2A2間)の抵抗の変化を検知することができる(図7(c)、(d)参照)。特に、中間層14を非磁性金属等で形成して、MR素子構造1DをCPP−GMR素子とすることで、抵抗の変化が大きくなってより検知し易くなる。したがって、本変形例に係る光変調素子5Fは、磁化反転のエラー検出を行う空間光変調器の画素に好適である。そのために、光変調素子5Fは、第3実施形態(図5参照)等に係る磁気抵抗効果素子のようにMOSFETに接続することが好ましく、すなわち下部電極2A1,2A2の一方をMOSFETのドレインに接続する。例えば第2下部電極2A2を層間接続部43A(図8参照)でMOSFETのドレインに接続し、また、配線部41A(図8参照)をMOSFETのソースに接続して、第1下部電極2A1と共に、電流IW,ITSTを供給するための一対の電極とする。 The light modulation element 5F includes a barrier layer 12 and an intermediate layer 14 made of different materials or having different thicknesses, so that the light modulation element 5F (lower electrodes 2A1, 2A2) due to magnetization reversal of the magnetization free layer 13 is provided. The change in resistance during the period can be detected (see FIGS. 7C and 7D). In particular, when the intermediate layer 14 is formed of a nonmagnetic metal or the like and the MR element structure 1D is a CPP-GMR element, a change in resistance is increased and detection becomes easier. Therefore, the light modulation element 5F according to the present modification is suitable for a pixel of a spatial light modulator that performs magnetization reversal error detection. Therefore, the light modulation element 5F is preferably connected to the MOSFET like the magnetoresistive effect element according to the third embodiment (see FIG. 5), that is, one of the lower electrodes 2A1 and 2A2 is connected to the drain of the MOSFET. To do. For example, the second lower electrode 2A2 is connected to the drain of the MOSFET at the interlayer connection portion 43A (see FIG. 8), and the wiring portion 41A (see FIG. 8) is connected to the source of the MOSFET, together with the first lower electrode 2A1, A pair of electrodes for supplying currents I W and I TST are used.

本変形例において、第1下部電極2A1および第2下部電極2A2は、第5実施形態に係る光変調素子5Eと同様に下部電極2Aと同じ要素であり、下部電極2(図1参照)や下部電極2B,2C(図3参照)を備えてもよい。なお、第2下部電極2A2については、上に(001)面配向のMgOからなる障壁層12が形成されないので、CuCr合金層21を有さないCu等の金属電極材料で形成されてもよいが、第1下部電極2A1と同じ高さ位置に設けられることから、同時に金属材料を成膜して形成することができるように、同じ積層構造(Cu層24/CuCr合金層21)とすることが好ましい。   In the present modification, the first lower electrode 2A1 and the second lower electrode 2A2 are the same elements as the lower electrode 2A, like the light modulation element 5E according to the fifth embodiment, and the lower electrode 2 (see FIG. 1) and the lower electrode Electrodes 2B and 2C (see FIG. 3) may be provided. The second lower electrode 2A2 may be formed of a metal electrode material such as Cu that does not have the CuCr alloy layer 21 because the barrier layer 12 made of (001) -oriented MgO is not formed thereon. Since the first lower electrode 2A1 is provided at the same height as the first lower electrode 2A1, the same laminated structure (Cu layer 24 / CuCr alloy layer 21) can be formed so that a metal material can be formed at the same time. preferable.

以上のように、第5実施形態およびその変形例に係る光変調素子は、第1、第2実施形態と同様に反転電流を抑えることができると同時に、面積を大きくすることができるので、空間光変調器の画素として有効領域の広いものとすることができ、また透明電極材料が不要であるのでいっそう省電力化された空間光変調器の画素となる。さらに第5実施形態の変形例に係る光変調素子は、書込みエラー検出の容易な空間光変調器の画素となる。   As described above, the light modulation element according to the fifth embodiment and the modification thereof can suppress the inversion current and increase the area at the same time as in the first and second embodiments. The pixel of the optical modulator can have a wide effective area, and since a transparent electrode material is not required, the pixel of the spatial light modulator can be further reduced in power consumption. Furthermore, the light modulation element according to the modification of the fifth embodiment is a pixel of a spatial light modulator that can easily detect a write error.

以上、本発明を実施するための形態について述べてきたが、以下に、本発明の効果を確認した実施例を、本発明の要件を満たさない比較例と対比して具体的に説明する。   As mentioned above, although the form for implementing this invention has been described, the Example which confirmed the effect of this invention is demonstrated concretely compared with the comparative example which does not satisfy | fill the requirements of this invention below.

本発明に係るスピン注入磁化反転素子において、下地とした磁性膜、および下部電極によるMgO膜の結晶構造への効果を確認するために、熱酸化Si基板上に、表1および表2に示す材料を下から順に積層してサンプルを作製し、X線回折(XRD)にて結晶構造を解析した。No.1,2は、磁化固定層を模擬した磁性膜に障壁層を模擬したMgO膜を積層したサンプルで、上下電極は設けなかった。さらに、本明細書の実施例1〜3におけるすべてのサンプルについて成形加工を施さなかった。No.1は本発明の第1実施形態に係るスピン注入磁化反転素子(図1参照)のサンプル、No.2は本発明の第2実施形態に係るスピン注入磁化反転素子(図4参照)のサンプルである。なお、MgO膜は、障壁層としては厚さ2nm程度以下であるが、MgOの結晶構造解析の感度を高くするために、表1に示すように厚さを15nmまたは30nmとした。No.1,2のサンプルについて、X線回折(CuKα線使用、θ−2θ走査)パターンを図10に示す。   In the spin-injection magnetization switching element according to the present invention, in order to confirm the effect of the underlying magnetic film and the lower electrode on the crystal structure of the MgO film, the materials shown in Tables 1 and 2 are formed on the thermally oxidized Si substrate. Were stacked in order from the bottom to prepare a sample, and the crystal structure was analyzed by X-ray diffraction (XRD). No. Reference numerals 1 and 2 are samples in which an MgO film simulating a barrier layer is laminated on a magnetic film simulating a magnetization fixed layer, and no upper and lower electrodes are provided. Further, all samples in Examples 1 to 3 of this specification were not subjected to molding. No. 1 is a sample of a spin injection magnetization reversal element (see FIG. 1) according to the first embodiment of the present invention. 2 is a sample of the spin-injection magnetization switching element (see FIG. 4) according to the second embodiment of the present invention. The MgO film has a thickness of about 2 nm or less as a barrier layer, but the thickness was set to 15 nm or 30 nm as shown in Table 1 in order to increase the sensitivity of the crystal structure analysis of MgO. No. FIG. 10 shows X-ray diffraction (using CuKα rays, θ-2θ scanning) patterns for the samples 1 and 2.

No.3,4,6は、本発明の第2実施形態に係る光変調素子のTMR素子構造(図4参照)を模擬して備えたサンプルであり、さらにNo.3,4は、それぞれ本発明の第1実施形態およびその変形例に係る光変調素子の下部電極(図1、図3(a)参照)を備える。No.5は、第2実施形態に係るスピン注入磁化反転素子の磁化固定層がCoFeB層を積層しないTbFeCo層のみの比較例であり、下部電極として、MgOの結晶構造に与える影響の小さい(MgOの(001)面配向を妨げない)Taを備える。下部電極のCu−Cr合金はCr:36.8at%とし、Cuからなるスパッタ源(純度9N)とCrからなるスパッタ源(純度3N)とを取り付けたデュアルイオンビームスパッタ装置にてCu,Crを同時にスパッタリングすることにより成膜した。一方、No.6,7は、下部電極に、Cuからなるスパッタ源のみで成膜したCu層を備える比較例である。さらにNo.7は、TMR素子構造の磁化固定層を[Co/Pt]×nの多層膜、詳しくは、下から[Pt:1.2nm/Co:0.2nm]×10の多層膜とした。また、表2に示す、No.3,4における磁化自由層の「Pt/Co」は、下からPt:1.5nm/[Co:0.3nm/Pt:1.0nm]×3の多層膜である。また、No.3〜7は、No.1,2と同様に、障壁層を模擬したMgO膜は結晶構造解析の感度を高くするために厚さを50nmまたは30nmとし、上部電極は設けず、さらにNo.5〜7は、No.1,2と同様にMgO膜の上の磁性膜(磁化自由層)を省略した。No.3〜6のサンプルについて、X線回折(CoKα線使用、θ−2θ走査)パターンを図11に示す。   No. Nos. 3, 4, and 6 are samples provided by simulating the TMR element structure (see FIG. 4) of the light modulation element according to the second embodiment of the present invention. 3 and 4 are each provided with the lower electrode (refer FIG. 1, FIG. 3 (a)) of the light modulation element which concerns on 1st Embodiment of this invention, and its modification. No. 5 is a comparative example in which the magnetization fixed layer of the spin-injection magnetization reversal element according to the second embodiment is only a TbFeCo layer in which no CoFeB layer is stacked, and the lower electrode has a small influence on the crystal structure of MgO ((MgO ( 001) Does not interfere with plane orientation. The Cu—Cr alloy of the lower electrode is Cr: 36.8 at%, and Cu and Cr are deposited by a dual ion beam sputtering apparatus equipped with a sputtering source made of Cu (purity 9N) and a sputtering source made of Cr (purity 3N). A film was formed by simultaneous sputtering. On the other hand, no. 6 and 7 are comparative examples in which the lower electrode is provided with a Cu layer formed only by a sputtering source made of Cu. Furthermore, no. 7 is a [Co / Pt] × n multilayer film, specifically, a [Pt: 1.2 nm / Co: 0.2 nm] × 10 multilayer film from the bottom. In addition, as shown in Table 2, No. “Pt / Co” of the magnetization free layer in 3 and 4 is a multilayer film of Pt: 1.5 nm / [Co: 0.3 nm / Pt: 1.0 nm] × 3 from the bottom. No. 3-7 are No.3. As in the case of Nos. 1 and 2, the MgO film simulating the barrier layer has a thickness of 50 nm or 30 nm in order to increase the sensitivity of the crystal structure analysis, and no upper electrode is provided. 5-7 are No. Similar to 1 and 2, the magnetic film (magnetization free layer) on the MgO film was omitted. No. FIG. 11 shows X-ray diffraction (using CoKα rays, θ-2θ scanning) patterns for 3 to 6 samples.

Figure 2014110356
Figure 2014110356

Figure 2014110356
Figure 2014110356

MgO(001)面は消滅則で観測不能なため、この面と平行なMgO(002)面の現れる回折角度2θ=42.9°(CuKα線)、50.2°(CoKα線)のそれぞれの近傍を観察した。図10(a)、(b)にそれぞれ示すように、MgOを、GdFe層またはCoFeB層の表面に積層したNo.1,2は、(001)面配向を示すことが確認され、特にGdFe層に積層したNo.1は強い(001)面配向のMgO膜を形成された。   Since the MgO (001) plane cannot be observed by the extinction rule, the diffraction angles 2θ = 42.9 ° (CuKα line) and 50.2 ° (CoKα line) at which the MgO (002) plane parallel to this plane appears are shown. The vicinity was observed. As shown in FIGS. 10 (a) and 10 (b), No. 1 in which MgO is laminated on the surface of the GdFe layer or CoFeB layer. Nos. 1 and 2 were confirmed to show (001) plane orientation, and in particular, No. 1 laminated on the GdFe layer. No. 1 formed a strong (001) -oriented MgO film.

下部電極を電極材料として一般的なCuで形成した比較例のNo.6は、図11(d)に示すようにCu(111)面が強く、その上にTa膜、さらにNo.2と同様に、磁化固定層に非晶質のTbFeCo層、およびMgO膜の下地となるCoFeB層が積層されても、MgO(002)面は観察できず、あるいは存在したとしてもCu(111)面のピークの裾に隠れる程度の微小なものであった。さらにMgO膜の下地である磁化固定層をfcc構造のPt/Co多層膜で形成したNo.7は、MgO(111)面が観測された(図示省略)。   No. of the comparative example in which the lower electrode is formed of general Cu as an electrode material. No. 6 has a strong Cu (111) surface as shown in FIG. 2, even if an amorphous TbFeCo layer and a CoFeB layer serving as the base of the MgO film are laminated on the magnetization fixed layer, the MgO (002) plane cannot be observed or even if present, Cu (111) It was so small that it was hidden behind the peak of the surface. Furthermore, the magnetization fixed layer which is the base of the MgO film is formed of a Pt / Co multilayer film having an fcc structure. In No. 7, an MgO (111) plane was observed (not shown).

これに対して、下部電極をCu−Cr合金で形成した本発明の実施例であるNo.3は、図11(a)に示すように、No.2(図10(b)参照)と同様にMgO(002)面を観測することができた。さらに、Cu−Cr合金層にTa膜を積層したNo.4は、図11(b)に示すようにMgO(002)面のピーク強度がNo.3の約2倍となり、いっそう強い(001)面配向のMgO膜を形成できた。なお、No.3,4は、Cu−Cr合金からCr(110)面も観察されたが、Cr単独の結晶構造の半分程度のピーク強度であることから、Cu−Cr合金は非晶質に近い結晶構造であるといえる。また、No.3の下部電極(CuCr合金層)は、表面の算術平均粗さRaが0.3nmであり、同じ50nm厚さとしたCu層の表面の算術平均粗さRa1.3nmと比較して平坦性が良好であった。   On the other hand, No. 1 which is an embodiment of the present invention in which the lower electrode is formed of a Cu—Cr alloy. 3 is No. 3, as shown in FIG. 2 (see FIG. 10B), the MgO (002) plane could be observed. Furthermore, No. 1 was obtained by laminating a Ta film on a Cu—Cr alloy layer. 4 shows that the peak intensity on the MgO (002) plane is No. 4, as shown in FIG. Thus, an MgO film having a stronger (001) orientation could be formed. In addition, No. 3 and 4, the Cr (110) plane was also observed from the Cu-Cr alloy, but since the peak intensity is about half of the crystal structure of Cr alone, the Cu-Cr alloy has a crystal structure close to amorphous. It can be said that there is. No. The lower electrode (CuCr alloy layer) No. 3 has a surface arithmetic average roughness Ra of 0.3 nm, and the flatness is better than the arithmetic average roughness Ra 1.3 nm of the surface of the Cu layer having the same thickness of 50 nm. Met.

一方、MgO膜をTbFeCo層の表面に積層した比較例のNo.5は、図11(c)に示すように、MgO(002)面を観察することはできたが、下部電極としたTa膜のTa(110)面に対してピークが小さく、TMR素子の障壁層として反転電流を低減させるために十分な(001)面配向とはいえないMgO膜に形成された。   On the other hand, in the comparative example No. 1 in which the MgO film is laminated on the surface of the TbFeCo layer. 11, the MgO (002) plane could be observed as shown in FIG. 11C, but the peak was small with respect to the Ta (110) plane of the Ta film as the lower electrode, and the barrier of the TMR element was As a layer, an MgO film having a (001) plane orientation sufficient to reduce the reversal current was formed.

前記実施例1の磁性膜(磁化固定層)が垂直磁気異方性を有することを確認するために、熱酸化Si基板上に、表3に示す材料を下から順に積層して、TMR素子を模擬したサンプルを作製し、磁気光学効果を観察した。No.8は実施例1のNo.1に対応した本発明の第1実施形態に係るスピン注入磁化反転素子(図1参照)のサンプル、No.9は実施例1のNo.2に対応した本発明の第2実施形態に係るスピン注入磁化反転素子(図4参照)のサンプルである。No.10は、No.9のGdFeからなる磁化自由層に、障壁層との界面にCoFeB層を積層した比較例である。サンプルは、いずれも、外部磁界印加にて磁化方向を変化させるので、上部電極は設けず、反射膜とするために、下部電極として、下からTa:5nm/[Cu:15nm/Ta:3nm]×2の多層膜(表3に「Cu/Ta」と示す)を設けた。   In order to confirm that the magnetic film (magnetization pinned layer) of Example 1 had perpendicular magnetic anisotropy, the materials shown in Table 3 were laminated in order from the bottom on the thermally oxidized Si substrate, and the TMR element was formed. A simulated sample was prepared and the magneto-optical effect was observed. No. No. 8 of Example 1 1, a sample of the spin transfer magnetization switching element (see FIG. 1) according to the first embodiment of the present invention corresponding to No. 1, 9 is No. 1 in Example 1. 4 is a sample of a spin transfer magnetization switching element (see FIG. 4) according to a second embodiment of the present invention corresponding to 2. No. 10 is No. This is a comparative example in which a CoFeB layer is laminated on the interface with the barrier layer on a magnetization free layer made of 9 GdFe. In any sample, the magnetization direction is changed by applying an external magnetic field. Therefore, the upper electrode is not provided, and a reflection film is formed from the bottom as Ta: 5 nm / [Cu: 15 nm / Ta: 3 nm]. A x2 multilayer film (shown as “Cu / Ta” in Table 3) was provided.

Figure 2014110356
Figure 2014110356

作製したサンプルについて、レーザー光を用いた偏光変調法にてカー回転角を測定し、印加磁界との関係から保磁力を同定した。詳しくは、サンプルに、外部から一様な磁界H(>0)を印加することによって、磁化固定層および磁化自由層の磁化方向が一方向となるようにした。そして、波長780nmのレーザー光を入射角30°で入射して、サンプルからの反射光の偏光の向き(カー回転角)を、垂直磁界Kerr効果測定装置で測定した。次に、反射光の偏光の測定を継続したまま、前記印加磁界と反対方向の磁界H(<0)をその大きさ(絶対値)を漸増させながら印加して、偏光の向きの変化を観察した。同様に、反対方向の磁界H(>0)を印加して、偏光の向きの変化を観察した。図12に、カー回転角の磁場(印加磁界)依存性を、磁化曲線として示す。   About the produced sample, the Kerr rotation angle was measured by the polarization modulation method using a laser beam, and the coercive force was identified from the relationship with the applied magnetic field. Specifically, a uniform magnetic field H (> 0) is applied to the sample from the outside so that the magnetization directions of the magnetization fixed layer and the magnetization free layer become one direction. Then, a laser beam having a wavelength of 780 nm was incident at an incident angle of 30 °, and the direction of polarization (Kerr rotation angle) of the reflected light from the sample was measured with a vertical magnetic field Kerr effect measuring device. Next, while continuing to measure the polarization of the reflected light, a magnetic field H (<0) in the direction opposite to the applied magnetic field is applied while gradually increasing its magnitude (absolute value), and the change in the polarization direction is observed. did. Similarly, a change in the direction of polarization was observed by applying a magnetic field H (> 0) in the opposite direction. FIG. 12 shows the magnetic field (applied magnetic field) dependence of the Kerr rotation angle as a magnetization curve.

図12(a)、(b)に示すように、磁化固定層をGdFe単層、またはTbFeCo層とCoFeB層の2層とし、磁化自由層をGdFe単層としたNo.8,9は、それぞれ磁場がある大きさに到達した時点で、急激にカー回転角が変化したことから、カー回転角が変化したときの磁場の大きさで磁化反転し、また磁化自由層が垂直磁気異方性を有することが確認された。なお、No.8は、カー回転角が2ステップで変化した。これは、磁場(磁界)が大きくなるにしたがい、磁化自由層、磁化固定層の両層が順次、磁化反転したことを示し、磁化固定層が磁化自由層と同一組成のGdFeで形成されたために保磁力が小さく、また磁化自由層との差も小さいことによる。一方、No.9は、磁化固定層が保磁力の大きいTbFeCoを備えることにより、絶対値1kOe以下の磁場では磁化が変化せず、GdFeからなる磁化自由層のみが磁化反転し、スピン注入磁化反転素子として安定した動作を示した。   12A and 12B, the magnetization fixed layer is a GdFe single layer or two layers of a TbFeCo layer and a CoFeB layer, and the magnetization free layer is a GdFe single layer. 8 and 9, since the Kerr rotation angle suddenly changed when the magnetic field reached a certain magnitude, the magnetization was reversed by the magnitude of the magnetic field when the Kerr rotation angle was changed, and the magnetization free layer was It was confirmed to have perpendicular magnetic anisotropy. In addition, No. In No. 8, the Kerr rotation angle changed in two steps. This indicates that the magnetization free layer and the magnetization fixed layer were sequentially reversed in magnetization as the magnetic field (magnetic field) increased, and the magnetization fixed layer was formed of GdFe having the same composition as the magnetization free layer. This is because the coercive force is small and the difference from the magnetization free layer is also small. On the other hand, no. No. 9, because the magnetization fixed layer includes TbFeCo having a large coercive force, the magnetization does not change in a magnetic field of 1 kOe or less in absolute value, and only the magnetization free layer made of GdFe is reversed in magnetization, and is stable as a spin injection magnetization reversal element. The operation was shown.

これらNo.8,9に対して、磁化自由層のGdFe層をCoFeB層に積層したNo.10は、図12(c)に示すように、カー回転角が最大でNo.8,9の約1/10であり、また磁場の増加に伴って急激に変化することがなかった。これは、入射角30°で入射した光に対して、磁化自由層の磁化方向が垂直に近く(60°)、極カー効果が得られなかったためであり、磁化自由層が垂直磁気異方性を有していないことを示す。   These No. 8 and 9, the GdFe layer of the magnetization free layer was laminated on the CoFeB layer. No. 10 has a maximum Kerr rotation angle as shown in FIG. It was about 1/10 of 8,9, and it did not change rapidly as the magnetic field increased. This is because the magnetization direction of the magnetization free layer is nearly perpendicular (60 °) with respect to light incident at an incident angle of 30 °, and the polar Kerr effect was not obtained. Is not present.

下部電極のCu−Cr合金の組成による結晶構造を確認するために、熱酸化Si基板上に組成を変化させた厚さ50nmのCu−Cr合金膜を成膜してサンプルを作製し、CuKα線を使用したX線回折(XRD)にて結晶構造を解析した。Cu−Cr合金は、実施例1のNo.3の下部電極と同様に、Cu,Crそれぞれからなるスパッタ源を取り付けたデュアルイオンビームスパッタ装置にて、イオンビームの出力を変化させてCu,Crを同時にスパッタリングすることにより成膜した。Cr:7.7at%,14.0at%,36.8at%,42.9at%,47.8at%の5通りの組成のCu−Cr合金膜について、X線回折(θ−2θ走査)パターンを図13に示す。なお、Cu膜(Cr:0%)のパターンを、図13(a)〜(e)のそれぞれに破線で併記する。   In order to confirm the crystal structure of the Cu—Cr alloy composition of the lower electrode, a sample was prepared by depositing a 50 nm thick Cu—Cr alloy film having a changed composition on a thermally oxidized Si substrate. The crystal structure was analyzed by X-ray diffraction (XRD) using The Cu—Cr alloy is No. 1 in Example 1. Similarly to the lower electrode 3, film formation was performed by simultaneously sputtering Cu and Cr by changing the output of the ion beam in a dual ion beam sputtering apparatus equipped with a sputtering source composed of Cu and Cr. Cr: 7.7 at%, 14.0 at%, 36.8 at%, 42.9 at%, 47.8 at%, Cu-Cr alloy films having five different compositions were subjected to X-ray diffraction (θ-2θ scanning) patterns. As shown in FIG. In addition, the pattern of Cu film | membrane (Cr: 0%) is written together with the broken line in each of Fig.13 (a)-(e).

図13(a)、(b)に示すように、Cr:7.7at%,14.0at%でCu(111)面が十分に弱くなり(Cu単体の1/4程度のピーク強度)、かつCr(110)面も弱く、図13(c)に示すようにCr:36.8at%になるとCr(110)面が観測されるようになり、さらに図13(d)、(e)に示すように、Cr:42.9at%,47.8at%でCr(110)面が強く観測された。このように、Cu−Cr合金の結晶構造は組成に依存し、公知の成膜方法で本発明の範囲の組成に制御してCu−Cr合金膜を成膜することにより、非晶質のCu−Cr合金として下部電極を形成することができる。   As shown in FIGS. 13 (a) and 13 (b), the Cu (111) surface becomes sufficiently weak at Cr: 7.7 at% and 14.0 at% (peak intensity of about 1/4 of Cu alone), and The Cr (110) plane is also weak, and as shown in FIG. 13 (c), the Cr (110) plane is observed when Cr: 36.8 at%, and further shown in FIGS. 13 (d) and 13 (e). Thus, the Cr (110) plane was strongly observed at Cr: 42.9 at% and 47.8 at%. Thus, the crystal structure of the Cu—Cr alloy depends on the composition. By forming the Cu—Cr alloy film by controlling the composition within the range of the present invention by a known film formation method, amorphous Cu is formed. The lower electrode can be formed as a -Cr alloy.

1,1A,1B,1C TMR素子構造(トンネル磁気抵抗素子構造)
11,11A,11B 磁化固定層
11a TbFeCo層(Tb−Fe−Coからなる層)
11b CoFeB層(Co−Fe−Bからなる層)
12 障壁層
13,13B 磁化自由層
2,2A,2B,2C 下部電極
21 CuCr合金層(非晶質のCu−Cr合金)
22 Ta膜
23 Ru膜
24 Cu層
3,3A 上部電極
5,5A,5E,5F 光変調素子(スピン注入磁化反転素子)
5B,5C,5D 磁気抵抗効果素子(スピン注入磁化反転素子)
1,1A, 1B, 1C TMR element structure (tunnel magnetoresistive element structure)
11, 11A, 11B Magnetization fixed layer 11a TbFeCo layer (layer made of Tb-Fe-Co)
11b CoFeB layer (Co-Fe-B layer)
12 Barrier layer 13, 13B Magnetization free layer 2, 2A, 2B, 2C Lower electrode 21 CuCr alloy layer (amorphous Cu-Cr alloy)
22 Ta film 23 Ru film 24 Cu layer 3, 3A Upper electrode 5, 5A, 5E, 5F Light modulation element (spin injection magnetization reversal element)
5B, 5C, 5D Magnetoresistive effect element (spin injection magnetization reversal element)

Claims (5)

垂直磁気異方性を有する磁化固定層、MgOからなる障壁層、および垂直磁気異方性を有する磁化自由層を積層してなるトンネル磁気抵抗素子構造と、このトンネル磁気抵抗素子構造の下に接続した電極と、を備えるスピン注入磁化反転素子であって、
前記電極は、組成がCu1-xCrx(0.07<x<0.42)である非晶質のCu−Cr合金からなり、
前記磁化固定層は、Tb−Fe−Coからなる層およびCo−Fe−Bからなる層を積層して備え、
前記障壁層は、前記磁化固定層のCo−Fe−Bからなる層に積層されていることを特徴とするスピン注入磁化反転素子。
A tunnel magnetoresistive element structure in which a magnetization fixed layer having perpendicular magnetic anisotropy, a barrier layer made of MgO, and a magnetization free layer having perpendicular magnetic anisotropy are stacked, and connected under this tunnel magnetoresistive element structure A spin injection magnetization reversal element comprising:
The electrode is made of an amorphous Cu—Cr alloy having a composition of Cu 1-x Cr x (0.07 <x <0.42),
The magnetization fixed layer includes a layer made of Tb-Fe-Co and a layer made of Co-Fe-B,
The spin injection magnetization reversal element, wherein the barrier layer is laminated on a layer made of Co—Fe—B of the magnetization fixed layer.
垂直磁気異方性を有する磁化固定層、MgOからなる障壁層、および垂直磁気異方性を有する磁化自由層を積層してなるトンネル磁気抵抗素子構造と、このトンネル磁気抵抗素子構造の下に接続した電極と、を備えるスピン注入磁化反転素子であって、
前記電極は、組成がCu1-xCrx(0.07<x<0.42)である非晶質のCu−Cr合金からなり、
前記磁化固定層は、Gd−Feからなる層を備え、
前記障壁層は、前記磁化固定層のGd−Feからなる層に積層されていることを特徴とするスピン注入磁化反転素子。
A tunnel magnetoresistive element structure in which a magnetization fixed layer having perpendicular magnetic anisotropy, a barrier layer made of MgO, and a magnetization free layer having perpendicular magnetic anisotropy are stacked, and connected under this tunnel magnetoresistive element structure A spin injection magnetization reversal element comprising:
The electrode is made of an amorphous Cu—Cr alloy having a composition of Cu 1-x Cr x (0.07 <x <0.42),
The magnetization fixed layer includes a layer made of Gd-Fe,
The spin injection magnetization reversal element, wherein the barrier layer is laminated on a layer made of Gd—Fe of the magnetization fixed layer.
垂直磁気異方性を有する磁化自由層、MgOからなる障壁層、および垂直磁気異方性を有する磁化固定層を積層してなるトンネル磁気抵抗素子構造と、このトンネル磁気抵抗素子構造の下に接続した電極と、を備えるスピン注入磁化反転素子であって、
前記電極は、組成がCu1-xCrx(0.07<x<0.42)である非晶質のCu−Cr合金からなり、
前記磁化自由層は、Gd−Feからなる層を備え、
前記障壁層は、前記磁化自由層のGd−Feからなる層に積層されていることを特徴とするスピン注入磁化反転素子。
A tunnel magnetoresistive element structure in which a magnetization free layer having perpendicular magnetic anisotropy, a barrier layer made of MgO, and a magnetization fixed layer having perpendicular magnetic anisotropy are stacked, and connected under this tunnel magnetoresistive element structure A spin injection magnetization reversal element comprising:
The electrode is made of an amorphous Cu—Cr alloy having a composition of Cu 1-x Cr x (0.07 <x <0.42),
The magnetization free layer includes a layer made of Gd-Fe,
The spin injection magnetization reversal element, wherein the barrier layer is laminated on a layer made of Gd—Fe of the magnetization free layer.
前記電極にTa膜を積層して備えることを特徴とする請求項1ないし請求項3のいずれか一項に記載のスピン注入磁化反転素子。   The spin injection magnetization reversal element according to any one of claims 1 to 3, wherein a Ta film is stacked on the electrode. 入射した光の偏光の向きを変化させて出射する光変調素子であることを特徴とする請求項1ないし請求項4のいずれか一項に記載のスピン注入磁化反転素子。   The spin injection magnetization reversal element according to any one of claims 1 to 4, wherein the spin injection magnetization reversal element is a light modulation element that emits light by changing a direction of polarization of incident light.
JP2012264770A 2012-12-03 2012-12-03 Spin injection magnetization reversal element Pending JP2014110356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012264770A JP2014110356A (en) 2012-12-03 2012-12-03 Spin injection magnetization reversal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012264770A JP2014110356A (en) 2012-12-03 2012-12-03 Spin injection magnetization reversal element

Publications (1)

Publication Number Publication Date
JP2014110356A true JP2014110356A (en) 2014-06-12

Family

ID=51030818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012264770A Pending JP2014110356A (en) 2012-12-03 2012-12-03 Spin injection magnetization reversal element

Country Status (1)

Country Link
JP (1) JP2014110356A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110190182A (en) * 2019-05-28 2019-08-30 衢州学院 A kind of design method of ultra-thin Spin Valve device
CN111226312A (en) * 2017-10-16 2020-06-02 Tdk株式会社 Tunnel magnetoresistance effect element, magnetic memory and built-in memory
JP2020134754A (en) * 2019-02-21 2020-08-31 日本放送協会 Magnetooptic light modulation element and spatial light modulator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111226312A (en) * 2017-10-16 2020-06-02 Tdk株式会社 Tunnel magnetoresistance effect element, magnetic memory and built-in memory
CN111226312B (en) * 2017-10-16 2024-01-05 Tdk株式会社 Tunnel magnetoresistance effect element, magnetic memory, and built-in memory
JP2020134754A (en) * 2019-02-21 2020-08-31 日本放送協会 Magnetooptic light modulation element and spatial light modulator
JP7228404B2 (en) 2019-02-21 2023-02-24 日本放送協会 Magneto-optical light modulator and spatial light modulator
CN110190182A (en) * 2019-05-28 2019-08-30 衢州学院 A kind of design method of ultra-thin Spin Valve device
CN110190182B (en) * 2019-05-28 2023-07-25 衢州学院 Design method of ultrathin spin valve device

Similar Documents

Publication Publication Date Title
US11107977B2 (en) Seed layer for multilayer magnetic materials
US9356230B2 (en) Perpendicular magnetization storage element and storage device
US8866207B2 (en) Magnetic stacks with perpendicular magnetic anisotropy for spin momentum transfer magnetoresistive random access memory
EP2987190B1 (en) Magnetic tunnel junction comprising a fully compensated synthetic antiferromagnet for spintronics applications
US7443639B2 (en) Magnetic tunnel junctions including crystalline and amorphous tunnel barrier materials
US9042165B2 (en) Magnetoresistive effect element, magnetic memory cell using same, and random access memory
US8981505B2 (en) Mg discontinuous insertion layer for improving MTJ shunt
US7652913B2 (en) Magnetoresistance effect element and magnetic memory
US9368176B2 (en) Scalable magnetoresistive element
US7300711B2 (en) Magnetic tunnel junctions with high tunneling magnetoresistance using non-bcc magnetic materials
JP2012015213A (en) Storage element, manufacturing method thereof, and memory
JP2014110356A (en) Spin injection magnetization reversal element
JP2014175429A (en) Spin injection magnetization reversal element
JP2010232374A (en) Magnetoresistive element, and magnetic random access memory and spatial light modulator using the same
JP5679690B2 (en) Spin injection magnetization reversal device, magnetic random access memory and spatial light modulator using the same
Machida et al. Spin transfer switching and MR properties of Co/Pt multilayered free layers for submicron sized magneto-optical light modulation device
JP6329384B2 (en) Spin injection magnetization reversal element
JP5054639B2 (en) Light modulator and spatial light modulator
JP2015173186A (en) spin injection magnetization reversal element
JP2012230143A (en) Spin injection type magnetization inversion element, optical modulation element and spatial light modulator
JP5249876B2 (en) Reflective spatial light modulator
JP2011180355A (en) Optical modulation element and spatial light modulator
JP6321927B2 (en) Spatial light modulator
JP5238616B2 (en) Light modulation element
JP2013021033A (en) Spin injection magnetization reversal element

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140328