JP5873251B2 - Substrate tray and substrate processing apparatus using the tray - Google Patents
Substrate tray and substrate processing apparatus using the tray Download PDFInfo
- Publication number
- JP5873251B2 JP5873251B2 JP2011101645A JP2011101645A JP5873251B2 JP 5873251 B2 JP5873251 B2 JP 5873251B2 JP 2011101645 A JP2011101645 A JP 2011101645A JP 2011101645 A JP2011101645 A JP 2011101645A JP 5873251 B2 JP5873251 B2 JP 5873251B2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- tray
- mounting plate
- holder
- magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000758 substrate Substances 0.000 title claims description 512
- 238000012545 processing Methods 0.000 title claims description 58
- 239000000112 cooling gas Substances 0.000 claims description 30
- 230000004907 flux Effects 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 24
- 239000000463 material Substances 0.000 claims description 18
- 230000008569 process Effects 0.000 claims description 17
- 239000010936 titanium Substances 0.000 claims description 17
- 230000015572 biosynthetic process Effects 0.000 claims description 15
- 239000007789 gas Substances 0.000 claims description 14
- 239000000696 magnetic material Substances 0.000 claims description 12
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 9
- 229910052719 titanium Inorganic materials 0.000 claims description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 8
- 230000002093 peripheral effect Effects 0.000 claims description 8
- 239000010935 stainless steel Substances 0.000 claims description 4
- 229910001220 stainless steel Inorganic materials 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- 230000008021 deposition Effects 0.000 claims 1
- 238000012546 transfer Methods 0.000 description 26
- 230000000694 effects Effects 0.000 description 24
- 238000001816 cooling Methods 0.000 description 15
- 230000007246 mechanism Effects 0.000 description 11
- 238000004544 sputter deposition Methods 0.000 description 11
- 239000002245 particle Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000003825 pressing Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 239000000498 cooling water Substances 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000005404 monopole Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/673—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
- H01L21/67333—Trays for chips
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/673—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
- H01L21/6735—Closed carriers
- H01L21/67356—Closed carriers specially adapted for containing chips, dies or ICs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/673—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
- H01L21/6735—Closed carriers
- H01L21/67379—Closed carriers characterised by coupling elements, kinematic members, handles or elements to be externally gripped
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/687—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
- H01L21/68714—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
- H01L21/68764—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Physical Vapour Deposition (AREA)
Description
本発明は、スパッタリング、CVDやエッチングなどの所定処理を被処理基板に対して行う真空処理装置において、被処理基板を保持しながら搬送するための基板トレイ及び該トレイを用いた基板処理装置に関するものである。 The present invention relates to a substrate tray for transporting a substrate to be processed while holding the substrate to be processed in a vacuum processing apparatus that performs predetermined processing such as sputtering, CVD, etching, etc., and a substrate processing apparatus using the tray. It is.
真空処理装置では、生産性を高めるために複数枚の基板を処理室に同時搬送して処理したり、または、装置構成を変更することなく外形寸法の異なる基板に対し処理を行う目的で、基板を保持し搬送できる基板トレイが用いられている。
図12は従来の基板トレイの第1の例を示す(特許文献1参照)。図12には、小さい基板を保持するためのザグリ702を具備し、皿形状をしている基板トレイ701が開示されている。図12記載の保持トレイ701により、8インチ、6インチといった小さい基板も直径12インチ用基板処理装置に設置できるようになる。
In vacuum processing equipment, in order to increase productivity, a plurality of substrates are transported to a processing chamber at the same time, or processing is performed on substrates with different external dimensions without changing the equipment configuration. A substrate tray capable of holding and transporting is used.
FIG. 12 shows a first example of a conventional substrate tray (see Patent Document 1). FIG. 12 discloses a substrate tray 701 having a counterbore 702 for holding a small substrate and having a dish shape. With the holding tray 701 shown in FIG. 12, a substrate as small as 8 inches or 6 inches can be installed in the substrate processing apparatus for 12 inches in diameter.
図13は従来の基板搬送用トレイの第2の例を示す(特許文献2参照)。図13には、凹部802を有し熱伝導性に優れた物質からなるトレイ本体801の一部表面を、絶縁性を有するとともに柔軟性を有する物質805で構成した基板トレイ801が開示されている。図13において、803は突き上げ用ピンが通る貫通孔、804は基板を吸着するための貫通孔、806は耐蝕性または耐スパッタリング性を有する物質である。図13記載の基板搬送用トレイによれば、基板とトレイ本体801の密着性および熱伝導性を良くし、基板の温度を均一にすることにより回路パターンの線幅などのばらつきを小さくすることが可能となる。 FIG. 13 shows a second example of a conventional substrate transfer tray (see Patent Document 2). FIG. 13 discloses a substrate tray 801 in which a part of the surface of a tray main body 801 having a recess 802 and made of a material having excellent thermal conductivity is configured with a material 805 having insulating properties and flexibility. . In FIG. 13, reference numeral 803 denotes a through-hole through which the push-up pin passes, 804 denotes a through-hole for adsorbing the substrate, and 806 denotes a material having corrosion resistance or sputtering resistance. According to the substrate carrying tray shown in FIG. 13, it is possible to improve the adhesion and thermal conductivity between the substrate and the tray main body 801, and to reduce variations in circuit pattern line width and the like by making the substrate temperature uniform. It becomes possible.
また、成膜などの真空処理装置では、処理内容に応じて処理中の基板温度管理を行なう必要がある。このため、基板や基板トレイを保持するホルダーを冷却水などの温度制御手段で温度制御し、このホルダーとの熱伝達により基板の温度管理を行う技術が一般に用いられている。 Further, in a vacuum processing apparatus such as a film formation, it is necessary to manage the substrate temperature during processing according to the processing content. For this reason, a technique is generally used in which the temperature of the holder holding the substrate and the substrate tray is controlled by temperature control means such as cooling water, and the temperature of the substrate is controlled by heat transfer with the holder.
しかし、真空では大気中よりも部品と部品の微小な隙間において熱伝達効率が悪化する。このため真空処理装置、特にスパッタリングなどのプロセス圧力の低い装置では、成膜などの真空処理中の基板温度管理をおこなうために、基板の裏面やトレイの裏面に冷却ガスなどの熱伝達媒体を封止することで、温度調整されたホルダーと基板との熱伝達効率を改善する必要がある。 However, in a vacuum, the heat transfer efficiency deteriorates in a minute gap between components than in the atmosphere. For this reason, in a vacuum processing apparatus, particularly an apparatus having a low process pressure such as sputtering, a heat transfer medium such as a cooling gas is sealed on the back surface of the substrate or the back surface of the tray in order to control the substrate temperature during vacuum processing such as film formation. It is necessary to improve the heat transfer efficiency between the temperature-adjusted holder and the substrate.
図14は従来の基板搬送用トレイの第3の例を示す(特許文献3参照)。図14には、基板載置面に、基板Sの外形に対応した少なくとも1個の凹部911が形成され、この凹部911の底面に配置された環状のシール手段902と、凹部911に落とし込むことで設置される基板Sの外周縁部をシール手段902に対して押圧する押圧手段903とを備えた基板搬送用トレイ901が開示されている。更に、図14記載の基板搬送用トレイ901では、凹部911に通じる少なくとも1本のガス通路913a、913bが開設され、シール手段902として機能するOリングが、凹部911の底面に形成され、Oリングの線径より大きな幅を有する環状溝912に設置されている。なお、図14において、Bはボルト、Sは基板、911aは凹部911の底面、911bは基板S裏面と凹部911底面との間の空間、931は中央開口である。 FIG. 14 shows a third example of a conventional substrate carrying tray (see Patent Document 3). In FIG. 14, at least one recess 911 corresponding to the outer shape of the substrate S is formed on the substrate mounting surface, and the annular seal means 902 disposed on the bottom surface of the recess 911 and the recess 911 are dropped into the recess 911. There is disclosed a substrate carrying tray 901 provided with pressing means 903 for pressing the outer peripheral edge of the substrate S to be installed against the sealing means 902. Further, in the substrate transfer tray 901 shown in FIG. 14, at least one gas passage 913 a, 913 b communicating with the recess 911 is opened, and an O-ring functioning as the sealing means 902 is formed on the bottom surface of the recess 911. It is installed in an annular groove 912 having a width larger than the wire diameter. In FIG. 14, B is a bolt, S is a substrate, 911a is a bottom surface of the recess 911, 911b is a space between the back surface of the substrate S and the bottom surface of the recess 911, and 931 is a central opening.
しかし特許文献1のような基板を置くだけで固定しない基板トレイ701では、質量を軽くできる利点はあるが、搬送中に基板が移動してしまう懸念がある。特許文献2では、レジストマスクを形成したLaTiO3などからなる基板をトレイ本体801の凹部802に乗せている。トレイ本体801の凹部802に設けた物質805は、絶縁性を有するとともに柔軟性を有するため、その絶縁性により基板がトレイ本体801と絶縁され、基板に帯電した静電気により基板がトレイ本体801に静電気力により引きつけられ固定される。しかし、特許文献2の基板トレイにおいても、基板がトレイ本体801に静電気力により引きつけられ固定されるためには、基板がLaTiO3などからなる強誘電体であり、かつ電界が加えられてその基板表面が帯電し静電気が発生する必要があるため、装置に高周波電力を印加する基板処理においてはじめて基板はトレイ本体801に固定されるのであり、基板処理前の搬送中に基板が移動してしまうという問題を解決するものではなく、また基板が強誘電体ではない場合には効果がないという問題があった。 However, the substrate tray 701 that is not fixed only by placing the substrate as in Patent Document 1 has an advantage that the mass can be reduced, but there is a concern that the substrate may move during transportation. In Patent Document 2, a substrate made of LaTiO 3 or the like on which a resist mask is formed is placed in a recess 802 of a tray body 801. The substance 805 provided in the concave portion 802 of the tray main body 801 has insulation and flexibility, so that the substrate is insulated from the tray main body 801 by the insulation, and the substrate is electrostatically charged to the tray main body 801 by static electricity charged on the substrate. It is attracted and fixed by force. However, even in the substrate tray of Patent Document 2, in order for the substrate to be attracted and fixed to the tray body 801 by electrostatic force, the substrate is a ferroelectric made of LaTiO 3 or the like, and an electric field is applied to the substrate tray. Since the surface needs to be charged and static electricity needs to be generated, the substrate is fixed to the tray body 801 for the first time in substrate processing in which high-frequency power is applied to the apparatus, and the substrate moves during conveyance before substrate processing. It does not solve the problem, and there is a problem that it is ineffective when the substrate is not a ferroelectric.
また、成膜などの真空処理中の基板温度管理をおこなうためには、基板の裏面に熱伝達媒体を封止する必要がある。 Further, in order to perform substrate temperature control during vacuum processing such as film formation, it is necessary to seal a heat transfer medium on the back surface of the substrate.
特許文献3ではボルトBで基板Sを基板トレイ901に対して押圧し基板S裏面に熱伝達媒体を封止することができるので、基板温度制御性能を改善できる利点があり、基板処理前の搬送中に基板が移動してしまうという問題もない。しかし、特許文献3では、押圧手段903は、基板トレイ901の凹部911の外周に形成したねじ孔にボルトBを螺着することで取付けられている。そのため、ボルトBに膜が付着すると、膜はがれをおこし易く、パーティクルの原因となるという課題があった。また、構造物があるため、成膜などの基板処理時に影響が出ることがあった。そしてボルトBを螺着するために基板トレイ901のねじ孔に深さが必要なことから基板トレイ901が厚くなってしまうので、基板トレイ901の熱抵抗が大きくなるという問題がある。基板S裏面に熱伝達媒体を封止しても、基板トレイ901の熱抵抗が大きければ、基板などの真空処理中に、基板Sに流入する熱を基板Sを保持した基板トレイ901を載置するための温度制御された基板ホルダー(図示なし)に伝えにくくなる。従って十分な基板温度制御性能が得られないという問題があった。 In Patent Document 3, since the substrate S can be pressed against the substrate tray 901 with the bolt B and the heat transfer medium can be sealed on the back surface of the substrate S, there is an advantage that the substrate temperature control performance can be improved. There is no problem that the substrate moves inside. However, in Patent Document 3, the pressing means 903 is attached by screwing a bolt B into a screw hole formed on the outer periphery of the recess 911 of the substrate tray 901. Therefore, when a film adheres to the bolt B, there is a problem that the film easily peels off and causes particles. In addition, since there is a structure, the substrate processing such as film formation may be affected. Since the screw holes of the substrate tray 901 need to be deep in order to screw the bolts B, the substrate tray 901 becomes thick, so that there is a problem that the thermal resistance of the substrate tray 901 increases. Even if the heat transfer medium is sealed on the back surface of the substrate S, if the thermal resistance of the substrate tray 901 is large, the substrate tray 901 holding the substrate S is placed on the substrate S during the vacuum processing of the substrate or the like. This makes it difficult to transmit to a temperature-controlled substrate holder (not shown). Therefore, there has been a problem that sufficient substrate temperature control performance cannot be obtained.
また、特許文献3では、基板Sの脱着のためにはボルトBを外さなければならない。しかし、量産装置では、基板Sの脱着のためにボルトBを外したり締めたりするためには脱着装置の構成が複雑となるため基板Sの脱着を容易に行う事が出来ないことが問題であった。 Moreover, in patent document 3, in order to remove | desorb the board | substrate S, the volt | bolt B must be removed. However, in the mass production apparatus, in order to remove or tighten the bolts B for detaching the substrate S, the structure of the detaching device becomes complicated, so that the substrate S cannot be easily detached. It was.
本発明の目的は、パーティクルの発生や基板処理への構造物の影響を抑制し、熱伝達媒体による冷却性能(温度制御)に優れ、さらに量産装置に対応し基板の脱着が容易な基板保持のための基板トレイ及び該トレイを用いた基板処理装置を提供することを目的とするものである。 The object of the present invention is to suppress the generation of particles and the influence of the structure on the substrate processing, to have excellent cooling performance (temperature control) by a heat transfer medium, and to support a mass production apparatus and to easily hold and remove a substrate. An object of the present invention is to provide a substrate tray and a substrate processing apparatus using the tray.
上記目的を達成するために、請求項1記載の発明は、基板を保持するための基板トレイであって、トレイ本体と、基板を載置するための基板載置部を含む基板載置板と、を備え、前記トレイ本体は、基板ホルダー上に前記基板トレイが固定されたときに前記基板ホルダの上面端部に接触するように突出した端部と、前記基板の処理すべき部分が露出するように前記基板の周端部を保持する基板保持部と、磁力によって前記基板載置板を前記トレイ本体が保持するように、前記基板保持部よりも外側に配置された磁石と、を含むことを特徴とする基板トレイである。 In order to achieve the above object, the invention according to claim 1 is a substrate tray for holding a substrate, and includes a tray body and a substrate mounting plate including a substrate mounting portion for mounting the substrate. The tray body exposes an end portion that protrudes so as to come into contact with the upper end portion of the substrate holder when the substrate tray is fixed on the substrate holder, and a portion to be processed of the substrate is exposed. A substrate holding portion that holds the peripheral edge portion of the substrate, and a magnet that is disposed outside the substrate holding portion so that the tray body holds the substrate mounting plate by magnetic force. Is a substrate tray.
上記目的を達成するために、請求項2記載の発明は、請求項1記載に記載の発明において、前記磁石は、前記前記トレイ本体に埋設されており、前記トレイ本体には、前記基板の外径より小さい第1の径を有する第1の開口部と、前記第1の開口部と連接し前記基板の外径より大きな第2の径を有する第2の開口部とが設けられていて、前記基板保持部は、前記第1の開口部と前記第2の開口部とにより形成されており、前記基板保持部と前記基板載置部とで前記基板を挟持することを特徴とする基板トレイである。 In order to achieve the above object, according to a second aspect of the present invention, in the first aspect of the present invention, the magnet is embedded in the tray body, and the tray body has an outer surface of the substrate. A first opening having a first diameter smaller than the diameter, and a second opening having a second diameter larger than the outer diameter of the substrate connected to the first opening, The substrate holding part is formed by the first opening and the second opening, and the substrate is sandwiched between the substrate holding part and the substrate mounting part. It is.
上記目的を達成するために、請求項3記載の発明は、請求項1記載に記載の発明において、前記トレイ本体には、前記トレイ本体の上面と前記磁石との間にヨークが埋設されており、前記磁石は、前記基板載置板と前記ヨークとの間に設けられていることを特徴とする基板トレイである。 To achieve the above object, according to a third aspect of the present invention, in the first aspect of the present invention, a yoke is embedded in the tray main body between the upper surface of the tray main body and the magnet. The magnet is a substrate tray provided between the substrate mounting plate and the yoke.
上記目的を達成するめに、請求項4記載の発明は、請求項1から3のいずれか1項に記載の発明において、前記トレイ本体が、非磁性材料で形成されていることを特徴とする基板トレイである。 In order to achieve the above object, according to a fourth aspect of the present invention, there is provided the substrate according to any one of the first to third aspects, wherein the tray body is made of a nonmagnetic material. It is a tray.
上記目的を達成するめに、請求項5記載の発明は、請求項4記載の発明において、前記トレイ本体の前記ヨークは、前記トレイ本体と前記磁石との間に設けられていることを特徴とする基板トレイである。 To achieve the above object, the invention according to claim 5 is the invention according to claim 4, wherein the yoke of the tray body is provided between the tray body and the magnet. It is a substrate tray.
上記目的を達成するめに、請求項6記載の発明は、請求項4又は請求項5記載の発明において、前記非磁性材料がTi、カーボンまたはアルミナであることを特徴とする基板トレイである。 To achieve the above object, a sixth aspect of the present invention is the substrate tray according to the fourth or fifth aspect, wherein the nonmagnetic material is Ti, carbon, or alumina.
上記目的を達成するめに、請求項7記載の発明は、請求項1から6のいずれか1項に記載の発明において、前記磁石は、前記基板載置板側に、N極とS極の磁極が現れ、前記基板載置板と反対側にS極とN極の磁極が現れる片面2極磁石であることを特徴とする基板トレイである。 In order to achieve the above object, according to a seventh aspect of the present invention, in the invention according to any one of the first to sixth aspects, the magnet is provided with an N-pole and an S-pole on the substrate mounting plate side. Is a single-sided dipole magnet in which S-pole and N-pole poles appear on the opposite side to the substrate mounting plate.
上記目的を達成するめに、請求項8記載の発明は、請求項3から7のいずれか1項に記載の発明において、前記ヨークの厚さは、前記基板の処理面側の前記トレイ本体表面において、磁束密度が100ガウス以下となるように設定されていることを特長とする基板トレイである。 In order to achieve the above object, the invention according to claim 8 is the invention according to any one of claims 3 to 7, wherein the yoke has a thickness on the surface of the tray body on the processing surface side of the substrate. The substrate tray is characterized in that the magnetic flux density is set to be 100 gauss or less.
上記目的を達成するめに、請求項9記載の発明は、請求項7記載の発明において、前記片面2極磁石は、前記基板の周囲に等角度で配置されていることを特徴とする基板トレイである。 In order to achieve the above object, a ninth aspect of the present invention is the substrate tray according to the seventh aspect, wherein the single-sided dipole magnets are arranged at equal angles around the substrate. is there.
上記目的を達成するめに、請求項10記載の発明は、前記トレイ本体が非磁性材料で構成され、前記基板載置板が磁性材料で構成されていることを特徴とする請求項1記載の基板トレイである。 In order to achieve the above object, the invention according to claim 10 is characterized in that the tray body is made of a nonmagnetic material and the substrate mounting plate is made of a magnetic material. It is a tray.
上記目的を達成するめに、請求項11記載の発明は、前記トレイ本体がチタンで構成され、前記基板載置板がステンレスで構成されていることを特徴とする請求項1記載の基板トレイである。 To achieve the above object, the invention according to claim 11 is the substrate tray according to claim 1, wherein the tray body is made of titanium and the substrate mounting plate is made of stainless steel. .
上記目的を達成するめに、請求項12記載の発明は、前記トレイ本体の端部は、磁力によって前記基板載置板を前記トレイ本体が保持した状態で前記基板載置板の下面と前記基板ホルダーとの間に冷却ガスを導入できるように構成されている、ことを特徴とする請求項1記載の基板トレイである。
In order to achieve the above object, according to a twelfth aspect of the present invention, an end of the tray main body is configured such that the bottom surface of the substrate mounting plate and the substrate holder are held by the tray main body by the magnetic force. The substrate tray according to claim 1, wherein a cooling gas can be introduced between the substrate tray and the substrate tray.
本願の請求項1記載の発明によれば、基板載置板を磁石によりトレイ本体に保持し、基板保持部と、基板載置部とで基板を保持することにより、パーティクルの発生や基板処理への構造物の影響を抑制し、熱伝達媒体による冷却性能(温度制御)に優れ、さらに量産装置に対応し基板の脱着を容易することができるという効果がある。
本願の請求項2記載の発明によれば、基板保持部を基板の外径より小さい第1の径を有する第1の開口部と、第1の開口部と連接し前記基板の外径より大きな第2の径を有する第2の開口部より形成することにより、基板保持部と基板載置板とにより確実に基板を挟持することができるという効果がある。また、磁石がトレイ本体に埋設されることにより基板載置板が薄くできるため、基板冷却性能の向上を図ることができるという効果がある。
本願の請求項3記載の発明によれば、トレイ本体にヨークを埋設し、基板載置板と前記ヨークとの間に磁石を設けることにより、トレイが薄くできるため、搬送ロボットなどの搬送システムの負担を少なくすることができるという効果がある。
本願の請求項4、5記載の発明によれば、トレイ本体を非磁性材料で形成することにより、ヨークから磁力線が漏れ出た場合にプラズマ処理空間にまで磁力線が作用するのを抑制できるという効果がある。
本願の請求項6記載の発明によれば、トレイ本体をTi(チタン)、カーボンまたはアルミナで形成することにより、基板トレイを軽くできるので、搬送ロボットなどの搬送システムの負担を少なくすることができる。更に、また、本願の請求項6記載の発明によれば、トレイ本体をTi(チタン)、カーボンまたはアルミナで形成することにより、基板トレイを耐熱性に優れたものにすることができるので、特にプラズマから基板トレイへの熱量の流入が大きい大電力のスパッタリング成膜に好適であるという効果がある。
本願の請求項7記載の発明によれば、基板載置板側にN極とS極の磁極が現れ、基板載置板と反対側にS極とN極の磁極が現れる片面2極磁石とすることにより、N極とS極の両方の磁極を基板載置板側に向けることできるため、基板載置板に対する吸着力が高くなり基板保持性能の向上を図ることができるという効果がある。更に、本願の請求項7記載の発明によれば、片面2極磁石とすることで基板保持性能を維持しながらトレイ表面への磁場の漏れを低減できるという効果がある。
本願の請求項8記載の発明によれば、ヨークの厚さを、基板の処理面側のトレイ本体表面において、磁束密度が100ガウス以下となるように設定することにより、基板トレイ上に異常な放電が生じることを抑制することができるという効果がある。
本願の請求項9記載の発明によれば、片面2極磁石を基板の周囲に等角度で複数N極とS極とが交互になる様に配置することにより、基板の保持性能を高くすることができるという効果がある。
本願の請求項13記載の発明によれば、基板トレイを基板処理装置に使用することにより、パーティクルの発生や基板処理への構造物の影響を抑制し、熱伝達媒体による冷却性能(温度制御)に優れた基板処理装置を実現できるという効果がある。
本願の請求項14記載の発明によれば、基板ホルダーと前記基板載置板に、基板の処理面と反対側の面に冷却ガスを導入するための、ガス導入孔をそれぞれ設けることにより、基板を効率的に冷却することができるという効果がある。
本願の請求項15記載の発明によれば、基板載置板と基板ホルダーの基板載置部との間に0.3mm以下の間隙d1を設け、この間隙d1に熱伝達媒体(冷却ガス)を流すことで、基板の冷却性能を高めることができるという効果がある。特にこの部分の隙間を0.3mm以下とすることで基板の温度をより低減することができ、特に基板上にリフトオフ用のフォトレジストパターンなどの樹脂パターンが設けられている場合にダメージを与えない温度、すなわち100℃以下で成膜することができるという効果がある。
According to the first aspect of the present invention, the substrate mounting plate is held on the tray body by the magnet, and the substrate is held by the substrate holding unit and the substrate mounting unit, thereby generating particles and processing the substrate. The effect of this structure is suppressed, the cooling performance (temperature control) by the heat transfer medium is excellent, and the substrate can be easily attached and detached in correspondence with the mass production apparatus.
According to the second aspect of the present invention, the substrate holding portion is connected to the first opening having a first diameter smaller than the outer diameter of the substrate and the first opening, and is larger than the outer diameter of the substrate. By forming from the second opening having the second diameter, there is an effect that the substrate can be reliably held between the substrate holding portion and the substrate mounting plate. Further, since the substrate mounting plate can be thinned by embedding the magnet in the tray body, there is an effect that the substrate cooling performance can be improved.
According to the invention described in claim 3 of the present application, since the tray can be thinned by embedding the yoke in the tray main body and providing the magnet between the substrate mounting plate and the yoke, the transfer system such as the transfer robot can be used. There is an effect that the burden can be reduced.
According to the inventions of claims 4 and 5 of the present application, by forming the tray body from a non-magnetic material, it is possible to suppress the action of the magnetic force lines to the plasma processing space when the magnetic force lines leak from the yoke. There is.
According to the invention described in claim 6 of the present application, since the tray body can be made light by forming the tray body from Ti (titanium), carbon or alumina, the burden on the transport system such as the transport robot can be reduced. . Furthermore, according to the invention described in claim 6 of the present application, since the tray body can be made of Ti (titanium), carbon or alumina, the substrate tray can be made excellent in heat resistance. There is an effect that it is suitable for high-power sputtering film formation in which a large amount of heat flows from the plasma to the substrate tray.
According to the invention of claim 7 of the present application, the single-sided dipole magnet in which the N-pole and S-pole magnetic poles appear on the substrate mounting plate side, and the S-pole and N-pole magnetic poles appear on the opposite side of the substrate mounting plate, By doing so, since both the N pole and the S pole can be directed to the substrate mounting plate side, there is an effect that the adsorption force to the substrate mounting plate is increased and the substrate holding performance can be improved. Furthermore, according to the seventh aspect of the present invention, by using a single-sided dipole magnet, there is an effect that leakage of a magnetic field to the tray surface can be reduced while maintaining the substrate holding performance.
According to the invention described in claim 8 of the present application, by setting the thickness of the yoke so that the magnetic flux density is 100 gauss or less on the surface of the tray body on the processing surface side of the substrate, abnormalities are formed on the substrate tray. There is an effect that generation of discharge can be suppressed.
According to the invention described in claim 9 of the present application, the holding performance of the substrate is enhanced by arranging the single-sided dipole magnet around the substrate so that a plurality of N-poles and S-poles are alternately arranged at an equal angle. There is an effect that can be.
According to the invention of claim 1 3, wherein, by using a substrate tray to the substrate processing apparatus, to suppress the influence of the structure of the particle generation and substrate processing, cooling performance (temperature control by the heat transfer medium Can be realized.
According to the invention of claim 1 4, wherein, in the substrate mounting plate and the substrate holder, for introducing the cooling gas on the surface opposite to the processing surface of the substrate, by providing each of the gas introduction hole, There is an effect that the substrate can be efficiently cooled.
According to the invention of claim 1 5 wherein, the 0.3mm below the gap d1 between the substrate platform substrate mounting plate and the substrate holder is provided, the heat transfer medium in the gap d1 (cooling gas) Is effective in improving the cooling performance of the substrate. The temperature of the substrate can be further reduced especially by setting the gap of this portion to 0.3 mm or less, and it is not damaged particularly when a resin pattern such as a lift-off photoresist pattern is provided on the substrate. There is an effect that the film can be formed at a temperature, that is, 100 ° C. or less.
以下、本発明を実施するための形態について、図面を参照して説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
図1を参照して、本発明に係るスパッタリング装置の構成を説明する。
本発明に係るスパッタリング装置は、ゲートバルブ11を介して連通可能に接続されたLL室(ロードロック室)1とSP室(スパッタ室)2とから構成されている。
スパッタリング装置のSP室2は、処理チャンバ21と、処理チャンバ21内に設けられ、基板Sを保持した基板トレイ3を載置するための基板ホルダー4と、スパッタ粒子を基板S上に成膜するためのターゲットTを保持するためターゲットホルダー5とを備えている。
The configuration of the sputtering apparatus according to the present invention will be described with reference to FIG.
The sputtering apparatus according to the present invention includes an LL chamber (load lock chamber) 1 and an SP chamber (sputter chamber) 2 that are connected to each other via a gate valve 11.
The SP chamber 2 of the sputtering apparatus is provided in the processing chamber 21, the substrate holder 4 for placing the substrate tray 3 holding the substrate S, and the sputtered particles are formed on the substrate S. A target holder 5 is provided to hold a target T for the purpose.
基板ホルダー4は上下機構41により上下に移動可能であり、ターゲットTと基板Sとの距離(T/S間距離)を調整したり、基板Sを保持した基板トレイ3を搬入および搬出する場合に、上下機構41により上下に移動することができるようになっている。なお、本実施形態ではT/S間距離や基板トレイ3を搬入および搬出について上下機構41を用いているが、同じ機能を実現する別の機構を用いても構わない。基板ホルダー4内部には基板ホルダー4を冷却するための図示しない冷却水水路が内部にあり、冷却水が循環できるようになっている。基板ホルダー4は熱伝熱が良いCu等の材料が用いられ、電極(アノード電極)として機能する。図2に示すように、基板ホルダー4には基板Sと基板トレイ3の間、および基板トレイ3と基板ホルダー4の間の隙間に対して冷却ガスを導入するための冷却ガス導入路42が設けられている。基板S、基板トレイ3、そして基板ホルダー4との間の熱伝達媒体である冷却ガスとしては、例えばArなどの不活性ガスが使用される。また、図1に示すように、基板トレイ3を基板ホルダー4に載置した場合に、基板トレイ3の周縁部、基板トレイ3裏面、および基板ホルダー4表面への成膜を抑制できるような配置と形状の、リング状のマスク6が設けられている。 The substrate holder 4 can be moved up and down by an up-and-down mechanism 41 when adjusting the distance (distance between T / S) between the target T and the substrate S, or when loading and unloading the substrate tray 3 holding the substrate S. The vertical mechanism 41 can move up and down. In this embodiment, the vertical mechanism 41 is used for the T / S distance and the substrate tray 3 for loading and unloading. However, another mechanism for realizing the same function may be used. A cooling water channel (not shown) for cooling the substrate holder 4 is provided inside the substrate holder 4 so that the cooling water can be circulated. The substrate holder 4 is made of a material such as Cu having good heat transfer and functions as an electrode (anode electrode). As shown in FIG. 2, the substrate holder 4 is provided with a cooling gas introduction path 42 for introducing a cooling gas into the gap between the substrate S and the substrate tray 3 and between the substrate tray 3 and the substrate holder 4. It has been. As a cooling gas that is a heat transfer medium between the substrate S, the substrate tray 3, and the substrate holder 4, for example, an inert gas such as Ar is used. Further, as shown in FIG. 1, when the substrate tray 3 is placed on the substrate holder 4, the arrangement can suppress the film formation on the peripheral portion of the substrate tray 3, the back surface of the substrate tray 3, and the surface of the substrate holder 4. A ring-shaped mask 6 is provided.
マスク6はマスク支持棒61に固定されている。マスク支持棒61には、マスク上下駆動機構62が取り付けられており、マスク6はマスク上下駆動機構62により、上下動できるようになっている。なお、マスク6は、成膜を抑制できるような配置と形状とすることが望ましい。 The mask 6 is fixed to a mask support bar 61. A mask up / down drive mechanism 62 is attached to the mask support bar 61, and the mask 6 can be moved up and down by the mask up / down drive mechanism 62. The mask 6 is desirably arranged and shaped so that film formation can be suppressed.
本実施の形態においては、マスク6により基板トレイ3周辺部で基板トレイ3を基板ホルダー4にクランプしている。これにより、基板トレイ3と基板ホルダー4の間からの冷却ガスの漏れを抑制することができ、基板Sの冷却性能をより高めることができる。マスク6により基板トレイ3のクランプは、例えば、前記マスク上下機構62を基板と接触するように上下動させることにより可能である。 In the present embodiment, the substrate tray 3 is clamped to the substrate holder 4 around the substrate tray 3 by the mask 6. Thereby, the leakage of the cooling gas from between the substrate tray 3 and the substrate holder 4 can be suppressed, and the cooling performance of the substrate S can be further enhanced. The substrate tray 3 can be clamped by the mask 6 by, for example, moving the mask up-and-down mechanism 62 up and down so as to contact the substrate.
ターゲットホルダー5は、金属製部材からなり、電極(カソード電極)として機能する。ターゲットホルダー5は図示しない絶縁体により保持され処理チャンバ21から電気的に絶縁されている。ターゲットホルダー5にはインピーダンスマッチングをおこなうための整合機51を介して高周波電源52が接続されており、ターゲットホルダー5に高周波電源52から高周波電力が印加可能になっている。なお、ターゲットTの種類などによって直流電源をターゲットホルダー5に接続し、直流電力をターゲットTに印加するようにしてもよい。 The target holder 5 is made of a metal member and functions as an electrode (cathode electrode). The target holder 5 is held by an insulator (not shown) and is electrically insulated from the processing chamber 21. A high frequency power source 52 is connected to the target holder 5 via a matching machine 51 for performing impedance matching, and high frequency power can be applied to the target holder 5 from the high frequency power source 52. Note that a DC power source may be connected to the target holder 5 depending on the type of the target T, and DC power may be applied to the target T.
また、処理チャンバ21には、プロセスガス(本例ではアルゴン等の不活性ガスと酸素)を導入するガス導入手段6が設けられている。ガス導入手段6は、スパッタガス(例えば、Ar)導入手段61と反応性ガス(例えば、酸素))導入手段62とから構成される。さらに、処理チャンバ21には、コンダクタンスバルブを介して排気手段7が設けられている。排気手段7は処理チャンバ21の排気をおこなうためのTMP(ターボ分子ポンプ)とクライオポンプが併用された第1の排気系71、さらにTMPの背圧を排気するためのRP(ロータリーポンプ)からなる第2の排気系72などにより構成されている。なお、第1の排気系71と第2の排気系とは第1のバルブ73を介して接続されている。また、処理チャンバ21には、第2のバルブ75を介してRP(ロータリーポンプ)からなる第3の排気系74に接続されている。また、処理チャンバ21には、処理室内の圧力を測定するための圧力計8(例えば、ダイアフラムゲージ)が接続されている。 Further, the processing chamber 21 is provided with gas introducing means 6 for introducing a process gas (in this example, an inert gas such as argon and oxygen). The gas introduction means 6 includes a sputtering gas (for example, Ar) introduction means 61 and a reactive gas (for example, oxygen) introduction means 62. Further, the processing chamber 21 is provided with exhaust means 7 through a conductance valve. The exhaust means 7 includes a first exhaust system 71 in which a TMP (turbo molecular pump) and a cryopump for exhausting the processing chamber 21 are used, and an RP (rotary pump) for exhausting the back pressure of the TMP. The second exhaust system 72 is used. The first exhaust system 71 and the second exhaust system are connected via the first valve 73. Further, the processing chamber 21 is connected to a third exhaust system 74 composed of RP (rotary pump) through a second valve 75. Further, a pressure gauge 8 (for example, a diaphragm gauge) for measuring the pressure in the processing chamber is connected to the processing chamber 21.
ターゲットTと基板トレイ3の間の空間は、成膜動作中にはターゲットホルダー5に印加された電力によりプラズマが生じている。このターゲットTと基板トレイ3を載置する基板ホルダー4、そして処理チャンバー21壁により囲まれた空間を「プロセス空間」と呼称する。なお、処理チャンバー21壁に不図示のシールドを設置してもよい。
LL室1には、RP(ロータリーポンプ)などの大気圧から排気可能なポンプ12で構成された第4の排気系が第3のバルブ13を介して接続されており、図示しないベント機構を持っている。LL室1は基板Sを保持した基板トレイ3をSP室2に搬出入するために使用される。
Plasma is generated in the space between the target T and the substrate tray 3 by the power applied to the target holder 5 during the film forming operation. A space surrounded by the target T, the substrate holder 4 on which the substrate tray 3 is placed, and the wall of the processing chamber 21 is referred to as a “process space”. A shield (not shown) may be provided on the processing chamber 21 wall.
The LL chamber 1 is connected to a fourth exhaust system composed of a pump 12 such as RP (rotary pump) capable of exhausting from atmospheric pressure via a third valve 13 and has a vent mechanism (not shown). ing. The LL chamber 1 is used to carry the substrate tray 3 holding the substrate S into and out of the SP chamber 2.
次に基板トレイ3の構成の説明を説明する。
図2に本発明に係る第1の基板トレイ3の構成の断面図を示す。基板トレイ3は、トレイ本体31と、基板Sを載置するための基板載置部32bを備えた基板載置板32とからなる。基板載置板32は磁性板である。トレイ本体31には開口36が形成されている。トレイ本体31は、開口36の端部に基板Sの周端部を保持する基板保持部35を備えている。開口36は、前記基板の外径より小さい第1の径を有する第1の開口部36aと、第1の開口部36aと連接し基板Sの外径より大きな第2の径を有する第2の開口部36bとからなる。基板保持部35は、第1の開口部36aと第2の開口部36bとにより形成される。基板Sは、基板保持部35と、基板載置板32の基板載置部32bとで挟持される。基板Sの外径より大きな第2の径を有する第2の開口部36bで基板保持部35が規定されることによって、基板はより確実に保持される。すなわち、第1の開口部36aの中心軸に対して基板が許容される限度を超えてずれて保持され、基板の処理時に後述する冷却ガスが漏れてしまったり、また部分的には基板周辺部を必要以上に隠して本来処理されるべきであった基板周辺部が処理されないといった危険性を低減することができる。また、磁石がトレイ本体に埋設されることにより基板載置板が薄くできるため、基板冷却性能の向上を図ることができる。
基板載置板32は磁性材料で構成されている。基板載置板32を構成する磁性材料としては錆びにくいステンレスなどが好ましく、具体的にはSUS430などがよい。基板トレイ3は大気中に取り出されるため、磁性材料であるだけでなく防錆性を有することは重要である。
Next, the description of the configuration of the substrate tray 3 will be described.
FIG. 2 shows a cross-sectional view of the configuration of the first substrate tray 3 according to the present invention. The substrate tray 3 includes a tray main body 31 and a substrate placement plate 32 provided with a substrate placement portion 32b for placing the substrate S thereon. The substrate mounting plate 32 is a magnetic plate. An opening 36 is formed in the tray body 31. The tray main body 31 includes a substrate holding portion 35 that holds the peripheral end portion of the substrate S at the end portion of the opening 36. The opening 36 has a first opening 36a having a first diameter smaller than the outer diameter of the substrate, and a second opening having a second diameter larger than the outer diameter of the substrate S connected to the first opening 36a. Opening 36b. The substrate holding part 35 is formed by the first opening 36a and the second opening 36b. The substrate S is sandwiched between the substrate holder 35 and the substrate platform 32b of the substrate platform 32. By defining the substrate holding portion 35 with the second opening 36b having a second diameter larger than the outer diameter of the substrate S, the substrate is more reliably held. That is, the substrate is held out of the allowable limit with respect to the central axis of the first opening 36a, and a cooling gas described later leaks during the processing of the substrate. It is possible to reduce the risk that the peripheral portion of the substrate that should have been processed by concealing more than necessary is not processed. Moreover, since the substrate mounting plate can be made thin by embedding the magnet in the tray body, the substrate cooling performance can be improved.
The substrate mounting plate 32 is made of a magnetic material. As the magnetic material constituting the substrate mounting plate 32, stainless steel that does not easily rust is preferable, and specifically, SUS430 is preferable. Since the substrate tray 3 is taken out into the atmosphere, it is important to have not only a magnetic material but also rust prevention.
トレイ本体31には、基板載置板32をトレイ本体31に保持するため、基板保持部35より外側に磁石33が配設されている。図2では、トレイ本体31の内部には片面2極の磁石33が複数埋め込まれている。片面2極の磁石としたのは、片面1極の磁石に比べて、基板載置板32をトレイ本体31に保持するための吸着力が強く、プロセス空間への磁場漏洩を抑制できるためである。この点につき、図3を用いて説明する。図3(a)はトレイ本体31に片面2極の磁石33を2セット埋設した場合、図3(b)はトレイ本体31に片面1極磁石33を2セット埋設した場合の説明図である。図3(a)に示すように、片面2極磁石33の場合、プロセス空間に発生する漏洩磁場は、片面1極磁石33の場合に比べて小さい。そのため、後述するプロセス空間への磁場漏洩を抑制するヨーク34の厚さを薄くでき、基板トレイ3の軽量化を図ることができるという技術的意義を有する。 In the tray main body 31, a magnet 33 is disposed outside the substrate holding portion 35 in order to hold the substrate mounting plate 32 on the tray main body 31. In FIG. 2, a plurality of single-sided, two-pole magnets 33 are embedded in the tray body 31. The reason why the single-sided and double-pole magnets are used is that the adsorption force for holding the substrate mounting plate 32 on the tray body 31 is stronger than that of the single-sided and single-pole magnets, and magnetic field leakage to the process space can be suppressed. . This point will be described with reference to FIG. FIG. 3A is an explanatory diagram when two sets of single-sided and two-pole magnets 33 are embedded in the tray body 31, and FIG. 3B is an explanatory diagram when two sets of single-sided and one-pole magnets 33 are embedded in the tray body 31. As shown in FIG. 3A, in the case of the single-sided dipole magnet 33, the leakage magnetic field generated in the process space is smaller than that in the case of the single-sided monopole magnet 33. Therefore, there is a technical significance that the thickness of the yoke 34 that suppresses magnetic field leakage to the process space, which will be described later, can be reduced, and the weight of the substrate tray 3 can be reduced.
図3(a)の場合、N極とS極が隣り合う位置で配置されている。N極から発生する磁力線33aは隣のS極に引き寄せられて 閉じようとする。この時、N極とS極の配置が近い為、トレイ表面の漏洩磁束密度は小さい。一方、図3(b)の場合は、図3(a)に比べてN極とS極は離れている。この場合、N極から発生する磁力線33bは、図3(a)と同様にS極に 引き寄せられて閉じようとするが、位置が離れている為、図3(a)に比べてトレイ表面に発生する漏洩磁束密度は大きくなりやすい。図3(a)のようにトレイ表面に発生する漏洩磁束密度が小さいと、トレイ表面に異常な放電痕が残らない。 In the case of FIG. 3A, the N pole and the S pole are arranged at adjacent positions. The lines of magnetic force 33a generated from the N pole are attracted to the adjacent S pole and try to close. At this time, since the arrangement of the N pole and the S pole is close, the leakage magnetic flux density on the tray surface is small. On the other hand, in the case of FIG. 3B, the N pole and the S pole are separated as compared to FIG. In this case, the magnetic field lines 33b generated from the N pole are attracted to the S pole as in FIG. 3 (a) and try to close, but the position is far away, so the magnetic field lines 33b are closer to the tray surface than in FIG. 3 (a). The generated magnetic flux density tends to increase. When the leakage magnetic flux density generated on the tray surface is small as shown in FIG. 3A, abnormal discharge traces do not remain on the tray surface.
次に図4を参照してヨーク34が用いられた実施形態を説明する。磁石33のプロセス空間側にはヨーク34が設置されており、プロセス空間への磁場漏洩を抑制している。ヨーク34の材質は、プロセス空間への磁場漏洩を抑制するために透磁率の高い材料であればよく、例えばSUS430などが好適に用いられる。トレイ本体31内における磁石33とヨーク34の固定方法としては例えば接着剤等での接着が用いられるが、基板トレイ3の使用条件下で許容される固定方法であれば他の方法でも構わない。ヨーク34のない反対側の磁石33面は基板載置板32と接触し、トレイ本体31と脱着できる構成となっている。なお、ヨーク34のない反対側の磁石33面は基板載置板32と接触している必要は必ずしもなく、基板載置板32と磁石33との吸着力によりトレイ本体31と基板載置板32とで基板Sを保持できていればよい。基板載置板32には基板載置板32の基板ホルダー4側から基板S側に貫通した貫通孔32aが複数あり、この貫通孔32aを介して冷却ガスが基板載置板32と基板Sの間に導入され基板Sと基板載置板32との間の熱伝達率を向上させることができる。冷却ガスは、基板トレイ3を載置する基板ホルダー4の基板載置面43に開口した冷却ガス導入路42から導入され、基板ホルダー4と基板トレイ基板載置板32の間の隙間d1に導入されれば、冷却ガスにより基板Sから基板載置板32、さらには基板載置板32から基板ホルダー4への熱伝達効率が良くなるので、基板Sの冷却効率が上昇する。なお、図2や図4ではトレイ本体31は非磁性材料で形成しているが、トレイ本体31を磁性材料で構成して、プロセス空間への漏洩磁場を抑制することも可能である。しかし磁性材料でトレイ本体31を構成すると、重量が増加するので基板トレイ3を搬送するためのロボット等のトレイ搬送装置への負担が増加する。また、図2に示すようにトレイ本体31全体を非磁性材料で形成しヨーク34を省略することも可能である。ヨーク34を省略しかつプロセス空間への漏洩磁場を抑制するためには、トレイ本体31を厚くすればよい。しかしトレイ本体31を厚くした場合、基板トレイ3の重量が増加する。従って、プロセス空間への漏洩磁場を抑制しながら基板トレイ3の軽量化を図るためには、トレイ本体31を非磁性材料で構成し、磁石33と非磁性材料のトレイ本体31の間にヨーク34を配置する図4のような構成が望ましい。なお、トレイ本体3に使用する非磁性材料としては軽量材料が望ましく、Ti(チタン)、カーボン、アルミナ、セラミックス、Mg合金、Al、Al合金などが使用できる。その中でもTi(チタン)、カーボン、アルミナは耐熱性に優れているので、大電力のスパッタ成膜装置などトレイへの熱量の流入が高い場合に特に望ましい。 Next, an embodiment in which the yoke 34 is used will be described with reference to FIG. A yoke 34 is installed on the process space side of the magnet 33 to suppress magnetic field leakage to the process space. The material of the yoke 34 may be any material having a high magnetic permeability in order to suppress leakage of the magnetic field into the process space. For example, SUS430 is preferably used. As a method for fixing the magnet 33 and the yoke 34 in the tray main body 31, for example, bonding with an adhesive or the like is used. However, any other method may be used as long as the fixing method is acceptable under the use conditions of the substrate tray 3. The surface of the magnet 33 on the opposite side without the yoke 34 is in contact with the substrate mounting plate 32 and can be attached to and detached from the tray body 31. Note that the surface of the magnet 33 on the opposite side without the yoke 34 is not necessarily in contact with the substrate mounting plate 32, and the tray main body 31 and the substrate mounting plate 32 are caused by the attractive force between the substrate mounting plate 32 and the magnet 33. As long as the substrate S can be held. The substrate mounting plate 32 has a plurality of through holes 32a penetrating from the substrate holder 4 side of the substrate mounting plate 32 to the substrate S side, and the cooling gas is passed through the through holes 32a between the substrate mounting plate 32 and the substrate S. The heat transfer coefficient between the substrate S and the substrate mounting plate 32 introduced between them can be improved. The cooling gas is introduced from a cooling gas introduction path 42 opened on the substrate placement surface 43 of the substrate holder 4 on which the substrate tray 3 is placed, and introduced into the gap d1 between the substrate holder 4 and the substrate tray substrate placement plate 32. Then, the cooling gas improves the heat transfer efficiency from the substrate S to the substrate mounting plate 32, and further from the substrate mounting plate 32 to the substrate holder 4, so that the cooling efficiency of the substrate S increases. 2 and 4, the tray body 31 is made of a nonmagnetic material. However, the tray body 31 can be made of a magnetic material to suppress a leakage magnetic field to the process space. However, if the tray body 31 is made of a magnetic material, the weight increases, so that the burden on the tray transfer device such as a robot for transferring the substrate tray 3 increases. Further, as shown in FIG. 2, the entire tray body 31 can be formed of a nonmagnetic material and the yoke 34 can be omitted. In order to omit the yoke 34 and suppress the leakage magnetic field to the process space, the tray body 31 may be thickened. However, when the tray body 31 is thickened, the weight of the substrate tray 3 increases. Therefore, in order to reduce the weight of the substrate tray 3 while suppressing the leakage magnetic field to the process space, the tray body 31 is made of a nonmagnetic material, and the yoke 34 is interposed between the magnet 33 and the nonmagnetic material tray body 31. A configuration as shown in FIG. The nonmagnetic material used for the tray body 3 is preferably a lightweight material, and Ti (titanium), carbon, alumina, ceramics, Mg alloy, Al, Al alloy, and the like can be used. Of these, Ti (titanium), carbon, and alumina are excellent in heat resistance, and are particularly desirable when the amount of heat flowing into the tray is high, such as a high-power sputtering film forming apparatus.
図5に磁石33配置図の一例を示す。基板Sの周囲に片面2極の磁石33が3つずつ並べられており、これがおおむね基板Sに対して回転対称に3組配置されている。磁石33は厚みの薄い円柱状であり、円形面にN極とS極がある。磁石33のN極とS極の境界線はおおよそ基板Sの中心に向かうように配置されている。このようにすると、バランスよく基板Sを保持できるので最も好ましい。なお、バランス良く保持するための複数の磁石33の配置はこれに限定したものではなく、例えば1つの片面2極磁石33を回転対象に3箇所、すなわち3つの磁石33でこれを構成しても良いし、1つの片面2極磁石を回転対象に2箇所、すなわち2つの磁石でこれを構成しても良い。なお、バランスよく基板Sを保持するためには回転対称にさえ配置されていれば、磁石33のN極とS極の境界線がおおよそ基板Sの中心に向かうように配置されていなくても構わない。また、磁石は円形のものだけでなく、棒状、円弧状などのものを用いることもできる。
また、N極とS極の両方の磁極を基板載置板32に向けることで基板載置板32に対する吸着力が高くなり基板保持性能に優れる。また片面2極磁石33であることで基板保持性能を維持しながら基板トレイ3表面への磁場の漏れを低減することができる。
FIG. 5 shows an example of the arrangement of the magnets 33. Three magnets 33 each having one pole on each side are arranged around the substrate S, and three magnets 33 are arranged in a rotationally symmetrical manner with respect to the substrate S. The magnet 33 has a thin cylindrical shape, and has an N pole and an S pole on a circular surface. The boundary line between the N pole and the S pole of the magnet 33 is arranged so as to be directed to the center of the substrate S. This is most preferable because the substrate S can be held in a well-balanced manner. The arrangement of the plurality of magnets 33 for maintaining a good balance is not limited to this. For example, one single-sided dipole magnet 33 may be rotated at three locations, that is, three magnets 33 may be configured. Alternatively, one single-sided dipole magnet may be rotated at two locations, that is, two magnets. In order to hold the substrate S in a balanced manner, it is not necessary that the boundary line between the north pole and the south pole of the magnet 33 is approximately directed to the center of the substrate S as long as it is arranged in rotational symmetry. Absent. Further, the magnet may be not only a circular one but also a rod shape, an arc shape, or the like.
Further, by directing both the N pole and the S pole to the substrate mounting plate 32, the adsorption force to the substrate mounting plate 32 is increased, and the substrate holding performance is excellent. Further, since the single-sided dipole magnet 33 is used, leakage of the magnetic field to the surface of the substrate tray 3 can be reduced while maintaining the substrate holding performance.
例えば図5のように複数の磁石33で保持をする構成の場合、N極とS極が交互になる様に配置することが望ましい。複数の磁石33とすることで保持性能が高くなる。さらにN極とS極が交互になるように配置すれば、この性能をさらに高めることができる。 For example, in the case of a configuration in which a plurality of magnets 33 are used as shown in FIG. 5, it is desirable that the N poles and S poles are arranged alternately. Holding performance is enhanced by using a plurality of magnets 33. Furthermore, this performance can be further enhanced if the N and S poles are arranged alternately.
ところで、ヨーク34があることで基板トレイ3表面の漏洩磁束密度は低減されるが、好ましくはこの漏洩磁場強度が成膜に対して影響がある異常放電を起こさない程度に低減されていることが成膜特性の向上の点から望ましい。 By the way, although the leakage magnetic flux density on the surface of the substrate tray 3 is reduced by the presence of the yoke 34, it is preferable that the leakage magnetic field strength is reduced to such an extent that abnormal discharge that affects film formation does not occur. This is desirable from the viewpoint of improving the film forming characteristics.
図6にヨーク34の厚みとトレイ本体31の表面の漏洩磁束密度の関係を示す。本実施形態ではヨーク厚みとトレイ本体31の表面の漏洩磁束密度は曲線201のようになっており、例えばヨーク厚み0.3mmの時に漏洩磁束密度は130Gauss、ヨーク厚み0.6mmの時に漏洩磁束密度は30Gaussである。漏洩磁束密度が100Gaussを超える領域203ではトレイ表面に放電跡が残るが、漏洩磁束密度が100Gauss以下の領域202においては放電跡が残らない。例えば、ヨーク厚み0.3mmで漏洩磁束密度が130Gaussの場合ではトレイ表面に放電跡が生じたが、ヨーク厚み0.6mmで漏洩磁束密度が30Gaussの場合ではトレイ表面に放電跡は見られなかった。
図9(a)(b)は、本実施形態の基板トレイ3を用いて8枚の基板Sを保持した場合を示す。図9(a)は、基板押さえリングとして機能する上記基板載置板32を、8枚の基板Sを保持できるように一体で形成したものである。なお、図9(b)は、基板押さえリングとして機能する上記基板載置板32を、8枚の基板S毎に形成したものである。漏洩磁束密度の測定は、図10(b)に示すように、磁石33の直上、磁石33と磁石33との間で行った。ヨーク34の厚みが厚いほど漏洩磁場は低減される。成膜のために好適でない放電をトレイ表面で生じないためには、漏洩磁場が100ガウス以下の領域が好ましい。なお、トレイ本体31表面の漏洩磁束密度の測定は、トレイ表面において垂直磁束密度がおおよそ0ガウスとなる地点における水平磁束密度を測定することにより評価した。より詳しくは、図2に示すように、片面2極磁石33をトレイ本体31に1セット埋設した場合、トレイ上面からみた場合の磁石33のN極とS極との間における垂直磁束密度がおおよそ0ガウスとなる地点においてのトレイ表面における水平磁束密度をガウスメーターで測定することにより評価した。ガウスメーターは、東陽テクニカ製の5180型ガウスメーターを使用した。なお、磁束密度の測定は室温において基板載置板32によりサファイア基板Sを保持した状態でおこなった。また、図10に示すように、トレイ本体31に、片面2極磁石33を3セット毎、120度の等間隔で埋設した場合、トレイ上面からみた場合の1個の片面2極磁石33のN極とS極との間における垂直磁束密度がおおよそ0ガウスとなる地点、3セットの片面2極磁石33の各々の磁石の間における垂直磁束密度がおおよそ0ガウスとなる地点においてのトレイ表面における水平磁束密度をガウスメーターで測定することにより評価した。
FIG. 6 shows the relationship between the thickness of the yoke 34 and the leakage magnetic flux density on the surface of the tray main body 31. In this embodiment, the yoke thickness and the leakage magnetic flux density on the surface of the tray main body 31 are as shown by a curve 201. For example, the leakage magnetic flux density is 130 Gauss when the yoke thickness is 0.3 mm, and the leakage magnetic flux density when the yoke thickness is 0.6 mm. Is 30 Gauss. In the region 203 where the leakage magnetic flux density exceeds 100 Gauss, a discharge trace remains on the tray surface, but in the region 202 where the leakage magnetic flux density is 100 Gauss or less, no discharge trace remains. For example, when the yoke thickness is 0.3 mm and the leakage flux density is 130 Gauss, discharge traces are generated on the tray surface, but when the yoke thickness is 0.6 mm and the leakage flux density is 30 Gauss, no discharge traces are seen on the tray surface. .
FIGS. 9A and 9B show a case where eight substrates S are held using the substrate tray 3 of the present embodiment. In FIG. 9A, the substrate mounting plate 32 functioning as a substrate pressing ring is integrally formed so that eight substrates S can be held. In FIG. 9B, the substrate mounting plate 32 that functions as a substrate pressing ring is formed for every eight substrates S. As shown in FIG. 10B, the leakage magnetic flux density was measured directly above the magnet 33 and between the magnet 33 and the magnet 33. As the yoke 34 is thicker, the leakage magnetic field is reduced. In order not to generate a discharge that is not suitable for film formation on the tray surface, a region where the leakage magnetic field is 100 gauss or less is preferable. The measurement of the leakage magnetic flux density on the surface of the tray body 31 was evaluated by measuring the horizontal magnetic flux density at a point where the vertical magnetic flux density is approximately 0 gauss on the tray surface. More specifically, as shown in FIG. 2, when one set of single-sided dipole magnets 33 is embedded in the tray body 31, the vertical magnetic flux density between the north and south poles of the magnet 33 when viewed from the top of the tray is approximately The horizontal magnetic flux density on the tray surface at the point of 0 Gauss was evaluated by measuring with a Gauss meter. As the Gauss meter, a 5180 Gauss meter manufactured by Toyo Technica was used. The magnetic flux density was measured with the sapphire substrate S held by the substrate mounting plate 32 at room temperature. Further, as shown in FIG. 10, when the single-sided dipole magnet 33 is embedded in the tray body 31 every three sets at equal intervals of 120 degrees, the N of one single-sided dipole magnet 33 when viewed from the top surface of the tray is used. Horizontal on the tray surface at a point where the vertical magnetic flux density between the poles and S poles is approximately 0 Gauss, and at which the vertical magnetic flux density between each of the three sets of single-sided dipole magnets 33 is approximately 0 Gauss. The magnetic flux density was evaluated by measuring with a gauss meter.
図7に基板温度と基板トレイ3裏面、すなわち基板トレイ3の基板載置板32と基板ホルダー4の隙間寸法d1との関係を示す。基板S上にある保護樹脂が温度によって形状変化することを防止するため、基板温度は100℃以下であることが望ましい。実験結果より、隙間寸法d1が0.15mmにおいて基板温度は約90℃であった。隙間寸法d1が0.7mmに広がると、基板温度は約150℃まで上昇した。以降、隙間寸法d1が広がるのに伴い基板温度は上昇し、2.5mmの時には約190℃まで上昇した。この実験結果から、図7のように、基板温度が100℃以下となる隙間寸法d1は0.3mm以下であることが分かった。そのため冷却効果を高めるために基板載置板32と基板ホルダー4の隙間d1は小さいほうがよいが、100℃以下とするためには基板Sから基板ホルダー4までの距離d1は0.3mm以下が望ましい。この点につき、図2を用いて説明する。冷却ガス(Ar)は、冷却ガス導入孔42、貫通孔32aを介して基板Sの裏面側に導入される。また、冷却ガス(Ar)が、トレイ本体31からSP室2内のプロセス空間に拡散することを防止するため、トレイ本体31の端部31aと基板ホルダー4の端部4aとは、気密に固定することが好ましい。一方、トレイ本体31の中央部31bと基板ホルダー4の中央部4bとは、冷却ガス(Ar)を基板Sの裏面側に導入できる程度の隙間があればよい。以上の点から、基板載置板32と基板ホルダー4の隙間d1は0.3mm以下が望ましい。なお、基板を冷却する性能が上がるので隙間d1は小さいほどよい。しかし基板載置板32がトレイ本体31の端部31aよりも出っ張ると、冷却ガスがSP室2内のプロセス空間に拡散するので、基板載置板32をトレイ本体31に装着する上で端部31aよりも出っ張る部分が無い様にするために必要な設計公差を考慮した寸法であるように、d1の最小値は決定されればよい。また、本実施の形態では冷却ガスとしてAr(アルゴン)を使用したがHe(ヘリウム)や水素などの他の冷却ガスを用いても構わない。 FIG. 7 shows the relationship between the substrate temperature and the back surface of the substrate tray 3, that is, the gap dimension d 1 between the substrate mounting plate 32 of the substrate tray 3 and the substrate holder 4. In order to prevent the protective resin on the substrate S from changing its shape depending on the temperature, the substrate temperature is desirably 100 ° C. or lower. From the experimental results, the substrate temperature was about 90 ° C. when the gap dimension d1 was 0.15 mm. As the gap dimension d1 increased to 0.7 mm, the substrate temperature rose to about 150 ° C. Thereafter, the substrate temperature increased as the gap dimension d1 increased, and increased to about 190 ° C. at 2.5 mm. From this experimental result, it was found that the gap dimension d1 at which the substrate temperature becomes 100 ° C. or less is 0.3 mm or less as shown in FIG. Therefore, in order to enhance the cooling effect, the gap d1 between the substrate mounting plate 32 and the substrate holder 4 should be small. However, in order to make the temperature 100 ° C. or less, the distance d1 from the substrate S to the substrate holder 4 is preferably 0.3 mm or less. . This point will be described with reference to FIG. The cooling gas (Ar) is introduced to the back side of the substrate S through the cooling gas introduction hole 42 and the through hole 32a. Further, in order to prevent the cooling gas (Ar) from diffusing from the tray body 31 into the process space in the SP chamber 2, the end portion 31a of the tray body 31 and the end portion 4a of the substrate holder 4 are fixed in an airtight manner. It is preferable to do. On the other hand, the central portion 31b of the tray main body 31 and the central portion 4b of the substrate holder 4 need only have a gap that allows the cooling gas (Ar) to be introduced into the back side of the substrate S. From the above points, the gap d1 between the substrate mounting plate 32 and the substrate holder 4 is desirably 0.3 mm or less. Since the performance for cooling the substrate is improved, the gap d1 is preferably as small as possible. However, when the substrate mounting plate 32 protrudes beyond the end portion 31 a of the tray body 31, the cooling gas diffuses into the process space in the SP chamber 2, so that the end portion of the substrate mounting plate 32 is attached to the tray body 31. The minimum value of d1 only needs to be determined so that the dimension takes into account the design tolerances required so that there is no portion protruding beyond 31a. In this embodiment, Ar (argon) is used as the cooling gas, but other cooling gas such as He (helium) or hydrogen may be used.
次に、基板トレイ3に対する基板Sと基板載置板32の装着方法について、図8を用いて説明する。
基板トレイ3に対する基板Sと基板載置板32の設置は、ロボットで自動的に行う。
はじめに、基板Sが複数枚装填されたカセット102をカセット用ロードポート103に乗せると、ベルトコンベアー104によって基板取り出し位置105まで搬送される。カセット102が基板取り出し位置105に配置されると、下方から、基板リフト機構106が上昇し、全ての基板Sがリフトアップされる。その後、不図示の真空チャック機構を備えた6軸ロボット107によって基板Sの裏面が真空チャックによって吸着し保持される。その後、基板Sのセンター、オリフラの位置出しを行う。
Next, a method of mounting the substrate S and the substrate mounting plate 32 on the substrate tray 3 will be described with reference to FIG.
The placement of the substrate S and the substrate mounting plate 32 on the substrate tray 3 is automatically performed by a robot.
First, when a cassette 102 loaded with a plurality of substrates S is placed on the cassette load port 103, the cassette 102 is transported to the substrate take-out position 105 by the belt conveyor 104. When the cassette 102 is disposed at the substrate take-out position 105, the substrate lift mechanism 106 is raised from below, and all the substrates S are lifted up. Thereafter, the back surface of the substrate S is sucked and held by the vacuum chuck by a six-axis robot 107 having a vacuum chuck mechanism (not shown). Thereafter, the center of the substrate S and the orientation flat are positioned.
基板搬送動作と並行して、トレイ用ロードポート108に装填されている基板トレイ3が、不図示の真空チャック機構を備えた6軸ロボット110によって吸着、保持され、基板Sと基板載置板32の設置を行う為のテーブル111へ搬送される。その際に、基板トレイ3のセンター、位置出しも行われる。
6軸ロボット107によって保持されている基板Sは、予め成膜される面が下になるようにテーブル111に置かれたトレイに対して設置される。
基板トレイ3に基板Sが設置されたあと、基板トレイ3に対して基板Sを保持する為の基板載置板32がアーム113によって保持され、既に基板Sが設置された基板トレイ3に対して設置される。
基板Sと基板載置板32の設置が完了すると、6軸ロボット110によって、基板トレイ3の裏面が吸着保持され、成膜面が上になるように基板トレイ3を裏返し、成膜処理装置のロードポート114へ搬送される。
In parallel with the substrate transfer operation, the substrate tray 3 loaded in the tray load port 108 is sucked and held by a 6-axis robot 110 having a vacuum chuck mechanism (not shown), and the substrate S and the substrate mounting plate 32 are held. Are transported to a table 111 for installation. At that time, the center and positioning of the substrate tray 3 are also performed.
The substrate S held by the six-axis robot 107 is placed on a tray placed on the table 111 so that the surface on which the film is formed is placed downward.
After the substrate S is placed on the substrate tray 3, the substrate mounting plate 32 for holding the substrate S on the substrate tray 3 is held by the arm 113, and the substrate tray 3 on which the substrate S has already been placed is mounted. Installed.
When the installation of the substrate S and the substrate mounting plate 32 is completed, the substrate tray 3 is turned upside down so that the back surface of the substrate tray 3 is sucked and held by the six-axis robot 110 and the film formation surface is up. It is conveyed to the load port 114.
成膜処理が終了した基板トレイ3は、上記と逆の手順で基板載置板32と基板Sの取り外しが行われ、最終的に基板Sが基板カセット102に装填されると、ベルトコンベアー104によってカセット用アンロードポート103へ搬送され、回収できる。 After the film forming process is completed, the substrate placing plate 32 and the substrate S are removed in the reverse procedure to the above, and when the substrate S is finally loaded into the substrate cassette 102, the belt conveyor 104 It can be transported to the cassette unload port 103 and collected.
基板Sを取り付けた基板トレイ3はLL室内1で低真空領域まで排気する。排気完了後、基板トレイ3はLL室1からSP室2へと搬送され、マスク6と基板ホルダー4にて固定する。SP室2内でさらに高真空まで排気を行った後、SP(スパッタ)処理を行う。SP処理はプロセスガス、例えばArとO2の混合ガスを導入して、所定の圧力にする。ターゲットホルダー5に電力を投入し、所定の時間まで成膜を行う。このとき基板ホルダー4内の冷却ガス導入路42を通じて基板トレイ3裏面と基板ホルダー4の間の隙間d1、具体的には基板トレイ3の基板載置板32の基板保持面とは反対側の面と基板ホルダー4との隙間d1に冷却ガスが導入される。冷却ガスはさらにこの隙間d1から基板トレイ3の基板載置板32に設けられた貫通孔32aを通じて基板Sと基板載置板32の間に導入される。導入した冷却ガスにより基板Sを冷却しながら成膜を行う。成膜終了後、電力、添加ガス、冷却ガスが止まり、基板トレイ3はSP室2からLL室1へと搬送されて、LL室1内でベントを行い、基板トレイ3が取り出される。なお、基板Sを保持した基板トレイ3は、LL室1から取り出されたあと大気中にて基板Sを取り外される。本発明においては磁石と基板載置板32の磁力により基板を保持しているため、基板Sの取り外しは容易であり、自動化をおこなうことも容易であるから、安価にこれをおこなう取り外し装置を設定することができる。また、スループットも向上する。従って量産装置において好適である。図11は、成膜の置のトレイ表面状態を示す。本発明のトレイ3では、漏洩磁束密度を小さく為に、磁石33とヨーク34の厚みを最適化した結果、放電痕は確認されなかった。 The substrate tray 3 with the substrate S attached is evacuated to the low vacuum region in the LL chamber 1. After the exhaust is completed, the substrate tray 3 is transported from the LL chamber 1 to the SP chamber 2 and fixed by the mask 6 and the substrate holder 4. After evacuating to a higher vacuum in the SP chamber 2, SP (sputtering) processing is performed. In the SP treatment, a process gas, for example, a mixed gas of Ar and O 2 is introduced to obtain a predetermined pressure. Power is applied to the target holder 5 and film formation is performed until a predetermined time. At this time, the gap d1 between the back surface of the substrate tray 3 and the substrate holder 4 through the cooling gas introduction path 42 in the substrate holder 4, specifically, the surface opposite to the substrate holding surface of the substrate mounting plate 32 of the substrate tray 3. The cooling gas is introduced into the gap d1 between the substrate holder 4 and the substrate holder 4. The cooling gas is further introduced between the substrate S and the substrate mounting plate 32 through the through hole 32a provided in the substrate mounting plate 32 of the substrate tray 3 from the gap d1. Film formation is performed while the substrate S is cooled by the introduced cooling gas. After the film formation is completed, the power, additive gas, and cooling gas are stopped, the substrate tray 3 is transferred from the SP chamber 2 to the LL chamber 1, vented in the LL chamber 1, and the substrate tray 3 is taken out. The substrate tray 3 holding the substrate S is removed from the LL chamber 1 and then removed from the substrate S in the atmosphere. In the present invention, since the substrate is held by the magnetic force of the magnet and the substrate mounting plate 32, the removal of the substrate S is easy, and it is easy to automate, so a removal device that performs this at low cost is set. can do. Also, the throughput is improved. Therefore, it is suitable for a mass production apparatus. FIG. 11 shows a tray surface state of the film forming apparatus. In the tray 3 of the present invention, as a result of optimizing the thickness of the magnet 33 and the yoke 34 in order to reduce the leakage magnetic flux density, no discharge trace was confirmed.
以上に説明したように、本発明では、基板載置板を磁石によりトレイ本体に保持し、基板保持部と、基板載置部とで基板を保持することにより、パーティクルの発生や基板処理への構造物の影響を抑制し、熱伝達媒体による冷却性能(温度制御)に優れ、さらに量産装置に対応し基板の脱着を容易することができるという効果がある。更に、基板の外径より小さい第1の径を有する第1の開口部と、第1の開口部と連接し前記基板の外径より大きな第2の径を有する第2の開口部より基板保持部を形成することにより、基板保持部と基板載置板とにより確実に基板を挟持することができるという効果がある。 As described above, in the present invention, the substrate mounting plate is held on the tray body by the magnet, and the substrate is held by the substrate holding unit and the substrate mounting unit, thereby preventing generation of particles and substrate processing. There are effects that the influence of the structure is suppressed, the cooling performance (temperature control) by the heat transfer medium is excellent, and the substrate can be easily attached and detached in correspondence with the mass production apparatus. Further, the substrate is held by a first opening having a first diameter smaller than the outer diameter of the substrate, and a second opening having a second diameter larger than the outer diameter of the substrate connected to the first opening. By forming the portion, there is an effect that the substrate can be surely held between the substrate holding portion and the substrate mounting plate.
トレイ本体にヨークを埋設し、基板載置板と前記ヨークとの間に磁石を設けることにより、基板載置板32が薄くできるため、基板冷却性能の向上を図ることができるという効果がある。 By embedding a yoke in the tray main body and providing a magnet between the substrate mounting plate and the yoke, the substrate mounting plate 32 can be thinned, so that the substrate cooling performance can be improved.
トレイ本体の少なくとも一部に非磁性材料板を埋設し、ヨークを、非磁性材料板と前記磁石との間に設けることにより、ヨークから磁力線が漏れ出た場合にプラズマ処理空間にまで磁力線が作用するのを抑制できるという効果がある。 By embedding a non-magnetic material plate in at least a part of the tray body and providing the yoke between the non-magnetic material plate and the magnet, the magnetic force line acts on the plasma processing space when the magnetic force line leaks from the yoke. There is an effect that can be suppressed.
トレイ本体を、非磁性材料で形成することにより、ヨークから磁力線が漏れ出た場合にプラズマ処理空間にまで磁力線が作用するのを抑制できるという効果がある。 By forming the tray body from a non-magnetic material, there is an effect that it is possible to suppress the action of the magnetic force lines to the plasma processing space when the magnetic force lines leak from the yoke.
トレイ本体をTi(チタン)、カーボンまたはアルミナで形成することにより、基板トレイを軽くできるので、搬送ロボットなどの搬送システムの負担が少なくすることができる。更に、また、トレイ本体をTi(チタン)、カーボンまたはアルミナで形成することにより、基板トレイを耐熱性に優れたものにすることができるので、特にプラズマから基板トレイへの熱量の流入が大きい大電力のスパッタリング成膜に好適であるという効果がある。 By forming the tray body from Ti (titanium), carbon, or alumina, the substrate tray can be lightened, so that the burden on the transfer system such as a transfer robot can be reduced. Furthermore, by forming the tray body from Ti (titanium), carbon, or alumina, the substrate tray can be made excellent in heat resistance, so that the heat flow from the plasma to the substrate tray is particularly large. There is an effect that it is suitable for power sputtering film formation.
基板載置板側にN極とS極の磁極が現れ、基板載置板と反対側にS極とN極の磁極が現れる片面2極磁石とすることにより、N極とS極の両方の磁極を基板載置板側に向けることできるため、基板載置板に対する吸着力が高くなり基板保持性能の向上を図ることができるという効果がある。更に、本願の請求項7記載の発明によれば、片面2極磁石とすることで基板保持性能を維持しながらトレイ表面への磁場の漏れを低減できるという効果がある。 By using a single-sided two-pole magnet in which N-pole and S-pole magnetic poles appear on the substrate mounting plate side and S-pole and N-pole magnetic poles appear on the opposite side of the substrate mounting plate, Since the magnetic pole can be directed to the substrate mounting plate side, there is an effect that the adsorption force to the substrate mounting plate is increased and the substrate holding performance can be improved. Furthermore, according to the seventh aspect of the present invention, by using a single-sided dipole magnet, there is an effect that leakage of a magnetic field to the tray surface can be reduced while maintaining the substrate holding performance.
ヨークの厚さを、基板の処理面側のトレイ本体表面において、磁束密度が100ガウス以下となるように設定することにより、基板処理装置上に異常な放電が生じることを抑制することができるという効果がある。 By setting the thickness of the yoke so that the magnetic flux density is 100 gauss or less on the surface of the tray main body on the processing surface side of the substrate, it is possible to suppress the occurrence of abnormal discharge on the substrate processing apparatus. effective.
片面2極磁石を基板の周囲に等角度で複数N極とS極とが交互になる様に配置することにより、基板の保持性能が高くすることができるという効果がある。 By arranging the single-sided dipole magnet around the substrate so that a plurality of N-poles and S-poles alternate at an equal angle, there is an effect that the holding performance of the substrate can be enhanced.
基板トレイを有する基板処理装置を使用することにより、パーティクルの発生や基板処理への構造物の影響を抑制し、熱伝達媒体による冷却性能(温度制御)に優れた基板処理装置を実現することができるという効果がある。 By using a substrate processing apparatus having a substrate tray, it is possible to suppress the generation of particles and the influence of structures on the substrate processing, and to realize a substrate processing apparatus excellent in cooling performance (temperature control) by a heat transfer medium. There is an effect that can be done.
基板ホルダーと前記基板載置板に、基板の処理面と反対側の面に冷却ガスを導入するための、ガス導入孔をそれぞれ設けることにより、基板を効率的に冷却することができるという効果がある。
更に、基板載置板と基板ホルダーの基板載置部との間に0.3mm以下の間隙d1を設け、この間隙d1に熱伝達媒体(冷却ガス)を流すことで、基板の冷却性能を高めることができるという効果がある。特にこの部分の隙間を0.3mm以下とすることで基板の温度をより低減することができ、特に基板上にリフトオフ用のフォトレジストパターンが設けられている場合にダメージを与えない温度、すなわち100℃以下で成膜することができるという効果がある。
Providing the substrate holder and the substrate mounting plate with gas introduction holes for introducing a cooling gas to the surface opposite to the processing surface of the substrate has the effect that the substrate can be efficiently cooled. is there.
Further, a gap d1 of 0.3 mm or less is provided between the substrate placing plate and the substrate placing portion of the substrate holder, and a heat transfer medium (cooling gas) is passed through the gap d1, thereby improving the cooling performance of the substrate. There is an effect that can be. In particular, the temperature of the substrate can be further reduced by setting the gap between these portions to be 0.3 mm or less. Particularly, when a photoresist pattern for lift-off is provided on the substrate, a temperature that does not cause damage, that is, 100 There is an effect that a film can be formed at a temperature of less than or equal to ° C.
S 基板
T ターゲット
d1 隙間
1 LL室
2 SP室
3 基板トレイ
4 基板ホルダー
5 ターゲットホルダー
6 マスク
7 排気手段
8 圧力計
31 トレイ本体
32 基板載置板
32a 貫通孔
32b 基板載置部
33 磁石
34 ヨーク
35 基板保持部
36 開口
36a 第1の開口部
36b 第2の開口部
42 冷却ガス導入路
S Substrate T Target d1 Gap 1 LL chamber 2 SP chamber 3 Substrate tray 4 Substrate holder 5 Target holder 6 Mask 7 Exhaust means 8 Pressure gauge 31 Tray body 32 Substrate mounting plate 32a Through hole 32b Substrate mounting portion 33 Magnet 34 Yoke 35 Substrate holder 36 Opening 36a First opening 36b Second opening 42 Cooling gas introduction path
Claims (19)
トレイ本体と、
基板を載置するための基板載置部を含む基板載置板と、を備え、
前記トレイ本体は、
基板ホルダー上に前記基板トレイが固定されたときに前記基板ホルダの上面端部に接触するように突出した端部と、
前記基板の処理すべき部分が露出するように前記基板の周端部を保持する基板保持部と、磁力によって前記基板載置板を前記トレイ本体が保持するように、前記基板保持部よりも外側に配置された磁石と、を含む、とを特徴とする基板トレイ。 A substrate tray for holding substrates,
The tray body,
A substrate mounting plate including a substrate mounting portion for mounting the substrate,
The tray body is
An end projecting to contact the upper end of the substrate holder when the substrate tray is fixed on the substrate holder;
A substrate holding portion that holds a peripheral end portion of the substrate so that a portion to be processed of the substrate is exposed, and an outer side than the substrate holding portion so that the tray body holds the substrate mounting plate by magnetic force. And a magnet disposed on the substrate tray.
前記基板保持部は、前記第1の開口部と前記第2の開口部とにより形成されており、
前記基板保持部と前記基板載置部とで前記基板を挟持することを特徴とする請求項1記載の基板トレイ。 The magnet is embedded in the tray body, and the tray body has a first opening having a first diameter smaller than an outer diameter of the substrate, and is connected to the first opening and the substrate. And a second opening having a second diameter larger than the outer diameter of
The substrate holding portion is formed by the first opening and the second opening,
The substrate tray according to claim 1, wherein the substrate is sandwiched between the substrate holding unit and the substrate mounting unit.
ことを特徴とする請求項1記載の基板トレイ。 The end of the tray main body is configured to introduce cooling gas between the lower surface of the substrate mounting plate and the substrate holder in a state where the substrate mounting plate is held by the tray main body by magnetic force. ,
The substrate tray according to claim 1.
前記基板を保持するための基板トレイと、
成膜室と、
前記成膜室内に設けられたターゲットホルダーと、
前記ターゲットホルダーと対向して設けられ、前記基板トレイを載置するための基板ホルダーと、
前記成膜室内にプロセスガスを導入するためのガス導入手段と、
前記成膜室内を排気するための排気手段と、を備え、
前記基板トレイは、
トレイ本体と、
基板が載置される基板載置部を含む基板載置板と、を含み、
前記トレイ本体は、
前記基板ホルダー上に基板トレイが固定されたときに前記基板ホルダの上面端部に接触するように突出した端部と、
前記基板の処理すべき部分が露出するように前記基板の周端部を保持する基板保持部と、
磁力によって前記基板載置板を前記トレイ本体が保持するように、前記基板保持部よりも外側に配置された磁石と、を含む、
ことを特徴とする基板処理装置。 A substrate processing apparatus for plasma processing a substrate,
A substrate tray for holding the substrate;
A deposition chamber;
A target holder provided in the film forming chamber;
A substrate holder provided opposite to the target holder for placing the substrate tray;
Gas introduction means for introducing a process gas into the film forming chamber;
An exhaust means for exhausting the film formation chamber,
The substrate tray is
The tray body,
Including a substrate placement plate including a substrate placement portion on which the substrate is placed,
The tray body is
An end projecting to contact the upper surface end of the substrate holder when a substrate tray is fixed on the substrate holder;
A substrate holding part for holding a peripheral edge of the substrate so that a portion to be processed of the substrate is exposed;
A magnet disposed outside the substrate holding part so that the tray body holds the substrate mounting plate by magnetic force, and
A substrate processing apparatus.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011101645A JP5873251B2 (en) | 2011-04-28 | 2011-04-28 | Substrate tray and substrate processing apparatus using the tray |
KR1020120041377A KR101366441B1 (en) | 2011-04-28 | 2012-04-20 | Substrate tray and substrate processing apparatus using the tray |
TW101114162A TWI503921B (en) | 2011-04-28 | 2012-04-20 | A substrate tray and a substrate processing device using the tray |
CN201210128524.XA CN102760679B (en) | 2011-04-28 | 2012-04-27 | Substrate bracket and substrate processing apparatus employing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011101645A JP5873251B2 (en) | 2011-04-28 | 2011-04-28 | Substrate tray and substrate processing apparatus using the tray |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2012234930A JP2012234930A (en) | 2012-11-29 |
JP2012234930A5 JP2012234930A5 (en) | 2014-04-24 |
JP5873251B2 true JP5873251B2 (en) | 2016-03-01 |
Family
ID=47055081
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011101645A Active JP5873251B2 (en) | 2011-04-28 | 2011-04-28 | Substrate tray and substrate processing apparatus using the tray |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5873251B2 (en) |
KR (1) | KR101366441B1 (en) |
CN (1) | CN102760679B (en) |
TW (1) | TWI503921B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2971224B1 (en) * | 2013-03-15 | 2018-01-31 | Applied Materials, Inc. | Carrier for substrates |
GB201402126D0 (en) * | 2014-02-07 | 2014-03-26 | Spts Technologies Ltd | Method of processing a substrate |
US11756816B2 (en) | 2019-07-26 | 2023-09-12 | Applied Materials, Inc. | Carrier FOUP and a method of placing a carrier |
US11196360B2 (en) | 2019-07-26 | 2021-12-07 | Applied Materials, Inc. | System and method for electrostatically chucking a substrate to a carrier |
US10916464B1 (en) | 2019-07-26 | 2021-02-09 | Applied Materials, Inc. | Method of pre aligning carrier, wafer and carrier-wafer combination for throughput efficiency |
CN114054419B (en) * | 2021-11-17 | 2023-04-11 | 新美光(苏州)半导体科技有限公司 | Silicon electrode cleaning device and cleaning method |
US20230265554A1 (en) * | 2022-02-18 | 2023-08-24 | Applied Materials, Inc. | Substrate carrier to control temperature of substrate |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02229421A (en) * | 1989-03-02 | 1990-09-12 | Sumitomo Electric Ind Ltd | Aligner |
JP4428799B2 (en) * | 2000-04-03 | 2010-03-10 | キヤノン株式会社 | Magnetic support mechanism, positioning apparatus, and semiconductor device manufacturing method |
JP4121763B2 (en) * | 2002-04-08 | 2008-07-23 | Tdk株式会社 | Substrate exchange unit and substrate exchange method for thin film forming apparatus |
KR100523824B1 (en) * | 2002-07-11 | 2005-10-25 | 에이에스엠엘 네델란즈 비.브이. | Substrate Holder and Device Manufacturing Method |
JP2005120410A (en) * | 2003-10-15 | 2005-05-12 | Renesas Technology Corp | Method of fabricating semiconductor device |
JP4386753B2 (en) * | 2004-02-19 | 2009-12-16 | キヤノンアネルバ株式会社 | Wafer stage and plasma processing apparatus |
KR100582036B1 (en) * | 2004-04-12 | 2006-05-22 | 주식회사 테라세미콘 | Semiconductor Manufacturing Method and Wafer-Holder |
JP4576200B2 (en) * | 2004-10-21 | 2010-11-04 | キヤノンアネルバ株式会社 | Substrate processing apparatus and arcing occurrence monitoring method in substrate processing apparatus |
JP2007281050A (en) * | 2006-04-04 | 2007-10-25 | Miraial Kk | Wafer tray for semiconductor wafer |
JP4699272B2 (en) * | 2006-04-27 | 2011-06-08 | 株式会社フジクラ | Board holder |
JP4990636B2 (en) * | 2007-01-11 | 2012-08-01 | 株式会社アルバック | Vacuum processing equipment using a transport tray |
JP4997141B2 (en) * | 2008-02-21 | 2012-08-08 | 株式会社アルバック | Vacuum processing apparatus and substrate temperature control method |
US20100151680A1 (en) * | 2008-12-17 | 2010-06-17 | Optisolar Inc. | Substrate carrier with enhanced temperature uniformity |
JP2010177267A (en) * | 2009-01-27 | 2010-08-12 | Ulvac Japan Ltd | Conveyance tray, and vacuum treatment apparatus using the conveyance tray |
JP2011023425A (en) * | 2009-07-13 | 2011-02-03 | Canon Inc | Stage apparatus, exposure apparatus, and method of manufacturing device |
-
2011
- 2011-04-28 JP JP2011101645A patent/JP5873251B2/en active Active
-
2012
- 2012-04-20 TW TW101114162A patent/TWI503921B/en active
- 2012-04-20 KR KR1020120041377A patent/KR101366441B1/en active IP Right Grant
- 2012-04-27 CN CN201210128524.XA patent/CN102760679B/en active Active
Also Published As
Publication number | Publication date |
---|---|
TWI503921B (en) | 2015-10-11 |
CN102760679A (en) | 2012-10-31 |
JP2012234930A (en) | 2012-11-29 |
KR101366441B1 (en) | 2014-02-21 |
TW201306164A (en) | 2013-02-01 |
KR20120122905A (en) | 2012-11-07 |
CN102760679B (en) | 2015-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5873251B2 (en) | Substrate tray and substrate processing apparatus using the tray | |
KR100881692B1 (en) | Improved pvd target | |
JP5309150B2 (en) | Sputtering apparatus and method of manufacturing field effect transistor | |
JP6126620B2 (en) | Substrate processing equipment | |
JP5527894B2 (en) | Sputtering equipment | |
JP2014037555A (en) | Sputtering apparatus | |
JP2018053272A (en) | Film deposition apparatus | |
JP5334984B2 (en) | Sputtering apparatus, thin film forming method, and field effect transistor manufacturing method | |
US20110198213A1 (en) | Sputtering Apparatus, Thin-Film Forming Method, and Manufacturing Method for a Field Effect Transistor | |
JP4185179B2 (en) | Sputtering equipment | |
JP2004124171A (en) | Plasma processing apparatus and method | |
JP6322669B2 (en) | Stress adjustment method | |
KR20220017654A (en) | Substrate treatment apparatus | |
JPH01165770A (en) | Target electrode | |
JP2006233236A (en) | Substrate stand for film deposition apparatus, film deposition apparatus and film deposition method | |
JPH0364461A (en) | Setting part of magnetron sputtering target and apparatus of magnetron sputtering using it | |
JP2018141186A (en) | Processing apparatus | |
TW201437397A (en) | Physical vapor deposition system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140307 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140307 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150303 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150429 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160106 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160115 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5873251 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |