JP3455774B2 - Device for measuring the amount of mixture in the substance to be measured - Google Patents
Device for measuring the amount of mixture in the substance to be measuredInfo
- Publication number
- JP3455774B2 JP3455774B2 JP2000212084A JP2000212084A JP3455774B2 JP 3455774 B2 JP3455774 B2 JP 3455774B2 JP 2000212084 A JP2000212084 A JP 2000212084A JP 2000212084 A JP2000212084 A JP 2000212084A JP 3455774 B2 JP3455774 B2 JP 3455774B2
- Authority
- JP
- Japan
- Prior art keywords
- measured
- substance
- measuring
- electrodes
- conductivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、少なくとも4個の電極
による被測定物質中の導電率の測定値から混合物質の成
分の混合量を測定する被測定物質中の混合量測定装置に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the amount of mixture in a substance to be measured, which measures the amount of mixture of the components of the substance to be measured from the measured values of conductivity in the substance to be measured by at least four electrodes.
【0002】[0002]
【従来の技術】水の導電率は、水の中に溶け込んでいる
汚濁物質が多いほど高くなるので、近年、環境保全への
関心の高まりにより、水質汚濁の指標の一つとして、導
電率の測定が広く行われるようになった。導電率は、物
質中に含まれる不純物の濃度を反映するので、水質汚濁
のみならず成分測定の分野でも応用が期待できる。2. Description of the Related Art Since the conductivity of water increases as the amount of pollutants dissolved in water increases, the conductivity of water is one of the indicators of water pollution due to the increasing interest in environmental protection in recent years. Measurements have become widespread. Since the conductivity reflects the concentration of impurities contained in the substance, it can be expected to be applied not only to water pollution but also to the field of component measurement.
【0003】また、土壌の中に含まれている水分量や塩
水量が多ければ土壌の導電率は高くなるので、例えば灌
漑農業では灌水量の把握に、さらには、土砂災害では水
分を含んだ土壌が脆弱化する状況の把握に、海岸地帯の
耕作地では塩水侵入の把握に、乾燥地帯では過剰灌漑に
よる土壌中の塩類集積の状況の把握などにも応用が期待
できる。Further, if the amount of water or salt water contained in the soil is large, the conductivity of the soil is high. Therefore, for example, in irrigation agriculture, the amount of irrigation water is grasped, and further, in the case of sediment-related disasters, water is contained. It can be expected to be applied to grasping the condition of soil weakening, grasping saltwater invasion in cultivated land in coastal areas, and grasping the situation of salt accumulation in soil due to excessive irrigation in arid areas.
【0004】[0004]
【発明が解決しようとする課題】しかし、従来の水質汚
濁における導電率の測定は、2個の電極の間に測定対象
である水を介在させ、電極間の抵抗率からその逆数とし
ての導電率を求めているので、測定電極と水との接触部
分では、電気化学作用による分極が発生し、正しい値を
求めることができなかった。更に、多数のサンプルを測
定する場合には、サンプルを取り替えるごとに電極を清
水で洗浄する必要があった。However, in the conventional measurement of conductivity in water pollution, the water to be measured is interposed between two electrodes, and the conductivity between the electrodes is calculated as the reciprocal of the conductivity. Therefore, at the contact portion between the measurement electrode and water, polarization occurred due to electrochemical action, and a correct value could not be obtained. Furthermore, when measuring a large number of samples, it was necessary to wash the electrodes with fresh water every time the samples were replaced.
【0005】もし、4個の電極を使用し、4個のうち2
極で混合物質中に電流を流し、残りの2極で混合物質中
の電位差を測定し、それぞれの電極で測定された電流と
電圧との比(割り算)を求めるとすれば、分極の影響を
除いた導電率を求めることが可能である。しかし、この
方法の場合には、2個のアナログ信号間での割り算が容
易ではないので、人為的な操作によりダイヤルを回し、
信号のゼロ点成立時のダイヤルの値を読むとか、電圧・
電流それぞれをデジタル信号として読み取り、コンピュ
ーターで割り算を実行するといった方法が使用されてい
る。If four electrodes are used, two out of four
If the current is applied to the mixed substance at the poles, the potential difference in the mixed substance is measured at the remaining two poles, and the ratio (division) between the current and voltage measured at each electrode is calculated, the effect of polarization will be calculated. It is possible to obtain the removed conductivity. However, in the case of this method, it is not easy to divide between two analog signals, so turn the dial by an artificial operation,
Read the value on the dial when the zero point of the signal is established,
A method is used in which each current is read as a digital signal and division is performed by a computer.
【0006】また、抵抗率は、電極が2極であるか4極
であるかを問わず、測定対象物の温度によって変動する
ので、たとえ不純物の成分が一定であっても、抵抗率の
逆数である導電率は変動してしまうという欠点があっ
た。Further, the resistivity varies depending on the temperature of the object to be measured regardless of whether the electrode has two poles or four poles. Therefore, even if the impurity component is constant, it is the reciprocal of the resistivity. However, there is a drawback that the electric conductivity fluctuates.
【0007】更に、複数の不純物が存在する場合には、
それぞれの不純物の混合量が全体の導電率に寄与してい
るので、着目している成分のみの混合量や変動を測定す
ることができなかった。Further, when a plurality of impurities are present,
Since the mixing amount of each impurity contributes to the overall conductivity, it was not possible to measure the mixing amount or fluctuation of only the component of interest.
【0008】このように、現場で簡便に測定できる2電
極を使用する方法では正確な値が求められず、4電極を
使用する方法では現場での測定に手数がかかり、さらに
両者ともに被測定対象物の温度及び、複数の成分による
影響を受けるという欠点があった。As described above, an accurate value cannot be obtained by the method of using the two electrodes which can be easily measured on site, and the method of using the four electrodes requires a lot of labor for the measurement on site, and both of them can be measured. There is a drawback that it is affected by the temperature of the product and a plurality of components.
【0009】[0009]
【課題を解決するための手段】本発明は、上記課題を解
決するものであって、現場での作業を簡素化するととも
に、電流信号の測定に被測定物質中の温度変化を反映さ
せ、温度変化の影響を除去した導電率測定ができ、特定
物質の混合量の測定精度を向上させるようにするもので
ある。Means for Solving the Problems The present invention is to solve the above problems and simplifies the work in the field and reflects the temperature change in the substance to be measured in the measurement of the current signal, The conductivity can be measured without the influence of the change, and the measurement accuracy of the mixed amount of the specific substance can be improved.
【0010】そのために本発明は、被測定物質中に混合
して存在する特定物質の混合量を測定する被測定物質中
の混合量測定装置であって、複数の電極及び前記電極の
1つに直列に接続される抵抗を一体に支持して被測定物
質中に任意に配置する電極支持体と、前記抵抗を介して
前記電極の2極間に交流電流を供給する電源と、前記抵
抗の両端の電圧を測定する抵抗端測定手段と、前記電源
から交流電流を供給する電極以外の他の電極間の電位差
を測定する電圧測定手段と、前記抵抗端測定手段により
測定された電圧と前記電圧測定手段により測定された電
位差との比に前記各電極の配置により決まる係数を乗じ
て導電率を求め、校正データによる変換を行って前記被
測定物質中の着目する前記特定物質の成分の混合量を求
める演算手段とを備え、前記抵抗の温度特性を前記被測
定物質に近い温度特性としたことを特徴とし、前記支持
体は1乃至複数の板状体又は棒状体からなることを特徴
とするものである。To this end, the present invention is a device for measuring a mixed amount in a substance to be measured, which measures a mixed amount of a specific substance mixed and present in the substance to be measured, wherein a plurality of electrodes and one of the electrodes are provided. An electrode support that supports resistors that are connected in series integrally and is arbitrarily arranged in the substance to be measured, a power supply that supplies an alternating current between the two poles of the electrode via the resistor, and both ends of the resistor. Resistance end measuring means for measuring the voltage, voltage measuring means for measuring the potential difference between electrodes other than the electrode supplying the alternating current from the power supply, voltage measured by the resistance end measuring means and the voltage measurement The electric conductivity is obtained by multiplying the ratio with the potential difference measured by the means by a coefficient determined by the arrangement of the electrodes, and the mixture amount of the component of the specific substance of interest in the substance to be measured is converted by the calibration data. And the calculation means For example, the temperature characteristic of the resistor is characterized in that the temperature characteristics close to the substance to be measured, said support is characterized in that of one or a plurality of plate-like body or a rod-shaped body.
【0011】[0011]
【実施例】以下、本発明の実施の形態を図面を参照しつ
つ説明する。図1は本発明に係る被測定物質中の混合量
測定装置の実施の形態を示す図であり、1は印加電流供
給部、2は被測定物質、3は電流測定部、4は電圧測定
部、5は割り算部、6は実効値変換部、7は導電率変換
部、8は基準値設定部、9は比較部、10は混合量表示
部を示す。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an embodiment of an apparatus for measuring a mixed amount in a substance to be measured according to the present invention, in which 1 is an applied current supply unit, 2 is a substance to be measured, 3 is a current measuring unit, 4 is a voltage measuring unit. 5 is a division unit, 6 is an effective value conversion unit, 7 is a conductivity conversion unit, 8 is a reference value setting unit, 9 is a comparison unit, and 10 is a mixed amount display unit.
【0012】図1において、印加電流供給部1は、方形
波、正弦波、時間平均値が零である任意の波形の交流電
流を供給する電源である。被測定物質2は、種々の条件
・環境、物質が混合する地盤・土壌、粉粒状物堆積体、
流体などであり、例えば水分を含んだ土壌、塩水が侵入
している海岸近くの砂丘地盤や耕作地、灌漑耕作地、ハ
ウス栽培の土壌、地下水や汚染物質が流れ込んでいる湖
沼や沼地、排水路中の汚濁水、地すべり地、土砂災害の
発生の危険性がある山腹斜面などである。この被測定物
質2の中には、少なくとも4極以上の電極と印加電流測
定用の抵抗が板状体又は棒状体の支持体に一体に支持さ
れて配置される。電流測定部3は、被測定物質中に配置
された複数の電極のうちの2個の電極に印加電流供給部
1から交流電流を供給して被測定物質中に流れる電流を
測定するものであり、電極と共に被測定物質中に配置さ
れた抵抗に流れる電流を測定する回路である。電圧測定
部4は、被測定物質中に配置された複数の電極のうち、
交流電流が供給される電極以外の2個の電極間の電圧を
測定する回路である。割り算部5は、測定された電流信
号を電圧信号で割った値を算出する回路、実効値変換部
6は、割り算部5で算出した値を実効値に変換する回
路、導電率変換部7は、実効値を導電率に変換する回路
である。基準設定部8は、導電率測定の基準となる値を
設定する回路、比較部9は、基準値からの偏差を求める
回路、混合量表示部10は、導電率を混合物質中の混合
量に変換して表示する回路である。In FIG. 1, an applied current supply unit 1 is a power supply for supplying an alternating current having a square wave, a sine wave, or an arbitrary waveform having a time average value of zero. The substance 2 to be measured is various conditions / environments, the ground / soil in which the substances are mixed, the granular material deposit,
Fluids such as soil containing water, sand dunes near the coast where salt water invades, cultivated land, irrigated cultivated land, soil for greenhouse cultivation, lakes and swamps where groundwater and pollutants flow, drainage channels These include polluted water, landslides, and hillsides where there is a risk of landslides. In the substance 2 to be measured, at least four electrodes or more and resistors for measuring an applied current are integrally supported by a plate-shaped or rod-shaped support. The current measuring unit 3 supplies an alternating current from the applied current supply unit 1 to two electrodes of the plurality of electrodes arranged in the substance to be measured and measures the current flowing in the substance to be measured. A circuit for measuring a current flowing through a resistance arranged in a substance to be measured together with an electrode. The voltage measuring unit 4 has a plurality of electrodes arranged in the substance to be measured.
It is a circuit that measures the voltage between two electrodes other than the electrode to which an alternating current is supplied. The division unit 5 is a circuit that calculates a value obtained by dividing the measured current signal by a voltage signal, the effective value conversion unit 6 is a circuit that converts the value calculated by the division unit 5 into an effective value, and the conductivity conversion unit 7 is , A circuit for converting an effective value into a conductivity. The reference setting unit 8 is a circuit for setting a value serving as a reference for conductivity measurement, the comparison unit 9 is a circuit for obtaining a deviation from the reference value, and the mixing amount display unit 10 is for displaying the conductivity as a mixing amount in a mixed substance. It is a circuit that converts and displays.
【0013】次に、導電率を測定して特定物質の混合量
を測定する原理について説明する。まず、印加電流供給
部1において、電極の極性が交互に変わり平均値が零で
ある交流電流を発生させ、この交流電流を被測定物質2
の中に配置された複数の電極のうちの2個の電極から被
測定物質2の中に供給する。この交流電流により被測定
物質2の中には電界が発生するので、被測定物質2の中
に配置された別の2個の電極の間には電位差が生じる。
そこで、被測定物質2の中に配置された抵抗に流れる交
流電流を電流測定部3で測定し、電位差を電圧測定部4
で測定する。そして、割り算部5では、それぞれ独立に
測定され電流信号を電圧信号で割り比を求める。ここで
求めた比は、被測定物質の導電率に比例しているが、被
測定物質の電気的特性による周期的変動成分を含むの
で、実効値変換部6により、それと等価な直流成分に変
換する。変換された直流成分は被測定物質の導電率に比
例しているので導電率変換部7で実際の導電率の値に変
換する。この導電率は被測定物質全体の導電率であるの
で、着目している成分以外の成分からの全体の導電率へ
の寄与分を基準値設定部8で設定し、導電率変換部7で
得られた被測定物質全体の導電率と、着目している成分
以外の成分による導電率との差を比較部9で求めれば、
この差は、着目している成分のみからの導電率への寄与
分である。この値を、混合表示部10で、あらかじめ校
正してある較正曲線に従って、着目している成分のみの
混合量として表示する。Next, the principle of measuring the conductivity and measuring the mixed amount of the specific substance will be described. First, in the applied current supply unit 1, an alternating current whose electrodes have alternating polarities and whose average value is zero is generated.
The substance to be measured 2 is supplied from two electrodes out of the plurality of electrodes arranged inside. An electric field is generated in the substance 2 to be measured by this alternating current, so that a potential difference is generated between the other two electrodes arranged in the substance 2 to be measured.
Therefore, the current measuring unit 3 measures the alternating current flowing through the resistance arranged in the substance to be measured 2, and the potential difference is measured by the voltage measuring unit 4.
To measure. Then, the division unit 5 obtains a division ratio of the current signal, which is independently measured, by the voltage signal. The ratio obtained here is proportional to the electrical conductivity of the substance to be measured, but since it contains a periodic fluctuation component due to the electrical characteristics of the substance to be measured, it is converted into a DC component equivalent to it by the effective value converter 6. To do. Since the converted DC component is proportional to the conductivity of the substance to be measured, the conductivity conversion unit 7 converts it to an actual value of conductivity. Since this conductivity is the conductivity of the entire substance to be measured, the contribution to the overall conductivity from components other than the component of interest is set by the reference value setting unit 8 and obtained by the conductivity conversion unit 7. If the difference between the conductivity of the entire substance to be measured and the conductivity due to components other than the component of interest is determined by the comparison unit 9,
This difference is the contribution to the conductivity from only the component of interest. This value is displayed on the mixing display unit 10 as a mixing amount of only the component of interest according to a calibration curve that has been calibrated in advance.
【0014】〔被測定物質の温度特性の除去〕被測定物
質として、土壌中の塩分濃度や水分量、あるいは湖沼水
の汚濁度などのように対象物が屋外に広がっているよう
な場合には、被測定物質の導電率は外気温の日周変化な
どの影響を受ける。このような場合の導電率は、次の
〔数1〕のように表現される。[Removal of Temperature Characteristic of Substance to be Measured] As the substance to be measured, when the target substance is spread outdoors such as salt concentration and water content in soil or pollution degree of lake water The conductivity of the substance to be measured is affected by the diurnal variation of the outside temperature. The conductivity in such a case is expressed as the following [Equation 1].
【0015】[0015]
【数1】 [Equation 1]
【0016】〔数1〕において、σは被測定物質の導電
率、ρは被測定物質の抵抗率、θは被測定物質の温度、
αは被測定物質の抵抗温度係数、ρ0 はθ=0のときの
抵抗率である。したがって、電圧測定部4で測定した電
圧は、次の〔数2〕のように表される。In [Equation 1], σ is the conductivity of the substance to be measured, ρ is the resistivity of the substance to be measured, θ is the temperature of the substance to be measured,
α is the temperature coefficient of resistance of the substance to be measured, and ρ 0 is the resistivity when θ = 0. Therefore, the voltage measured by the voltage measuring unit 4 is expressed by the following [Equation 2].
【0017】[0017]
【数2】 [Equation 2]
【0018】〔数2〕において、vp は測定された電
圧、kp は電極系の配置や形状で決まる係数、iは印加
電流である。電流測定部3では、電流回路の途中に印加
電流測定用の抵抗を挿入してその両端での電圧を電流の
大きさを表現するので、電流の大きさは、次の〔数3〕
で表される。In [Equation 2], v p is the measured voltage, k p is a coefficient determined by the arrangement and shape of the electrode system, and i is the applied current. In the current measuring unit 3, a resistor for measuring the applied current is inserted in the middle of the current circuit and the voltage across the resistor is expressed as the magnitude of the current.
It is represented by.
【0019】[0019]
【数3】 [Equation 3]
【0020】〔数3〕において、vc は抵抗両端の電
圧、Rは印加電流測定用の抵抗、iは印加電流である。
vc は印加電流iの大きさに比例している。In [Equation 3], v c is the voltage across the resistor, R is the resistor for measuring the applied current, and i is the applied current.
v c is proportional to the magnitude of the applied current i.
【0021】割り算部での出力は、〔数3〕の値を〔数
2〕の値で割ったものになり、その値は導電率に比例し
ているから、求める導電率は次の〔数4〕で表される。The output of the division unit is the value of [Equation 3] divided by the value of [Equation 2], and since the value is proportional to the electrical conductivity, the conductivity obtained is 4].
【0022】[0022]
【数4】 [Equation 4]
【0023】〔数4〕において、kσは比例定数、kは
k=kσ/kp となる定数である。〔数4〕中には被測
定物質の温度による変動項(1+αθ)が含まれてい
る。ところで、〔数3〕において印加電流測定用の抵抗
Rを被測定物質中に配置すれば、Rは被測定物質と同様
の温度変化を受けることになるので、〔数3〕におい
て、In [Equation 4], kσ is a proportional constant and k is a constant such that k = kσ / k p . [Equation 4] includes a variation term (1 + αθ) depending on the temperature of the substance to be measured. By the way, if the resistance R for measuring the applied current is arranged in the substance to be measured in [Equation 3], R will undergo the same temperature change as that of the substance to be measured.
【0024】[0024]
【数5】 [Equation 5]
【0025】と置き換えることになる。〔数5におい
て、(1+βθ)はRの温度による変動項である。α=
βの場合には、〔数4〕は次のように表現される。Will be replaced. [In Expression 5, (1 + βθ) is a variation term of R depending on the temperature. α =
In the case of β, [Formula 4] is expressed as follows.
【0026】[0026]
【数6】 [Equation 6]
【0027】すなわち、〔数6〕より、割り算部からの
出力には被測定物質の温度変化の項が含まれず、被測定
物質の導電率に比例した値が出力されることになる。本
発明では、印加電流測定用の抵抗を被測定物質中に配置
しているので、〔数6〕に示されるように、被測定物質
の導電率のみを測定することができる。この場合、抵抗
の温度特性が被測定物質の温度特性と完全に一致しなく
ても、それに近い特性であればそれだけ温度変化の影響
が軽減されることはいうまでもない。That is, from [Equation 6], the output from the divider does not include the term of the temperature change of the substance to be measured, and a value proportional to the conductivity of the substance to be measured is output. In the present invention, since the resistance for measuring the applied current is arranged in the substance to be measured, it is possible to measure only the conductivity of the substance to be measured as shown in [Equation 6]. In this case, needless to say, even if the temperature characteristic of the resistance does not completely match the temperature characteristic of the substance to be measured, if the temperature characteristic is close to that, the influence of the temperature change is reduced.
【0028】〔被測定物質中の着目成分の抽出〕実際の
測定においては、被測定物質中には、着目する成分(不
純物)だけではなくそれ以外の成分が含まれているが、
そのような場合の被測定物質の導電率は次の〔数7〕で
表される。[Extraction of the component of interest in the substance to be measured] In the actual measurement, the substance to be measured contains not only the component of interest (impurities) but also other components.
The conductivity of the substance to be measured in such a case is represented by the following [Equation 7].
【0029】[0029]
【数7】 [Equation 7]
【0030】ここで、σは混合物全体の導電率、σ0 は
着目する成分以外の成分(不純物)による導電率、σa
は着目する成分のみによる導電率である。図1における
導電率変換部7の出力は〔数7〕で表される全体の導電
率である。したがって、導電率変換部7の出力から基準
値設定部8で設定された、着目する成分以外の導電率σ
0 を差し引けば、着目する成分の導電率が求められる。
比較部9の出力は、着目する成分のみの導電率であるか
ら、別途得られた較正曲線により、導電率を着目する成
分の混合量に変換して表示することができる。Where σ is the conductivity of the entire mixture, σ0Is
Conductivity due to components (impurities) other than the component of interest, σa
Is the conductivity of only the component of interest. In Figure 1
The output of the conductivity converter 7 is the total conductivity expressed by [Equation 7].
Is the rate. Therefore, the reference from the output of the conductivity conversion unit 7
The conductivity σ set by the value setting unit 8 other than the component of interest
0By subtracting, the conductivity of the component of interest can be obtained.
Is the output of the comparison unit 9 only the conductivity of the component of interest?
From a separate calibration curve, we focused on conductivity.
It can be displayed by converting it into a mixed amount of minutes.
【0031】図2は地中の水分量を測定する場合の電極
及び印加電流測定用の抵抗の配置例を示す図、図3は電
極を支持する部材の構成例を示す図、図4は電極切り換
え回路の構成例を示す図である。図中、11、21、3
1、41は電極支持部材、12、22、32、42は電
極、13は印加電流測定用の抵抗、14は混合量測定
器、51は電流極切り換えスイッチ、52は電圧極切り
換えスイッチ、53は電源・電流検出回路、54は電圧
検出回路を示す。FIG. 2 is a diagram showing an arrangement example of electrodes and resistors for measuring an applied current when measuring the amount of water in the ground, FIG. 3 is a diagram showing a configuration example of a member supporting the electrodes, and FIG. 4 is an electrode. It is a figure which shows the structural example of a switching circuit. In the figure, 11, 21, 3
1, 41 are electrode supporting members, 12, 22, 32, 42 are electrodes, 13 is a resistance for measuring applied current, 14 is a mixing amount measuring device, 51 is a current pole changeover switch, 52 is a voltage pole changeover switch, and 53 is A power supply / current detection circuit, 54 is a voltage detection circuit.
【0032】上記構成の本発明に係る被測定物質中の混
合量測定装置では、例えば図2に示すように電極12と
印加電流測定用の抵抗13を一体に支持した電極支持部
材11を地表面から被測定物質である地中に貫入して配
置し、電極の2極間に交流電流を供給する。そして、印
加電流測定用の抵抗13によりその印加電流を測定する
と共に、別の電極間の電位差を測定して地中の水分量を
測定する。In the apparatus for measuring the amount of mixture in the substance to be measured according to the present invention having the above-mentioned structure, for example, as shown in FIG. 2, the electrode supporting member 11 integrally supporting the electrode 12 and the resistor 13 for measuring the applied current is grounded. Is placed so as to penetrate into the ground, which is the substance to be measured, and an alternating current is supplied between the two electrodes of the electrodes. Then, the applied current is measured by the resistance 13 for measuring the applied current, and the potential difference between the other electrodes is measured to measure the water content in the ground.
【0033】本発明に係る混合物質の混合量測定装置に
用いる電極は、上記のように被測定物質中に電流を流す
ための電極と、被測定物質中の注目エリアの電位差を測
定するための電極からなる。したがって、図3に示すよ
うに電極支持部材21、31、41に複数の電極22、
32、42を支持し、それらの電極を、例えば図4に示
すように選択的に電流を流すために電源・電流検出回路
53に接続し、或いは電位差を検出するために電圧検出
回路54に接続するように電極切り換え回路51、52
を電極と電源・電流検出回路53及び電圧検出回路54
との間に挿入接続してもよい。勿論、電源切り換え回路
51、52を用いることなく、それぞれの電極を電流
極、電圧極として割り当てて電源・電流検出回路53及
び電圧検出回路54に直接接続するように構成してもよ
いし、電極の数に対応するポートをそれぞれの電源・電
流検出回路53及び電圧検出回路54に設けて順次切り
換えるようにしてもよい。The electrode used in the apparatus for measuring the mixed amount of a mixed substance according to the present invention is for measuring the potential difference between the electrode for passing a current through the substance to be measured and the area of interest in the substance to be measured as described above. It consists of electrodes. Therefore, as shown in FIG. 3, the electrode support members 21, 31, 41 have a plurality of electrodes 22,
32 and 42, and their electrodes are connected to a power supply / current detection circuit 53 for selectively passing a current as shown in FIG. 4, or connected to a voltage detection circuit 54 for detecting a potential difference. So that the electrode switching circuits 51, 52
Electrode and power supply / current detection circuit 53 and voltage detection circuit 54
It may be inserted and connected between and. Of course, without using the power supply switching circuits 51 and 52, the respective electrodes may be assigned as current poles and voltage poles and directly connected to the power source / current detection circuit 53 and the voltage detection circuit 54, or the electrodes may be configured. It is also possible to provide ports corresponding to the number of the above in each of the power supply / current detection circuit 53 and the voltage detection circuit 54 and switch them sequentially.
【0034】また、測定部を構成する電極と電極支持部
材の構成は、図3(A)に示すように突出する複数の電
極22を棒状(杭状)の電極支持部材21に支持しても
よいし、図3(B)に示すように環状の複数の電極32
を棒状(杭状)の電極支持部材31に支持してもよい
し、図3(C)に示すように突出する複数の電極42を
板状の電極支持部材41に支持してもよい。The structure of the electrode and the electrode supporting member constituting the measuring section is such that a plurality of projecting electrodes 22 are supported by a rod-shaped (pile-shaped) electrode supporting member 21 as shown in FIG. 3 (A). Then, as shown in FIG. 3B, the plurality of annular electrodes 32
May be supported by a rod-shaped (pile-shaped) electrode supporting member 31, or a plurality of protruding electrodes 42 may be supported by a plate-shaped electrode supporting member 41 as shown in FIG.
【0035】被測定物質中に対して一対の電極により電
流を流すと、複数の対の電極により複数のエリアの電圧
の検出を検出することができるので、その場合、電圧を
検出する複数の対の電極に対して順次切り換えて電圧検
出回路を接続し、それらの検出した電圧値を電流値と共
にアナログ/デジタル変換してメモリに記憶してから、
それぞれのエリアの混合量を求めるようにしてもよい
し、オンライン、オフラインいずれのモードで混合量を
求めるようにしてもよい。また、求めた混合量のデータ
は直接一覧表示、プリント出力してもよいし、メモリに
記憶しそれを出力するようにしてもよい。勿論、適宜切
り換え操作を行って検出エリア毎に表示出力してもよ
い。When a current is applied to the substance to be measured by a pair of electrodes, the detection of voltages in a plurality of areas can be detected by the plurality of pairs of electrodes. In that case, a plurality of pairs for detecting the voltage are detected. After sequentially switching the voltage detection circuit to the electrodes of, connecting the detected voltage values with the current value into analog / digital and storing them in the memory,
The amount of mixture in each area may be obtained, or the amount of mixture may be obtained in either online or offline mode. Further, the data of the obtained mixing amount may be directly displayed as a list and printed out, or may be stored in a memory and output. Of course, it is also possible to carry out an appropriate switching operation and display and output for each detection area.
【0036】次に、混合物質の含有量の測定例を示す。
図5は水分で飽和している土壌中の塩分濃度と出力信号
のレベルの測定例を示す図であり、塩分濃度を0pp
m、500ppm、1000ppm、2000ppm、
3000ppm、5000ppmのそれぞれのサンプル
について導電率σを測定したものである。図5から明ら
かなように水分で飽和している土壌中の塩分濃度(pp
m)は、導電率σと比例関係にあることが判る。したが
って、導電率σから塩分濃度(ppm)を演算により求
めることができるが、例えばルックアップテーブルによ
り導電率σと塩分濃度(ppm)との変換テーブルを設
定すると、導電率σから変換テーブルを参照し塩分濃度
(ppm)を直接求めることができる。また、電流値と
電圧値から混合量を求める変換テーブルを設定すること
もできる。Next, an example of measuring the content of the mixed substance will be shown.
FIG. 5 is a diagram showing an example of measuring the salt concentration and the level of the output signal in soil saturated with water.
m, 500 ppm, 1000 ppm, 2000 ppm,
The electrical conductivity σ is measured for each of the 3000 ppm and 5000 ppm samples. As is clear from FIG. 5, salt concentration in soil saturated with water (pp
It can be seen that m) is proportional to the conductivity σ. Therefore, the salt concentration (ppm) can be calculated from the conductivity σ. For example, if a conversion table for the conductivity σ and the salt concentration (ppm) is set by a lookup table, the conductivity σ is used to refer to the conversion table. The salt concentration (ppm) can be directly calculated. It is also possible to set a conversion table for obtaining the mixing amount from the current value and the voltage value.
【0037】図6は本発明に係る混合物質の混合量監視
装置の実施の形態を示す図であり、61は演算部、62
は基準値設定部、63は比較部、64は出力部を示す。
図6において、演算部61は、先に説明したように電流
値と電圧値と電極に依存する係数、特定の混合物質以外
の成分による寄与分に基づき特定の混合物質の混合量を
演算や変換テーブルにより求めるものである。基準値設
定部62は、混合量を評価するための1乃至複数の基準
値を設定するものであり、比較部63は、演算部61に
より求めた混合量と基準値設定部62に設定された基準
値との比較を行うものである。出力部64は、演算部6
1により求めた混合量が基準値設定部62に設定された
基準値を越えたか否かを示す情報を出力するものであ
り、複数の基準値を設定した場合には、混合量の増加に
伴って段階的に比較情報を出力することができる。例え
ば、土壌中の浸水量を監視する場合には、注意警報、警
戒警報のような報知が可能となる。FIG. 6 is a diagram showing an embodiment of a mixed amount monitoring apparatus for a mixed substance according to the present invention, in which 61 is a calculation unit and 62 is a calculation unit.
Is a reference value setting unit, 63 is a comparing unit, and 64 is an output unit.
In FIG. 6, the calculation unit 61 calculates or converts the mixing amount of the specific mixed substance based on the current value, the voltage value, the coefficient depending on the electrode, and the contribution of the components other than the specific mixed substance as described above. It is obtained from a table. The reference value setting unit 62 sets one or a plurality of reference values for evaluating the mixing amount, and the comparing unit 63 is set in the mixing amount and reference value setting unit 62 obtained by the calculating unit 61. It is for comparison with the reference value. The output unit 64 is the calculation unit 6
It outputs information indicating whether or not the mixing amount obtained by 1 exceeds the reference value set in the reference value setting unit 62. When a plurality of reference values are set, the mixing amount increases as the mixing amount increases. The comparison information can be output stepwise. For example, in the case of monitoring the amount of water in the soil, it is possible to give warnings and warnings.
【0038】なお、本発明は、上記実施の形態に限定さ
れるものではなく、種々の変形が可能である。例えば上
記実施の形態では、1つの支持体に複数の電極及び印加
電流測定用の抵抗を一体に支持して被測定物質中に任意
に配置したが、複数の支持体で分散して複数の電極及び
印加電流測定用の抵抗を支持してもよいし、支持体とし
ては、棒状だけでなく面状、つまり板状体のものでもよ
いし、被測定物質の深さ方向に差し込み配置したが、底
部に埋め込んだり、貯蔵容器の底面や壁面に電極を配置
するように構成してもよい。また、水分や塩分の混合量
の測定について説明したが、支配的に変化する成分が特
定できるものであれば、その成分の変化のみを観測する
ことができ、半乾燥地における塩類集積や化学物質によ
る土壌汚染などにも適用可能である。同様に、特定の物
質を混合する混合装置において、その混合量を検出する
手段としても適用可能である。The present invention is not limited to the above embodiment, but various modifications can be made. For example, in the above embodiment, a plurality of electrodes and resistors for measuring an applied current are integrally supported on one support and arbitrarily arranged in the substance to be measured. The resistance for measuring the applied current may be supported, and the support may be not only rod-shaped but also planar, that is, a plate-shaped member, and it may be inserted in the depth direction of the substance to be measured. The electrodes may be embedded in the bottom or the electrodes may be arranged on the bottom surface or wall surface of the storage container. Also, the measurement of the amount of water and salt mixed was explained, but if the component that changes predominantly can be identified, only the change in that component can be observed, and salt accumulation and chemical substances in semi-arid areas can be observed. It is also applicable to soil pollution caused by. Similarly, in a mixing device that mixes a specific substance, it can be applied as a means for detecting the mixing amount.
【0039】[0039]
【発明の効果】以上の説明から明らかなように、本発明
によれば、正確な導電率あるいは混合物中の混合成分の
量を瞬時に求めることができ、野外などの現場で使用す
る際に作業性を向上させることができる。しかも、これ
まで除去できなかった、被測定物質の導電率の温度変化
による影響をアナログ信号のままで除去できるので、着
目する成分による正確な導電率、あるいは混合量を求め
ることができる。さらに、4個の電極を一組として測定
を行うが、同一形状の電極系なら、導電率測定のための
電極系固有の係数が一定であるので、電極系の一組につ
いて較正を行っておけば、多点での同時測定において
も、直ちに導電率を求めることができ、被測定物質であ
る土などの密度や構成成分が同じならば、前もって較正
曲線を求めておくことにより、異なる場所での水分など
の成分量の分布を同じようにして求めることができる。As is apparent from the above description, according to the present invention, it is possible to instantaneously determine the correct conductivity or the amount of the mixed component in the mixture, and the work can be performed when using it in the field such as outdoors. It is possible to improve the sex. Moreover, since the influence of the temperature change of the conductivity of the substance to be measured, which could not be removed until now, can be removed with the analog signal as it is, the accurate conductivity or the mixed amount of the component of interest can be obtained. Furthermore, the measurement is performed by using four electrodes as a set. However, if the electrode system has the same shape, the coefficient peculiar to the electrode system for measuring the conductivity is constant, so it is necessary to calibrate one set of the electrode system. For example, even in the case of simultaneous measurement at multiple points, the conductivity can be immediately obtained, and if the density and constituent components of the material to be measured, such as soil, are the same, it is possible to obtain the calibration curve in advance, so The distributions of the amounts of the components such as water can be obtained in the same manner.
【0040】また、多数の電極系を被測定物質中に埋設
して、水分量などの地中への深さ方向と面的な広がり方
向での、長期間にわたる時間変動を観測する場合には、
被測定物質の温度変化の影響を受けず、かつ、被測定物
質中の、着目する成分以外の密度や構成成分が変化しな
いので、もっとも正確な変動を観測することができる。
たとえば、長期にわたって観測しなければならないよう
な、灌漑農業での灌水量の監視、土砂災害において水分
を含んだ土壌が脆弱化する状況の把握、海岸地帯の耕作
地への塩水侵入観測、乾燥地帯での過剰灌漑による土壌
中の塩類集積の把握等の分野は、本発明のもっとも効果
の期待できる応用分野である。In addition, when a large number of electrode systems are embedded in a substance to be measured and long-term time fluctuations in the depth direction to the ground and the planar spreading direction such as water content are observed, ,
The most accurate variation can be observed because the density and constituent components other than the component of interest in the substance to be measured are not affected by the temperature change of the substance to be measured, and are not changed.
For example, monitoring irrigation in irrigated agriculture, which must be observed over a long period of time, grasping the condition in which water-containing soil is weakened by a sediment disaster, observation of saltwater intrusion into cultivated land in coastal areas, arid zones Fields such as grasping salt accumulation in soil due to excessive irrigation are the fields in which the present invention can be most expected.
【0041】複数の不純物が混在している混合物質にお
いて、時間的に変化している着目成分が一種類であれ
ば、観測開始時の測器の出力がゼロになるように基準値
を設定することにより、測定前の状態を基準値とするだ
けで、着目する成分の変動量を簡便に測定できることに
なり、野外などの現地観測には大変有利である。In a mixed substance containing a plurality of impurities, if there is only one type of component of interest that is changing with time, the reference value is set so that the output of the measuring instrument becomes zero at the start of observation. This makes it possible to easily measure the amount of fluctuation of the component of interest simply by using the state before measurement as the reference value, which is extremely advantageous for field observation in the field.
【図1】 本発明に係る被測定物質中の混合量測定装置
の実施の形態を示す図である。FIG. 1 is a diagram showing an embodiment of an apparatus for measuring a mixed amount in a substance to be measured according to the present invention.
【図2】 地中の水分量を測定する場合の電極及び印加
電流測定用の抵抗の配置例を示す図である。FIG. 2 is a diagram showing an arrangement example of electrodes and resistors for measuring an applied current when measuring the amount of water in the ground.
【図3】 電極を支持する部材の構成例を示す図であ
る。FIG. 3 is a diagram showing a configuration example of a member that supports electrodes.
【図4】 電極切り換え回路の構成例を示す図である。FIG. 4 is a diagram showing a configuration example of an electrode switching circuit.
【図5】 水分で飽和している土壌中の塩分濃度と出力
信号のレベルの測定例を示す図である。FIG. 5 is a diagram showing an example of measurement of salt concentration and output signal level in soil saturated with water.
【図6】 本発明に係る混合物質の混合量監視装置の実
施の形態を示す図である。FIG. 6 is a diagram showing an embodiment of a mixed amount monitoring apparatus for a mixed substance according to the present invention.
1…印加電流供給部、2…被測定物質、3…電流測定
部、4…電圧測定部、5…割り算部、6…実効値変換
部、7…導電率変換部、8…基準値設定部、9…比較
部、10…混合量表示部DESCRIPTION OF SYMBOLS 1 ... Applied current supply part, 2 ... Substance to be measured, 3 ... Current measurement part, 4 ... Voltage measurement part, 5 ... Division part, 6 ... Effective value conversion part, 7 ... Conductivity conversion part, 8 ... Reference value setting part , 9 ... Comparison unit, 10 ... Mixing amount display unit
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭53−119085(JP,A) 特開 昭59−187248(JP,A) 特開 昭55−90853(JP,A) 特開2000−121587(JP,A) 実開 昭61−152923(JP,U) 富永雅樹,地下水学会誌,1988年 8 月,第30巻、第3号,151−162 (58)調査した分野(Int.Cl.7,DB名) G01N 27/00 - 27/24 G01R 27/00 - 27/32 JICSTファイル(JOIS)─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-53-119085 (JP, A) JP-A-59-187248 (JP, A) JP-A-55-90853 (JP, A) JP-A-2000-121587 (JP, A) S. 61-152923 (JP, U) Tominaga Masaki, Journal of Groundwater Society, August 1988, Volume 30, No. 3, 151-162 (58) Fields investigated (Int.Cl. 7 , DB name) G01N 27/00-27/24 G01R 27/00-27/32 JISST file (JOIS)
Claims (2)
質の混合量を測定する被測定物質中の混合量測定装置で
あって、複数の電極及び前記電極の1つに直列に接続される抵抗
を一体に支持して被測定物質中に任意に配置する電極支
持体と、 前記抵抗を介して前記電極の2極間に交流電流を供給す
る電源と、 前記抵抗の両端の電圧を測定する抵抗端測定手段と、 前記電源から交流電流を供給する電極以外の他の電極間
の電位差を測定する電圧測定手段と、 前記抵抗端測定手段により測定された電圧と前記電圧測
定手段により測定された電位差との比に前記各電極の配
置により決まる係数を乗じて導電率を求め、校正データ
による変換を行って前記被測定物質中の着目する前記特
定物質の成分の混合量を求める演算手段とを備え、前記
抵抗の温度特性を前記被測定物質に近い温度特性とした
ことを特徴とする被測定物質中の混合量測定装置。1. A device for measuring a mixture amount in a substance to be measured for measuring the amount of a specific substance mixed in the substance to be measured, the device being connected in series to a plurality of electrodes and one of the electrodes. Resistance
An electrode support that supports the electrodes integrally and arranges them arbitrarily in the substance to be measured.
A holder , a power supply that supplies an alternating current between the two poles of the electrode via the resistance , a resistance end measuring unit that measures the voltage across the resistance , and an electrode other than the electrode that supplies the alternating current from the power supply. A voltage measuring unit that measures the potential difference between the other electrodes, and the ratio of the voltage measured by the resistance end measuring unit and the potential difference measured by the voltage measuring unit is multiplied by a coefficient determined by the arrangement of the electrodes to conduct electricity. And a calculation means for obtaining a ratio and converting the calibration data to obtain a mixed amount of the component of the specific substance of interest in the measured substance ,
An apparatus for measuring a mixed amount in a substance to be measured , wherein the temperature characteristic of resistance is a temperature characteristic close to that of the substance to be measured.
状体からなることを特徴とする請求項1記載の被測定物
質中の混合量測定装置。2. The apparatus for measuring the amount of a mixture in a substance to be measured according to claim 1, wherein the support comprises one or a plurality of plate-like bodies or rod-like bodies.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000212084A JP3455774B2 (en) | 2000-07-13 | 2000-07-13 | Device for measuring the amount of mixture in the substance to be measured |
EP01305895A EP1174715A3 (en) | 2000-07-13 | 2001-07-09 | System for measuring amount of specific substance mixed in material under measurement and electrode rod for measurement |
EP06014203A EP1736771A3 (en) | 2000-07-13 | 2001-07-09 | Elektrode rod for measuring conductivity or resistivity |
US09/901,043 US6507201B2 (en) | 2000-07-13 | 2001-07-10 | System for measuring amount of specific substance mixed in material under measurement and electrode rod for measurement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000212084A JP3455774B2 (en) | 2000-07-13 | 2000-07-13 | Device for measuring the amount of mixture in the substance to be measured |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002022689A JP2002022689A (en) | 2002-01-23 |
JP3455774B2 true JP3455774B2 (en) | 2003-10-14 |
Family
ID=18708048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000212084A Expired - Lifetime JP3455774B2 (en) | 2000-07-13 | 2000-07-13 | Device for measuring the amount of mixture in the substance to be measured |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3455774B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1775044B1 (en) * | 2004-07-07 | 2014-06-25 | Sintokogio, Ltd. | Device for measuring the water content in foundry sand, method and apparatus for supplying water to foundry sand in a sand mixer |
JP4532357B2 (en) * | 2005-06-15 | 2010-08-25 | 株式会社アタゴ | Concentration measuring device |
JP5872967B2 (en) * | 2012-06-05 | 2016-03-01 | 大成建設株式会社 | Management method of fine aggregate moisture content |
JP7333067B2 (en) * | 2020-03-30 | 2023-08-24 | 国立大学法人千葉大学 | Flow mode determination model learning system, void fraction estimation model learning system, flow mode determination system, and void fraction estimation system |
-
2000
- 2000-07-13 JP JP2000212084A patent/JP3455774B2/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
富永雅樹,地下水学会誌,1988年 8月,第30巻、第3号,151−162 |
Also Published As
Publication number | Publication date |
---|---|
JP2002022689A (en) | 2002-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6507201B2 (en) | System for measuring amount of specific substance mixed in material under measurement and electrode rod for measurement | |
Rhoades et al. | Determining salinity in field soils with soil resistance measurements | |
Gupta et al. | Influence of water content on electrical conductivity of the soil | |
US9851337B2 (en) | Universal water condition monitoring device | |
US4646000A (en) | Method and apparatus for measuring soil salinity | |
JP3455774B2 (en) | Device for measuring the amount of mixture in the substance to be measured | |
JP2001215203A (en) | Instrument for measuring electric conductivity, method of measuring electric conductivity of soil, and instrument for measuring electric conductivity of soil solution | |
Rhoades et al. | Establishing soil electrical conductivity-salinity calibrations using four-electrode cells containing undisturbed soil cores | |
US20050194296A1 (en) | pH measurement system for buoyant water chlorinator | |
US5872454A (en) | Calibration procedure that improves accuracy of electrolytic conductivity measurement systems | |
Dai et al. | Long-term monitoring of timber moisture content below the fiber saturation point using wood resistance sensors | |
JP3303130B2 (en) | Mixing amount measuring device and monitoring device for mixed substances | |
Zhang et al. | An intelligent four-electrode conductivity sensor for aquaculture | |
US4599146A (en) | Long term current demand control system | |
JPS6285852A (en) | Salinometer for liquid | |
Sudarmaji et al. | Simple Parallel Probe as Soil Moisture Sensor for Sandy Land in Tropical-Coastal Areas. | |
SU1733989A1 (en) | Method of determining a sea water salt level and device thereof | |
RU2045027C1 (en) | Method for determining moisture content in soil | |
Indrasari et al. | Characterization of integrated sensor in physical soil parameter measurement device | |
Radi et al. | Performace Analysis of Simple Capacitive Cylinder Sensor for Measuring Soil Moisture Content | |
Shoemaker et al. | Continuous, short-interval redox data loggers: verification and setup considerations | |
JP2926848B2 (en) | Soil property measurement device | |
Finlayson | Electrical conductivity: a useful technique in teaching geomorphology | |
JP2004077465A (en) | Method for measuring conductivity/resistivity of mixed substance | |
SU1818593A1 (en) | Method of measuring electric current spreading resistance of earth electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20030618 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3455774 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |