JP5872967B2 - Management method of fine aggregate moisture content - Google Patents

Management method of fine aggregate moisture content Download PDF

Info

Publication number
JP5872967B2
JP5872967B2 JP2012128026A JP2012128026A JP5872967B2 JP 5872967 B2 JP5872967 B2 JP 5872967B2 JP 2012128026 A JP2012128026 A JP 2012128026A JP 2012128026 A JP2012128026 A JP 2012128026A JP 5872967 B2 JP5872967 B2 JP 5872967B2
Authority
JP
Japan
Prior art keywords
electrodes
sand
value
specific resistance
management
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012128026A
Other languages
Japanese (ja)
Other versions
JP2013253802A (en
Inventor
道人 下茂
道人 下茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2012128026A priority Critical patent/JP5872967B2/en
Publication of JP2013253802A publication Critical patent/JP2013253802A/en
Application granted granted Critical
Publication of JP5872967B2 publication Critical patent/JP5872967B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、細骨材水分量の管理方法に関するものである。   The present invention relates to a method of managing fine aggregate moisture content.

コンクリートダムの合理化施工方法として開発されたRCD工法は、セメント量を少なくした超硬練りのコンクリートをブルドーザで敷均しをし、振動ローラで締め固める工法である。
この工法の高速化には表面水分量を8〜10%程度に調整した細骨材をできるだけ短い時間間隔で安定的に現場へ供給する必要がある。
しかし原石山で採取した骨材は多量の水分を含んでいるために、その水分を短時間で低減する必要がある。
そのために、水分が重量で下方へ移動することによる自然排水方法と、ウエルなどを砂山に挿入して負圧を与えて吸引する強制排水工法とが採用されている。
このいずれの方法を採用するにしても、排水の進行程度、排水完了の判断が必要となる。
そのために排水量を測定して管理する方法、水分計を砂山内に設置する方法、経験的に水分量を予測する方法などが採用されている。
The RCD method, which was developed as a rationalized construction method for concrete dams, is a method of leveling cemented hard concrete with a small amount of cement with a bulldozer and compacting with a vibrating roller.
In order to increase the speed of this construction method, it is necessary to stably supply fine aggregate whose surface moisture content is adjusted to about 8 to 10% to the site at as short a time interval as possible.
However, since the aggregate collected at Mt. Ohara contains a large amount of moisture, it is necessary to reduce the moisture in a short time.
For this purpose, a natural drainage method in which moisture moves downward by weight and a forced drainage method in which a well or the like is inserted into a sand pile and sucked by applying a negative pressure are adopted.
Whichever method is used, it is necessary to determine the degree of progress of drainage and the completion of drainage.
For this purpose, a method of measuring and managing the amount of drainage, a method of installing a moisture meter in the sand pile, a method of predicting the amount of water empirically, and the like are adopted.

特開昭64−27653号公報JP-A 64-27653

前記した従来の細骨材水分量の管理方法にあっては、次のような問題点がある。なお、以下では、細骨材を砂、その山を砂山などと表現する。
<1> 排水量を測定することにより、砂山の内部の水分量を推定することは可能である。しかし、すべての排水を集めるための、堰、排水路、排水タンク流量測定装置などを設置する必要がある、累積湧水量の測定は一般的には測定精度が低い、精度を上げるためには計器の設置に高い費用がかかる、排水量は水分の低下とともに減少するから、微妙な変化から判断する必要があり、排水量だけから、排水の完了時期を決定することは困難である、といった問題がある。
The conventional fine aggregate moisture management method has the following problems. In the following, fine aggregate is expressed as sand, and the mountain is expressed as sand.
<1> It is possible to estimate the amount of water inside the sand pile by measuring the amount of drainage. However, it is necessary to install a weir, drainage channel, drainage tank flow measuring device, etc. to collect all drainage. Measurement of accumulated spring water is generally low in measurement accuracy. There is a problem that it is expensive to install, and the amount of drainage decreases with a decrease in moisture, so it is necessary to judge from subtle changes, and it is difficult to determine the completion time of drainage from only the amount of wastewater.

<2> 水分計を砂山内に設置することは可能である。しかし水分センサーで得られる情報はセンサー周辺の局所的な水分量に関するものであって砂山全体に関するものではない、という問題がある。その問題はセンサーの数を増やして対応できるが、経済的な負担とともに、骨材をダンプに積み替えるたびにすべてのセンサー、ケーブルを撤去する必要があって現実的ではない。砂山ではなくズリ瓶に細骨材を貯蔵する方式では、瓶内に人が入ることを想定していないから、砂中への水分計の設置や撤去はできない。 <2> It is possible to install a moisture meter in the sand pile. However, there is a problem that the information obtained from the moisture sensor relates to the local moisture content around the sensor, not the entire sand pile. The problem can be dealt with by increasing the number of sensors, but it is not practical because all the sensors and cables need to be removed every time the aggregate is dumped into the dump, along with the economic burden. In the method of storing fine aggregates in sand bottles instead of sand piles, it is not assumed that people will enter the bottle, so it is not possible to install or remove a moisture meter in the sand.

<3> 経験的に水分量を予測することは可能である。しかしこの方法では排水時間と水分量との関係を求めるまで試行錯誤が必要となり品質低下の原因となる。また砂山に投入される細骨材の粒度分布や水分量によって排水時間が大きく左右されるため、原石山での採取箇所の地質条件により骨材の性質が変化する場合には安全率を大きく取らざるを得ず、効率的な排水管理を行うことは困難である。また砂山にウエルを差し込むような強制排水方法では、砂山中の水分を把握しながら柔軟に排水位置や吸引圧を変えるなどの排水管理を行う場合には、砂山中の水分量の把握が不可欠であり、経験的に予測する方法は採用することができない。 <3> It is possible to predict the amount of water empirically. However, this method requires trial and error until the relationship between the drainage time and the amount of water is obtained, which causes quality degradation. In addition, since the drainage time is greatly affected by the particle size distribution and moisture content of the fine aggregates that are put into the sand piles, a large safety factor is taken when the aggregate properties change depending on the geological conditions of the sampling points in the rough rocks. Inevitably, efficient wastewater management is difficult. Also, with forced drainage methods such as inserting a well into a sand pile, it is essential to know the amount of water in the sand pile when performing drainage management such as changing the drainage position and suction pressure flexibly while grasping the moisture in the sand pile. Yes, the empirical prediction method cannot be adopted.

上記のような課題を解決するために、本発明の細骨材水分量の管理方法は、砂の表面に4つの電極、すなわち電流電極2本と電圧電極2本とを設置し、電流電極間に一定電流を流す測定手段と、流した際の電圧電極間の電圧差を比抵抗値として取り出す手段と、事前に求めた水分量と比抵抗値の関係から管理値を設定して記憶する管理値記憶手段と、前記の測定手段から得た比抵抗値と、管理値記憶手段に記憶させた管理値とを比較する判定手段と、判定手段で比較した結果、比抵抗値が管理値に達したことを表示する表示手段と、から構成したことを特徴とするものである。
さらに本発明の細骨材水分量の管理方法は、砂の表面に4つの電極、すなわち電流電極2本と電圧電極2本とを設置し、電流電極間に一定電流を流す測定手段と、流した際の電圧電極間の電圧差を電気導電度として取り出す手段と、事前に求めた水分量と電気導電度の関係から管理値を設定して記憶する管理値記憶手段と、前記の測定手段から得た電気導電度と、管理値記憶手段に記憶させた管理値とを比較する判定手段と、判定手段で比較した結果、電気導電度が管理値に達したことを表示する表示手段と、から構成したことを特徴としたものである。
In order to solve the above problems, the fine aggregate moisture content management method of the present invention has four electrodes on a sand surface, that is, two current electrodes and two voltage electrodes. Management means that sets a control value based on the relationship between the amount of moisture and the specific resistance value obtained in advance As a result of comparison between the value storage means, the specific resistance value obtained from the measuring means and the management value stored in the management value storage means, and the determination means, the specific resistance value reaches the management value. It is characterized by comprising display means for displaying what has been done.
Furthermore, the fine aggregate moisture content management method of the present invention comprises four electrodes on the sand surface, that is, two current electrodes and two voltage electrodes, a measuring means for supplying a constant current between the current electrodes, A means for taking out the voltage difference between the voltage electrodes as electrical conductivity, a management value storage means for setting and storing a management value from the relationship between the moisture content and the electrical conductivity determined in advance, and the measurement means A determination means for comparing the obtained electrical conductivity with the management value stored in the management value storage means, and a display means for displaying that the electrical conductivity has reached the management value as a result of comparison by the determination means. It is characterized by comprising.

本発明の細骨材水分量の管理方法は以上説明したようになるから次のような効果を得ることができる。
<1> 砂山の表面に電極を差し込むだけで、すなわち砂山の内部に計測器を設置することなしに砂山の内部の水分変化を継続して把握することができる。
<2> 砂中の排水の状況が、下方飽和上昇中、表面水量減衰期、表面水量安定期のどの時期にあるかを知ることができる。
<3> 比抵抗値などを連続してモニタリングできるから、砂中の排水過程の進行状況を把握することができる。
<4> 強制排水の場合に、比抵抗値などが所定の値に達する前に変化速度が鈍くなったとすると、排水ウエルの配置位置や、設置数、吸引圧の変更などの排水効率を促進する対策を採用すべきか否かの判断の客観的材料として採用することができる。
<5> またそれらの対策を行った後の比抵抗値の変化から、排水促進工法の効果を確認することができる。
<6> 比抵抗値が所定の表面水量に対応する値まで低下したことを確認することで、それ以降の余分に排水時間を伸ばす必要がなく、経済的に排水を終了することができる。
Since the fine aggregate moisture content management method of the present invention is as described above, the following effects can be obtained.
<1> By simply inserting an electrode into the surface of the sand mountain, that is, without installing a measuring instrument inside the sand mountain, it is possible to continuously grasp the moisture change inside the sand mountain.
<2> It is possible to know when the state of drainage in the sand is in the downward saturation rise, the surface water amount decay period, and the surface water amount stabilization period.
<3> Since the specific resistance value can be continuously monitored, the progress of the drainage process in the sand can be grasped.
<4> In the case of forced drainage, if the rate of change slows down before the specific resistance value reaches a predetermined value, the drainage efficiency such as changing the location of the drainage wells, the number of installations, and the suction pressure is promoted. It can be used as an objective material for determining whether or not a measure should be adopted.
<5> Moreover, the effect of the drainage promotion method can be confirmed from the change in the specific resistance value after taking these measures.
<6> By confirming that the specific resistance value has decreased to a value corresponding to the predetermined amount of surface water, it is not necessary to extend the drainage time thereafter, and drainage can be economically terminated.

本発明の細骨材水分量の管理方法の実施例の説明図。Explanatory drawing of the Example of the management method of the fine aggregate moisture content of this invention. ズリ瓶へ設置した場合の説明図。Explanatory drawing at the time of installing to a slipper bottle. 比抵抗測定原理の説明図。Explanatory drawing of the specific resistance measurement principle. 細骨材水分量の変化の説明図。Explanatory drawing of the change of fine aggregate moisture content. 他の実施例の水分量の変化の説明図。Explanatory drawing of the change of the moisture content of another Example. 本発明の管理方法のブロック図。The block diagram of the management method of this invention.

以下図面を参照にしながら本発明の好適な実施の形態を詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

<1>電極の配置
砂の表面に4つの電極、すなわち電流電極C1、C2の2本と、電圧電極P1、P2の2本とを設置する。
電極は、砂山1の下部の両側のほぼ正対する位置に、一対を埋め込んで設置する。
その場合に両電流電極Cは、両電圧電極Pよりも砂山の外側か下方に配置する。
砂山ではなくズリ瓶2に砂を集積する場合にも、ズリ瓶の両側に、一対を埋め込んで設置する。(図2)
なおここで「ズリ瓶」とは、骨材ビン、土砂ビンなどといい、これら材料の集設用設備のことをいう。
この電極C1、C2、P1、P2は、砂山1やズリ瓶2へ砂を投入した後に砂中に挿入し、排水が完了したと判断したら、砂の搬出前に引き抜いて取り除く。
したがって砂の投入作業や搬出作業に支障を及ぼすことがない。
<1> Electrode Arrangement Four electrodes, that is, two current electrodes C1 and C2 and two voltage electrodes P1 and P2 are installed on the surface of the sand.
A pair of electrodes are embedded and installed at positions almost facing each other on both sides of the lower part of the sand pile 1.
In this case, both current electrodes C are arranged outside or below the sand piles than both voltage electrodes P.
Even when sand is accumulated in the sand bottle 2 instead of the sand pile, a pair is embedded on both sides of the sand bottle. (Figure 2)
In addition, "slipping bottle" here is called an aggregate bottle, earth and sand bottle, etc., and means a facility for collecting these materials.
The electrodes C1, C2, P1, and P2 are inserted into the sand after the sand is put into the sand pile 1 and the drain bottle 2, and when it is determined that the drainage is completed, the electrodes C1, C2, P1, and P2 are pulled out and removed before the sand is carried out.
Therefore, there is no hindrance to the sand loading and unloading operations.

<2>測定方法
電圧電極P1、P2よりも外側か下方に位置する電流電極C1、C2の間に一定電流を流す。
するとその際の電圧電極P1、P2間の電圧差を得ることができるから、その結果から電極間の砂山1、ズリ瓶2の内部の比抵抗値、あるいはその逆数である電気伝導度を測定する。
この電圧差から比抵抗値を測定する手法は公知であるが、以下の方法で行うことができる。
すなわち、砂中に2つの電流電極C1、C2と二つの電圧電極P1、P2を図3のように配置した場合、その比抵抗値は次式で得られる。(物理探査ハンドブック、p253−254、物理探査学会1998)
R=G(V/I)
ここに、V:電圧

Figure 0005872967
Gは電極配置(電極間距離)で決定される係数である。
なお以下の記載では「比抵抗値」だけを記載するが、その逆数である電気伝導度も同時に意味しているものである。 <2> Measuring method A constant current is passed between the current electrodes C1 and C2 positioned outside or below the voltage electrodes P1 and P2.
Then, the voltage difference between the voltage electrodes P1 and P2 at that time can be obtained, and the electrical conductivity which is the specific resistance value of the sand pile 1 between the electrodes, the inside of the jar 2 or the inverse thereof is measured from the result. .
A method of measuring the specific resistance value from this voltage difference is known, but can be performed by the following method.
That is, when two current electrodes C1 and C2 and two voltage electrodes P1 and P2 are arranged in the sand as shown in FIG. 3, the specific resistance value is obtained by the following equation. (Physics Exploration Handbook, p253-254, Geophysical Exploration Society 1998)
R = G (V / I)
Where V: Voltage
Figure 0005872967
G is a coefficient determined by electrode arrangement (distance between electrodes).
In the following description, only the “specific resistance value” is described, but the electrical conductivity that is the reciprocal thereof is also meant at the same time.

<3>測定条件の入力
管理用パソコンに、測定条件、管理値R*を入力する。
ここに測定条件とは、測定時間の間隔Δtその他の条件である。
管理値R*については後述する。
<3> Input measurement conditions Input measurement conditions and control value R * to the management PC.
Here, the measurement conditions are a measurement time interval Δt and other conditions.
The management value R * will be described later.

<4>比抵抗測定
電極間に一定の電流を流した際の電圧電極P1、P2間の電圧差から測定した比抵抗測定値をデータとして取り出して管理用のパソコンに入力する。
測定値は最初の一度の値Rtだけではなく、測定条件にしたがって、測定時間Δtの経過ごとの値Rt+Δt、・・・を入力する。
その理由は、砂中の水は、砂山1でもズリ瓶2でも、内部への砂の投入後に引力によって下方に移動するからである。
その現象を説明すると、初期にはまず砂山中の水は重力により下に移動するため砂山の下部の水分量が上昇する。
その後、排水がさらに進むと下部の水も排水される。
そのために、砂山の下部に電極を設置し、砂の投入後の比抵抗値を測定すると、図7に示すように変化する。
すなわちまず初期の状況からいったん比抵抗値は低下し、その後に上昇し、所期の比抵抗値よりさらに上昇し、その後に一定値となる。
上記のような比抵抗値の変化を、時間間隔Δtで連続モニタリングすることによって、砂中の排水過程の進行状況を把握することができる。
<4> Specific Resistance Measurement The specific resistance measurement value measured from the voltage difference between the voltage electrodes P1 and P2 when a constant current is passed between the electrodes is taken out as data and input to a management personal computer.
As the measurement value, not only the first one-time value Rt but also a value Rt + Δt,... For each lapse of the measurement time Δt is input according to the measurement conditions.
The reason for this is that the water in the sand moves downward by the attractive force after the sand has been introduced into the sand pile 1 or the sand bottle 2.
Explaining this phenomenon, initially, the water in the sand pile moves downward due to gravity, so the amount of water at the bottom of the sand pile rises.
Then, if drainage advances further, the water of the lower part will also be drained.
Therefore, when an electrode is installed in the lower part of the sand pile and the specific resistance value after the sand is thrown in is measured, it changes as shown in FIG.
That is, the specific resistance value first decreases from the initial state, then increases, then increases further than the intended specific resistance value, and then becomes a constant value.
By continuously monitoring the change in the specific resistance value as described above at the time interval Δt, it is possible to grasp the progress of the drainage process in the sand.

<5>管理値R*の決定
まず比抵抗値と骨材水分量の関係を事前に求めておく必要がある。
それは、ある砂山1、ズリ瓶2内の砂が原石山のどこから採取したか、その出所によって比抵抗値と骨材水分量の関係が異なるからである。
そのために砂からサンプルを採取し、その水分量を水分計で測定し、同時にその際の比抵抗値を測定して両者の関係を得る。
複数の関係値の中で、排水完了と判断してよいと思われる水分量に対応する比抵抗値を、目標管理値R*として設定しパソコンにデータとして記憶させる。
なお目標管理値R*は目標水分量に対応する室内試験結果を入力するが、操業時に得られた結果をもとに修正することもできる。
<5> Determination of Control Value R * First, the relationship between the specific resistance value and the aggregate moisture content needs to be obtained in advance.
This is because the relationship between the specific resistance value and the aggregate moisture content differs depending on where the sand in the sandstone 1 and the sand jar 2 was collected from the raw ore.
For this purpose, a sample is taken from sand, the amount of water is measured with a moisture meter, and the specific resistance value at that time is measured to obtain the relationship between the two.
Among a plurality of relational values, a specific resistance value corresponding to the amount of water that can be determined to be the completion of drainage is set as a target management value R * and stored as data on a personal computer.
The target management value R * is input as a laboratory test result corresponding to the target moisture content, but can be corrected based on the result obtained during operation.

<6>判定手段
前記の測定手段により時間差Δtをとって連続して得た比抵抗値Rt、Rt+Δt、・・・・を、管理値記憶手段に記憶させた管理値R*と継続して比較する。
徐々に変化する比抵抗値が、やがて管理値R*に近づく。
<6> Determination means The resistance values Rt, Rt + Δt,... Continuously obtained by taking the time difference Δt by the measurement means are continuously compared with the management value R * stored in the management value storage means. To do.
The specific resistance value that gradually changes eventually approaches the control value R * .

<6−1>未達成
判定手段では、Rt+Δtが管理値R*より小さい場合には、その砂山の水分量はいまだ目標値に達していない、と判断する。
その際に、測定した比抵抗値Rt+Δtと、比抵抗値Rtとの差を時間差Δtで除した値が負であれば、比抵抗は低下中であり、下方飽和上昇中(判定I)と判断する。
その際に、測定した比抵抗値Rt+Δtと、比抵抗値Rtとの差を時間差Δtで除した値が正であれば、比抵抗は上昇中であり、表面水量は減少中(判定II)と判断する。
その場合には比抵抗の測定を繰り返すことになる。
<6-1> Unachieved The judging means judges that the water content of the sand pile has not yet reached the target value when Rt + Δt is smaller than the management value R * .
At this time, if the value obtained by dividing the difference between the measured resistivity value Rt + Δt and the resistivity value Rt by the time difference Δt is negative, the resistivity is decreasing and it is determined that the lower saturation is increasing (determination I). To do.
At that time, if the value obtained by dividing the difference between the measured resistivity value Rt + Δt and the resistivity value Rt by the time difference Δt is positive, the resistivity is increasing and the surface water amount is decreasing (Decision II). to decide.
In that case, the specific resistance measurement is repeated.

<6−2>達成
Rt+Δtが管理値R*より大きい場合には、その砂の水分量はすでに目標値に達している(判定III)と判断する。
すなわちある時点の比抵抗Rt+Δtが目標管理値R*を超えた時点をもって排水完了と判断し、判定結果をパソコンの表示画面に表示する。
このような判断ができることによって、余分に排水時間を延長することなく、負圧による排水作業、あるいは重力による排水作業を終了でき、コンクリートの混練用に取り出すことができるので経済的である。
<6-2> Achievement When Rt + Δt is larger than the control value R * , it is determined that the moisture content of the sand has already reached the target value (Determination III).
That is, when the specific resistance Rt + Δt at a certain time exceeds the target management value R * , it is determined that the drainage is completed, and the determination result is displayed on the display screen of the personal computer.
By being able to make such a determination, drainage work by negative pressure or drainage work by gravity can be completed without extending the drainage time and can be taken out for kneading concrete, which is economical.

<7>変化する数値の活用
以上の方法は、時間ごとに変化する比抵抗値が目標管理値に一致した場合にその後の排水を終了する方法である。
それとは別に、強制排水の場合、比抵抗値が所定の値に達する前に変化速度が鈍くなった場合には排水ウエルの配置や配置数、吸引圧などを変更して最適の条件に修正して無駄な排水の継続を避けるような方法として、本発明の管理方法を利用することができる。
またこのような排水ウエルの設置条件の変更を行った場合に、それが適正な変更であったのかどうかを、比抵抗値の変化から確認することができる。
<7> Utilization of changing numerical values The above method is a method of terminating the subsequent drainage when the specific resistance value that changes with time matches the target management value.
On the other hand, in the case of forced drainage, if the rate of change slows down before the specific resistance value reaches the specified value, the layout and number of drainage wells, suction pressure, etc. are changed to correct for optimum conditions. Therefore, the management method of the present invention can be used as a method for avoiding wasteful drainage.
Further, when such a change in the installation condition of the drainage well is performed, it can be confirmed from the change in the specific resistance value whether the change is an appropriate change.

C1、C2:電流電極
P1、P2:電圧電極
1:砂山
2:ズリ瓶
C1, C2: Current electrodes P1, P2: Voltage electrodes 1: Sunayama 2: Slurry bottle

Claims (2)

砂の表面に4つの電極、すなわち電流電極2本と電圧電極2本とを設置し、電流電極間に一定電流を流す測定手段と、
流した際の電圧電極間の電圧差を比抵抗値として取り出す手段と、
事前に求めた水分量と比抵抗値の関係から管理値を設定して記憶する管理値記憶手段と、
前記の測定手段から得た比抵抗値と、管理値記憶手段に記憶させた管理値とを比較する判定手段と、
判定手段で比較した結果、比抵抗値が管理値に達したことを表示する表示手段と、
から構成したことを特徴とする細骨材水分量の管理方法。
A measuring means for installing four electrodes on the surface of the sand, that is, two current electrodes and two voltage electrodes, and passing a constant current between the current electrodes;
Means for taking out the voltage difference between the voltage electrodes when flowing as a specific resistance value;
Management value storage means for setting and storing a management value from the relationship between the moisture content and the specific resistance value obtained in advance;
A determination means for comparing the specific resistance value obtained from the measurement means with the management value stored in the management value storage means;
As a result of comparison by the determination means, display means for displaying that the specific resistance value has reached the control value;
A method for managing the fine aggregate moisture content, comprising:
砂の表面に4つの電極、すなわち電流電極2本と電圧電極2本とを設置し、電流電極間に一定電流を流す測定手段と、
流した際の電圧電極間の電圧差を電気導電度として取り出す手段と、
事前に求めた水分量と電気導電度の関係から管理値を設定して記憶する管理値記憶手段と、
前記の測定手段から得た電気導電度と、管理値記憶手段に記憶させた管理値とを比較する判定手段と、
判定手段で比較した結果、電気導電度が管理値に達したことを表示する表示手段と、
から構成したことを特徴とする細骨材水分量の管理方法。
A measuring means for installing four electrodes on the surface of the sand, that is, two current electrodes and two voltage electrodes, and passing a constant current between the current electrodes;
Means for taking out the voltage difference between the voltage electrodes when flowing as electric conductivity;
Management value storage means for setting and storing a management value from the relationship between the amount of moisture and electrical conductivity obtained in advance;
A determination means for comparing the electrical conductivity obtained from the measurement means with the management value stored in the management value storage means;
As a result of comparison by the determination means, display means for displaying that the electrical conductivity has reached the control value;
A method for managing the fine aggregate moisture content, comprising:
JP2012128026A 2012-06-05 2012-06-05 Management method of fine aggregate moisture content Active JP5872967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012128026A JP5872967B2 (en) 2012-06-05 2012-06-05 Management method of fine aggregate moisture content

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012128026A JP5872967B2 (en) 2012-06-05 2012-06-05 Management method of fine aggregate moisture content

Publications (2)

Publication Number Publication Date
JP2013253802A JP2013253802A (en) 2013-12-19
JP5872967B2 true JP5872967B2 (en) 2016-03-01

Family

ID=49951424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012128026A Active JP5872967B2 (en) 2012-06-05 2012-06-05 Management method of fine aggregate moisture content

Country Status (1)

Country Link
JP (1) JP5872967B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6446683A (en) * 1988-07-15 1989-02-21 Mitsubishi Mining & Cement Co Electrochemical survey apparatus
JPH0661346U (en) * 1991-03-30 1994-08-30 北海道銑鉄鋳物工業組合 Automatic mold sand analyzer
JP4125431B2 (en) * 1998-10-20 2008-07-30 パシフィックシステム株式会社 Moisture meter device with calibration function and calibration method in moisture meter device
JP2001215203A (en) * 2000-02-01 2001-08-10 Kawasaki Kiko Co Ltd Instrument for measuring electric conductivity, method of measuring electric conductivity of soil, and instrument for measuring electric conductivity of soil solution
JP3455774B2 (en) * 2000-07-13 2003-10-14 独立行政法人防災科学技術研究所 Device for measuring the amount of mixture in the substance to be measured
JP3416908B2 (en) * 2000-08-24 2003-06-16 西松建設株式会社 Inspection method of embankment
AUPR521401A0 (en) * 2001-05-23 2001-06-14 Stephens, Anthony Leon A mobile dry to wet concrete system
JP3820985B2 (en) * 2001-12-28 2006-09-13 株式会社大林組 Evaluation method of tunnel bedrock
JP5698467B2 (en) * 2009-05-20 2015-04-08 一般財団法人電力中央研究所 Measuring method, measuring apparatus and measuring program for specific heat resistance of soil

Also Published As

Publication number Publication date
JP2013253802A (en) 2013-12-19

Similar Documents

Publication Publication Date Title
MX2015004256A (en) Systems and methods for real-time sag detection.
Zhou et al. Analytical solution on vacuum consolidation of dredged slurry considering clogging effects
Zhang et al. Permeability of muddy clay and settlement simulation
JP5528642B2 (en) Deposit thickness measuring apparatus and deposit thickness measuring method
Zhang et al. Ground subsidence characteristics caused by construction of shallow-buried tunnel in a sandy soil composite formation
JP5872967B2 (en) Management method of fine aggregate moisture content
WO2013171652A1 (en) Method of controlling a gravity sedimentation device
CN108195441A (en) Runoff plots soil moisture and go out stream monitoring system and method
Junqueira et al. Assessment of water removal from oil sands tailings by evaporation and under-drainage, and the impact on tailings consolidation
Chapuis et al. Variable-head field permeability tests in driven flush-joint casings: physical and numerical modeling
JP5268070B2 (en) Slime property management method and automatic slime processing equipment
Talmon et al. Shear cell tests for quantification of tailings segregation
CN102927941A (en) Method for determining storage capacity of open coal mine underground reservoir
CN107290260A (en) The husky groove experimental rig of water circulation for artesian water flow model in porous media
RU168270U1 (en) FILTRATION INSTALLATION OF THE THREE-COMPRESSION
Dwivedi et al. Determining the recharging capacity of an injection well in a semi-confined alluvial aquifer
JP2006249764A (en) Calculation method of allowable pumping discharge when pumping underground water
Shi et al. A Capillary Model for Predicting Saturated Hydraulic Conductivity of Ion‐Adsorption Rare Earth Ore Based on Improved Kozeny–Carman Equation
JP5944730B2 (en) Construction management method for residual soil saturation
Tao et al. Determination of sediment transport capacity by hydrodynamic variables considering subsurface water flow
Rahman et al. Permeability measurement of granular materials and development of an equation
JP2011140813A (en) Method of predicting water arrival time and water arrival time prediction device
Bodley et al. Reclamation of a conventional tailings facility for long term dry stacking operations in Western Australia
RU2568208C1 (en) Method of profile determination of drilled well
Chow et al. Primary and post-surcharge secondary settlements of a highway embankment constructed over highly organic soils: a case history

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160114

R150 Certificate of patent or registration of utility model

Ref document number: 5872967

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150