JP5679690B2 - Spin injection magnetization reversal device, magnetic random access memory and spatial light modulator using the same - Google Patents

Spin injection magnetization reversal device, magnetic random access memory and spatial light modulator using the same Download PDF

Info

Publication number
JP5679690B2
JP5679690B2 JP2010094021A JP2010094021A JP5679690B2 JP 5679690 B2 JP5679690 B2 JP 5679690B2 JP 2010094021 A JP2010094021 A JP 2010094021A JP 2010094021 A JP2010094021 A JP 2010094021A JP 5679690 B2 JP5679690 B2 JP 5679690B2
Authority
JP
Japan
Prior art keywords
magnetization
magnetoresistive element
layer
free layer
magnetization reversal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010094021A
Other languages
Japanese (ja)
Other versions
JP2011228341A (en
Inventor
久我 淳
淳 久我
賢一 青島
賢一 青島
信彦 船橋
信彦 船橋
町田 賢司
賢司 町田
清水 直樹
直樹 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Broadcasting Corp filed Critical Japan Broadcasting Corp
Priority to JP2010094021A priority Critical patent/JP5679690B2/en
Publication of JP2011228341A publication Critical patent/JP2011228341A/en
Application granted granted Critical
Publication of JP5679690B2 publication Critical patent/JP5679690B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)

Description

本発明は、磁性体膜の性質を利用するスピン注入磁化反転素子および磁気ランダムアクセスメモリあるいは空間光変調器に関する。   The present invention relates to a spin-injection magnetization reversal element, a magnetic random access memory, or a spatial light modulator that uses the properties of a magnetic film.

膜面垂直通電型の磁気抵抗素子(磁気抵抗効果素子)は、2層以上の磁性体膜を備え、上下に接続された電極(配線)から膜面に垂直に電流を供給されることで、スピン注入磁化反転により一部の磁性体膜の磁化方向が180°回転(反転)し、磁化方向が変化しない別の磁性体膜と同じ方向または反対方向になる。この磁気抵抗素子は、磁性体膜同士の磁化が同じ方向の状態と異なる方向の状態とで上下の電極間の抵抗が変化するため、これを利用して1ビットのデータの書き込み/読み出しを行うことができる。すなわち、磁気抵抗素子は、これを備えたメモリセルをマトリクス状に配列して磁気ランダムアクセスメモリ(MRAM)を構成する。磁気抵抗素子は、その大きさが極めて小さい上、磁化反転の動作が高速であるため、大容量磁気メモリとしてMRAMおよび磁気抵抗素子の研究・開発が進められている。   The film surface vertical conduction type magnetoresistive element (magnetoresistance effect element) includes two or more layers of magnetic films, and current is supplied perpendicularly to the film surface from vertically connected electrodes (wiring). Due to the spin injection magnetization reversal, the magnetization direction of a part of the magnetic film is rotated (reversed) by 180 °, and becomes the same direction or the opposite direction to another magnetic film that does not change the magnetization direction. In this magnetoresistive element, the resistance between the upper and lower electrodes changes depending on whether the magnetizations of the magnetic films are in the same direction or in different directions, so that 1-bit data is written / read using this. be able to. That is, the magnetoresistive element constitutes a magnetic random access memory (MRAM) by arranging memory cells including the magnetoresistive element in a matrix. Since the magnetoresistive element is extremely small in size and operates at a high speed of magnetization reversal, research and development of an MRAM and a magnetoresistive element as a large-capacity magnetic memory are underway.

磁気抵抗素子の磁性体材料として、従来は膜面方向の磁化を示すCo−Fe合金等について研究されていたが、最近では、MRAMの、よりいっそうの大容量化および省電力化のために、磁気抵抗素子のさらなる微細化が可能で、かつ磁化反転に要する電流を低減できる、膜面に垂直方向の磁化を示す(垂直磁気異方性を有する)磁性体材料が注目されている。このような垂直磁気異方性材料の中でも、希土類金属と遷移金属との合金(RE−TM合金)はフェリ磁性の垂直磁気異方性材料として注目されており、垂直磁気異方性の磁気抵抗素子の磁性体材料として有望である(例えば、特許文献1参照)。   As a magnetic material of the magnetoresistive element, a Co—Fe alloy or the like that exhibits magnetization in the film surface direction has been conventionally studied, but recently, in order to further increase the capacity and power saving of the MRAM, Attention has been focused on magnetic materials that exhibit magnetization in the direction perpendicular to the film surface (having perpendicular magnetic anisotropy) that can further miniaturize the magnetoresistive element and reduce the current required for magnetization reversal. Among such perpendicular magnetic anisotropy materials, an alloy of rare earth metal and transition metal (RE-TM alloy) is attracting attention as a ferrimagnetic perpendicular magnetic anisotropy material. It is promising as a magnetic material for elements (see, for example, Patent Document 1).

また、磁気抵抗素子の別の用途として、空間光変調器の画素に搭載される光変調素子が挙げられる。光変調素子としての磁気抵抗素子は、磁性体膜で反射または透過した光の偏光の向きが変化する(旋光する)磁気光学効果により、磁性体膜の磁化方向を反転させて光の偏光の向きを2値に変化させるものである。空間光変調器においても、高精細化および高速化のために、従来の液晶に代わる材料として、MRAMと同様に研究・開発が進められている(例えば、特許文献2参照)。光変調素子として使用する磁気抵抗素子は、偏光の向きの変化が大きい(光変調度が大きい)ことが望ましい。そのため、光変調素子は、垂直磁気異方性の磁気抵抗素子を用いて、膜面にほぼ垂直に光を入射することにより、極カー効果で光変調度を大きくすることが望ましい(例えば、非特許文献1参照)。   Another application of the magnetoresistive element is a light modulation element mounted on a pixel of a spatial light modulator. The magnetoresistive element as the light modulation element reverses the magnetization direction of the magnetic film by the magneto-optic effect in which the direction of polarization of the light reflected or transmitted by the magnetic film changes (rotates). Is changed to a binary value. Also in the spatial light modulator, research and development are being conducted in the same manner as the MRAM as a material replacing the conventional liquid crystal in order to achieve high definition and high speed (for example, see Patent Document 2). It is desirable that the magnetoresistive element used as the light modulation element has a large change in polarization direction (a large degree of light modulation). Therefore, it is desirable for the light modulation element to increase the degree of light modulation by the polar Kerr effect by using a magnetoresistive element having perpendicular magnetic anisotropy and making light enter the film surface almost perpendicularly (for example, non-polarity effect). Patent Document 1).

特開2008−283207号公報(請求項6、請求項11、段落0027)JP 2008-283207 A (Claim 6, Claim 11, Paragraph 0027) 特開2008−83686号公報(請求項1、図1A)JP 2008-83686A (Claim 1, FIG. 1A)

K.Aoshima et. al, “Magneto-optical and spin-transfer switching properties of current-perpendicular-to plane spin valves with perpendicular magnetic anisotropy.”, IEEE Transactions on Magnetics, Vol.44, No.11, pp.2491-2495 (2008)K. Aoshima et. Al, “Magneto-optical and spin-transfer switching properties of current-perpendicular-to plane spin valves with perpendicular magnetic anisotropy.”, IEEE Transactions on Magnetics, Vol.44, No.11, pp.2491- 2495 (2008)

磁性体は、外部から自身の磁化と逆方向に特定の大きさ以上の磁界を印加されることで磁化が反転するが、スピン注入磁化反転においては、その磁性体が持つ電子と逆方向のスピンを持つ電子を注入される、すなわち電流を反対向きに供給されることにより、磁化が反転する。スピン注入磁化反転に要する電流(反転電流)は、外部からの磁界(外部磁界)による磁化反転と同様に、磁性体の保磁力が大きいほど大きくなる。そして、単体の磁性体を一方向とその逆方向とにそれぞれ磁化反転させるための外部磁界の大きさすなわち保磁力は絶対値が同じである。しかし、スピン注入磁化反転をする磁気抵抗素子においては、磁化反転させる磁性体膜(磁化自由層)とは別に、磁化を固定した(磁化反転させない)磁性体膜(磁化固定層)が極薄の非磁性体膜(中間層)を挟んで積層されている。このような構成においては、磁化固定層から漏れた磁界が磁化自由層に作用するため、外部からの磁界印加または電流供給のない状態でも、磁化自由層の磁化は磁化固定層と同じ方向になろうとする傾向がある。したがって、磁気抵抗素子は、磁化自由層の磁化を磁化固定層と同じ方向にする(磁化を平行にする)反転電流よりも反対方向にする(磁化を反平行にする)反転電流の方が絶対値が大きくなる。   Magnetism is reversed by applying a magnetic field of a specific magnitude or more in the opposite direction to its own magnetization from the outside, but in spin injection magnetization reversal, the spin in the direction opposite to the electrons of the magnetic substance is reversed. Is injected, that is, the current is supplied in the opposite direction, thereby reversing the magnetization. The current required for spin injection magnetization reversal (reversal current) increases as the coercivity of the magnetic material increases, as in the case of magnetization reversal by an external magnetic field (external magnetic field). The magnitude of the external magnetic field, ie the coercive force, for reversing the magnetization of a single magnetic body in one direction and in the opposite direction has the same absolute value. However, in a magnetoresistive element that performs spin injection magnetization reversal, a magnetic film (magnetization fixed layer) in which magnetization is fixed (magnetization reversal) is extremely thin, apart from a magnetic film (magnetization free layer) that undergoes magnetization reversal. They are stacked with a nonmagnetic film (intermediate layer) in between. In such a configuration, since the magnetic field leaked from the magnetization fixed layer acts on the magnetization free layer, the magnetization of the magnetization free layer is in the same direction as the magnetization fixed layer even in the absence of external magnetic field application or current supply. There is a tendency to try. Therefore, in the magnetoresistive element, the reversal current that makes the magnetization of the magnetization free layer the same direction as the magnetization fixed layer (makes the magnetization parallel) or the opposite direction (makes the magnetization antiparallel) is absolute. The value increases.

磁気抵抗素子を備える装置(MRAM、空間光変調器等)において、磁気抵抗素子の磁化を平行、反平行にするための各電流を互いに絶対値が異なるように供給することは、磁気抵抗素子の駆動回路が複雑化するため好ましくない。また、磁化を反平行にするために供給電流を大きくすることは、装置の省電力化の妨げとなる上、磁化固定層の磁化が反転する虞があり、磁気抵抗素子の動作が不安定となる。そこで、装置は、磁気抵抗素子を配列した周囲に磁石を配する等、磁界印加手段を設けて、磁気抵抗素子の磁化を平行、反平行にする反転電流が絶対値でほぼ同じとなるように、磁化固定層の漏出磁界と逆向きに磁界(バイアス磁界)を印加する必要がある。しかしながら、装置の小型化やコスト削減のためには、磁界印加手段の不要な磁気抵抗素子が望ましい。   In a device including a magnetoresistive element (MRAM, spatial light modulator, etc.), supplying each current for making the magnetization of the magnetoresistive element parallel and antiparallel so that their absolute values are different from each other is This is not preferable because the drive circuit becomes complicated. In addition, increasing the supply current to make the magnetization antiparallel prevents the power saving of the device and may cause the magnetization of the magnetization fixed layer to be reversed, resulting in unstable operation of the magnetoresistive element. Become. Therefore, the apparatus is provided with magnetic field applying means such as arranging magnets around the arrangement of the magnetoresistive elements so that the reversal currents that make the magnetization of the magnetoresistive elements parallel and antiparallel are almost the same in absolute value. It is necessary to apply a magnetic field (bias magnetic field) in the direction opposite to the leakage magnetic field of the magnetization fixed layer. However, in order to reduce the size of the apparatus and reduce the cost, a magnetoresistive element that does not require a magnetic field applying unit is desirable.

本発明は前記問題点に鑑み創案されたもので、バイアス磁界の印加が不要なスピン注入磁化反転素子、ならびにこのスピン注入磁化反転素子を備えた磁気ランダムアクセスメモリおよび空間光変調器を提供することを目的とする。   The present invention was devised in view of the above problems, and provides a spin injection magnetization reversal element that does not require application of a bias magnetic field, and a magnetic random access memory and a spatial light modulator provided with this spin injection magnetization reversal element. With the goal.

前記課題を解決するために、本発明者らは、垂直磁気異方性材料として好ましい上、見かけ上の飽和磁化が低いフェリ磁性材料であるRE−TM合金の中でも光磁気(MO)ディスクの記録材料として広く適用されるTb−Fe−Co合金をスピン注入磁化反転素子の磁化固定層に適用し、さらにその組成を限定することで、磁界の漏れを抑えることに知見した。   In order to solve the above-mentioned problems, the present inventors have recorded a magneto-optical (MO) disk among RE-TM alloys, which are ferrimagnetic materials that are preferable as a perpendicular magnetic anisotropic material and have a low apparent saturation magnetization. It has been found that a Tb—Fe—Co alloy, which is widely used as a material, is applied to the magnetization fixed layer of the spin-injection magnetization reversal element, and further its composition is limited to suppress magnetic field leakage.

すなわち、本発明に係るスピン注入磁化反転素子は、磁化固定層と中間層と磁化自由層とを積層して備え、上下に接続された一対の電極を介して電流を供給されるスピン注入磁化反転素子であって、前記磁化固定層がTb−Fe−Co合金を備え、このTb−Fe−Co合金の組成が、Tbx(Fe,Co)1-x0.226≦x≦0.25)であることを特徴とする。さらに、前記Tb−Fe−Co合金の組成は、Tbx(Fe1-yCoy)1-x0.226≦x≦0.25、0.4<y<0.67)であることが好ましい。 That is, the spin injection magnetization reversal element according to the present invention includes a magnetization fixed layer, an intermediate layer, and a magnetization free layer stacked, and a spin injection magnetization reversal to which a current is supplied via a pair of upper and lower electrodes. In the element, the magnetization fixed layer includes a Tb—Fe—Co alloy, and the composition of the Tb—Fe—Co alloy is Tb x (Fe, Co) 1-x ( 0.226 ≦ x ≦ 0.25). ). Furthermore, the composition of the Tb—Fe—Co alloy is Tb x (Fe 1−y Co y ) 1−x ( 0.226 ≦ x ≦ 0.25, 0.4 <y <0.67). Is preferred.

かかる構成により、スピン注入磁化反転素子の磁化固定層に強い垂直磁気異方性を示すTb−Fe−Co合金を適用することで微細化が可能となり、さらに希土類金属であるTbの含有率を限定することで飽和磁化を制御して磁化固定層からの磁界の漏れを抑制し、磁化自由層の磁化反転動作が安定する。また、遷移金属としてFe,Coを含有することで、磁化固定層のキュリー温度を高くして、耐熱性に優れたスピン注入磁化反転素子となる。   With this configuration, the Tb—Fe—Co alloy exhibiting strong perpendicular magnetic anisotropy can be applied to the magnetization fixed layer of the spin-injection magnetization reversal element, and miniaturization can be achieved, and the content of Tb, which is a rare earth metal, is limited. As a result, the saturation magnetization is controlled to suppress the leakage of the magnetic field from the magnetization fixed layer, and the magnetization reversal operation of the magnetization free layer is stabilized. In addition, by including Fe and Co as transition metals, the Curie temperature of the magnetization fixed layer is increased, and a spin-injection magnetization reversal element having excellent heat resistance is obtained.

さらに、本発明に係るスピン注入磁化反転素子は、前記磁化自由層がTb,Gd,Fe,Co,Ni,Pt,Pdから選択される2以上の元素を含有することが好ましい。かかる構成により、磁化自由層も磁化固定層と同様に強い垂直磁気異方性を示すために、磁化反転動作が安定する。   Furthermore, in the spin injection magnetization switching element according to the present invention, it is preferable that the magnetization free layer contains two or more elements selected from Tb, Gd, Fe, Co, Ni, Pt, and Pd. With this configuration, the magnetization reversal operation is stabilized because the magnetization free layer also exhibits strong perpendicular magnetic anisotropy similar to the magnetization fixed layer.

また、本発明に係る磁気ランダムアクセスメモリは、前記スピン注入磁化反転素子とその上下に接続された一対の電極とをメモリセルに備え、このメモリセルを複数、2次元配列して構成される。かかる構成により、磁気ランダムアクセスメモリは、その1ビットを記録するスピン注入磁化反転素子を垂直磁気異方性として微細化することができ、またデータの書き込み/読み出し動作が安定する。   The magnetic random access memory according to the present invention comprises a memory cell including the spin injection magnetization reversal element and a pair of electrodes connected to the upper and lower sides thereof, and a plurality of the memory cells are two-dimensionally arranged. With this configuration, the magnetic random access memory can miniaturize the spin-injection magnetization reversal element that records 1 bit as perpendicular magnetic anisotropy, and the data write / read operation is stable.

また、本発明に係る空間光変調器は、前記スピン注入磁化反転素子を光変調素子とするものであり、スピン注入磁化反転素子とその上下に接続された一対の電極とを画素に備えて構成される。すなわち空間光変調器は、2次元配列された複数の画素と、前記複数の画素から1つ以上の画素を選択する画素選択手段と、この画素選択手段が選択した画素に所定の電流を供給する電流供給手段と、を備えて、前記画素選択手段が選択した画素に入射した光の偏光方向を特定の方向に変化させて出射する。かかる構成により、空間光変調器は、画素に備えた光変調素子を構成する磁気抵抗素子を垂直磁気異方性として、極カー効果で光変調度を大きくすることができ、また画素選択動作が安定する。   Further, the spatial light modulator according to the present invention is such that the spin injection magnetization reversal element is a light modulation element, and the spin injection magnetization reversal element and a pair of electrodes connected to the top and bottom thereof are provided in the pixel. Is done. That is, the spatial light modulator supplies a predetermined current to a plurality of pixels arranged two-dimensionally, a pixel selection unit that selects one or more pixels from the plurality of pixels, and a pixel selected by the pixel selection unit. Current supply means, and changes the polarization direction of the light incident on the pixel selected by the pixel selection means in a specific direction and emits the light. With this configuration, the spatial light modulator can increase the light modulation degree by the polar Kerr effect by using the magnetoresistive element constituting the light modulation element provided in the pixel as the perpendicular magnetic anisotropy, and can perform the pixel selection operation. Stabilize.

本発明に係るスピン注入磁化反転素子によれば、バイアス磁界の印加がなくても、磁化反転動作が安定した垂直磁気異方性の磁気抵抗素子とすることができる。そして、本発明に係る磁気ランダムアクセスメモリによれば、大容量で、データの書き込み/読み出し動作が高速で安定したものとすることができる。また、本発明に係る空間光変調器によれば、高精細かつ高速応答で画素選択性に優れたものとすることができる。   According to the spin-injection magnetization reversal element according to the present invention, a perpendicular magnetic anisotropy magnetoresistive element with stable magnetization reversal operation can be obtained without application of a bias magnetic field. According to the magnetic random access memory according to the present invention, it is possible to achieve a large capacity and stable data writing / reading operation at high speed. Further, according to the spatial light modulator according to the present invention, the pixel selectivity can be improved with high definition and high speed response.

本発明の一実施形態に係る磁気抵抗素子の断面図である。It is sectional drawing of the magnetoresistive element which concerns on one Embodiment of this invention. 本発明の一実施形態に係る磁気抵抗素子の動作を模式的に説明する斜視図である。It is a perspective view explaining typically operation of a magnetoresistive element concerning one embodiment of the present invention. 磁気抵抗素子の磁化曲線で、(a)は理想モデル、(b)は実際におけるものである。In the magnetization curve of the magnetoresistive element, (a) is an ideal model and (b) is an actual model. 本発明の一実施形態に係る空間光変調器の構成を模式的に示す平面図である。It is a top view which shows typically the structure of the spatial light modulator which concerns on one Embodiment of this invention. 図4に示す空間光変調器を用いた表示装置の模式図で、図4のA−A断面図に対応する図である。FIG. 5 is a schematic diagram of a display device using the spatial light modulator shown in FIG. 4 and corresponds to a cross-sectional view taken along the line AA in FIG. 4. 本発明の一実施形態に係る磁気ランダムアクセスメモリを備えた記録装置の構成を模式的に示す平面図である。It is a top view which shows typically the structure of the recording device provided with the magnetic random access memory which concerns on one Embodiment of this invention. 本発明の一実施形態に係る磁気抵抗素子およびこれを備えたメモリセルの断面図で、図6のB−B断面図である。FIG. 7 is a cross-sectional view of the magnetoresistive element according to the embodiment of the present invention and a memory cell including the magnetoresistive element, and is a cross-sectional view taken along line BB of FIG.

以下、本発明に係るスピン注入磁化反転素子、磁気ランダムアクセスメモリ、および空間光変調器を実現するための形態について、図を参照して説明する。   Hereinafter, embodiments for realizing a spin transfer magnetization reversal element, a magnetic random access memory, and a spatial light modulator according to the present invention will be described with reference to the drawings.

[磁気抵抗素子]
(構成)
本発明の一実施形態に係る磁気抵抗素子(スピン注入磁化反転素子)1は、図1および図2に示すように、磁化固定層11、中間層12、磁化自由層13、保護層14(図2では省略)の順に積層された構成であり、一対の電極である上部電極2と下部電極3(以下、適宜電極2,3)に上下で接続されて、膜面に垂直に電流を供給される。磁気抵抗素子1は、磁化が一方向に固定された磁化固定層11および磁化の方向が回転可能な磁化自由層13を、非磁性または絶縁体である中間層12を挟んで備えたCPP−GMR(Current Perpendicular to the Plane Giant MagnetoResistance:垂直通電型巨大磁気抵抗)素子やTMR(Tunnel MagnetoResistance:トンネル磁気抵抗)素子等のスピン注入磁化反転素子である。さらに、製造工程におけるダメージからこれらの層を保護するために、最上層に保護層14が設けられている。なお、磁化固定層11と磁化自由層13は、積層順序を入れ替えてもよい。磁気抵抗素子1を構成する各層は、下部電極3を形成された上に、例えばスパッタリング法や分子線エピタキシー(MBE)法等の公知の方法で連続的に成膜されて積層され、電子線リソグラフィおよびイオンビームミリング法等で所望の平面視形状に加工される。なお、図2では磁気抵抗素子1の平面視形状を矩形としているが、これに限らない。以下、磁気抵抗素子1を構成する各層の詳細を説明する。
[Magnetic resistance element]
(Constitution)
As shown in FIGS. 1 and 2, a magnetoresistive element (spin injection magnetization reversal element) 1 according to an embodiment of the present invention includes a magnetization fixed layer 11, an intermediate layer 12, a magnetization free layer 13, and a protective layer 14 (FIG. 2 is omitted), and is connected to the upper electrode 2 and the lower electrode 3 (hereinafter referred to as electrodes 2 and 3 as appropriate), which are a pair of electrodes, and is supplied with a current perpendicular to the film surface. The The magnetoresistive element 1 is a CPP-GMR having a magnetization fixed layer 11 whose magnetization is fixed in one direction and a magnetization free layer 13 whose magnetization direction is rotatable, with an intermediate layer 12 which is nonmagnetic or an insulator interposed therebetween. A spin-injection magnetization reversal element such as a (Current Perpendicular to the Plane Giant MagnetoResistance) element or a TMR (Tunnel MagnetoResistance) element. Furthermore, in order to protect these layers from damage in the manufacturing process, a protective layer 14 is provided as the uppermost layer. It should be noted that the stacking order of the magnetization fixed layer 11 and the magnetization free layer 13 may be switched. Each layer constituting the magnetoresistive element 1 is formed with a lower electrode 3 and is continuously formed and laminated by a known method such as a sputtering method or a molecular beam epitaxy (MBE) method. And it is processed into a desired planar view shape by an ion beam milling method or the like. In FIG. 2, the shape of the magnetoresistive element 1 in plan view is rectangular, but this is not restrictive. Hereinafter, details of each layer constituting the magnetoresistive element 1 will be described.

磁化固定層11はアモルファス合金であるTb−Fe−Co合金(以下、TbFeCo合金)で構成され、その組成は、Tbx(Fe,Co)1-xで表したとき、0.20≦x≦0.25とする。また、その厚さを1〜50nmとすることが好ましい。遷移金属(TM)であるFe,Coが一方向(+z方向とする)の一様な磁気モーメントを示すのに対し、希土類金属(RE)であるTbは、この一方向の逆方向(−z方向)を中心(軸)に広がって円錐の側面を形成するように分布した磁気モーメントを示し、磁気モーメントはその分布全体として、x,y方向には相殺されて−z方向のみとなる。TbFeCo合金のようなRE−TM合金においては、Fe,Coの+z方向の磁気モーメントとTbの−z方向の磁気モーメントとに大きさの差が生じることで、全体として磁化を示すフェリ磁性となる。特に希土類金属がTbである場合、その磁気モーメントが支配的になり易く、強い垂直磁気異方性を示す。また、フェリ磁性材料は磁気モーメントの一部が相殺されるため、飽和磁化が見かけ上、低くなる。磁化固定層11の飽和磁化Mspinを抑制することで、磁化固定層11からの漏出磁界を減少させて磁化自由層13の磁化反転を安定させることができる。一方、磁化固定層11はその保磁力Hcpinが十分に大きく、5kOe以上、磁化自由層13の保磁力Hcよりも0.5kOe以上大きいことが好ましい(1Oe≒79.577A/m)。このような保磁力Hcpinは、TbFeCo合金の組成および膜厚を調整することで得られる。このように保磁力Hcpinが磁化自由層13の保磁力Hcに対して十分に大きいことで、電流供給等により磁化固定層11の磁化が容易に回転せず、一方向に固定される。なお、磁化固定層11は、TbFeCo合金だけでなく、他の材料と積層した多層構造等としてもよい。 The magnetization fixed layer 11 is made of a Tb—Fe—Co alloy (hereinafter referred to as a TbFeCo alloy) which is an amorphous alloy, and its composition is 0.20 ≦ x ≦ when expressed by Tb x (Fe, Co) 1-x. 0.25. Moreover, it is preferable that the thickness shall be 1-50 nm. While transition metals (TM) Fe and Co exhibit a uniform magnetic moment in one direction (+ z direction), rare earth metal (RE) Tb has a reverse direction (−z The magnetic moment is distributed so as to form a conical side surface extending in the center (axis), and the magnetic moment as a whole is canceled in the x and y directions and becomes only the −z direction. In a RE-TM alloy such as a TbFeCo alloy, a difference in magnitude occurs between the magnetic moment of Fe and Co in the + z direction and the magnetic moment of Tb in the -z direction, resulting in ferrimagnetism that exhibits magnetization as a whole. . In particular, when the rare earth metal is Tb, the magnetic moment tends to be dominant, and strong perpendicular magnetic anisotropy is exhibited. Further, since a part of the magnetic moment is canceled out in the ferrimagnetic material, the saturation magnetization is apparently lowered. By suppressing the saturation magnetization Ms pin of the magnetization fixed layer 11, the leakage magnetic field from the magnetization fixed layer 11 can be reduced and the magnetization reversal of the magnetization free layer 13 can be stabilized. On the other hand, the magnetization fixed layer 11 has a sufficiently large coercive force Hc pin , preferably 5 kOe or more, and preferably 0.5 kOe or more larger than the coercive force Hc of the magnetization free layer 13 (1 Oe≈79.577 A / m). Such a coercive force Hc pin can be obtained by adjusting the composition and film thickness of the TbFeCo alloy. As described above, since the coercive force Hc pin is sufficiently larger than the coercive force Hc of the magnetization free layer 13, the magnetization of the magnetization fixed layer 11 is not easily rotated by current supply or the like, and is fixed in one direction. The magnetization fixed layer 11 may have a multilayer structure or the like laminated with other materials in addition to the TbFeCo alloy.

磁化固定層11を構成するTbFeCo合金は、Tb:20at%未満では、Fe,Coの+z方向の磁気モーメントが支配的であり、垂直磁気異方性エネルギーKuの大きさが不十分で、強い垂直磁気異方性が得られない。一方、Tb:25at%を超えると、Tbの−z方向の磁気モーメントが大きすぎて、飽和磁化Mspinが十分に低くならず漏出磁界が大きくなる。したがって、Tb:20〜25at%、すなわちTbx(Fe1-yCoy)1-xで表したとき、0.20≦x≦0.25とする。また、遷移金属として、Fe,Coの2種を含有することで、キュリー温度が高くなるため、高温下でも磁化固定層11の磁化が保持されて磁気抵抗素子1の動作が安定する。また、磁気カー効果を大きくすることができるため、光変調素子として好適な磁気抵抗素子1となる。具体的には、前記組成において0.4<y<0.67とすることが好ましい。 When the TbFeCo alloy constituting the magnetization fixed layer 11 is less than Tb: 20 at%, the magnetic moment in the + z direction of Fe and Co is dominant, the magnitude of the perpendicular magnetic anisotropy energy Ku is insufficient, and the strong perpendicular Magnetic anisotropy cannot be obtained. On the other hand, when Tb exceeds 25 at%, the magnetic moment in the −z direction of Tb is too large, and the saturation magnetization Ms pin is not sufficiently lowered, and the leakage magnetic field is increased. Accordingly, Tb: 20 to 25 at%, that is, 0.20 ≦ x ≦ 0.25 when expressed by Tb x (Fe 1−y Co y ) 1−x . Further, since the Curie temperature is increased by containing two kinds of transition metals, Fe and Co, the magnetization of the magnetization fixed layer 11 is maintained even at a high temperature, and the operation of the magnetoresistive element 1 is stabilized. Further, since the magnetic Kerr effect can be increased, the magnetoresistive element 1 suitable as an optical modulation element is obtained. Specifically, it is preferable that 0.4 <y <0.67 in the composition.

中間層12は、磁化固定層11と磁化自由層13との間に設けられる。磁気抵抗素子1がTMR素子であれば、中間層12は、MgO,Al23,HfO2のような絶縁体や、Mg/MgO/Mgのような絶縁体を含む積層膜からなり、その厚さは0.1〜2nmとすることが好ましい。また、磁気抵抗素子1がCPP−GMR素子であれば、中間層12は、Cu,Ag,Alのような非磁性金属からなり、その厚さは1〜10nmとすることが好ましい。 The intermediate layer 12 is provided between the magnetization fixed layer 11 and the magnetization free layer 13. If the magnetoresistive element 1 is a TMR element, the intermediate layer 12 is made of an insulator such as MgO, Al 2 O 3 , HfO 2 or a laminated film containing an insulator such as Mg / MgO / Mg. The thickness is preferably 0.1 to 2 nm. If the magnetoresistive element 1 is a CPP-GMR element, the intermediate layer 12 is made of a nonmagnetic metal such as Cu, Ag, or Al, and the thickness is preferably 1 to 10 nm.

磁化自由層13は、垂直磁気異方性を有するCPP−GMR素子やTMR素子等の磁化自由層として公知の磁性材料にて構成することができ、その厚さを1〜20nmとすることが好ましい。具体的には、Fe,Co,Ni等の遷移金属とPt,Pd等を含む、例えばCoPt,CoPd合金、または[Co/Pt]×n、[Co/Pd]×nの多層膜、あるいはMnBi,PtMnSb合金のようなMn含有磁性合金が挙げられる。また、磁化固定層11と同様に、TbFeCo合金を含めたRE−TM合金で構成してもよく、希土類金属としてはTbの他にSm,Eu,Gdが挙げられる。これらの材料の中でも、特に、Tb,Gd,Fe,Co,Ni,Pt,Pdから選択される2以上の元素を含有する合金や多層膜は、垂直磁気異方性エネルギーKuが大きいため、強い垂直磁気異方性を示す。さらに、後記するように磁気抵抗素子1を光変調素子に適用する場合は、光変調度の大きいGdFe,GdFeCo合金が好ましい。   The magnetization free layer 13 can be made of a known magnetic material as a magnetization free layer such as a CPP-GMR element or a TMR element having perpendicular magnetic anisotropy, and the thickness is preferably 1 to 20 nm. . Specifically, for example, a CoPt, CoPd alloy, or a multilayer film of [Co / Pt] × n, [Co / Pd] × n, or MnBi containing a transition metal such as Fe, Co, or Ni and Pt, Pd, or the like. Mn-containing magnetic alloys such as PtMnSb alloy. Further, similarly to the magnetization fixed layer 11, it may be composed of a RE-TM alloy including a TbFeCo alloy, and examples of rare earth metals include Sm, Eu, and Gd in addition to Tb. Among these materials, alloys and multilayer films containing two or more elements selected from Tb, Gd, Fe, Co, Ni, Pt, and Pd are particularly strong because they have a large perpendicular magnetic anisotropy energy Ku. Showing perpendicular magnetic anisotropy. Furthermore, as will be described later, when the magnetoresistive element 1 is applied to a light modulation element, a GdFe, GdFeCo alloy having a high degree of light modulation is preferable.

磁化自由層13も、RE−TM合金のような飽和磁化Msが低い材料で構成することが好ましい。反転電流密度は飽和磁化の2乗に比例するため、磁化自由層13の飽和磁化Msが低いと、磁気抵抗素子1の(磁化自由層13の)反転電流Icを低減することができる。一方、保磁力Hcは、磁気抵抗素子1が電流を常時供給されなくても磁化自由層13の磁化方向が保持されるように、ある程度の大きさ以上とし、かつ容易に磁化反転可能なように磁化固定層11の保磁力Hcpinよりも十分に小さくなるようにする。具体的には、0.2〜1kOeの範囲となることが好ましい。保磁力Hcも、磁化自由層13を構成する材料の成分と組成によるが、磁化自由層13を磁化固定層11より薄く構成することで磁化固定層11の保磁力Hcpinに対して小さくすることができる。 The magnetization free layer 13 is also preferably made of a material having a low saturation magnetization Ms such as a RE-TM alloy. Since the reversal current density is proportional to the square of the saturation magnetization, if the saturation magnetization Ms of the magnetization free layer 13 is low, the reversal current Ic (of the magnetization free layer 13) of the magnetoresistive element 1 can be reduced. On the other hand, the coercive force Hc is set to a certain level or more so that the magnetization direction of the magnetization free layer 13 is maintained even when the magnetoresistive element 1 is not constantly supplied with current, and the magnetization can be easily reversed. The coercive force Hc pin of the magnetization fixed layer 11 is made sufficiently smaller. Specifically, it is preferably in the range of 0.2 to 1 kOe. The coercive force Hc also depends on the composition and composition of the material constituting the magnetization free layer 13, but the magnetization free layer 13 is made thinner than the magnetization fixed layer 11 to be smaller than the coercivity Hc pin of the magnetization fixed layer 11. Can do.

保護層14は、Ta,Ru,Cuの単層、または、Cu/Ta,Cu/Ruの2層等から構成される。なお、前記の2層構造とする場合は、いずれもCuを内側(下層)とする。保護層14の厚さは、1nm未満であると連続した膜を形成し難く、一方、10nmを超えて厚くしても、製造工程において磁化自由層13等を保護する効果がそれ以上には向上しない。したがって、保護層14の厚さは1〜10nmとすることが好ましい。   The protective layer 14 is composed of a single layer of Ta, Ru, Cu, or two layers of Cu / Ta, Cu / Ru. In addition, when setting it as the said 2 layer structure, all make Cu inside (lower layer). When the thickness of the protective layer 14 is less than 1 nm, it is difficult to form a continuous film. On the other hand, even if the thickness exceeds 10 nm, the effect of protecting the magnetization free layer 13 and the like in the manufacturing process is further improved. do not do. Therefore, the thickness of the protective layer 14 is preferably 1 to 10 nm.

(動作)
磁気抵抗素子1の磁化反転の動作を、図2および図3を参照して説明する。図3(a)に強磁性体の磁化曲線の理想モデルとして示すように、磁界(磁場)Hを推移させながら印加すると、磁化固定層11および磁化自由層13はそれぞれ磁化Mを変化させる。磁界Hが正の方向にそれぞれの保磁力+Hcpin,+Hcを超えるとき、磁化Mは急峻に上昇して負から正に変化する。反対に、磁界Hが負の方向に保磁力−Hcpin,−Hcを超えるとき、磁化Mは急峻に下降して正から負に変化する。磁化Mが正と負とで磁化方向は180°異なり、磁化固定層11および磁化自由層13は垂直磁気異方性を有するので、磁化は上方向または下方向を示す。本実施形態では、図3に示す磁化Mが正のとき、図2において磁化が下方向を示す。磁界HをH≦−Hcpinとすると、磁化固定層11、そして|Hc|<|Hcpin|であるので磁化自由層13が、共に上方向の磁化となる(図2(a)参照)。これを初期印加として、以降、磁界Hを−Hcpin<H<+Hcpinの範囲でかつH≦−HcからH≧+Hcに推移させると、磁化固定層11の磁化Mは負、すなわち図2(a)、(b)に示すように上方向に固定されたまま、磁化自由層13のみが、磁化Mが図3(a)に示すヒステリシスループ(磁化曲線)に沿って正と負とに変化して、磁化方向が上下に反転する。特に、初期印加を−Hcpinに対して負の方向に十分に大きくして、以降は磁界Hを+Hcpinに近付けないように変化させた場合、磁化固定層11の磁化Mはその飽和磁化−Mspin近傍に留まる。
(Operation)
The magnetization reversal operation of the magnetoresistive element 1 will be described with reference to FIGS. As shown in FIG. 3A as an ideal model of the magnetization curve of the ferromagnetic material, when the magnetic field (magnetic field) H is applied while changing, the magnetization fixed layer 11 and the magnetization free layer 13 each change the magnetization M. When the magnetic field H exceeds the respective coercive forces + Hc pin and + Hc in the positive direction, the magnetization M rises sharply and changes from negative to positive. On the other hand, when the magnetic field H exceeds the coercive force −Hc pin , −Hc in the negative direction, the magnetization M drops sharply and changes from positive to negative. The magnetization M is positive and negative and the magnetization direction is different by 180 °. Since the magnetization fixed layer 11 and the magnetization free layer 13 have perpendicular magnetic anisotropy, the magnetization is upward or downward. In the present embodiment, when the magnetization M shown in FIG. 3 is positive, the magnetization is downward in FIG. When the magnetic field H is H ≦ −Hc pin , since the magnetization fixed layer 11 and | Hc | <| Hc pin |, the magnetization free layer 13 is magnetized upward (see FIG. 2A). When this is initially applied and thereafter the magnetic field H is changed in the range of −Hc pin <H <+ Hc pin and from H ≦ −Hc to H ≧ + Hc, the magnetization M of the magnetization fixed layer 11 is negative, that is, FIG. As shown in a) and (b), only the magnetization free layer 13 is fixed in the upward direction, and the magnetization M changes between positive and negative along the hysteresis loop (magnetization curve) shown in FIG. Thus, the magnetization direction is reversed up and down. In particular, when the initial application is made sufficiently large in the negative direction with respect to the −Hc pin and thereafter the magnetic field H is changed so as not to approach the + Hc pin , the magnetization M of the magnetization fixed layer 11 is the saturation magnetization− Stays near the Ms pin .

スピン注入磁化反転素子である磁気抵抗素子1は、磁界印加に代えて逆方向のスピンを持つ電子を注入することにより、すなわち電流を反対向きに供給することにより、磁化自由層13の磁化方向を反転(スピン注入磁化反転、以下、適宜磁化反転という)させて、磁化固定層11の磁化方向と同じ方向または180°異なる方向にする。図2(a)では、磁化自由層13の磁化が磁化固定層11の磁化方向と同じ上方向を示す。以下、この状態を磁気抵抗素子1の磁化が平行である(P:Parallel)という。この状態の磁気抵抗素子1に、上部電極2を「−」、下部電極3を「+」にして、磁化固定層11側から磁化自由層13へ上向きに電流I1を供給すると、磁化自由層13の磁化が反転して、図2(b)に示すように磁化固定層11の磁化方向と逆の下方向になる。以下、この状態を磁気抵抗素子1の磁化が反平行である(AP:Anti-Parallel)という。反対に上部電極2を「+」、下部電極3を「−」にして、磁化自由層13側から磁化固定層11へ下向きに電流I0を供給すると、再び磁化自由層13の磁化が反転して上方向に戻って図2(a)に示す状態となる。 The magnetoresistive element 1 that is a spin injection magnetization reversal element changes the magnetization direction of the magnetization free layer 13 by injecting electrons having spins in the opposite direction instead of applying a magnetic field, that is, by supplying current in the opposite direction. Inversion (spin injection magnetization reversal, hereinafter referred to as magnetization reversal as appropriate) is performed in the same direction as the magnetization direction of the magnetization fixed layer 11 or in a direction different by 180 °. In FIG. 2A, the magnetization of the magnetization free layer 13 shows the same upward direction as the magnetization direction of the magnetization fixed layer 11. Hereinafter, this state is referred to as that the magnetization of the magnetoresistive element 1 is parallel (P: Parallel). When the current I 1 is supplied from the magnetization fixed layer 11 side to the magnetization free layer 13 with the upper electrode 2 set to “−” and the lower electrode 3 set to “+” to the magnetoresistive element 1 in this state, the magnetization free layer As shown in FIG. 2B, the magnetization of 13 is reversed and becomes the downward direction opposite to the magnetization direction of the magnetization fixed layer 11. Hereinafter, this state is referred to as anti-parallel (AP) in which the magnetization of the magnetoresistive element 1 is antiparallel. On the contrary, when the current I 0 is supplied downward from the magnetization free layer 13 side to the magnetization fixed layer 11 with the upper electrode 2 set to “+” and the lower electrode 3 set to “−”, the magnetization of the magnetization free layer 13 is reversed again. Then, it returns to the upper direction and becomes the state shown in FIG.

磁気抵抗素子1の磁化を平行、反平行に反転させる供給電流I0,I1の大きさは、それぞれ負および正の方向に、スピン注入磁化反転に要する電流(反転電流)以上である。磁気抵抗素子1のスピン注入磁化反転特性において、図3(a)の横軸(磁界軸)は電流軸に相当し、反転電流の大きさは磁化自由層13の保磁力の大きさに対応する。したがって、磁化自由層13の負および正の保磁力が図3(a)に−Hc,+Hcで示すようにその大きさ(絶対値)が同じであれば、反転電流も正および負で大きさが同じとなる。この反転電流を−Ic,+Icで示すと、I0≦−Ic、I1≧+Icとなり、|I0|=|I1|と設定することが可能である。 The magnitudes of the supply currents I 0 and I 1 for reversing the magnetization of the magnetoresistive element 1 in parallel and antiparallel are equal to or greater than the current (reversal current) required for spin injection magnetization reversal in the negative and positive directions, respectively. In the spin injection magnetization reversal characteristics of the magnetoresistive element 1, the horizontal axis (magnetic field axis) in FIG. 3A corresponds to the current axis, and the magnitude of the reversal current corresponds to the coercivity of the magnetization free layer 13. . Therefore, if the magnitudes (absolute values) of the negative and positive coercivity of the magnetization free layer 13 are the same as shown by -Hc and + Hc in FIG. 3A, the reversal current is also positive and negative. Are the same. When indicating this reversal current -Ic, at + Ic, I 0 ≦ -Ic, I 1 ≧ + Ic becomes, | I 0 | = | can be set as | I 1.

なお、磁気抵抗素子1の磁化が平行、反平行いずれかの磁化を示していれば、その磁化を反転させる電流(I0,I1)が供給されるまでは、磁化自由層13の保磁力Hcにより磁化が保持される。このように、磁気抵抗素子1において磁化は保持されるため、磁気抵抗素子1に供給する電流としては、パルス電流のように、磁化方向を反転させる電流値に一時的に到達する電流を用いることができる。 If the magnetization of the magnetoresistive element 1 indicates either parallel or antiparallel magnetization, the coercive force of the magnetization free layer 13 is supplied until a current (I 0 , I 1 ) for reversing the magnetization is supplied. Magnetization is maintained by Hc. Thus, since the magnetization is retained in the magnetoresistive element 1, a current that temporarily reaches the current value that reverses the magnetization direction, such as a pulse current, is used as the current supplied to the magnetoresistive element 1. Can do.

しかしながら、実際の磁気抵抗素子1においては、磁化固定層11から磁界が漏れて中間層12を介して磁化自由層13に作用する。図2においては、前記したように磁化固定層11の磁化Mは飽和磁化−Mspin近傍であり、負の方向に漏出磁界が作用する。このため、磁化自由層13は、より大きな磁界Hを正の方向に印加されないと磁化Mが正に変化せず、反対に、負の方向へは小さい磁界Hで容易に負に変化する。磁化自由層13の磁化Mの限界値はその飽和磁界−Ms,+Msから変化しないので、したがって、図3(b)に示すように、磁化自由層13の磁化曲線は磁界H方向の正へシフトし、このとき保磁力Hc0,Hc1も−Hc,+Hcからそれぞれ正の方向にシフトするため、互いの絶対値にずれを生じる(|Hc0|<|Hc1|)。このシフト量は磁化固定層11からの漏出磁界が大きいほど、すなわち磁化固定層11の飽和磁化Mspinが高いほど大きくなる。 However, in the actual magnetoresistive element 1, a magnetic field leaks from the magnetization fixed layer 11 and acts on the magnetization free layer 13 via the intermediate layer 12. In FIG. 2, as described above, the magnetization M of the magnetization fixed layer 11 is in the vicinity of the saturation magnetization -Ms pin , and a leakage magnetic field acts in the negative direction. For this reason, in the magnetization free layer 13, the magnetization M does not change positively unless a larger magnetic field H is applied in the positive direction, and conversely, the magnetization free layer 13 easily changes negatively with the small magnetic field H in the negative direction. Since the limit value of the magnetization M of the magnetization free layer 13 does not change from the saturation magnetic fields −Ms and + Ms, therefore, the magnetization curve of the magnetization free layer 13 shifts to the positive in the magnetic field H direction as shown in FIG. At this time, since the coercive forces Hc 0 and Hc 1 are also shifted in the positive direction from −Hc and + Hc, respectively, a deviation occurs between the absolute values (| Hc 0 | <| Hc 1 |). This shift amount increases as the leakage magnetic field from the magnetization fixed layer 11 increases, that is, as the saturation magnetization Ms pin of the magnetization fixed layer 11 increases.

前記した通り、磁気抵抗素子1の反転電流の大きさは磁化自由層13の保磁力の大きさに対応するので、磁化自由層13の保磁力Hc0,Hc1の場合、正負それぞれへの反転電流の大きさも異なる。保磁力Hc0,Hc1のシフト量ΔHc(ΔHc=|Hc1|−Hc,Hc−|Hc0|)が10Oeを超えて大きいと、|Hc0|と|Hc1|の差(ΔHc×2)が大きく、反転電流も正および負で絶対値の差が大きくなる。このような磁気抵抗素子1に対して、供給電流I0,I1について|I0|=|I1|では、磁化反転動作に安定性を欠く等の不具合を生じる虞がある。したがって、このような場合、磁気抵抗素子1の近傍に磁石等の磁界印加手段を設けて、磁化固定層13の漏出磁界をキャンセルするために逆向きの正方向に磁界(バイアス磁界)を印加しながら動作させる必要がある。本実施形態に係る磁気抵抗素子1は、前記した通り磁化固定層13を構成するTbFeCo合金の組成を限定することによりその飽和磁化Mspinが高くならないようにして漏出磁界を減少させ、磁化自由層13の保磁力Hcのシフト量を十分に小さくする(0Oeに近付ける)。すなわち、磁気抵抗素子1のスピン注入磁化反転特性が電流軸方向の一方にシフトする現象を抑制することができる。その結果、正の磁化反転電流と負の磁化反転電流をほぼ同じ大きさ(+Ic,−Ic)として、バイアス磁界の印加がなくとも安定したスピン注入磁化反転動作を得ることができる。 As described above, since the magnitude of the switching current of the magnetoresistive element 1 corresponds to the magnitude of the coercive force of the magnetization free layer 13, if the coercive force Hc 0, Hc 1 of the magnetization free layer 13, the inversion of the respective positive and negative The magnitude of the current is also different. Coercive force Hc 0, Hc 1 shift amount ΔHc (ΔHc = | Hc 1 | -Hc, Hc- | Hc 0 |) is large beyond 10Oe, | Hc 0 | a | Hc 1 | difference (.DELTA.Hc × 2) is large, the reversal current is positive and negative, and the difference in absolute value is large. With respect to such a magnetoresistive element 1, if | I 0 | = | I 1 | with respect to the supply currents I 0 and I 1 , there is a possibility that problems such as lack of stability in the magnetization reversal operation may occur. Therefore, in such a case, a magnetic field applying means such as a magnet is provided in the vicinity of the magnetoresistive element 1, and a magnetic field (bias magnetic field) is applied in the reverse positive direction in order to cancel the leakage magnetic field of the magnetization fixed layer 13. It is necessary to operate while. The magnetoresistive element 1 according to the present embodiment reduces the leakage magnetic field by limiting the composition of the TbFeCo alloy constituting the magnetization fixed layer 13 as described above so that the saturation magnetization Ms pin does not become high, and the magnetization free layer The amount of shift of the coercive force Hc of 13 is made sufficiently small (close to 0 Oe). That is, it is possible to suppress a phenomenon in which the spin injection magnetization reversal characteristics of the magnetoresistive element 1 are shifted to one side in the current axis direction. As a result, the positive magnetization reversal current and the negative magnetization reversal current are set to substantially the same magnitude (+ Ic, −Ic), and a stable spin injection magnetization reversal operation can be obtained without applying a bias magnetic field.

以上のように、本実施形態に係る磁気抵抗素子によれば、磁化反転動作が安定した磁気抵抗素子とすることができる。そして、後記するように、磁気抵抗素子1は、一般的に、膜面方向に複数個を2次元配列して磁気ランダムアクセスメモリ(MRAM)や空間光変調器の画素アレイを構成するが、電極2,3から所定の電流を供給することにより、任意の1つ以上の磁気抵抗素子1を選択的に磁化反転させることができる。   As described above, the magnetoresistive element according to the present embodiment can provide a magnetoresistive element with stable magnetization reversal operation. As will be described later, the magnetoresistive element 1 generally has a pixel array of a magnetic random access memory (MRAM) or a spatial light modulator by two-dimensionally arranging a plurality of elements in the film surface direction. By supplying a predetermined current from 2 and 3, any one or more magnetoresistive elements 1 can be selectively reversed in magnetization.

なお、本実施形態に係る磁気抵抗素子は、磁化固定層、中間層、および磁化自由層を1ずつ備えた構成であるが、これに限らず、例えばデュアルピン構造のように、磁化自由層の上下にそれぞれ中間層を挟んで、2つの磁化固定層を備える磁気抵抗素子であってもよい。   Note that the magnetoresistive element according to the present embodiment is configured to include one magnetization fixed layer, one intermediate layer, and one magnetization free layer. However, the present invention is not limited to this. For example, as in the dual pin structure, A magnetoresistive element including two magnetization fixed layers with an intermediate layer interposed between the upper and lower sides may be used.

[空間光変調器]
以下に、前記の本発明に係る磁気抵抗素子を光変調素子として画素に備える空間光変調器について、その実施形態を説明する。なお、本明細書における画素とは、空間光変調器による表示の最小単位での情報(明/暗)を表示する手段を指す。
[Spatial light modulator]
Hereinafter, an embodiment of a spatial light modulator provided in a pixel using the magnetoresistive element according to the present invention as a light modulation element will be described. In addition, the pixel in this specification refers to a means for displaying information (bright / dark) in the minimum unit of display by the spatial light modulator.

本発明の一実施形態に係る空間光変調器10は、基板(図5参照)上に、図4に示すように2次元アレイ状に配列された画素4からなる画素アレイ40と、画素アレイ40から1つ以上の画素4を選択して駆動する電流制御部80を備える。なお、本明細書における平面(上面)は空間光変調器の光の入射面であり、空間光変調器10は画素4(画素アレイ40)に上方から入射した光を反射してその光を変調して上方へ出射する反射型の空間光変調器である。   A spatial light modulator 10 according to an embodiment of the present invention includes a pixel array 40 composed of pixels 4 arranged in a two-dimensional array on a substrate (see FIG. 5) as shown in FIG. Are provided with a current control unit 80 that selects and drives one or more pixels 4. The plane (upper surface) in this specification is a light incident surface of the spatial light modulator, and the spatial light modulator 10 reflects light incident on the pixel 4 (pixel array 40) from above and modulates the light. Thus, the reflective spatial light modulator is emitted upward.

図4に示すように、画素アレイ40は、平面視でストライプ状の複数の上部電極2,2,…と、同じくストライプ状で、平面視で上部電極2と直交する複数の下部電極3,3,…と、を備え、上部電極2と下部電極3との交点毎に1つの画素4を設ける。したがって、画素4は、空間光変調器10の光の入射面に、2次元アレイ状に配列されて画素アレイ40を構成する。本実施形態では、画素アレイ40は、4行×4列の16個の画素4からなる構成で例示される。そして、図4および図5に示すように、画素4は、当該画素4における一対の電極としての上部電極2および下部電極3と、これらの電極2,3に上下から挟まれた磁気抵抗素子1を備える。また、隣り合う上部電極2,2間、磁気抵抗素子1,1間、および下部電極3,3間は、絶縁層6で埋められている。   As shown in FIG. 4, the pixel array 40 includes a plurality of upper electrodes 2, 2... Striped in plan view, and a plurality of lower electrodes 3, 3 that are also striped and orthogonal to the upper electrode 2 in plan view. ,..., And one pixel 4 is provided at each intersection of the upper electrode 2 and the lower electrode 3. Accordingly, the pixels 4 are arranged in a two-dimensional array on the light incident surface of the spatial light modulator 10 to constitute the pixel array 40. In the present embodiment, the pixel array 40 is exemplified by a configuration including 16 pixels 4 of 4 rows × 4 columns. 4 and 5, the pixel 4 includes an upper electrode 2 and a lower electrode 3 as a pair of electrodes in the pixel 4, and a magnetoresistive element 1 sandwiched between these electrodes 2 and 3 from above and below. Is provided. Further, the insulating layers 6 are filled between the adjacent upper electrodes 2 and 2, the magnetoresistive elements 1 and 1, and the lower electrodes 3 and 3.

図4に示すように、電流制御部80は、上部電極2を選択する上部電極選択部82と、下部電極3を選択する下部電極選択部83と、これらの電極選択部82,83を制御する画素選択部(画素選択手段)84と、電極2,3に電流を供給する電源(電流供給手段)81と、を備える。これらはそれぞれ公知のものでよく、磁気抵抗素子1を磁化反転させるために適正な電圧・電流を供給するものとする。   As shown in FIG. 4, the current control unit 80 controls the upper electrode selection unit 82 that selects the upper electrode 2, the lower electrode selection unit 83 that selects the lower electrode 3, and the electrode selection units 82 and 83. A pixel selection section (pixel selection means) 84 and a power supply (current supply means) 81 that supplies current to the electrodes 2 and 3 are provided. These may be known ones and supply appropriate voltages and currents to reverse the magnetization of the magnetoresistive element 1.

上部電極選択部82は、上部電極2の1つ以上を選択し、下部電極選択部83は、下部電極3の1つ以上を選択し、それぞれに電源81から所定の電流を供給させる。画素選択部84は、例えば図示しない外部からの信号に基づいて画素アレイ40の特定の1つ以上の画素4を選択し、選択した画素4に接続する電極2,3を電極選択部82,83に選択させる。電源81は、選択した画素4に備えられる磁気抵抗素子1を磁化反転させるために適正な電圧・電流を供給する。このような構成により、特定の画素4が選択され、この画素4の磁気抵抗素子1に、所定の電流が供給されて磁化反転させる。なお、図4において、電源81は、電極2,3のそれぞれ一端に電極選択部82,83を介して接続されているが、両端に接続されていてもよい。両端に接続されることにより、応答速度を上げ、画素間の動作ばらつきも低減できる。   The upper electrode selection unit 82 selects one or more of the upper electrodes 2, and the lower electrode selection unit 83 selects one or more of the lower electrodes 3, and each supplies a predetermined current from the power source 81. The pixel selection unit 84 selects one or more specific pixels 4 of the pixel array 40 based on, for example, an external signal (not shown), and connects the electrodes 2 and 3 connected to the selected pixel 4 to the electrode selection units 82 and 83. To select. The power supply 81 supplies an appropriate voltage / current to reverse the magnetization of the magnetoresistive element 1 provided in the selected pixel 4. With such a configuration, a specific pixel 4 is selected, and a predetermined current is supplied to the magnetoresistive element 1 of this pixel 4 to reverse the magnetization. In FIG. 4, the power supply 81 is connected to one end of each of the electrodes 2 and 3 via the electrode selection units 82 and 83, but may be connected to both ends. By connecting to both ends, the response speed can be increased and the operation variation between pixels can be reduced.

空間光変調器10の画素4の構成の詳細を図4および図5を参照して説明する。上部電極2は、図5に示すように磁気抵抗素子1の上に配され、図4に示すように横方向に帯状に延設される。1つの上部電極2は、横1行に配置された複数の画素4,4,…のそれぞれの磁気抵抗素子1に電流を供給する。一方、下部電極3は、磁気抵抗素子1の下に配され、縦方向に帯状に延設される。1つの下部電極3は、縦1列に配置された複数の画素4,4,…のそれぞれの磁気抵抗素子1に電流を供給する。上部電極2は、磁気抵抗素子1の入射光および出射光を遮らないように透明電極材料で構成される。一方、下部電極3は導電性の優れた電極用金属材料で構成される。なお、このような画素4は、例えば表面を熱酸化したSi基板等の公知の基板上に配列されて、画素アレイ40に形成される。   Details of the configuration of the pixel 4 of the spatial light modulator 10 will be described with reference to FIGS. 4 and 5. The upper electrode 2 is disposed on the magnetoresistive element 1 as shown in FIG. 5, and extends in a strip shape in the lateral direction as shown in FIG. One upper electrode 2 supplies a current to each of the magnetoresistive elements 1 of the plurality of pixels 4, 4,... Arranged in one horizontal row. On the other hand, the lower electrode 3 is disposed under the magnetoresistive element 1 and extends in a strip shape in the vertical direction. One lower electrode 3 supplies a current to each of the magnetoresistive elements 1 of the plurality of pixels 4, 4,... Arranged in one vertical column. The upper electrode 2 is made of a transparent electrode material so as not to block incident light and outgoing light of the magnetoresistive element 1. On the other hand, the lower electrode 3 is made of an electrode metal material having excellent conductivity. The pixels 4 are formed on the pixel array 40 by being arranged on a known substrate such as a Si substrate whose surface is thermally oxidized.

磁気抵抗素子1は、図4に示すように、平面視で上部電極2と下部電極3の重なる部分に配され、この電極2,3に上下から挟まれて接続されている。磁気抵抗素子1は、空間光変調器10においては光変調素子としての機能を有するが、その構成は、図1および図2に示す前記の本発明に係る磁気抵抗素子1と同様であるため、説明は省略する。磁気抵抗素子1の平面視形状は、本実施形態においては正方形であるが、これに限定されるものではない。また、1個の画素4につき1個の磁気抵抗素子1が配されているが、例えば1つの画素4に面方向で(1×3)個、(2×2)個等の複数の磁気抵抗素子1を備えてもよい。   As shown in FIG. 4, the magnetoresistive element 1 is arranged in a portion where the upper electrode 2 and the lower electrode 3 overlap in a plan view, and is sandwiched and connected to the electrodes 2 and 3 from above and below. The magnetoresistive element 1 has a function as a light modulating element in the spatial light modulator 10, but its configuration is the same as the magnetoresistive element 1 according to the present invention shown in FIGS. Description is omitted. The planar view shape of the magnetoresistive element 1 is a square in the present embodiment, but is not limited to this. In addition, one magnetoresistive element 1 is arranged for one pixel 4. For example, a plurality of magnetoresistive elements such as (1 × 3), (2 × 2), and the like are provided in one pixel 4 in the surface direction. Element 1 may be provided.

上部電極2は、光が透過するように透明電極材料で構成される。透明電極材料は、例えば、インジウム亜鉛酸化物(Indium Zinc Oxide:IZO)、インジウム−スズ酸化物(Indium Tin Oxide:ITO)、酸化スズ(SnO2)、酸化アンチモン−酸化スズ系(ATO)、酸化亜鉛(ZnO)、フッ素ドープ酸化スズ(FTO)、酸化インジウム(In23)等の公知の透明電極材料からなる。特に、比抵抗と成膜の容易さとの点からIZOが最も好ましい。これらの透明電極材料は、スパッタリング法、真空蒸着法、塗布法等の公知の方法により成膜される。 The upper electrode 2 is made of a transparent electrode material so that light can pass therethrough. Transparent electrode materials include, for example, indium zinc oxide (IZO), indium tin oxide (ITO), tin oxide (SnO 2 ), antimony oxide-tin oxide system (ATO), oxidation zinc (ZnO), fluorine-doped tin oxide (FTO), consisting of a known transparent electrode material such as indium oxide (in 2 O 3). In particular, IZO is most preferable in terms of specific resistance and ease of film formation. These transparent electrode materials are formed into a film by a known method such as a sputtering method, a vacuum deposition method, or a coating method.

電極(配線)を透明電極材料で構成する場合、電極とこの電極に接続する磁気抵抗素子1との間に金属膜を設けることが好ましい。すなわち透明電極材料で構成された上部電極2においては、磁気抵抗素子1との間の下地層として金属膜を積層することが好ましい(図示せず)。磁気抵抗素子1との間に金属膜を介在させることで、電極用金属材料より抵抗が大きい透明電極材料からなる上部電極2においても、上部電極2−磁気抵抗素子1間の接触抵抗を低減させて応答速度を上げることができる。   When the electrode (wiring) is made of a transparent electrode material, it is preferable to provide a metal film between the electrode and the magnetoresistive element 1 connected to the electrode. That is, in the upper electrode 2 made of a transparent electrode material, it is preferable to laminate a metal film as a base layer between the magnetoresistive element 1 (not shown). By interposing a metal film between the magnetoresistive element 1 and the upper electrode 2 made of a transparent electrode material having a resistance higher than that of the electrode metal material, the contact resistance between the upper electrode 2 and the magnetoresistive element 1 is reduced. To increase the response speed.

下地層を構成する金属としては、例えば、Au,Ru,Ta、またはそれらの金属の2種以上からなる合金等を用いることができ、これらの金属はスパッタリング法等の公知の方法により成膜される。そして、下地層とその上の層すなわち透明電極との密着性をよくして接触抵抗をさらに低減するため、下地層となる金属膜は、透明電極材料と連続的に真空処理室にて成膜されることが好ましい。下地層の厚さは、1nm未満であると連続した膜を形成し難く、一方、10nmを超えると光の透過量を低下させる。したがって、下地層の好ましい厚さは1〜10nmである。   As the metal constituting the underlayer, for example, Au, Ru, Ta, or an alloy composed of two or more of these metals can be used, and these metals are formed by a known method such as a sputtering method. The Then, in order to further reduce the contact resistance by improving the adhesion between the underlayer and the layer above it, that is, the transparent electrode, the metal film serving as the underlayer is continuously formed in the vacuum processing chamber with the transparent electrode material. It is preferred that If the thickness of the underlayer is less than 1 nm, it is difficult to form a continuous film, while if it exceeds 10 nm, the amount of transmitted light is reduced. Therefore, the preferable thickness of the underlayer is 1 to 10 nm.

下部電極3は、例えば、Cu,Al,Au,Ag,Ta,Cr等の金属やその合金のような一般的な電極用金属材料からなる。そして、スパッタリング法等の公知の方法により成膜、フォトリソグラフィ、およびエッチングまたはリフトオフ法等によりストライプ状に加工される。   The lower electrode 3 is made of a general electrode metal material such as a metal such as Cu, Al, Au, Ag, Ta, Cr, or an alloy thereof. Then, it is processed into a stripe shape by a known method such as a sputtering method, by film formation, photolithography, etching, lift-off method, or the like.

絶縁層6は、隣り合う上部電極2,2間(図5不図示)および下部電極3,3間に配されてこれらを互いに絶縁するものであり、また平面視で磁気抵抗素子1のない領域において電極2,3間を絶縁し、また磁気抵抗素子1の側面を封止するため、磁気抵抗素子1,1間に配される。ここで、磁気抵抗素子1,1間に絶縁層6としてSiO2等の酸化物を配する場合、酸化物等の酸素(O)を含有する膜は、通常、酸素を含有する雰囲気ガスを供給しながら成膜される。このとき、露出した磁気抵抗素子1の端面(側面)で、磁化固定層11を構成するTbFeCo合金、さらには磁化自由層13にRE−TM合金を備える場合はこれらの合金が酸化してその磁気特性が変化し、磁気抵抗素子1の磁化反転動作等に影響を及ぼす虞がある。具体的には、RE−TM合金のTb等の希土類金属が酸化されてFe,Co等の遷移金属の割合が多い組成に変化することで、保磁力Hcpinが低下し、また飽和磁化Mspinが増加し、さらに酸化が進行すると、フェリ磁性体としての性質を保持できなくなって、垂直磁気異方性の消失に至ることになる。また、SiO2の成膜後の工程での熱処理や動作時の発熱で、RE−TM合金が、磁気抵抗素子1のSiO2と接触した界面すなわち側面からSiO2の酸素(O)により酸化が進行する虞がある。 The insulating layer 6 is arranged between the adjacent upper electrodes 2 and 2 (not shown in FIG. 5) and between the lower electrodes 3 and 3 to insulate them from each other, and is a region without the magnetoresistive element 1 in plan view. In order to insulate between the electrodes 2 and 3 and to seal the side surface of the magnetoresistive element 1, the magnetoresistive elements 1 and 1 are disposed. Here, when an oxide such as SiO 2 is disposed as the insulating layer 6 between the magnetoresistive elements 1 and 1, an oxygen (O) -containing film such as an oxide is usually supplied with an atmospheric gas containing oxygen. While forming the film. At this time, if the exposed end surface (side surface) of the magnetoresistive element 1 includes a TbFeCo alloy constituting the magnetization fixed layer 11 and further a RE-TM alloy in the magnetization free layer 13, these alloys are oxidized and the magnetic field is increased. The characteristics may change and affect the magnetization reversal operation or the like of the magnetoresistive element 1. Specifically, when the rare earth metal such as Tb of the RE-TM alloy is oxidized and changed to a composition having a high proportion of transition metals such as Fe and Co, the coercive force Hc pin is lowered and the saturation magnetization Ms pin When the oxidation increases and the oxidation further proceeds, the properties as a ferrimagnetic material cannot be maintained, and the perpendicular magnetic anisotropy is lost. Further, the heat treatment in the process after the film formation of SiO 2 and the heat generated during the operation cause the RE-TM alloy to be oxidized by the oxygen (O) of SiO 2 from the interface or side surface in contact with SiO 2 of the magnetoresistive element 1. There is a risk of progress.

したがって、本発明に係る磁気抵抗素子1を適用した空間光変調器10においては、絶縁層6として、特に磁気抵抗素子1と接触する部位である磁気抵抗素子1,1間には非酸化物の絶縁材料を適用することが好ましい。このような絶縁材料としては、例えばシリコン窒化物(主な組成はSi34、以下Si−Nで表す。)が挙げられる。なお、上部電極2,2間および下部電極3,3間等の磁気抵抗素子1に接触しない領域に配する絶縁材料には、SiO2やAl23等の一般的な絶縁材料を適用してもよい。 Therefore, in the spatial light modulator 10 to which the magnetoresistive element 1 according to the present invention is applied, a non-oxide is formed between the magnetoresistive elements 1 and 1 as the insulating layer 6, in particular, between the magnetoresistive elements 1 and 1. It is preferable to apply an insulating material. As such an insulating material, for example, silicon nitride (the main composition is Si 3 N 4 , hereinafter referred to as Si—N) can be given. Note that a general insulating material such as SiO 2 or Al 2 O 3 is applied to an insulating material disposed in a region not in contact with the magnetoresistive element 1 such as between the upper electrodes 2 and 2 and between the lower electrodes 3 and 3. May be.

絶縁層6は、磁気抵抗素子1を所望の平面視形状に加工した後、上部電極2を形成する(電極材料を成膜する)前に、Si−Nをスパッタリング法や化学気相成長(CVD)法等の公知の方法により成膜して磁気抵抗素子1,1間に堆積させた後、エッチングやCMP(Chemical Mechanical Polishing:化学機械研磨)等により磁気抵抗素子1上のSi−Nを除去することにより形成できる。あるいは、磁気抵抗素子1の加工においてマスクとしたレジストを残した状態でSi−Nを成膜し、レジストをその上のSi−Nごと除去して(リフトオフ)もよい。   After the magnetoresistive element 1 is processed into a desired plan view shape, the insulating layer 6 is formed by sputtering Si-N or chemical vapor deposition (CVD) before forming the upper electrode 2 (forming an electrode material). ) And the like, and deposited between the magnetoresistive elements 1 and 1, and then Si—N on the magnetoresistive element 1 is removed by etching, CMP (Chemical Mechanical Polishing), or the like. Can be formed. Alternatively, Si-N may be deposited with the resist used as a mask remaining in the processing of the magnetoresistive element 1, and the entire Si-N may be removed (lift-off).

(空間光変調器の画素選択の動作)
次に、空間光変調器10の画素選択の動作を、この空間光変調器10を用いた表示装置として、図5を参照して説明する。電極2,3は、前記の通り、電流制御部80に接続される。また、図5に示すように、本実施形態に係る空間光変調器10の画素4(画素アレイ40)の上方には、画素アレイ40に向けて光を照射する光源93と、光源93から照射された光を画素アレイ40に入射する前に偏光とする入射偏光フィルタ91と、画素アレイ40で反射して出射した光から特定の向きの偏光のみを透過する出射偏光フィルタ92と、出射偏光フィルタ92を透過した光を検出する検出器94とが配置される。
(Spatial light modulator pixel selection operation)
Next, the pixel selection operation of the spatial light modulator 10 will be described as a display device using the spatial light modulator 10 with reference to FIG. The electrodes 2 and 3 are connected to the current control unit 80 as described above. Further, as shown in FIG. 5, a light source 93 that irradiates light toward the pixel array 40 and a light source 93 that irradiates light above the pixel 4 (pixel array 40) of the spatial light modulator 10 according to the present embodiment. An incident polarization filter 91 that converts the emitted light into polarized light before entering the pixel array 40, an output polarization filter 92 that transmits only polarized light in a specific direction from the light reflected and emitted from the pixel array 40, and an output polarization filter A detector 94 for detecting the light transmitted through 92 is disposed.

光源93は、例えばレーザー光源、およびこれに光学的に接続されてレーザー光を拡大するビーム拡大器、さらに拡大されたレーザー光を平行光とするレンズで構成される(図示省略)。光源93から照射された光(レーザー光)は様々な偏光成分を含んだいわゆる自然光であるので、これを画素アレイ40の手前の入射偏光フィルタ91を透過させて、1つの偏光成分の光とする。以下、1つの偏光成分の光を偏光と称する。この偏光(入射偏光)は、画素アレイ40のすべての画素4に所定の入射角で入射する。それぞれの画素4において、入射偏光は、上部電極2を透過して磁気抵抗素子1に入射し、磁気抵抗素子1の磁化自由層13で反射して出射偏光として出射し、再び上部電極2を透過して画素4から出射する。それぞれの画素4から出射したすべての出射偏光は、出射偏光フィルタ92に到達する。出射偏光フィルタ92は、特定の偏光、ここでは入射偏光に対して角度θap旋光した偏光のみを透過させ、この透過した出射偏光が検出器94に入射される。偏光フィルタ91,92はそれぞれ偏光板等であり、検出器94はスクリーン等の画像表示手段やカメラ等である。   The light source 93 includes, for example, a laser light source, a beam expander that is optically connected to the laser light source and expands the laser light, and a lens that converts the expanded laser light into parallel light (not shown). Since the light (laser light) emitted from the light source 93 is so-called natural light including various polarization components, the light is transmitted through the incident polarization filter 91 in front of the pixel array 40 to be light of one polarization component. . Hereinafter, light of one polarization component is referred to as polarization. This polarized light (incident polarized light) is incident on all the pixels 4 of the pixel array 40 at a predetermined incident angle. In each pixel 4, the incident polarized light passes through the upper electrode 2 and enters the magnetoresistive element 1, is reflected by the magnetization free layer 13 of the magnetoresistive element 1, is emitted as outgoing polarized light, and passes through the upper electrode 2 again. Then, the light is emitted from the pixel 4. All outgoing polarized light emitted from each pixel 4 reaches the outgoing polarization filter 92. The outgoing polarization filter 92 transmits only specific polarized light, here polarized light whose angle θap is rotated with respect to incident polarized light, and this transmitted outgoing polarized light is incident on the detector 94. Each of the polarizing filters 91 and 92 is a polarizing plate, and the detector 94 is an image display means such as a screen, a camera, or the like.

磁気抵抗素子1に入射した光が磁性体である磁化自由層13で反射して出射すると、カー効果(磁気カー効果)により、入射光はその偏光の向きが変化(旋光)する。そして、前記したように、磁気抵抗素子1は電極2,3から供給される電流の向きに応じて磁化反転して、画素4毎に磁化が平行/反平行、すなわち磁化自由層13の磁化が上方向/下方向を示す(図2(a)、(b)参照)。このように、磁化自由層13の磁化方向が180°異なると、入射光は同じ大きさの旋光角すなわち磁化自由層13のカー回転角θKで互いに逆方向に回転して出射する。磁化が平行、反平行である磁気抵抗素子1における旋光角をそれぞれθp,θapと表すと、θp=+θK、θap=−θKとなり、電極2,3からの電流の向きにより磁気抵抗素子1からの出射光の偏光の向きの差すなわち旋光角の差|θp−θap|は2θKとなる。 When light incident on the magnetoresistive element 1 is reflected by the magnetization free layer 13 which is a magnetic material and emitted, the polarization direction of the incident light changes (rotation) due to the Kerr effect (magnetic Kerr effect). As described above, the magnetization of the magnetoresistive element 1 is reversed according to the direction of the current supplied from the electrodes 2 and 3, and the magnetization is parallel / antiparallel for each pixel 4, that is, the magnetization of the magnetization free layer 13 is An upward / downward direction is shown (see FIGS. 2A and 2B). As described above, when the magnetization direction of the magnetization free layer 13 is different by 180 °, the incident light is emitted by rotating in the opposite directions at the same rotation angle, that is, the Kerr rotation angle θ K of the magnetization free layer 13. When the optical rotation angles in the magnetoresistive element 1 having magnetization parallel and antiparallel are respectively expressed as θp and θap, θp = + θ K and θap = −θ K are obtained , and the magnetoresistive element 1 depends on the direction of the current from the electrodes 2 and 3. difference or the difference in angle of rotation of the polarization direction of the light emitted from | θp-θap | becomes 2 [Theta] K.

あるいは、磁気抵抗素子1に入射した偏光が、磁化自由層13、中間層12、磁化固定層11を透過し、下部電極3の上面で反射して、再び磁化固定層11、中間層12、磁化自由層13を透過して出射する構成であってもよい。この場合は、磁性体である磁化自由層13および磁化固定層11を透過することで、ファラデー効果により、偏光はその向きが、磁化自由層13および磁化固定層11のそれぞれの所定の角度(旋光角)に回転(旋光)する。ただし、磁化固定層11の磁化方向は一定であるので、磁気抵抗素子1からの出射光の偏光の変化は磁化自由層13のファラデー回転角θFによって決定される。出射光は磁化自由層13を2回透過しているので、旋光角の差|θp−θap|は4θFとなる。 Alternatively, the polarized light incident on the magnetoresistive element 1 passes through the magnetization free layer 13, the intermediate layer 12, and the magnetization fixed layer 11, is reflected on the upper surface of the lower electrode 3, and is again reflected in the magnetization fixed layer 11, the intermediate layer 12, and the magnetization The structure which permeate | transmits and emits the free layer 13 may be sufficient. In this case, by passing through the magnetization free layer 13 and the magnetization fixed layer 11 which are magnetic materials, the direction of polarized light depends on the respective predetermined angles (optical rotation) of the magnetization free layer 13 and the magnetization fixed layer 11 due to the Faraday effect. Rotate (rotate) to (angle). However, since the magnetization direction of the magnetization fixed layer 11 is constant, the change in the polarization of the emitted light from the magnetoresistive element 1 is determined by the Faraday rotation angle θ F of the magnetization free layer 13. Since the emitted light is transmitted through the magnetization free layer 13 twice, the difference between the optical rotation angle | θp-θap | becomes 4? F.

入射偏光に対して角度θap旋光した図4の左右両端の画素4,4からのそれぞれの出射偏光は、出射偏光フィルタ92を透過して検出器94に到達するので、この画素4は明るく(白く)検出器94に表示される。一方、中央の画素4からの出射偏光は、出射偏光フィルタ92で遮られるので、この画素4は暗く(黒く)、検出器94に表示される。このように、画素毎に明/暗(白/黒)を切り分けられ、電流の向きを切り換えれば明/暗が切り換わる。なお、空間光変調器10の初期状態としては、例えば全体が白く表示されるように、すべての画素4の磁気抵抗素子1の磁化を反平行にするべく、上部電極2のすべてを「−」、下部電極3のすべてを「+」にして、上向きの電流を供給すればよい。   The outgoing polarized light from the left and right pixels 4 and 4 in FIG. 4 rotated by an angle θap with respect to the incident polarized light passes through the outgoing polarizing filter 92 and reaches the detector 94, so that the pixel 4 is bright (white). ) Is displayed on the detector 94. On the other hand, since the outgoing polarized light from the central pixel 4 is blocked by the outgoing polarizing filter 92, the pixel 4 is dark (black) and displayed on the detector 94. Thus, light / dark (white / black) can be separated for each pixel, and light / dark can be switched by switching the direction of the current. As an initial state of the spatial light modulator 10, for example, all the upper electrodes 2 are “-” so that the magnetizations of the magnetoresistive elements 1 of all the pixels 4 are anti-parallel so that the whole is displayed white. All of the lower electrode 3 may be set to “+” to supply an upward current.

ここで、磁化自由層13のカー回転角θKおよびファラデー回転角θFは、前記したように光の入射角が磁化自由層13の磁化方向に近いほど大きい。したがって、入射角は膜面に垂直すなわち0°とすることが旋光角の差|θp−θap|を最大にする上で望ましいが、このようにすると、出射偏光の光路が入射偏光の光路と一致する。そこで、入射角を少し傾斜させて、出射偏光フィルタ92および検出部94、光源93および入射偏光フィルタ91が、それぞれ入射偏光および出射偏光の光路を遮らない配置となるようにする。具体的には、偏光の入射角は5°〜30°とすることが好ましい。または、入射角0°として、入射偏光フィルタ91と画素アレイ40との間にハーフミラーを配置して、出射偏光のみを側方へ反射させてもよい。この場合、出射偏光フィルタ92および検出器94は画素アレイ40の側方に配置する。なお、RE−TM合金、特にGdFe合金はカー回転角およびファラデー回転角が大きいため、磁気抵抗素子1は、磁化自由層13にこのような合金を含んで構成されることで、旋光角の差|θp−θap|をいっそう大きなものとすることができる。 Here, the Kerr rotation angle θ K and the Faraday rotation angle θ F of the magnetization free layer 13 are larger as the incident angle of light is closer to the magnetization direction of the magnetization free layer 13 as described above. Therefore, it is desirable to make the incident angle perpendicular to the film surface, that is, 0 °, in order to maximize the optical rotation angle difference | θp−θap |. However, in this case, the optical path of the outgoing polarized light coincides with the optical path of the incident polarized light. To do. Therefore, the incident angle is slightly inclined so that the outgoing polarization filter 92, the detector 94, the light source 93, and the incoming polarization filter 91 are arranged so as not to block the optical paths of the incident polarized light and the outgoing polarized light, respectively. Specifically, the incident angle of polarized light is preferably 5 ° to 30 °. Alternatively, a half mirror may be disposed between the incident polarizing filter 91 and the pixel array 40 with an incident angle of 0 °, and only the outgoing polarized light may be reflected to the side. In this case, the output polarization filter 92 and the detector 94 are arranged on the side of the pixel array 40. Since the RE-TM alloy, particularly the GdFe alloy, has a large Kerr rotation angle and Faraday rotation angle, the magnetoresistive element 1 includes such an alloy in the magnetization free layer 13 so that the difference in optical rotation angle can be obtained. | θp−θap | can be made larger.

本発明に係る空間光変調器においては、別の実施形態として、上下を入れ替えた構成として下方から入射する反射型の空間光変調器としてもよい。すなわち、下部電極を透明電極材料で、上部電極を電極用金属材料でそれぞれ構成して、下方から入射した光が下部電極を透過して磁気抵抗素子1または上部電極で反射して再び下部電極を透過して出射する。したがって、偏光フィルタ91,92、光源93および検出器94は画素アレイ40の下方に配置する。この場合、下部電極は上部電極を透明電極材料で構成した場合と同様に、磁気抵抗素子1との間に金属膜である下地層を設けて接触抵抗を低減させることが好ましい。また、磁気抵抗素子1は磁化固定層11と磁化自由層13の位置を入れ替えて積層する。さらに、基板は、下方から画素4に光を入射させて、再び画素4から出射した光がさらに下方へ照射されるように、透明な基板材料、例えば、SiO2,Al23,MgO等を適用する。 In another embodiment, the spatial light modulator according to the present invention may be a reflective spatial light modulator that enters from below as a configuration in which the top and bottom are switched. That is, the lower electrode is made of a transparent electrode material and the upper electrode is made of an electrode metal material. Light incident from below is transmitted through the lower electrode and reflected by the magnetoresistive element 1 or the upper electrode, and the lower electrode is again formed. Transmits and exits. Accordingly, the polarizing filters 91 and 92, the light source 93, and the detector 94 are disposed below the pixel array 40. In this case, the lower electrode is preferably provided with a base layer, which is a metal film, between the magnetoresistive element 1 and the contact resistance is reduced as in the case where the upper electrode is made of a transparent electrode material. In addition, the magnetoresistive element 1 is laminated by switching the positions of the magnetization fixed layer 11 and the magnetization free layer 13. Further, the substrate is made of a transparent substrate material such as SiO 2 , Al 2 O 3 , MgO or the like so that light enters the pixel 4 from below and light emitted from the pixel 4 is irradiated again downward. Apply.

さらに別の実施形態として、上部電極および下部電極を共に透明電極材料で構成して、透過型の空間光変調器としてもよい。このとき、基板は、上方から画素を透過した光がさらに下方へ照射されるように、前記の透明な基板材料からなる。また、磁気抵抗素子1は磁化固定層11と磁化自由層13の位置を入れ替えて積層してもよい。このような空間光変調器においては、光源93および入射偏光フィルタ91は画素アレイ40の直上に、出射偏光フィルタ92および検出器94は、画素アレイ40の直下にそれぞれ配置し、入射角0°とすることができる。また、下方から光を入射して上方へ出射する透過型の空間光変調器としてもよい。   As yet another embodiment, both the upper electrode and the lower electrode may be made of a transparent electrode material to form a transmissive spatial light modulator. At this time, the substrate is made of the transparent substrate material so that light transmitted through the pixel from above is further irradiated downward. In addition, the magnetoresistive element 1 may be laminated by switching the positions of the magnetization fixed layer 11 and the magnetization free layer 13. In such a spatial light modulator, the light source 93 and the incident polarizing filter 91 are disposed immediately above the pixel array 40, and the outgoing polarizing filter 92 and the detector 94 are disposed immediately below the pixel array 40, respectively, with an incident angle of 0 °. can do. Alternatively, a transmissive spatial light modulator that emits light from below and emits upward may be used.

さらにこれらの実施形態のそれぞれの変形例として、透明電極材料で構成して光を透過させる上部電極および下部電極について、配線部分は電極用金属材料として磁気抵抗素子1と平面視で重なる領域に孔を形成し、この孔の内部のみに透明電極材料を設けてもよい(図示せず)。このような電極とすることで、低抵抗の金属材料を用いて磁気抵抗素子1に光を入射させることができるので、配線抵抗による電圧降下を抑えて省電力化および画素間の動作ばらつきを低減できる。   Furthermore, as a modification of each of these embodiments, for the upper electrode and the lower electrode that are made of a transparent electrode material and transmit light, the wiring portion is a hole in a region overlapping with the magnetoresistive element 1 in plan view as a metal material for an electrode The transparent electrode material may be provided only inside the hole (not shown). By using such an electrode, light can be incident on the magnetoresistive element 1 using a low-resistance metal material, so that a voltage drop due to wiring resistance is suppressed to save power and reduce operation variation between pixels. it can.

以上のように、本発明の各実施形態およびその変形例に係る空間光変調器によれば、所定の組成のTbFeCo合金を磁化固定層に備えた磁気抵抗素子を光変調素子として、画素(画素アレイ)周囲に磁界印加手段を備えなくても画素選択の動作が安定した空間光変調器となる。   As described above, according to the spatial light modulators according to the embodiments of the present invention and the modifications thereof, a pixel (pixel) using a magnetoresistive element including a TbFeCo alloy having a predetermined composition in a magnetization fixed layer as a light modulation element. Even if no magnetic field applying means is provided around the array, a spatial light modulator with stable pixel selection operation is obtained.

[磁気ランダムアクセスメモリ]
本発明の一実施形態に係る磁気ランダムアクセスメモリ(MRAM)70は、図6に示すように、電流制御部80Aと共に記録装置9を構成する部品である。MRAM70は、平面視でストライプ状の複数のビット線2A,2A,…と、同じくストライプ状で、平面視でビット線2Aと直交する複数のワード線5,5,…と、を備え、ビット線2Aとワード線5との交点毎に1つのメモリセル7を設ける。本実施形態では、MRAM70は、4行×4列の16個のメモリセル7からなる構成で例示される。
[Magnetic random access memory]
A magnetic random access memory (MRAM) 70 according to an embodiment of the present invention is a component that constitutes the recording device 9 together with the current control unit 80A, as shown in FIG. The MRAM 70 includes a plurality of bit lines 2A, 2A,... Striped in plan view, and a plurality of word lines 5, 5,... That are also striped and orthogonal to the bit line 2A in plan view. One memory cell 7 is provided for each intersection of 2A and the word line 5. In the present embodiment, the MRAM 70 is exemplified by a configuration including 16 memory cells 7 of 4 rows × 4 columns.

図6に示すように、電流制御部80Aは、ビット線2Aを選択するビット線選択部82Aと、ワード線5を選択するワード線選択部85と、これらの選択部82A,85を制御するセル選択部84Aと、ビット線2Aおよびワード線5に電流を供給する電源81Aと、を備える。セル選択部84Aは、例えば図示しない外部からの信号に基づいてMRAM70の特定の1つ以上のメモリセル7を選択し、選択したメモリセル7に接続するビット線2A、ワード線5をビット線選択部82A、ワード線選択部85に選択させる。電源81Aは、選択したメモリセル7に備えられる磁気抵抗素子1およびMOSFETを動作させるために適正な電圧・電流を供給する。   As shown in FIG. 6, the current control unit 80A includes a bit line selection unit 82A that selects the bit line 2A, a word line selection unit 85 that selects the word line 5, and cells that control the selection units 82A and 85. A selection unit 84A and a power supply 81A for supplying current to the bit line 2A and the word line 5 are provided. The cell selection unit 84A selects, for example, one or more specific memory cells 7 of the MRAM 70 based on an external signal (not shown), and selects the bit line 2A and the word line 5 connected to the selected memory cell 7 as a bit line. The part 82A and the word line selection part 85 are selected. The power supply 81A supplies an appropriate voltage / current for operating the magnetoresistive element 1 and the MOSFET provided in the selected memory cell 7.

1つのメモリセル7は、図7に示すように、MOSFET上に1つの磁気抵抗素子1を備える。詳しくは、MOSFETのドレインに配線層を介して磁気抵抗素子1の下部電極3Aが接続されている。また、メモリセル7において、磁気抵抗素子1の上部電極は、MRAM70のビット線2Aを構成する。なお、磁気抵抗素子1の構成は、図1および図2に示す前記の本発明に係る磁気抵抗素子1と同様であるため、説明は省略する。したがって、MRAM70において、磁気抵抗素子1とその上下に接続されたビット線2Aおよび下部電極3Aの形成された積層方向の領域は、下部電極3Aが平面視で縦方向に延設されていないことを除けば、図5に示す空間光変調器10の画素アレイ40と同じ構成となる。   As shown in FIG. 7, one memory cell 7 includes one magnetoresistive element 1 on the MOSFET. Specifically, the lower electrode 3A of the magnetoresistive element 1 is connected to the drain of the MOSFET via a wiring layer. In the memory cell 7, the upper electrode of the magnetoresistive element 1 constitutes the bit line 2 </ b> A of the MRAM 70. The configuration of the magnetoresistive element 1 is the same as that of the magnetoresistive element 1 according to the present invention shown in FIGS. Therefore, in the MRAM 70, in the layered direction region where the magnetoresistive element 1 and the bit line 2A and the lower electrode 3A connected to the upper and lower sides thereof are formed, the lower electrode 3A is not extended in the vertical direction in plan view. Otherwise, the configuration is the same as the pixel array 40 of the spatial light modulator 10 shown in FIG.

MOSFETは、例えば、シリコン(Si)からなるp型基板上にソースおよびドレインが形成されている。ソースとドレインとの間のp型基板上には、絶縁層6を介して、ゲート電極が形成されている。また、ドレイン−配線層間、配線層−下部電極3A間は、それぞれコンタクトが形成されて接続されている。一方、ソースにはコンタクトを介してワード線5が接続され、ワード線5は接地されている。   In the MOSFET, for example, a source and a drain are formed on a p-type substrate made of silicon (Si). On the p-type substrate between the source and the drain, a gate electrode is formed via an insulating layer 6. In addition, contacts are formed and connected between the drain-wiring layer and between the wiring layer-lower electrode 3A. On the other hand, the word line 5 is connected to the source via a contact, and the word line 5 is grounded.

これらの配線、すなわちビット線(上部電極)2A、下部電極3A、配線層、ゲート電極、およびワード線5は、Cu,Al,Au,Ag,Ta,Cr等の金属やその合金のような一般的な電極用金属材料からなる。したがって、MRAM70においては、空間光変調器10の画素アレイ40と異なり、磁気抵抗素子1の上下に接続する電極が両方とも金属材料からなる。   These wirings, that is, the bit line (upper electrode) 2A, the lower electrode 3A, the wiring layer, the gate electrode, and the word line 5 are general metals such as Cu, Al, Au, Ag, Ta, Cr, and alloys thereof. It is made of a typical electrode metal material. Therefore, in the MRAM 70, unlike the pixel array 40 of the spatial light modulator 10, both electrodes connected to the top and bottom of the magnetoresistive element 1 are made of a metal material.

絶縁層6は、図7における空白部および隣り合うビット線2A,2A間(図7不図示)に配されて前記の配線を互いに絶縁するものであり、また磁気抵抗素子1の側面を封止する。ここで、少なくとも磁気抵抗素子1,1間すなわちビット線2Aと下部電極3Aとの間に配する絶縁層6は、空間光変調器10の画素アレイ40と同様に、Si−Nのように酸素を含有しない絶縁材料を適用することが好ましい。これにより、磁気抵抗素子1の磁化固定層11を構成するTbFeCo合金、さらには磁化自由層13にRE−TM合金を備える場合はこれらの合金が、絶縁層6の形成(成膜)時や形成後に、磁気抵抗素子1の側面において酸化することがなく、磁気抵抗素子1の磁化反転動作等の特性が維持できる。なお、ビット線2A,2A間および下部電極3A,3A間、ならびにその他の配線間やMOSFET領域に配する絶縁材料には、SiO2やAl23等の一般的な絶縁材料を適用してもよい。 The insulating layer 6 is disposed between the blank portion in FIG. 7 and between the adjacent bit lines 2A and 2A (not shown in FIG. 7) to insulate the wirings from each other, and seals the side surface of the magnetoresistive element 1 To do. Here, the insulating layer 6 disposed at least between the magnetoresistive elements 1, 1, that is, between the bit line 2 </ b> A and the lower electrode 3 </ b> A is oxygenated like Si—N, like the pixel array 40 of the spatial light modulator 10. It is preferable to apply an insulating material that does not contain. Thereby, when the TbFeCo alloy constituting the magnetization fixed layer 11 of the magnetoresistive element 1 and further the RE-TM alloy in the magnetization free layer 13 are formed, these alloys are formed or formed during the formation (film formation) of the insulating layer 6. Later, the side surface of the magnetoresistive element 1 is not oxidized, and the characteristics such as the magnetization reversal operation of the magnetoresistive element 1 can be maintained. It should be noted that a general insulating material such as SiO 2 or Al 2 O 3 is applied to the insulating material disposed between the bit lines 2A and 2A, the lower electrodes 3A and 3A, the other wirings, and the MOSFET region. Also good.

(メモリセルの動作)
次に、メモリセル7における磁気抵抗素子1の動作について図7および図2を参照して説明する。メモリセル7(MRAM70)においては、ビット線2Aおよびワード線5からの電流供給により、磁気抵抗素子1の磁化が平行/反平行に反転する。図2(a)に示すように磁化が平行な磁気抵抗素子1は、膜面垂直方向の抵抗が低く、このとき「0」の値が記録されている。一方、図2(b)に示すように磁化が反平行な磁気抵抗素子1は、抵抗が高く、「1」の値が記録されている。メモリセル7の初期状態においては、磁気抵抗素子1は、この磁化が反平行の状態である。
(Memory cell operation)
Next, the operation of the magnetoresistive element 1 in the memory cell 7 will be described with reference to FIGS. In the memory cell 7 (MRAM 70), the magnetization of the magnetoresistive element 1 is reversed in parallel / antiparallel by the current supply from the bit line 2A and the word line 5. As shown in FIG. 2A, the magnetoresistive element 1 having parallel magnetization has a low resistance in the direction perpendicular to the film surface, and a value of “0” is recorded at this time. On the other hand, as shown in FIG. 2B, the magnetoresistive element 1 having the antiparallel magnetization has a high resistance and a value of “1” is recorded. In the initial state of the memory cell 7, the magnetoresistive element 1 is in a state in which this magnetization is antiparallel.

この初期状態において、ゲート電極に所定の電圧を印加してMOSFETをオン状態にして、電流制御部80Aにより、ビット線2AからMOSFETへ下向きに電流I0が磁気抵抗素子1に流れるようにすると、磁気抵抗素子1が磁化反転して磁化が平行となり、「0」の値が書き込まれる。反対に、ワード線5からMOSFETを介してビット線2Aへ上向きに電流I1が磁気抵抗素子1に流れると、再び磁気抵抗素子1の磁化が反平行となって「1」の値が書き込まれる。なお、値の読み出しにおいては、ビット線2Aとワード線5との間に所定の電圧を印加して、磁気抵抗素子1を流れる電流の大きさを検出すればよい。 In this initial state, when a predetermined voltage is applied to the gate electrode to turn on the MOSFET and the current control unit 80A causes the current I 0 to flow downward from the bit line 2A to the MOSFET, Magnetization reversal of the magnetoresistive element 1 causes the magnetization to become parallel, and a value of “0” is written. On the contrary, when the current I 1 flows to the magnetoresistive element 1 upward from the word line 5 to the bit line 2A via the MOSFET, the magnetization of the magnetoresistive element 1 becomes antiparallel again and a value of “1” is written. . In reading the value, a predetermined voltage may be applied between the bit line 2A and the word line 5 to detect the magnitude of the current flowing through the magnetoresistive element 1.

以上のように、本発明の実施形態に係る磁気ランダムアクセスメモリによれば、所定の組成のTbFeCo合金を磁化固定層に備えた磁気抵抗素子を用いて、磁界印加手段を備えなくても書き込み等の動作が安定した記録装置が得られる。   As described above, according to the magnetic random access memory according to the embodiment of the present invention, using a magnetoresistive element including a TbFeCo alloy having a predetermined composition in a magnetization fixed layer, writing or the like can be performed without a magnetic field applying unit. Can be obtained.

以上、本発明の磁気抵抗素子、空間光変調器、および磁気ランダムアクセスメモリを実施するための各実施形態について述べてきたが、本発明はこれらの実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。   As mentioned above, although each embodiment for implementing the magnetoresistive element, the spatial light modulator, and the magnetic random access memory of the present invention has been described, the present invention is not limited to these embodiments. Various modifications are possible within the range shown in.

本発明の効果を確認するために、本発明の実施形態に係る磁気抵抗素子(図1参照)ののサンプルを作製した。磁気抵抗素子は、下部電極側から、磁化固定層:TbFeCo(10nm)、中間層:Cu(3nm)、磁化自由層:GdFeCo(10nm)、保護層:Ru(3nm)を積層したCPP−GMR素子とした。なお、磁化固定層を構成するTbFeCo合金の組成は表1に示すように変化させた。サンプルにおいて、磁気抵抗素子は1個のみを備えて、平面視形状を100nm×300nmの矩形とし、また、上部電極および下部電極はCuを適用した。詳しくは、まず、表面を熱酸化したSi基板上に、下部電極としてCu、および前記磁気抵抗素子の各層を順に、Ar雰囲気、0.1PaでDCマグネトロンスパッタリング法にて連続して成膜して積層した。次に、後続の工程での熱処理を模擬するために真空中で190℃×1時間の熱処理を施し、前記磁気抵抗素子の平面視形状のレジストマスクを形成して、イオンビームミリング法で磁気抵抗素子の各層およびCu(下部電極)の表面近傍までを加工した後、レジストの上からSi−Nを成膜して、レジストをその上のSi−Nごと除去して(リフトオフ)磁気抵抗素子の周囲(側面)の絶縁層を形成した。そして、磁気抵抗素子上に上部電極としてCuを成膜して、実施例のサンプルとした。   In order to confirm the effect of the present invention, a sample of the magnetoresistive element (see FIG. 1) according to the embodiment of the present invention was produced. The magnetoresistive element is a CPP-GMR element in which a magnetization fixed layer: TbFeCo (10 nm), an intermediate layer: Cu (3 nm), a magnetization free layer: GdFeCo (10 nm), and a protective layer: Ru (3 nm) are stacked from the lower electrode side. It was. The composition of the TbFeCo alloy constituting the magnetization fixed layer was changed as shown in Table 1. In the sample, only one magnetoresistive element was provided, the shape in plan view was a rectangle of 100 nm × 300 nm, and Cu was applied to the upper electrode and the lower electrode. Specifically, first, Cu as the lower electrode and each layer of the magnetoresistive element are sequentially formed on the Si substrate whose surface is thermally oxidized by DC magnetron sputtering in an Ar atmosphere and 0.1 Pa in order. Laminated. Next, in order to simulate the heat treatment in the subsequent process, a heat treatment at 190 ° C. for 1 hour is performed in a vacuum to form a resist mask having a shape in plan view of the magnetoresistive element, and the magnetoresistive resistance is formed by an ion beam milling method. After processing each layer of the element and the vicinity of the surface of Cu (lower electrode), a Si—N film is formed on the resist, and the resist is removed together with the Si—N (lift-off). A surrounding (side) insulating layer was formed. And Cu was formed into a film as an upper electrode on the magnetoresistive element, and it was set as the sample of the Example.

作製したサンプルに、外部から一様な磁界を印加して、初期状態として磁気抵抗素子の磁化が平行となるようにした。このサンプルに上下電極間で磁気抵抗素子の抵抗を測定しながら外部から磁界を漸増させて一方向に印加して、磁化自由層、さらに磁化固定層の磁化がそれぞれ反転する磁界を測定して保磁力を求めた。次に、反対方向に磁界を印加して、再び磁化自由層、さらに磁化固定層の磁化がそれぞれ反転する磁界を測定して保磁力を求めた。また、磁化固定層については飽和磁化も測定した。磁気抵抗素子の各サンプルについて、磁化固定層の保磁力−Hcpin,+Hcpinおよび飽和磁化Mspin、ならびに磁化自由層の保磁力Hc1,Hc0を表1に示す。また、磁化自由層の保磁力Hc0,Hc1の大きさの差から保磁力のシフト量ΔHc(ΔHc=(|Hc1|−|Hc0|)/2)を算出して表1に示す。 A uniform magnetic field was applied from the outside to the manufactured sample so that the magnetization of the magnetoresistive element was parallel as an initial state. In this sample, while measuring the resistance of the magnetoresistive element between the upper and lower electrodes, a magnetic field is gradually increased from the outside and applied in one direction, and the magnetic field at which the magnetization of the magnetization free layer and the magnetization fixed layer is inverted is measured and maintained. The magnetic force was determined. Next, a magnetic field was applied in the opposite direction, and the coercive force was obtained by measuring again the magnetic field at which the magnetization of the magnetization free layer and further the magnetization fixed layer was reversed. Further, saturation magnetization was also measured for the magnetization fixed layer. Table 1 shows the coercive force −Hc pin and + Hc pin and saturation magnetization Ms pin of the magnetization fixed layer and the coercivity Hc 1 and Hc 0 of the magnetization free layer for each sample of the magnetoresistive element. Further, the coercive force shift amount ΔHc (ΔHc = (| Hc 1 | − | Hc 0 |) / 2) is calculated from the difference between the coercive forces Hc 0 and Hc 1 of the magnetization free layer and shown in Table 1. .

表1に示すように、磁気抵抗素子のサンプルNo.1,2は、磁化固定層を構成するTbFeCo合金の組成が本発明の範囲である実施例であり、磁化固定層の飽和磁化Mspinが十分に抑えられた。そのため、当該磁化固定層からの漏出磁界が小さく、磁化自由層の保磁力のシフト量ΔHcが目標の10Oe以下を満足して、安定したスピン注入磁化反転動作を示す磁気抵抗素子となった。これに対して、サンプルNo.3,4は、TbFeCo合金におけるTbの含有率が過剰な比較例であるため、磁化固定層の飽和磁化Mspinが大きかった。その結果、漏出磁界により磁化自由層の保磁力Hc0,Hc1が同じ方向にシフトしてシフト量ΔHcが大きくなり、安定動作のためにバイアス磁界の印加を必要とする磁気抵抗素子となった。 As shown in Table 1, sample numbers of magnetoresistive elements 1 and 2 are examples in which the composition of the TbFeCo alloy constituting the magnetization fixed layer is within the scope of the present invention, and the saturation magnetization Ms pin of the magnetization fixed layer was sufficiently suppressed. Therefore, the leakage magnetic field from the magnetization fixed layer is small, the coercivity shift amount ΔHc of the magnetization free layer satisfies the target of 10 Oe or less, and the magnetoresistive element exhibits a stable spin injection magnetization reversal operation. In contrast, sample no. 3 and 4 are comparative examples in which the Tb content in the TbFeCo alloy is excessive, so that the saturation magnetization Ms pin of the magnetization fixed layer was large. As a result, the coercive force Hc 0 , Hc 1 of the magnetization free layer is shifted in the same direction by the leakage magnetic field, and the shift amount ΔHc is increased, resulting in a magnetoresistive element that requires application of a bias magnetic field for stable operation. .

10 空間光変調器
1 磁気抵抗素子(スピン注入磁化反転素子)
11 磁化固定層
12 中間層
13 磁化自由層
14 保護層
2 上部電極
2A ビット線(上部電極)
3,3A 下部電極
40 画素アレイ
4 画素
5 ワード線
6 絶縁層
70 MRAM(磁気ランダムアクセスメモリ)
7 メモリセル
80 電流制御部
81 電源(電流供給手段)
84 画素選択部(画素選択手段)
9 記録装置
10 Spatial light modulator 1 Magnetoresistive element (spin injection magnetization reversal element)
11 magnetization fixed layer 12 intermediate layer 13 magnetization free layer 14 protective layer 2 upper electrode 2A bit line (upper electrode)
3, 3A Lower electrode 40 Pixel array 4 Pixel 5 Word line 6 Insulating layer 70 MRAM (magnetic random access memory)
7 Memory cell 80 Current control unit 81 Power supply (current supply means)
84 Pixel selection unit (pixel selection means)
9 Recording device

Claims (5)

磁化固定層と中間層と磁化自由層とを積層して備え、上下に接続された一対の電極を介して電流を供給されるスピン注入磁化反転素子であって、
前記磁化固定層がTb−Fe−Co合金を備え、このTb−Fe−Co合金の組成が、Tbx(Fe,Co)1-x0.226≦x≦0.25)であることを特徴とするスピン注入磁化反転素子。
A spin-injection magnetization reversal element comprising a magnetization fixed layer, an intermediate layer, and a magnetization free layer stacked and supplied with current through a pair of electrodes connected vertically.
The magnetization fixed layer includes a Tb—Fe—Co alloy, and the composition of the Tb—Fe—Co alloy is Tb x (Fe, Co) 1-x ( 0.226 ≦ x ≦ 0.25). A spin-injection magnetization reversal element.
前記Tb−Fe−Co合金の組成が、Tbx(Fe1-yCoy)1-x0.226≦x≦0.25、0.4<y<0.67)であることを特徴とする請求項1に記載のスピン注入磁化反転素子。 The composition of the Tb—Fe—Co alloy is Tb x (Fe 1-y Co y ) 1-x ( 0.226 ≦ x ≦ 0.25, 0.4 <y <0.67). The spin injection magnetization reversal element according to claim 1. 前記磁化自由層は、Tb,Gd,Fe,Co,Ni,Pt,Pdから選択される2以上の元素を含有することを特徴とする請求項1または請求項2に記載のスピン注入磁化反転素子。   The spin injection magnetization reversal element according to claim 1 or 2, wherein the magnetization free layer contains two or more elements selected from Tb, Gd, Fe, Co, Ni, Pt, and Pd. . 2次元配列された複数のメモリセルを備える磁気ランダムアクセスメモリであって、
前記メモリセルは、請求項1ないし請求項3のいずれか1項に記載のスピン注入磁化反転素子と、このスピン注入磁化反転素子の上下に接続された一対の電極と、を備える磁気ランダムアクセスメモリ。
A magnetic random access memory comprising a plurality of memory cells arranged two-dimensionally,
A magnetic random access memory comprising: the spin injection magnetization reversal element according to any one of claims 1 to 3; and a pair of electrodes connected to the top and bottom of the spin injection magnetization reversal element. .
2次元配列された複数の画素と、前記複数の画素から1つ以上の画素を選択する画素選択手段と、この画素選択手段が選択した画素に所定の電流を供給する電流供給手段と、を備えて、前記画素選択手段が選択した画素に入射した光の偏光方向を特定の方向に変化させて出射する空間光変調器であって、
前記画素は、請求項1ないし請求項3のいずれか1項に記載のスピン注入磁化反転素子と、このスピン注入磁化反転素子の上下に接続された一対の電極と、を備える空間光変調器。
A plurality of pixels arranged two-dimensionally, pixel selection means for selecting one or more pixels from the plurality of pixels, and current supply means for supplying a predetermined current to the pixels selected by the pixel selection means. A spatial light modulator that emits light by changing the polarization direction of the light incident on the pixel selected by the pixel selection means to a specific direction,
The spatial light modulator comprising: the spin injection magnetization reversal element according to any one of claims 1 to 3; and a pair of electrodes connected above and below the spin injection magnetization reversal element.
JP2010094021A 2010-04-15 2010-04-15 Spin injection magnetization reversal device, magnetic random access memory and spatial light modulator using the same Expired - Fee Related JP5679690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010094021A JP5679690B2 (en) 2010-04-15 2010-04-15 Spin injection magnetization reversal device, magnetic random access memory and spatial light modulator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010094021A JP5679690B2 (en) 2010-04-15 2010-04-15 Spin injection magnetization reversal device, magnetic random access memory and spatial light modulator using the same

Publications (2)

Publication Number Publication Date
JP2011228341A JP2011228341A (en) 2011-11-10
JP5679690B2 true JP5679690B2 (en) 2015-03-04

Family

ID=45043402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010094021A Expired - Fee Related JP5679690B2 (en) 2010-04-15 2010-04-15 Spin injection magnetization reversal device, magnetic random access memory and spatial light modulator using the same

Country Status (1)

Country Link
JP (1) JP5679690B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013148698A (en) * 2012-01-19 2013-08-01 Nippon Hoso Kyokai <Nhk> Spin injection-type light modulating element and spatial light modulator
JP6329384B2 (en) * 2013-03-07 2018-05-23 日本放送協会 Spin injection magnetization reversal element
JP6002106B2 (en) * 2013-09-30 2016-10-05 日本電信電話株式会社 Silicon carbide optical waveguide device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197872A (en) * 2001-12-26 2003-07-11 Canon Inc Memory using magneto-resistance effect film
DE10214159B4 (en) * 2002-03-28 2008-03-20 Qimonda Ag Method for producing a reference layer for MRAM memory cells
JP2005079258A (en) * 2003-08-29 2005-03-24 Canon Inc Method for etching processing of magnetic material, magnetoresistive effect film, and magnetic random access memory
JP4444241B2 (en) * 2005-10-19 2010-03-31 株式会社東芝 Magnetoresistive element, magnetic random access memory, electronic card and electronic device
JP2007266498A (en) * 2006-03-29 2007-10-11 Toshiba Corp Magnetic recording element and magnetic memory
JP4829850B2 (en) * 2006-08-31 2011-12-07 日本放送協会 Optical modulator, display device, holographic device, and hologram recording device

Also Published As

Publication number Publication date
JP2011228341A (en) 2011-11-10

Similar Documents

Publication Publication Date Title
JP5567969B2 (en) Light modulator and spatial light modulator using the same
KR20180104539A (en) Magnetic junction, method for providing the magnetic junction and magnetic memory
TWI422083B (en) Magnetic memory lattice and magnetic random access memory
JP5679690B2 (en) Spin injection magnetization reversal device, magnetic random access memory and spatial light modulator using the same
JP2010232374A (en) Magnetoresistive element, and magnetic random access memory and spatial light modulator using the same
JP2011100790A (en) Magnetoresistive element structure, magnetic random access memory, and spatial light modulator
JP6017190B2 (en) Manufacturing method of light modulation element
JP5836858B2 (en) Light modulator and spatial light modulator
JP6017165B2 (en) Spatial light modulator
JP5054639B2 (en) Light modulator and spatial light modulator
JP2014175429A (en) Spin injection magnetization reversal element
JP2014110356A (en) Spin injection magnetization reversal element
JP5249876B2 (en) Reflective spatial light modulator
JP2010145462A (en) Multi-element spatial light modulator
JP5581171B2 (en) Light modulator and spatial light modulator using the same
JP5567970B2 (en) Light modulator and spatial light modulator using the same
JP6329384B2 (en) Spin injection magnetization reversal element
JP2012230143A (en) Spin injection type magnetization inversion element, optical modulation element and spatial light modulator
JP2018205515A (en) Optical modulation element, space optical modulator and space optical modulation system
JP2011180355A (en) Optical modulation element and spatial light modulator
JP5281522B2 (en) Spatial light modulator
JP2015173186A (en) spin injection magnetization reversal element
JP6546745B2 (en) Light modulation element and spatial light modulator
JP5238616B2 (en) Light modulation element
JP6741453B2 (en) Light modulator, spatial light modulator, and display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130104

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150106

R150 Certificate of patent or registration of utility model

Ref document number: 5679690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees