JP5698467B2 - Measuring method, measuring apparatus and measuring program for specific heat resistance of soil - Google Patents

Measuring method, measuring apparatus and measuring program for specific heat resistance of soil Download PDF

Info

Publication number
JP5698467B2
JP5698467B2 JP2010116755A JP2010116755A JP5698467B2 JP 5698467 B2 JP5698467 B2 JP 5698467B2 JP 2010116755 A JP2010116755 A JP 2010116755A JP 2010116755 A JP2010116755 A JP 2010116755A JP 5698467 B2 JP5698467 B2 JP 5698467B2
Authority
JP
Japan
Prior art keywords
soil
specific
resistance
relationship
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010116755A
Other languages
Japanese (ja)
Other versions
JP2011002448A (en
Inventor
鈴木 浩一
浩一 鈴木
健二 窪田
健二 窪田
秀志 海江田
秀志 海江田
佳則 谷村
佳則 谷村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Kansai Electric Power Co Inc
Original Assignee
Central Research Institute of Electric Power Industry
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Kansai Electric Power Co Inc filed Critical Central Research Institute of Electric Power Industry
Priority to JP2010116755A priority Critical patent/JP5698467B2/en
Publication of JP2011002448A publication Critical patent/JP2011002448A/en
Application granted granted Critical
Publication of JP5698467B2 publication Critical patent/JP5698467B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

本発明は、土壌の固有熱抵抗の測定方法、測定装置および測定用プログラムに関する。さらに詳しくは、本発明は、調査現場において簡易に計測することが可能な土壌の比抵抗に基づいて土壌の固有熱抵抗を求める土壌の固有熱抵抗の測定方法、測定装置および測定用プログラムに関するものである。   The present invention relates to a measurement method, a measurement apparatus, and a measurement program for the inherent thermal resistance of soil. More particularly, the present invention relates to a soil specific heat resistance measurement method, a measurement device, and a measurement program for obtaining soil specific heat resistance based on soil specific resistance that can be easily measured at a survey site. It is.

土壌の固有熱抵抗は地中に埋設する送電線のサイズを決定するパラメータの1つであり、特に変電所のケーブル引出部等の埋設されたケーブルが密集する場所等では土壌の固有熱抵抗の把握が非常に重要である。土壌の固有熱抵抗は、熱電対などのセンサとヒータを地中に埋設し、ヒータによって加熱された土壌の温度をセンサで計測し、その温度の上昇の仕方に基づいて求められる。一般的に行なわれているのは、地面に掘ったボーリング孔にマイクロヒータと熱電対を入れて埋める手法である。なお、ヒータと熱電対を内蔵した探針本体を土中に埋め込む測定器が提案されているものの(特開平11−23503号)、市販品として普及しておらず一般的な使用には至っていない。なお、熱伝導率測定センサーとして、ニードル方式のプローブを有するものが市販されている(例えば、クリマテック株式会社、CHF−TP08)が、プローブを固い地面に突き刺すのは困難であり、調査現場での使用には採用することができない。   The specific heat resistance of the soil is one of the parameters that determine the size of the transmission line embedded in the ground. Especially in the place where the embedded cables such as cable outlets of substations are concentrated, the specific heat resistance of the soil Understanding is very important. The specific thermal resistance of the soil is determined based on how the temperature of the soil heated by the heater is measured by burying a sensor such as a thermocouple and a heater in the ground, and the temperature is increased by the sensor. In general, a method of filling a micro-heater and a thermocouple in a bored hole dug in the ground is used. Although a measuring instrument that embeds a probe body with a built-in heater and thermocouple in the soil has been proposed (Japanese Patent Laid-Open No. 11-23503), it is not widely used as a commercial product and has not yet been used in general. . In addition, although what has a needle-type probe is marketed as a thermal conductivity measuring sensor (for example, Climatec Co., Ltd., CHF-TP08), it is difficult to pierce the probe into a hard ground, and at the investigation site It cannot be adopted for use.

特開平11−23503号公報Japanese Patent Laid-Open No. 11-23503

しかしながら、上述の一般的に行なわれているボーリング孔を掘ってセンサとヒータを埋設する方法では、計測毎に地面にボーリング孔を掘らなければならず、且つセンサとヒータを埋設すると共に計測終了後にはこれらを埋め戻さなければならないため、計測に手間が掛かってコストが高くなる。   However, in the above-described method of digging a boring hole and embedding a sensor and a heater, it is necessary to dig a boring hole in the ground for each measurement, and the sensor and the heater are embedded and after the measurement is completed. Since these have to be backfilled, the measurement takes time and costs increase.

本発明は、一般に広く普及している手法で計測が可能であり、しかも簡単に低コストで土壌の固有熱抵抗を求めることが可能な土壌の固有熱抵抗測定方法、測定装置および測定用プログラムを提供することを目的とする。   The present invention provides a method for measuring a specific heat resistance of soil, a measuring apparatus, and a program for measurement, which can be measured by a generally widespread technique and can easily determine the specific heat resistance of soil at low cost. The purpose is to provide.

本発明者らは、土壌の比抵抗、飽和度、固有熱抵抗等の物理量の関係について鋭意研究を行なった結果、飽和度と比抵抗との間には相関性があり、且つ飽和度と固有熱抵抗との間にも相関性があることを知見した。そして、かかる知見に基づいて更に研究を進めることで、土壌の比抵抗と固有熱抵抗との間にも相関性が成立することを見出し、本発明を完成するに至ったものである。   As a result of intensive studies on the relationship between physical quantities such as the specific resistance, saturation, and specific heat resistance of the soil, the present inventors have found that there is a correlation between the saturation and the specific resistance, and the saturation and the specific resistance. It was found that there is also a correlation with thermal resistance. And by further advancing research based on such knowledge, it has been found that a correlation is established between the specific resistance of soil and the specific thermal resistance, and the present invention has been completed.

即ち、請求項1記載の土壌の固有熱抵抗測定方法は、土壌の比抵抗と固有熱抵抗との関係を土壌の種類毎に予め求めておき、調査現場において土壌の比抵抗を実際に計測し、その計測結果を土壌の種類が一致する関係に当てはめて調査現場の固有熱抵抗を求めるものである。   In other words, the soil specific heat resistance measuring method according to claim 1 determines in advance the relationship between the specific resistance of the soil and the specific heat resistance for each type of soil, and actually measures the specific resistance of the soil at the survey site. By applying the measurement results to the relationship where the soil types match, the specific thermal resistance at the survey site is obtained.

また、請求項2記載の土壌の固有熱抵抗測定装置は、土壌の種類毎に予め求められた比抵抗と固有熱抵抗との関係を記憶している記憶手段と、調査現場の土壌の種類と調査現場における土壌の比抵抗の計測値とを読み込む入力手段と、計測値を土壌の種類が一致する関係に当てはめて固有熱抵抗を求める算出手段とを備えるものである。   In addition, the soil specific heat resistance measuring apparatus according to claim 2 is a storage means for storing the relationship between specific resistance and specific heat resistance obtained in advance for each type of soil, and the type of soil at the survey site. Input means for reading the measured value of the specific resistance of the soil at the investigation site, and calculation means for obtaining the specific thermal resistance by applying the measured value to the relationship in which the types of soil match.

さらに、請求項3記載の土壌の固有熱抵抗測定用プログラムは、少なくとも、記憶手段に予め記憶されている土壌の種類毎に求められた比抵抗と固有熱抵抗との関係を読み込む手段、調査現場の土壌の種類と調査現場において新たに計測された土壌の比抵抗の計測値とを読み込む手段、計測値を土壌の種類が一致する関係に当てはめて固有熱抵抗を求める手段としてコンピュータを機能させるものである。   Further, the program for measuring the specific heat resistance of soil according to claim 3 is a means for reading at least the means for reading the relationship between the specific resistance and the specific heat resistance obtained for each kind of soil stored in advance in the storage means, A computer that functions as a means to read the measured soil resistivity and the newly measured resistivity value of the soil at the survey site, and to determine the specific thermal resistance by applying the measured value to the matching soil type relationship It is.

また、本発明者らは、土壌の弾性波速度についても鋭意研究を行なった結果、土壌の種類とS波速度との間にも相関性が成立することを知見し、本発明を完成するに至ったものである。   In addition, as a result of intensive studies on the elastic wave velocity of the soil, the present inventors have found that a correlation is established between the type of soil and the S wave velocity, and to complete the present invention. It has come.

即ち、請求項4記載の土壌の固有熱抵抗の測定方法は、土壌の比抵抗と固有熱抵抗との関係を土壌の種類毎に予め求めて第1の関係とすると共に、土壌の種類とS波速度との関係を地質の種類毎に予め求めて第2の関係とし、調査現場において土壌の比抵抗とS波速度を実際に計測し、S波速度の計測値を地質の種類が一致する第2の関係に当てはめて土壌の種類を推定すると共に、推定した土壌の種類と一致する第1の関係に比抵抗の計測値を当てはめて調査現場の固有熱抵抗を求めるものである。   That is, in the method for measuring the specific heat resistance of soil according to claim 4, the relationship between the specific resistance of the soil and the specific heat resistance is obtained in advance for each type of soil as the first relationship, and the type of soil and S The relationship with the wave velocity is obtained in advance for each type of geology and is used as the second relationship. The soil resistivity and the S wave velocity are actually measured at the survey site, and the measured value of the S wave velocity matches the type of geology. The soil type is estimated by applying to the second relationship, and the specific thermal resistance at the investigation site is obtained by applying the measured value of the specific resistance to the first relationship that matches the estimated soil type.

また、請求項5記載の土壌の固有熱抵抗測定装置は、土壌の種類毎に予め求められた比抵抗と固有熱抵抗との第1の関係および地質の種類毎に予め求められた土壌の種類とS波速度との第2の関係を記憶している記憶手段と、調査現場の地質の種類および調査現場における土壌のS波速度の計測値および調査現場における土壌の比抵抗の計測値を読み込む入力手段と、S波速度の計測値を地質の種類が一致する第2の関係に当てはめて土壌の種類を推定すると共に、推定した土壌の種類と一致する第1の関係に比抵抗の計測値を当てはめて固有熱抵抗を求める算出手段とを備えるものである。   Moreover, the soil specific heat resistance measuring apparatus according to claim 5 is the first relationship between the specific resistance and the specific heat resistance determined in advance for each type of soil and the type of soil determined in advance for each type of geology. The storage means storing the second relationship between the S wave velocity and the S wave velocity, the type of geology at the survey site, the measured value of the S wave velocity of the soil at the survey site, and the measured value of the specific resistance of the soil at the survey site The input means and the measured value of the S wave velocity are applied to the second relationship in which the geological type matches, and the soil type is estimated, and the specific resistance is measured in the first relationship that matches the estimated soil type. And calculating means for obtaining the specific thermal resistance.

さらに、請求項6記載の土壌の固有熱抵抗測定用プログラムは、少なくとも、記憶手段に予め記憶されている土壌の種類毎に求められた比抵抗と固有熱抵抗との関係である第1の関係および地質の種類毎に予め求められた土壌の種類とS波速度との関係である第2の関係を読み込む手段、調査現場の地質の種類および調査現場において新たに計測された土壌のS波速度の計測値および調査現場において新たに計測された土壌の比抵抗の計測値を読み込む手段、S波速度の計測値を地質の種類が一致する第2の関係に当てはめて土壌の種類を推定すると共に、推定した土壌の種類と一致する第1の関係に土壌の比抵抗の計測値を当てはめて固有熱抵抗を求める手段としてコンピュータを機能させるものである。   Furthermore, the soil specific heat resistance measurement program according to claim 6 is at least a first relationship which is a relationship between the specific resistance and the specific heat resistance obtained for each kind of soil stored in advance in the storage means. And means for reading the second relationship which is the relationship between the soil type and the S wave velocity obtained in advance for each type of geology, the geological type of the survey site, and the S wave velocity of the soil newly measured at the survey site Means for reading the measured value of the soil and the measured value of the specific resistance of the soil newly measured at the survey site, and applying the measured value of the S wave velocity to the second relation in which the geological type matches, estimating the type of soil The computer is caused to function as means for obtaining the specific thermal resistance by applying the measured value of the specific resistance of the soil to the first relation that matches the estimated kind of soil.

請求項1記載の土壌の固有熱抵抗測定方法、請求項2記載の土壌の固有熱抵抗測定装置および請求項3記載の土壌の固有熱抵抗測定用プログラムによれば、調査現場の比抵抗を計測することでその土壌の固有熱抵抗を求めることができる。比抵抗の計測は複数の電極を地面に差し込むことで行なわれるので、ボーリング孔を掘って埋め戻すような面倒な作業がなく、簡単な作業で計測が行なわれる。また、地面に差し込んだ電極間に電流を流して電極間の電位差を計測するだけで比抵抗を計測できるので、迅速に計測できる。さらに、比抵抗の計測は広く一般的に普及しており、計測器の入手が容易である。これらのため、広く普及した手法を利用して、低コストで土壌の固有熱抵抗を求めることができる。   According to the soil specific heat resistance measurement method according to claim 1, the soil specific heat resistance measurement device according to claim 2, and the soil specific heat resistance measurement program according to claim 3, the specific resistance at the survey site is measured. By doing so, the specific heat resistance of the soil can be obtained. Since the specific resistance is measured by inserting a plurality of electrodes into the ground, there is no troublesome work of digging back a borehole and refilling it, and the measurement is performed with a simple work. In addition, since the specific resistance can be measured simply by passing a current between the electrodes inserted into the ground and measuring the potential difference between the electrodes, it can be measured quickly. Furthermore, the measurement of specific resistance is widely and generally prevalent, and it is easy to obtain a measuring instrument. For these reasons, the inherent thermal resistance of the soil can be obtained at low cost by using a widely spread method.

また、請求項4記載の土壌の固有熱抵抗測定方法、請求項5記載の土壌の固有熱抵抗測定装置および請求項6記載の土壌の固有熱抵抗測定用プログラムによれば、上記の効果に加えて、調査現場において作業員がボーリング孔を掘削せずに、土壌の種類を調べなくても土壌の固有熱抵抗を測定することができるという効果も奏する。   According to the soil specific heat resistance measurement method according to claim 4, the soil specific heat resistance measurement device according to claim 5, and the soil specific heat resistance measurement program according to claim 6, in addition to the above effects, As a result, it is possible to measure the inherent thermal resistance of the soil without examining the type of soil without drilling the borehole at the survey site.

本発明の土壌の固有熱抵抗測定装置の第1の実施形態を示すブロック図である。It is a block diagram which shows 1st Embodiment of the specific heat resistance measuring apparatus of the soil of this invention. 本発明の土壌の熱抵抗の測定方法の第1の実施形態を示すフローチャートである。It is a flowchart which shows 1st Embodiment of the measuring method of the thermal resistance of the soil of this invention. 土壌の比抵抗と固有熱抵抗との関係を示す図である。It is a figure which shows the relationship between the specific resistance of soil, and intrinsic heat resistance. 実験に使用したサンプルホルダを示し、(A)は(B)のA−A線(水平面)に沿う断面図、(B)は(A)のB−B線(垂直面)に沿う断面図である。The sample holder used for experiment is shown, (A) is sectional drawing which follows the AA line (horizontal plane) of (B), (B) is sectional drawing which follows the BB line (vertical surface) of (A). is there. 飽和度と比抵抗との関係を示す図である。It is a figure which shows the relationship between saturation and specific resistance. 飽和度と固有熱抵抗との関係を示す図である。It is a figure which shows the relationship between saturation and intrinsic heat resistance. 本発明の土壌の固有熱抵抗測定装置の第2の実施形態を示すブロック図である。It is a block diagram which shows 2nd Embodiment of the specific heat resistance measuring apparatus of the soil of this invention. 本発明の土壌の熱抵抗の測定方法の第2の実施形態を示すフローチャートである。It is a flowchart which shows 2nd Embodiment of the measuring method of the thermal resistance of the soil of this invention. S波速度と50%粒径との関係を示す図である。It is a figure which shows the relationship between S wave velocity and 50% particle size. S波速度と間隙率との関係を示す図である。It is a figure which shows the relationship between S wave velocity and a porosity. P波速度とS波速度との関係を示す図である。It is a figure which shows the relationship between P wave velocity and S wave velocity.

以下、本発明の構成を図面に示す形態に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on the form shown in the drawings.

まず最初に、本発明の土壌の固有熱抵抗測定装置の第1の実施形態について説明する。図1に本発明の土壌の固有熱抵抗測定装置を示す。土壌の固有熱抵抗測定装置(以下、単に熱抵抗測定装置という)は、土壌の種類毎に予め求められた比抵抗と固有熱抵抗との関係1を記憶している記憶手段2と、調査現場の土壌の種類と調査現場における土壌の比抵抗の計測値とを読み込む入力手段3と、計測値を土壌の種類が一致する関係1に当てはめて固有熱抵抗を求める算出手段4とを備えるものである。この熱抵抗測定装置は、本発明の土壌の固有熱抵抗測定用プログラム5をコンピュータ上で実行することによっても実現される。本実施形態では、土壌の固有熱抵抗測定用プログラム(以下、単に測定用プログラムという)5をコンピュータ上で実行する場合を例に挙げて説明する。   First, a first embodiment of the soil specific heat resistance measuring apparatus of the present invention will be described. FIG. 1 shows a soil specific heat resistance measuring apparatus according to the present invention. A soil specific heat resistance measuring device (hereinafter simply referred to as a heat resistance measuring device) includes a storage means 2 for storing a relationship 1 between a specific resistance and a specific heat resistance obtained in advance for each type of soil, and a survey site. The input means 3 for reading the soil type and the measured resistivity value of the soil at the survey site, and the calculating means 4 for obtaining the specific thermal resistance by applying the measured value to the relation 1 in which the soil type matches. is there. This thermal resistance measuring device can also be realized by executing the soil specific thermal resistance measuring program 5 of the present invention on a computer. In the present embodiment, a case where a soil specific thermal resistance measurement program (hereinafter simply referred to as a measurement program) 5 is executed on a computer will be described as an example.

土壌の熱抵抗測定プログラム5を実行するための本実施形態の熱抵抗測定装置の全体構成を図1に示す。この熱抵抗測定装置は、制御部6、記憶部(記憶手段)2、入力部(入力手段)3、表示部7を備え相互にバス等の信号回線12により接続されている。   FIG. 1 shows the overall configuration of a thermal resistance measurement apparatus according to this embodiment for executing the thermal resistance measurement program 5 for soil. This thermal resistance measuring device includes a control unit 6, a storage unit (storage unit) 2, an input unit (input unit) 3, and a display unit 7, and is connected to each other by a signal line 12 such as a bus.

制御部6は記憶部2に記憶されている測定用プログラム5によって熱抵抗測定装置全体の制御並びに固有熱抵抗の算出等に係る演算を行うものであり、例えばCPU(中央演算処理装置)である。記憶部2は少なくともデータやプログラムを記憶可能な装置であり、例えばハードディスクである。   The control unit 6 performs a calculation related to the control of the entire thermal resistance measurement device and the calculation of the specific thermal resistance by the measurement program 5 stored in the storage unit 2, and is, for example, a CPU (Central Processing Unit). . The storage unit 2 is a device capable of storing at least data and programs, and is, for example, a hard disk.

入力部3は少なくとも作業者の命令等を制御部6等に与えるためのインターフェイスであり、例えばキーボードである。表示部7は制御部6の制御により文字や図形等の描画・表示を行うものであり、例えばディスプレイである。   The input unit 3 is an interface for giving at least an operator command or the like to the control unit 6 or the like, and is, for example, a keyboard. The display unit 7 draws and displays characters and graphics under the control of the control unit 6, and is a display, for example.

熱抵抗測定装置の制御部6には、測定用プログラム5を実行することにより、記憶手段2に予め記憶されている土壌の種類毎に求められた比抵抗と固有熱抵抗との関係1を込み込む手段としての関係読込部8、調査現場の土壌の種類と調査現場において新たに計測された土壌の比抵抗の計測値とを読み込む手段としての計測データ読込部9、計測値を土壌の種類が一致する関係1に当てはめて固有熱抵抗を求める手段としての算出部(算出手段)4が構成される。   The control unit 6 of the thermal resistance measuring device includes a relation 1 between the specific resistance and the specific thermal resistance obtained for each kind of soil stored in the storage means 2 in advance by executing the measurement program 5. The relationship reading unit 8 as a means for reading, the measurement data reading unit 9 as a means for reading the soil type at the survey site and the measured value of the specific resistance of the soil newly measured at the survey site, A calculation unit (calculation unit) 4 is configured as a unit for obtaining the specific thermal resistance by applying the matching relation 1.

熱抵抗測定装置には、受信装置10がバス等の信号回線等により接続されており、例えば調査現場で新たに計測される比抵抗の計測値はこの受信装置10を介して熱抵抗測定装置に供給され、記憶部2に記憶される。ここで、例えば調査現場に設置した比抵抗計測器11と受信装置10とを通信回線13によって接続し、比抵抗計測器11の計測値を自動的に受信装置10に供給するようにしても良いし、作業者の送信操作によって比抵抗計測器11の計測値を受信装置10に供給するようにしても良い。あるいは、作業者が入力部3を操作して比抵抗計測器11の計測値を直接入力し、記憶部2に記憶させるようにしても良い。   A receiving device 10 is connected to the thermal resistance measuring device by a signal line such as a bus. For example, a measured value of specific resistance newly measured at a survey site is transmitted to the thermal resistance measuring device via the receiving device 10. Supplied and stored in the storage unit 2. Here, for example, the resistivity measuring instrument 11 installed at the investigation site and the receiving device 10 may be connected by the communication line 13 so that the measured value of the resistivity measuring instrument 11 is automatically supplied to the receiving device 10. Then, the measurement value of the specific resistance measuring instrument 11 may be supplied to the receiving device 10 by an operator's transmission operation. Alternatively, the operator may directly input the measurement value of the specific resistance measuring instrument 11 by operating the input unit 3 and store it in the storage unit 2.

調査現場の土壌の種類は、例えば作業者が入力部3を操作して直接入力し、記憶部2に記憶させる。土壌の種類は調査現場で判別できる。   The type of soil at the survey site is directly input by, for example, the operator operating the input unit 3 and stored in the storage unit 2. The soil type can be identified at the survey site.

比抵抗と固有熱抵抗との関係1は、例えば実験を行なって求められ、予め記憶部2に記憶されている。作業者は、少なくとも調査現場の土壌と同じ種類の土壌について比抵抗と固有熱抵抗との関係1を求めておく。比抵抗と固有熱抵抗との関係1を図3に示す。本実施形態では、土壌の種類として、例えば豊浦砂(標準砂)、珪砂5号、珪砂3号、シルト、粘土について比抵抗と固有熱抵抗の関係1を求めている。また、この関係1の実験式を数式1に、各実験式の定数a,nを表1にそれぞれ示す。ここで、gは固有熱抵抗、ρは比抵抗、a,nは土壌による定数である。   The relationship 1 between the specific resistance and the specific thermal resistance is obtained by conducting an experiment, for example, and is stored in the storage unit 2 in advance. The operator obtains a relationship 1 between the specific resistance and the specific heat resistance at least for the same kind of soil as the soil at the survey site. FIG. 3 shows the relationship 1 between the specific resistance and the specific thermal resistance. In this embodiment, the relationship 1 of specific resistance and specific heat resistance is calculated | required about the kind of soil, for example, Toyoura sand (standard sand), quartz sand No. 5, quartz sand No. 3, silt, clay. The empirical formula of this relation 1 is shown in Formula 1, and the constants a and n of each empirical formula are shown in Table 1, respectively. Here, g is a specific thermal resistance, ρ is a specific resistance, and a and n are constants based on soil.

<数1> g=aρ <Equation 1> g = aρ n

次に、本発明の土壌の固有熱抵抗測定方法について説明する。この土壌の固有熱抵抗測定方法(以下、単に熱抵抗測定方法という)は、例えば図2に示すように、比抵抗と固有熱抵抗との関係1を土壌の種類毎に予め求めておき(ステップS21)、調査現場において土壌の比抵抗を実際に計測し(ステップS22)、その計測結果を土壌の種類が一致する関係1に当てはめて調査現場の固有熱抵抗を求める(ステップS23)ものである。   Next, the soil specific heat resistance measurement method of the present invention will be described. In this soil specific heat resistance measurement method (hereinafter simply referred to as heat resistance measurement method), for example, as shown in FIG. 2, relationship 1 between specific resistance and specific heat resistance is obtained in advance for each soil type (step S21), the specific resistance of the soil is actually measured at the survey site (step S22), and the measurement result is applied to the relation 1 where the soil types match to determine the specific thermal resistance at the survey site (step S23). .

まず最初に、予め実験を行なって比抵抗と固有熱抵抗との関係1を土壌毎に求めておき、記憶部2に記憶しておく(ステップS21)。本実施形態では、実験結果に基づいて横軸を比抵抗(Ωm)、縦軸を固有熱抵抗(℃cm/W)としたグラフ(図3)を作成し、このグラフに基づいて比抵抗と固有熱抵抗との関係1である実験式を求め、この実験式及びその定数を記憶部2に記憶しておく。例えば作業者が入力部3を使用して関係1を入力し、記憶部2に記憶させておく。なお、図3において、実線は土壌毎の累乗近似式を示している。   First, an experiment is performed in advance to obtain the relationship 1 between the specific resistance and the specific thermal resistance for each soil and store it in the storage unit 2 (step S21). In the present embodiment, a graph (FIG. 3) is created with the horizontal axis representing the specific resistance (Ωm) and the vertical axis representing the specific thermal resistance (° C. cm / W) based on the experimental results. An empirical formula that is relationship 1 with the intrinsic thermal resistance is obtained, and this empirical formula and its constant are stored in the storage unit 2. For example, the operator inputs the relation 1 using the input unit 3 and stores it in the storage unit 2. In FIG. 3, the solid line indicates a power approximation formula for each soil.

次に、制御部6の計測データ読込部9は、調査現場で新たに計測された比抵抗の計測値と土壌の種類を記憶部2から読み込む(ステップS22)。ここで、計測データ読込部9は、比抵抗の計測値と土壌の種類が既に記憶部2に記憶されている場合には直ぐにステップS22を実行する。一方、比抵抗の計測値と土壌の種類が記憶部2に記憶されていない場合には入力待ちの状態となり、比抵抗の計測値と土壌の種類の両方が記憶部2に記憶されてからステップS22を実行する。そして、計測データ読込部9は読み込んだ計測値と土壌の種類を算出部4に供給する。   Next, the measurement data reading part 9 of the control part 6 reads the measured value of the specific resistance newly measured in the investigation field, and the kind of soil from the memory | storage part 2 (step S22). Here, when the measured value of specific resistance and the kind of soil are already stored in the storage unit 2, the measurement data reading unit 9 immediately executes step S22. On the other hand, when the measured value of the specific resistance and the type of soil are not stored in the storage unit 2, the process waits for input, and after both the measured value of the specific resistance and the type of soil are stored in the storage unit 2, the step is started. S22 is executed. Then, the measurement data reading unit 9 supplies the read measurement value and soil type to the calculation unit 4.

算出部4は土壌の種類が一致する関係1を記憶部2から読み込み、計測データ読込部9から供給された計測値をこの関係1に当てはめて固有熱抵抗を求める(ステップS23)。具体的には、土壌の種類が一致する定数a,nを記憶部2から読み込み、定数a,nと比抵抗ρの計測値を数式1に代入することで固有熱抵抗gを算出する。   The calculation unit 4 reads the relationship 1 with the same soil type from the storage unit 2, applies the measurement value supplied from the measurement data reading unit 9 to the relationship 1, and obtains the specific thermal resistance (step S23). Specifically, the specific thermal resistance g is calculated by reading the constants a and n with the same soil type from the storage unit 2 and substituting the measured values of the constants a and n and the specific resistance ρ into Equation 1.

そして、算出された固有熱抵抗gは記憶部2に記憶されると共に、表示部7に表示される(ステップS24)。その後、測定用プログラム5は終了する。   And the calculated intrinsic thermal resistance g is memorize | stored in the memory | storage part 2, and is displayed on the display part 7 (step S24). Thereafter, the measurement program 5 ends.

なお、2回目以降の測定では、比抵抗と固有熱抵抗との関係1が既に記憶部2に記憶されているので、ステップS21を飛ばしてステップS22から実行される。   In the second and subsequent measurements, since the relationship 1 between the specific resistance and the specific thermal resistance is already stored in the storage unit 2, the process is executed from step S22 by skipping step S21.

本発明は、例えば変電所のケーブル引出部等の埋設されたケーブルが密集する場所、大電力を必要とする変電所から変電所までの経路や変電所から需要家までの経路、下水道管などの熱を発する埋設物が近傍にある区間等の土壌の固有熱抵抗の測定に使用される。   The present invention is, for example, a place where buried cables such as cable outlets of substations are densely packed, a route from a substation to a substation that requires high power, a route from a substation to a customer, a sewer pipe, etc. It is used to measure the specific heat resistance of soil in the section where a buried object that generates heat is nearby.

本発明では、調査現場の土壌の比抵抗を計測することでその土壌の固有熱抵抗を求めることができるので、簡単な作業で迅速に土壌の固有熱抵抗を求めることができる。そのため、低コストで土壌の固有熱抵抗を求めることができる。また、比抵抗計測器11は広く一般的に普及しており、入手が容易である。したがって、一般に広く普及している機器類を利用して土壌の固有熱抵抗を求めることが可能になる。   In this invention, since the specific heat resistance of the soil can be calculated | required by measuring the specific resistance of the soil of an investigation field, the specific heat resistance of the soil can be calculated | required quickly by a simple operation | work. Therefore, the specific heat resistance of the soil can be obtained at low cost. In addition, the specific resistance measuring instrument 11 is widely and generally widespread, and is easily available. Therefore, it is possible to determine the inherent thermal resistance of the soil by using devices that are generally widely used.

次に、本発明の土壌の固有熱抵抗測定装置の第2の実施形態について説明する。なお、上述の実施形態と同一の部材・構成要素には同一の符号を付してある。図7に本発明の土壌の固有熱抵抗測定装置(熱抵抗測定装置)を示す。熱抵抗測定装置は、土壌の種類毎に予め求められた比抵抗と固有熱抵抗との関係(第1の関係)1および地質の種類毎に予め求められた土壌の種類とS波速度との関係(第2の関係)31を記憶している記憶手段2と、調査現場の地質の種類および調査現場における土壌のS波速度の計測値および調査現場における土壌の比抵抗の計測値を読み込む入力手段3と、S波速度の計測値を地質の種類が一致する第2の関係31に当てはめて土壌の種類を推定すると共に、推定した土壌の種類と一致する第1の関係1に比抵抗の計測値を当てはめて固有熱抵抗を求める算出手段4とを備えるものである。この熱抵抗測定装置は、本発明の土壌の固有熱抵抗測定用プログラム5をコンピュータ上で実行することによっても実現される。本実施形態では、土壌の固有熱抵抗測定用プログラム(以下、単に測定用プログラムという)5をコンピュータ上で実行する場合を例に挙げて説明する。   Next, a second embodiment of the soil specific heat resistance measuring apparatus of the present invention will be described. In addition, the same code | symbol is attached | subjected to the member and component same as the above-mentioned embodiment. FIG. 7 shows a soil specific heat resistance measuring apparatus (heat resistance measuring apparatus) according to the present invention. The thermal resistance measuring device includes a relationship (first relationship) 1 between the specific resistance and the specific thermal resistance obtained in advance for each soil type, and the soil type and the S wave velocity obtained in advance for each geological type. Storage means 2 storing relation (second relation) 31 and input for reading the geological type of the survey site, the measured value of S wave velocity of the soil at the survey site, and the measured value of the specific resistance of the soil at the survey site The measurement value of the S wave velocity is applied to the second relation 31 in which the geological type is matched with the means 3, and the soil type is estimated, and the specific relation in the first relation 1 that matches the estimated soil type is estimated. The calculation means 4 which calculates | requires a measured value and calculates | requires intrinsic | native thermal resistance is provided. This thermal resistance measuring device can also be realized by executing the soil specific thermal resistance measuring program 5 of the present invention on a computer. In the present embodiment, a case where a soil specific thermal resistance measurement program (hereinafter simply referred to as a measurement program) 5 is executed on a computer will be described as an example.

土壌の熱抵抗測定プログラム5を実行するための本実施形態の熱抵抗測定装置の全体構成を図7に示す。この熱抵抗測定装置は、制御部6、記憶部(記憶手段)2、入力部(入力手段)3、表示部7を備え相互にバス等の信号回線12により接続されている。   FIG. 7 shows the overall configuration of the thermal resistance measurement apparatus according to the present embodiment for executing the thermal resistance measurement program 5 for soil. This thermal resistance measuring device includes a control unit 6, a storage unit (storage unit) 2, an input unit (input unit) 3, and a display unit 7, and is connected to each other by a signal line 12 such as a bus.

制御部6は記憶部2に記憶されている測定用プログラム5によって熱抵抗測定装置全体の制御並びに固有熱抵抗の算出等に係る演算を行うものであり、例えばCPU(中央演算処理装置)である。記憶部2は少なくともデータやプログラムを記憶可能な装置であり、例えばハードディスクである。   The control unit 6 performs a calculation related to the control of the entire thermal resistance measurement device and the calculation of the specific thermal resistance by the measurement program 5 stored in the storage unit 2, and is, for example, a CPU (Central Processing Unit). . The storage unit 2 is a device capable of storing at least data and programs, and is, for example, a hard disk.

入力部3は少なくとも作業者の命令等を制御部6等に与えるためのインターフェイスであり、例えばキーボードである。表示部7は制御部6の制御により文字や図形等の描画・表示を行うものであり、例えばディスプレイである。   The input unit 3 is an interface for giving at least an operator command or the like to the control unit 6 or the like, and is, for example, a keyboard. The display unit 7 draws and displays characters and graphics under the control of the control unit 6, and is a display, for example.

熱抵抗測定装置の制御部6には、測定用プログラム5を実行することにより、記憶手段2に予め記憶されている土壌の種類毎に求められた比抵抗と固有熱抵抗との関係である第1の関係1および地質の種類毎に予め求められた土壌の種類とS波速度との関係である第2の関係31を読み込む手段としての関係読込部8、調査現場の地質の種類および調査現場において新たに計測された土壌のS波速度の計測値および調査現場において新たに計測された土壌の比抵抗の計測値を読み込む手段としての計測データ読込部9、S波速度の計測値を地質の種類が一致する第2の関係31に当てはめて土壌の種類を推定すると共に、推定した土壌の種類と一致する第1の関係1に土壌の比抵抗の計測値を当てはめて固有熱抵抗を求める手段としての算出部(算出手段)4が構成される。   The control unit 6 of the thermal resistance measuring device has a relationship between the specific resistance and the specific thermal resistance obtained for each kind of soil stored in advance in the storage means 2 by executing the measurement program 5. 1. Relation reading unit 8 as means for reading the second relation 31 which is the relation between the soil type and the S wave velocity obtained in advance for each relation 1 and each kind of geology, the type of geology and the investigation site The measurement data reading unit 9 as a means for reading the measured value of the S wave velocity of the soil newly measured and the measured value of the specific resistance of the soil newly measured at the investigation site, the measured value of the S wave velocity Means for obtaining the specific thermal resistance by applying the measured value of the specific resistance of the soil to the first relation 1 that matches the estimated soil type while estimating the soil type by applying to the second relation 31 having the same type As a calculation (Calculating means) 4 is formed.

熱抵抗測定装置には、受信装置10がバス等の信号回線等により接続されており、例えば調査現場で新たに計測される土壌の比抵抗の計測値およびS波速度の計測値はこの受信装置10を介して熱抵抗測定装置に供給され、記憶部2に記憶される。ここで、例えば調査現場に設置した比抵抗計測器11および弾性波探査用測定器32と受信装置10とを通信回線13によって接続し、比抵抗計測器11の計測値および弾性波探査用測定器32によるS波速度の計測値(以下、単に弾性波探査用測定器32の計測値という)を自動的に受信装置10に供給するようにしても良いし、作業者の送信操作によって比抵抗計測器11の計測値および弾性波探査用測定器32の計測値を受信装置10に供給するようにしても良い。あるいは、作業者が入力部3を操作して比抵抗計測器11の計測値および弾性波探査用測定器32の計測値を直接入力し、記憶部2に記憶させるようにしても良い。   A receiver 10 is connected to the thermal resistance measuring device by a signal line such as a bus. For example, the measured value of the specific resistance of the soil and the measured value of the S wave velocity newly measured at the survey site are the received device. 10 is supplied to the thermal resistance measurement device via 10 and stored in the storage unit 2. Here, for example, the specific resistance measuring instrument 11 and the elastic wave exploration measuring instrument 32 installed at the investigation site are connected to the receiving device 10 by the communication line 13, and the measured value of the specific resistance measuring instrument 11 and the elastic wave exploration measuring instrument are connected. The measurement value of the S wave velocity by 32 (hereinafter simply referred to as the measurement value of the elastic wave exploration measuring instrument 32) may be automatically supplied to the receiving device 10, or the specific resistance measurement is performed by the transmission operation of the operator. The measurement value of the instrument 11 and the measurement value of the elastic wave exploration measuring instrument 32 may be supplied to the receiving device 10. Alternatively, the operator may directly input the measurement value of the specific resistance measuring instrument 11 and the measurement value of the elastic wave exploration measuring instrument 32 by operating the input unit 3 and store them in the storage unit 2.

ここで、弾性波としてはS波の他にP波もあるが、本実施形態でS波を使用するのは以下の理由による。即ち、P波速度は土壌が含む水分量(含水率)に強く依存し、少しでも不飽和(空気が入ってくる)になると土壌の種類によらず音速(340m/s)に近い値になるので土壌の種類の判別には不向きである。特に、調査現場において土壌の固有熱抵抗を調査する地点は地下水面より上部の不飽和地盤であるケースが多く、P波は土壌種類の判定に不向きである。ただし、水で飽和している土壌を対象にする場合には、P波の使用も可能である。   Here, as the elastic wave, there is a P wave in addition to the S wave. The reason why the S wave is used in the present embodiment is as follows. That is, the P wave velocity strongly depends on the moisture content (moisture content) contained in the soil, and when it becomes slightly unsaturated (air enters), it becomes a value close to the sound velocity (340 m / s) regardless of the type of soil. Therefore, it is not suitable for discrimination of soil type. In particular, there are many cases where the specific heat resistance of the soil at the survey site is the unsaturated ground above the groundwater surface, and the P wave is not suitable for determining the soil type. However, in the case where soil saturated with water is used as a target, use of P waves is also possible.

これに対し、S波速度は土壌の含水率への依存は低く、土壌の粒径や間隙率に依存する。図9に土壌を伝播するS波速度と土壌の粒径(50%粒径(mm))との関係を示す。乾燥状態と飽和度20%状態について実験を行った結果である。図9からも明らかなように、S波速度は土壌の粒径に依存し、しかもこの傾向は乾燥状態と飽和度20%状態とでは大きな違いがない。また、図10に土壌を伝播するS波速度と土壌の間隙率(%)との関係を示す。乾燥状態と飽和度20%状態について実験を行った結果である。図10からも明らかなように、S波速度は土壌の間隙率に依存し、しかもこの傾向は乾燥状態と飽和度20%状態とでは大きな違いがない。   In contrast, the S wave velocity is less dependent on the moisture content of the soil and depends on the particle size and porosity of the soil. FIG. 9 shows the relationship between the S wave velocity propagating through the soil and the soil particle size (50% particle size (mm)). It is the result of having experimented about a dry state and a saturation 20% state. As is clear from FIG. 9, the S wave velocity depends on the particle size of the soil, and this tendency is not significantly different between the dry state and the saturation 20% state. FIG. 10 shows the relationship between the S wave velocity propagating through the soil and the porosity (%) of the soil. It is the result of having experimented about a dry state and a saturation 20% state. As is apparent from FIG. 10, the S wave velocity depends on the porosity of the soil, and this tendency is not significantly different between the dry state and the saturation 20% state.

以上より、S波速度に基づいて土壌の種類の判別が可能である。即ち、土壌の間隙率や粒径は同じ種類の土壌(例えば粘性土、砂質土、礫質土など)であってもその土壌の属する地質(例えば有楽町層、七号地層、東京層、江戸川層、上総層など)が異なれば変わるが、土壌の間隙率や粒径の大小関係は地質が異なっても変わらない。例えば、関東平野は有楽町層、七号地層、東京層、江戸川層、上総層で構成されており、有楽町層→七号地層→東京層→江戸川層→上総層の順に堆積年代が古く、より締まった地層となっている。そして、土壌(粘性土、砂質土、礫質土)の間隙率や粒径は地質(有楽町層、七号地層、東京層、江戸川層、上総層)毎に変わるが、間隙率や粒径の大小関係(粘性土<砂質土<礫質土)は地質が異なっても変わらない。S波速度は土壌の間隙率や粒径に依存する。したがって、土壌のS波速度も、たとえ同種の土壌であっても地質が異なれば変わるが、S波速度の大小関係(粘性土<砂質土<礫質土)は地質が異なっても変わらない。そのため、各地質毎に土壌の種類とS波速度との関係(第2の関係31)を予め求めておけば、地質の種類がわかり、S波速度がわかることで、土壌の種類を判別することができる。本実施形態はこの原理を利用して調査現場の土壌の種類を推定するものである。   From the above, it is possible to determine the type of soil based on the S wave velocity. That is, even if the porosity and particle size of the soil are the same type of soil (for example, viscous soil, sandy soil, gravel soil, etc.), the geology to which the soil belongs (for example, Yurakucho Formation, No. 7 Formation, Tokyo Formation, Edogawa) Layer, Kazusa layer, etc.) will vary, but the soil porosity and particle size relationship will not change even if the geology is different. For example, the Kanto Plain is composed of the Yurakucho Formation, the No. 7 Formation, the Tokyo Formation, the Edogawa Formation, and the Kazusa Formation. The Yurakucho Formation → the No. 7 Formation → the Tokyo Formation → the Edogawa Formation → the Kazusa Formation are older and tightened. It has become a stratum. And the porosity and particle size of soil (viscous soil, sandy soil, gravel soil) vary depending on the geology (Yurakucho Formation, No. 7 Formation, Tokyo Formation, Edogawa Formation, Kazusa Formation). The size relationship (viscous soil <sandy soil <gravelly soil) does not change even if the geology is different. The S wave velocity depends on the porosity and particle size of the soil. Therefore, the S-wave velocity of the soil changes even if the soil is the same type, if the geology is different, but the magnitude relationship of the S-wave velocity (viscous soil <sandy soil <gravelly soil) does not change even if the geology is different. . Therefore, if the relationship between the soil type and S wave velocity (second relationship 31) is obtained in advance for each quality, the type of soil is known, and the type of soil is determined by knowing the S wave velocity. be able to. The present embodiment uses this principle to estimate the soil type at the survey site.

調査現場の地質の種類は、例えば作業者が入力部3を操作して直接入力し、記憶部2に記憶させる。   The type of geology at the survey site is directly input by, for example, the operator operating the input unit 3 and stored in the storage unit 2.

比抵抗と固有熱抵抗との関係である第1の関係1は、例えば実験を行なって求められ、予め記憶部2に記憶されている。作業者は、少なくとも調査現場の地質を構成する土壌と同じ種類の土壌について比抵抗と固有熱抵抗との第1の関係1を求めておく。比抵抗と固有熱抵抗との第1の関係1を図3に示す。本実施形態では、土壌の種類として、例えば豊浦砂(標準砂)、珪砂5号、珪砂3号、シルト、粘土について比抵抗と固有熱抵抗の第1の関係1を求めている。また、この第1の関係1の実験式を数式2に、各実験式の定数a,nを表2にそれぞれ示す。ここで、gは固有熱抵抗、ρは比抵抗、a,nは土壌による定数である。   The first relationship 1 that is the relationship between the specific resistance and the specific thermal resistance is obtained by conducting an experiment, for example, and is stored in the storage unit 2 in advance. The operator obtains the first relationship 1 between the specific resistance and the specific heat resistance for at least the same kind of soil as that constituting the geology of the survey site. A first relationship 1 between the specific resistance and the specific thermal resistance is shown in FIG. In the present embodiment, the first relation 1 between the specific resistance and the specific thermal resistance is obtained for, for example, Toyoura sand (standard sand), silica sand No. 5, silica sand No. 3, silt, and clay as the types of soil. Further, the empirical formula of the first relation 1 is shown in Formula 2, and the constants a and n of each empirical formula are shown in Table 2, respectively. Here, g is a specific thermal resistance, ρ is a specific resistance, and a and n are constants based on soil.

<数2> g=aρ <Equation 2> g = aρ n

土壌の種類とS波速度との関係である第2の関係31は、例えば実験を行なって求められ、予め記憶部2に記憶されている。作業者は、少なくとも調査現場の地質と同じ地質について土壌の種類とS波速度との第2の関係31を求めておく。   The second relationship 31 that is the relationship between the type of soil and the S wave velocity is obtained, for example, through an experiment and is stored in the storage unit 2 in advance. The operator obtains the second relationship 31 between the soil type and the S wave velocity for at least the same geology as the survey site.

ここで、土壌の種類とS波速度との関係を図11および表3に示す。図11および表3は地質を構成する土壌の種類毎のP波速度とS波速度との関係を示すが、これらから土壌の種類とS波速度との間には相関関係があることがわかる。例えば、有楽町層であれば、S波速度(m/S)は、粘性土:135、砂質土:190、礫質土:308である。これらの値と調査現場におけるS波速度の計測値とを比較し、一致するもの、あるいは許容できる範囲で一番近いものを当該調査現場の土壌と推定する。   Here, the relationship between the kind of soil and the S wave velocity is shown in FIG. FIG. 11 and Table 3 show the relationship between the P wave velocity and the S wave velocity for each type of soil constituting the geology. From these, it can be seen that there is a correlation between the soil type and the S wave velocity. . For example, in the Yurakucho layer, the S wave velocity (m / S) is: viscous soil: 135, sandy soil: 190, gravelly soil: 308. These values are compared with the measured values of the S wave velocity at the survey site, and the same or the closest one in the allowable range is estimated as the soil at the survey site.

なお、図11および表3は全て地下水面以下の飽和地盤を対象に実験を行ったものであり、この場合にはP波速度についても、S波速度と同様に、土壌の種類との間に相関関係がある。   11 and Table 3 are all experiments conducted on saturated ground below the groundwater surface. In this case, the P wave velocity is between the soil types as well as the S wave velocity. There is a correlation.

次に、土壌の固有熱抵抗測定方法について説明する。この熱抵抗測定方法は、例えば図8に示すように、土壌の比抵抗と固有熱抵抗との関係を土壌の種類毎に予め求めて第1の関係1とすると共に、土壌の種類とS波速度との関係を地質の種類毎に予め求めて第2の関係31とし(ステップS41)、調査現場において土壌の比抵抗とS波速度を実際に計測し(ステップS42)、S波速度の計測値を地質の種類が一致する第2の関係31に当てはめて土壌の種類を推定すると共に、推定した土壌の種類と一致する第1の関係1に比抵抗の計測値を当てはめて調査現場の固有熱抵抗を求める(ステップS43)ものである。   Next, a method for measuring the specific thermal resistance of soil will be described. In this thermal resistance measurement method, for example, as shown in FIG. 8, the relationship between the specific resistance of soil and the specific thermal resistance is obtained in advance for each type of soil to be the first relationship 1, and the type of soil and the S wave The relationship with the velocity is obtained in advance for each type of geology to obtain the second relationship 31 (step S41), and the soil resistivity and S wave velocity are actually measured at the survey site (step S42), and the S wave velocity is measured. The value is applied to the second relation 31 having the same geological type to estimate the type of soil, and the measured value of the specific resistance is applied to the first relation 1 matching the estimated type of soil to determine the peculiarity of the survey site The thermal resistance is obtained (step S43).

まず最初に、予め実験を行なって比抵抗と固有熱抵抗との第1の関係1を土壌毎に求めておき、記憶部2に記憶しておく。同様に、予め実験を行って土壌の種類とS波速度との第2の関係31を地質の種類毎に求めておき、記憶部2に記憶しておく(ステップS41)。   First, an experiment is performed in advance to obtain the first relationship 1 between the specific resistance and the specific thermal resistance for each soil, and is stored in the storage unit 2. Similarly, an experiment is performed in advance to obtain the second relationship 31 between the soil type and the S wave velocity for each geological type, and the result is stored in the storage unit 2 (step S41).

次に、制御部6の計測データ読込部9は、調査現場で新たに計測された比抵抗の計測値およびS波速度の計測値と調査現場の地質の種類を記憶部2から読み込む(ステップS42)。ここで、計測データ読込部9は、比抵抗の計測値とS波速度の計測値と地質の種類が既に記憶部2に記憶されている場合には直ぐにステップS42を実行する。一方、比抵抗の計測値とS波速度の計測値と地質の種類が記憶部2に記憶されていない場合には入力待ちの状態となり、比抵抗の計測値とS波速度の計測値と地質の種類の全てが記憶部2に記憶されてからステップS42を実行する。そして、計測データ読込部9は読み込んだ計測値と地質の種類を算出部4に供給する。   Next, the measurement data reading unit 9 of the control unit 6 reads, from the storage unit 2, the measured value of resistivity, the measured value of S wave velocity, and the type of geology at the survey site newly measured at the survey site (step S42). ). Here, when the measured value of resistivity, the measured value of S wave velocity, and the type of geology are already stored in the storage unit 2, the measurement data reading unit 9 immediately executes Step S <b> 42. On the other hand, when the measured value of specific resistance, the measured value of S wave velocity, and the type of geology are not stored in the storage unit 2, it enters a state of waiting for input, and the measured value of specific resistance, the measured value of S wave velocity, and the geological feature. Step S42 is executed after all the types are stored in the storage unit 2. Then, the measurement data reading unit 9 supplies the read measurement values and geological types to the calculation unit 4.

算出部4は地質の種類が一致する第2の関係31を記憶部2から読み込み、計測データ読込部9から供給されたS波速度の計測値をこの第2の関係31に当てはめて土壌の種類を推定すると共に、推定した土壌の種類と一致する土壌種類の第1の関係1を記憶部2から読み込み、計測データ読込部9から供給された比抵抗の測定値をこの第1の関係1に当てはめて固有熱抵抗を求める(ステップS43)。具体的には、土壌の種類が一致する定数a,nを記憶部2から読み込み、定数a,nと比抵抗ρの計測値を数式2に代入することで固有熱抵抗gを算出する。   The calculation unit 4 reads the second relation 31 having the same geological type from the storage unit 2, applies the measured value of the S wave velocity supplied from the measurement data reading unit 9 to the second relation 31, and the type of soil. And the first relationship 1 of the soil type that matches the estimated soil type is read from the storage unit 2, and the measured value of the specific resistance supplied from the measurement data reading unit 9 is changed to the first relationship 1. The specific thermal resistance is obtained by applying (Step S43). Specifically, the specific thermal resistance g is calculated by reading the constants a and n having the same soil type from the storage unit 2 and substituting the measured values of the constants a and n and the specific resistance ρ into Equation 2.

そして、算出された固有熱抵抗gは記憶部2に記憶されると共に、表示部7に表示される(ステップS44)。その後、測定用プログラム5は終了する。   The calculated intrinsic thermal resistance g is stored in the storage unit 2 and displayed on the display unit 7 (step S44). Thereafter, the measurement program 5 ends.

なお、2回目以降の測定では、比抵抗と固有熱抵抗との第1の関係1および土壌の種類とS波速度との第2の関係31が既に記憶部2に記憶されているので、ステップS41を飛ばしてステップS42から実行される。   In the second and subsequent measurements, since the first relationship 1 between the specific resistance and the specific thermal resistance and the second relationship 31 between the soil type and the S wave velocity are already stored in the storage unit 2, the step S41 is skipped and the process is executed from step S42.

本発明では、調査現場の土壌の比抵抗とS波速度を計測することでその土壌の固有熱抵抗を求めることができるので、簡単な作業で迅速に土壌の固有熱抵抗を求めることができる。そのため、低コストで土壌の固有熱抵抗を求めることができる。また、比抵抗計測器11および弾性波探査用測定器32は広く一般的に普及しており、入手が容易である。したがって、一般に広く普及している機器類を利用して土壌の固有熱抵抗を求めることが可能になる。   In the present invention, since the specific heat resistance of the soil can be obtained by measuring the specific resistance and S wave velocity of the soil at the investigation site, the specific heat resistance of the soil can be obtained quickly with a simple operation. Therefore, the specific heat resistance of the soil can be obtained at low cost. In addition, the specific resistance measuring instrument 11 and the elastic wave exploration measuring instrument 32 are widely spread and generally available. Therefore, it is possible to determine the inherent thermal resistance of the soil by using devices that are generally widely used.

また、本実施形態では第2の関係31に基づいて土壌の種類を推定することができるので、調査現場において作業員がボーリング孔を掘削せずに、土壌の種類を調べなくても土壌の固有熱抵抗を測定することができる。   Moreover, in this embodiment, since the kind of soil can be estimated based on the 2nd relationship 31, it is peculiar of soil even if an operator does not dig a boring hole and does not investigate the kind of soil in an investigation site. Thermal resistance can be measured.

なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。   The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the scope of the present invention.

土壌の物性値として比抵抗,飽和度,固有熱抵抗の相関性を調べる室内試験を行なった。土壌試料として、以下の5種類の人工土壌試料を使用した。
・豊浦標準砂(平均粒径:約0.2mm)
・5号珪砂(平均粒径:約0.5mm)
・3号珪砂(平均粒径:約1.2mm)
・シルト(平均粒径:約0.01mm)
・木節粘土(平均粒径:約0.001mm)
Laboratory tests were conducted to investigate the correlation among specific resistance, saturation, and specific thermal resistance as physical properties of soil. The following five types of artificial soil samples were used as soil samples.
・ Toyoura standard sand (average particle size: about 0.2mm)
・ No. 5 silica sand (average particle size: about 0.5mm)
・ No.3 silica sand (average particle size: about 1.2mm)
・ Silt (average particle size: about 0.01 mm)
-Kibushi clay (average particle size: about 0.001mm)

試験は人工土壌試料をサンプルホルダに入れて行なった。試験に使用したサンプルホルダを図4に示す。サンプルホルダは例えばアクリル板を箱状に組み立てたものであり、その寸法は、例えば縦:12cm、横:12cm、高さ:5cmとなっている。   The test was performed by placing an artificial soil sample in a sample holder. The sample holder used for the test is shown in FIG. The sample holder is, for example, an acrylic plate assembled in a box shape, and the dimensions are, for example, length: 12 cm, width: 12 cm, and height: 5 cm.

サンプルホルダには、比抵抗を計測するための左右一対の電流電極14a,14b及び左右一対の電位電極15a,15bが取り付けられている。また、サンプルホルダの側面には、熱抵抗を計測するために熱抵抗測定用プローブを挿入する孔18が設けられている。   A pair of left and right current electrodes 14a and 14b and a pair of left and right potential electrodes 15a and 15b for measuring the specific resistance are attached to the sample holder. A hole 18 for inserting a thermal resistance measurement probe is provided on the side surface of the sample holder in order to measure the thermal resistance.

比抵抗の計測は以下のようにして行なわれる。サンプルホルダの両側面には左右一対の電流電極14a,14bが取り付けられている。また、底板の両側部近傍には左右一対の電位電極15a,15bが取り付けられている。電流電極間14a,14bに矩形波の電流を流し、その際に生じる電位差を電位電極15a,15bを用いて計測することで、土壌試料の比抵抗を計測する。計測には、例えば応用地質株式会社製のミニオームの使用が可能である。   The specific resistance is measured as follows. A pair of left and right current electrodes 14a and 14b are attached to both side surfaces of the sample holder. A pair of left and right potential electrodes 15a and 15b are attached in the vicinity of both sides of the bottom plate. The specific resistance of the soil sample is measured by passing a rectangular wave current between the current electrodes 14a and 14b and measuring the potential difference generated at that time using the potential electrodes 15a and 15b. For the measurement, for example, a mini-ohm manufactured by Applied Geological Co., Ltd. can be used.

固有熱抵抗の計測は以下のようにして行なわれる。サンプルホルダの側面に設けられたプローブ挿入用の孔18から熱抵抗測定用プローブを差し込み、当該プローブに一定の熱量を加えることで試料を加熱し、その温度変化を観察することで温度の上昇の仕方(温度の傾き)から試料の固有熱抵抗を求める。計測には、クリマテック株式会社製の土壌熱伝導率測定器(TP08)の使用が可能である。   The specific thermal resistance is measured as follows. A probe for thermal resistance measurement is inserted from a probe insertion hole 18 provided on the side surface of the sample holder, a sample is heated by applying a certain amount of heat to the probe, and the temperature change is observed by observing the temperature change. The specific thermal resistance of the sample is obtained from the way (temperature gradient). For the measurement, it is possible to use a soil thermal conductivity measuring device (TP08) manufactured by Klimatec Co., Ltd.

(サンプルホルダ重量の計測)
サンプルホルダ自体の重量mh0(単位:g)を計測した。この時、サンプルホルダの中には何も入れない状態であり、また熱抵抗測定用プローブは装着した状態にした。
(Measurement of sample holder weight)
The weight m h0 (unit: g) of the sample holder itself was measured. At this time, nothing was put in the sample holder, and the thermal resistance measurement probe was attached.

(乾燥試料の作成)
(1)乾燥試料の作成手順を説明する。まず、サンプルホルダに乾燥試料を入れる。間隙率の計測等の観点から、試料はサンプルホルダいっぱいまで入れるようにする。
(Dry sample preparation)
(1) A procedure for preparing a dry sample will be described. First, a dry sample is put in a sample holder. From the viewpoint of measuring the porosity, etc., the sample should be filled up to the sample holder.

試料は間隙・空隙ができないように締め固めながら作成した。そのため、試料をサンプルホルダに1〜1.5cm程度入れて、鉛の分銅と、金属のヘラで填圧を十分に行った。この填圧作業を4〜5回程度に分けて繰り返し、サンプルホルダいっぱいより、やや多い程度まで試料を詰めた後、サンプルホルダの上端、試料の厚さにして、5cmになるようにプラスチック製のヘラで調整し、試料上面を平坦に整えた。   The sample was made while compacting so that there was no gap or void. Therefore, the sample was placed in a sample holder by about 1 to 1.5 cm and sufficiently filled with a lead weight and a metal spatula. This filling operation is repeated 4 to 5 times, and after filling the sample to a slightly larger amount than the sample holder, the upper end of the sample holder and the thickness of the sample are 5 cm. The top surface of the sample was adjusted to be flat with a spatula.

(2)次に、(1)の状態における重量m(単位:g)を計測した。そして、得られた値を用いて、数式3を用いて試料の間隙率φを算出した。ここで、Vはサンプルホルダの体積(単位:cm)、ρは土粒子の密度(単位:g/cm)である。 (2) Next, the weight m h (unit: g) in the state of (1) was measured. Then, using the obtained value, the porosity φ of the sample was calculated using Equation 3. Here, V is the volume of the sample holder (unit: cm 3 ), and ρ s is the density of the soil particles (unit: g / cm 3 ).

(含水状態の試料の作成)
(1)含水状態の試料の作成について説明する。まず、サンプルホルダを十分に満たすことのできる量よりやや多めの試料を、あらかじめ乾燥重量を計測済みのボウルに入れた。ボウルごと試料の重量を計測し、ボウルの重量を差し引いた試料の重量を記録した。その試料に一定量m(単位:g)の蒸留水を加えた。試料に加える水の量については、間隙率の大きさ等に応じて、設定飽和度になる程度の量だけ加えるようにし、その重量を記録した。
(Making water-containing sample)
(1) The preparation of a moisture-containing sample will be described. First, a sample slightly larger than the amount that can sufficiently fill the sample holder was put in a bowl in which the dry weight had been measured in advance. The weight of the sample was measured along with the bowl, and the weight of the sample minus the weight of the bowl was recorded. A fixed amount of mw (unit: g) of distilled water was added to the sample. The amount of water added to the sample was added in such an amount that the set saturation level was reached according to the size of the porosity, and the weight was recorded.

(2)次に、試料と蒸留水が均一になるようにボウル内で混ぜ合わせた。ここで、混ぜ合わせた試料の重量を改めて計測し記録した。 (2) Next, the sample and distilled water were mixed in a bowl so as to be uniform. Here, the weight of the mixed sample was measured again and recorded.

(3)その後、混ぜ合わせた試料をサンプルホルダに入れた。乾燥試料と同様に、1〜1.5cm程度入れて、鉛の分銅と、金属のヘラで填圧を十分に行った。この填圧作業は試料の含水状態によって作業性が大きく異なった。そのため、必要に応じて厚さ・回数を調整し、4〜5回程度に分けて繰り返した。サンプルホルダいっぱいより、やや多い程度まで試料を詰めた後、サンプルホルダの上端、試料の厚さにして、5cmになるようにプラスチック製のヘラで調整し、試料上面を平坦に整えた。 (3) Then, the mixed sample was put in the sample holder. As with the dried sample, about 1 to 1.5 cm was put and sufficiently filled with a lead weight and a metal spatula. The workability of this pressure filling operation varied greatly depending on the moisture content of the sample. Therefore, the thickness and the number of times were adjusted as necessary, and the process was repeated about 4 to 5 times. After filling the sample to a slightly larger amount than the sample holder, the upper end of the sample holder and the thickness of the sample were adjusted with a plastic spatula so as to be 5 cm, and the upper surface of the sample was made flat.

(4)次に、サンプルホルダごと重量mhsを計測し、上記(2)において計測しておいた混ぜ合わせた際の、砂と蒸留水の重量比から、サンプルホルダに入った砂と蒸留水の量をそれぞれ求めた。そして、数式4,5を用いて試料の含水比w及び飽和度Sを算出した。ここで、Vは試料に加えた水の体積(単位:cm)である。 (4) Next, the weight m hs is measured together with the sample holder, and the sand and distilled water contained in the sample holder are calculated from the weight ratio of the sand and distilled water measured in (2) above. The amount of each was determined. Then, to calculate the water content ratio w and the saturation S r of the sample using equations 4 and 5. Here, Vw is the volume of water added to the sample (unit: cm 3 ).

(完全飽和した試料の作成)
(1)完全飽和した試料の作成手順について説明する。まず、サンプルホルダに蒸留水を2cm程度入れた。そこに試料を水中落下させながら1〜1.5cm程度堆積させた。
(Preparation of fully saturated sample)
(1) A procedure for preparing a fully saturated sample will be described. First, about 2 cm of distilled water was put into the sample holder. The sample was deposited about 1 to 1.5 cm while dropping the sample in water.

(2)次に(1)の試料をデシケータの中にいれ、真空脱気を行った(7分程度)。この作業により不要な気泡等を取り除き、完全に飽和した試料を作成した。デシケータから出したサンプルホルダの試料を、鉛の分銅と、金属のヘラで填圧を十分に行った。 (2) Next, the sample of (1) was put in a desiccator and vacuum deaeration was performed (about 7 minutes). By this work, unnecessary bubbles and the like were removed, and a completely saturated sample was prepared. The sample of the sample holder taken out from the desiccator was sufficiently filled with a lead weight and a metal spatula.

(3)その後、(1)(2)を必要な回数(3〜4回程度)繰り返した。 (3) Thereafter, (1) and (2) were repeated as many times as necessary (about 3 to 4 times).

(4)サンプルホルダの高さの8割程度まで試料が達した後、1晩程度デシケータの中にいれ、真空脱気を行った。この際、別の容器(ビーカー等)に蒸留水で満たした試料を同時に脱気しておいた。 (4) After the sample reached about 80% of the height of the sample holder, it was placed in a desiccator for about one night and vacuum deaeration was performed. At this time, a sample filled with distilled water in another container (beaker or the like) was simultaneously degassed.

(5)1晩程度脱気を行ったサンプルホルダを、デシケータから出し、鉛の分銅と、金属のヘラで填圧を十分に行った。更に、サンプルホルダを十分に満たすまで、別の容器で脱気した試料を加えて、サンプルホルダの上端を超えるまで填圧を行い、5cmになるようにプラスチック製のヘラで調整し、試料上面を平坦に整えた。 (5) The sample holder which had been deaerated for about one night was taken out of the desiccator, and sufficiently filled with a lead weight and a metal spatula. Furthermore, add the sample deaerated in another container until the sample holder is fully filled, fill with pressure until it exceeds the upper end of the sample holder, adjust with a plastic spatula so that it becomes 5 cm, and Flattened.

(6)サンプルホルダごと重量mhsを計測し、完全飽和状態の試料の重量として記録した。 (6) The weight m hs was measured together with the sample holder and recorded as the weight of the fully saturated sample.

(7)各種計測を終了した後、試料をあらかじめ乾燥重量を計測済みのボウルに、サンプルホルダから移し入れた。その際、試料が残らないように蒸留水をかけながら、すべてをボウルに流し入れた。その後、試料をボウルごと110℃の乾燥炉に入れて乾燥させた。乾燥させた試料の重量を計測し、完全飽和状態の試料の重量との差から、試料の含水比w及び飽和度Sを算出し記録した。 (7) After completing various measurements, the sample was transferred from the sample holder into a bowl in which the dry weight had been measured in advance. At that time, everything was poured into a bowl while pouring distilled water so that no sample remained. Thereafter, the sample was placed in a drying oven at 110 ° C. together with the bowl and dried. The weight of the dried sample is measured, completely from the difference between the weight of the sample saturated to calculate the water content ratio w and the saturation S r of the sample recorded.

(混合試料の作成)
混合試料の作成手順を説明する。間隙率による各物性の変化をみるために、粒径の大きい3号珪砂に対して、粒径の小さい豊浦標準砂を混ぜ合わせた試料を作成した。作成方法は、サンプルホルダに詰める前に、或いは、ボウルに試料を作成する前に、設定した配合比率になるように、それぞれの重量を量り、比率を合わせるようにした。その後の作成方法は、上述の乾燥試料の作成と含水状態の試料の作成に準じて行った。粒径の大きい3号珪砂と、粒径の小さい豊浦標準砂は分離しやすいため、極力均等になるようにサンプルホルダに詰めるように努めた。
(Making mixed sample)
A procedure for preparing a mixed sample will be described. In order to see changes in physical properties due to porosity, a sample was prepared by mixing No. 3 silica sand with a large particle size and Toyoura standard sand with a small particle size. As for the preparation method, before filling the sample holder or preparing the sample in the bowl, the respective weights were measured so as to obtain the set mixing ratio, and the ratios were adjusted. Subsequent preparation methods were performed in accordance with the preparation of the dry sample and the preparation of the water-containing sample. No. 3 silica sand with a large particle size and Toyoura standard sand with a small particle size are easy to separate, so we tried to pack them in the sample holder as much as possible.

次に、計測手順について説明する。
(飽和度と物性値との相関性の計測)
上述の5種類の人工土壌試料を用いて、それぞれの試料において含水量を変化させることで土壌水分飽和度の異なる試料を作成し、試験を行った。飽和度は、乾燥状態(0%)、20%程度、40%程度、60%程度、80%程度、及び飽和状態(100%)の6種類作成した。
Next, the measurement procedure will be described.
(Measurement of correlation between saturation and physical properties)
Using the five types of artificial soil samples described above, samples with different soil moisture saturation levels were prepared by changing the water content in each sample, and the tests were performed. Six types of saturation were prepared: dry state (0%), about 20%, about 40%, about 60%, about 80%, and saturated state (100%).

まず、乾燥状態における計測を行い、その後、含水状態の試料の計測で説明した要領で乾燥試料に水を加えて飽和度20%程度の試料を作成して計測を行い、計測終了後その試料をボウルに戻し、水を加えることで今度は飽和度40%程度の試料を作成して計測していくという要領で、飽和度80%程度までの計測を順次行った。最後に、デシケータを用いて試料を飽和させ(1晩程度)、完全飽和状態における試料の計測を行った。また、試料に応じて設定飽和度を追加して測定を行った。   First, measurement is performed in a dry state, and then the water is added to the dry sample in the manner described in the measurement of the moisture-containing sample to prepare a sample having a saturation level of about 20%. By returning to the bowl and adding water, a sample with a degree of saturation of about 40% was created and measured in this manner, and measurements were sequentially made up to a degree of saturation of about 80%. Finally, the sample was saturated using a desiccator (approximately overnight), and the sample was measured in a fully saturated state. In addition, measurement was performed by adding a set saturation according to the sample.

(データの再現性に関する検討方法)
各条件での計測を行う際には、一連の計測を終えた試料を取り出し、それを再び入れ直して一連の計測を行った。ひとつの試料につき3回繰り返すことで再現性のあるデータが得られているか確認を行いながら計測を行った。
(Examination method for data reproducibility)
When performing measurement under each condition, a sample that had undergone a series of measurements was taken out and put back in to perform a series of measurements. Measurement was performed while confirming whether reproducible data was obtained by repeating three times for each sample.

完全飽和状態の試料においては、真空脱気作業を伴い、多くの時間を要することから、1回のみの計測とした。   For a fully saturated sample, vacuum degassing was involved and a lot of time was required, so only one measurement was performed.

(比抵抗の計測方法)
サンプルホルダにおける電極14a,14b,15a,15bの電線を、比抵抗計測装置(Mini-OHM、応用地質製)に接続させ、試料の比抵抗を計測した。計測は3回程度行い、その平均値を値として採用した。ただし、試料の乾燥のため試料に電気が流れないような場合には、計測は行わなかった。計測機材の仕様を表4に示す。
(Measurement method of specific resistance)
The electric wires of the electrodes 14a, 14b, 15a, 15b in the sample holder were connected to a specific resistance measuring device (Mini-OHM, manufactured by Applied Geology), and the specific resistance of the sample was measured. The measurement was performed about three times, and the average value was adopted as the value. However, measurement was not performed when electricity did not flow through the sample due to drying of the sample. Table 4 shows the specifications of the measurement equipment.

(熱抵抗の計測方法)
サンプルホルダの孔18から差し込んでいるプローブを熱伝導率計に接続させ、熱伝導率を計測した。計測は3回程度行い、その平均値を採用した。なお、計測条件(加熱時間、加熱の強さ)については、試料の種類、飽和度等に応じて適した設定にしてから計測を行った。計測機材の仕様を表5に示す。
(Measurement method of thermal resistance)
The probe inserted from the hole 18 of the sample holder was connected to a thermal conductivity meter, and the thermal conductivity was measured. The measurement was performed about 3 times, and the average value was adopted. Note that the measurement conditions (heating time, intensity of heating) were measured after setting them appropriately according to the type of sample, the degree of saturation, and the like. Table 5 shows the specifications of the measurement equipment.

次に、飽和度をパラメータとした各種物性値の計測結果について説明する。
(飽和度と比抵抗との関係)
それぞれ設定した飽和度において、計測した比抵抗値を表6〜表14に示す。表6は再生砂(RC−10)についての計測値、表7は洗い砂についての計測値、表8は3号珪砂についての計測値、表9は5号珪砂についての計測値、表10は豊浦標準砂についての計測値、表11は8号珪砂についての計測値、表12はロームについての計測値、表13はシルトについての計測値、表14は木節粘土についての計測値である。なお、VsはS波速度、ρは比抵抗、kは熱伝導率、gは熱抵抗である。また、図5に飽和度と比抵抗の関係を示す。いずれの試料においても、飽和度と比抵抗には両対数上で明瞭な負の相関が見られた。
Next, measurement results of various physical property values using saturation as a parameter will be described.
(Relationship between saturation and specific resistance)
Tables 6 to 14 show the measured specific resistance values at the respective saturation levels set. Table 6 shows measured values for recycled sand (RC-10), Table 7 shows measured values for washed sand, Table 8 shows measured values for No. 3 silica sand, Table 9 shows measured values for No. 5 silica sand, Table 10 shows Measurement values for Toyoura standard sand, Table 11 shows measurement values for No. 8 silica sand, Table 12 shows measurement values for loam, Table 13 shows measurement values for silt, and Table 14 shows measurement values for Kibushi clay. Vs is the S wave velocity, ρ is the specific resistance, k is the thermal conductivity, and g is the thermal resistance. FIG. 5 shows the relationship between saturation and specific resistance. In all samples, a clear negative correlation between the degree of saturation and the specific resistance was observed on the logarithm.

全試料で比較すると、飽和度と比抵抗は両対数上で粒径が小さくなるに従い低くシフトし、同じ飽和度の条件では3号珪砂が最も比抵抗が高く、5号珪砂、豊浦標準砂、シルト、粘土の順に低くなっている。   Compared with all samples, the degree of saturation and specific resistance shift lower as the particle size becomes smaller on both logarithms. No. 3 quartz sand has the highest resistivity under the same saturation conditions, No. 5 quartz sand, Toyoura standard sand, It is lower in the order of silt and clay.

(飽和度と固有熱抵抗との関係)
それぞれ設定した飽和度において計測した熱伝導率と、その値から導いた固有熱抵抗を、上記表6〜表14に示す。また、図6に飽和度と固有熱抵抗の関係を示す。いずれの試料にも、飽和度と固有熱抵抗には負の相関がみられ、飽和度が0〜20%までは固有熱抵抗は急激に低下するが、それより飽和度が高くなると熱抵抗の低下は緩やかとなる。
(Relationship between saturation and specific thermal resistance)
Tables 6 to 14 show the thermal conductivity measured at each set saturation and the specific thermal resistance derived from the values. FIG. 6 shows the relationship between saturation and intrinsic thermal resistance. In each sample, there was a negative correlation between the saturation and the specific thermal resistance, and the specific thermal resistance decreased sharply until the saturation was 0 to 20%, but when the saturation was higher than that, The decline will be gradual.

全試料で比較すると、飽和度が0〜20%では試料による相違が見られるが、飽和度20%以上になるとほぼ同じ値となる。   When all samples are compared, a difference depending on the sample is seen when the degree of saturation is 0 to 20%.

次に、比抵抗と熱抵抗との相関性について検討する。上記表6〜表14及び図3に比抵抗と熱抵抗の相関を示す。上記表6〜表14及び図3からも明らかなように、固有熱抵抗と比抵抗とには明瞭な正の相関性が見られ、試料の粒径が小さくなるに従い両対数上で下側にシフトする。砂試料とシルト・粘土試料との間で差が大きい。   Next, the correlation between specific resistance and thermal resistance will be examined. Tables 6 to 14 and FIG. 3 show the correlation between specific resistance and thermal resistance. As is clear from Tables 6 to 14 and FIG. 3, a clear positive correlation is observed between the specific thermal resistance and the specific resistance. shift. There is a large difference between sand samples and silt / clay samples.

以上の室内試験の結果、物理探査法で得られる物性値(比抵抗)と固有熱抵抗との第1の関係1は以下のようにまとめられる。
(1)比抵抗は固有熱抵抗と良好な相関性を示し、比抵抗の低下に伴い熱抵抗は増加する傾向がある。
(2)試料によって、比抵抗と固有熱抵抗の相関性は異なる。
(3)同じ固有熱抵抗値に対し砂試料の方がシルト・粘土試料より比抵抗は1オーダー以上高い。
As a result of the above laboratory test, the first relationship 1 between the physical property value (specific resistance) obtained by the geophysical exploration method and the specific thermal resistance can be summarized as follows.
(1) The specific resistance shows a good correlation with the specific thermal resistance, and the thermal resistance tends to increase as the specific resistance decreases.
(2) The correlation between the specific resistance and the specific thermal resistance differs depending on the sample.
(3) The specific resistance of the sand sample is one order or more higher than the silt / clay sample for the same specific thermal resistance value.

以上より、土壌の種類が特定できれば、電気探査法による比抵抗分布から熱抵抗分布を算出できることを確認できた。   From the above, it was confirmed that if the type of soil can be specified, the thermal resistance distribution can be calculated from the specific resistance distribution by the electric exploration method.

次に、比抵抗ρと固有熱抵抗gとの関係より、横軸を比抵抗、縦軸を固有熱抵抗の両対数グラフにプロットして試料ごとに累乗近似式を求め(図3)、数式6の実験式を得た。ここで、a,nは土壌に依存する定数である。   Next, from the relationship between the specific resistance ρ and the specific thermal resistance g, the horizontal axis is plotted on a logarithmic graph of the specific resistance and the vertical axis is plotted on the logarithmic graph of the specific thermal resistance to obtain a power approximation formula for each sample (FIG. 3). 6 empirical formulas were obtained. Here, a and n are constants depending on the soil.

<数6> g=aρ <Equation 6> g = aρ n

両対数上でいずれの試料も正の相関性があり、土壌の構成粒子が小さくなるにしたがい、左上側にシフトする傾向がみられる。定数aは砂試料で1.65〜6.05、粘土・シルトで11.9〜12.5を示し、両者に大きな相違が見られる。一方、定数nは砂試料で0.313〜0.451、シルト・粘土で0.477〜0.562を示し、定数aに対し相違は小さい。土壌の種類を識別することで、数式6を使用して固有熱抵抗を求めることができる。   Both samples have a positive correlation on both logarithms, and there is a tendency to shift to the upper left as the soil constituent particles become smaller. The constant a is 1.65 to 6.05 for sand samples and 11.9 to 12.5 for clays and silts, and there is a large difference between them. On the other hand, the constant n is 0.313 to 0.451 for sand samples and 0.477 to 0.562 for silt / clay, and the difference is small with respect to the constant a. By identifying the type of soil, Equation 6 can be used to determine the specific thermal resistance.

1 比抵抗と固有熱抵抗との関係(第1の関係)
2 記憶手段
3 入力手段
4 算出手段
5 固有熱抵抗測定用プログラム
8 関係読込部
9 測定データ読込部
31 第2の関係
1 Relationship between specific resistance and specific thermal resistance (first relationship)
2 Storage means 3 Input means 4 Calculation means 5 Program for measuring specific thermal resistance 8 Relation reading section 9 Measurement data reading section 31 Second relation

Claims (6)

土壌の比抵抗と固有熱抵抗との関係を土壌の種類毎に予め求めておき、調査現場において土壌の比抵抗を実際に計測し、その計測結果を土壌の種類が一致する前記関係に当てはめて前記調査現場の固有熱抵抗を求めることを特徴とする土壌の固有熱抵抗の測定方法。   The relationship between the specific resistance of the soil and the specific heat resistance is determined in advance for each type of soil, the specific resistance of the soil is actually measured at the survey site, and the measurement result is applied to the above-mentioned relationship where the types of soil match. A method for measuring the specific heat resistance of soil, wherein the specific heat resistance at the survey site is obtained. 土壌の種類毎に予め求められた比抵抗と固有熱抵抗との関係を記憶している記憶手段と、調査現場の土壌の種類と前記調査現場における土壌の比抵抗の計測値とを読み込む入力手段と、前記計測値を土壌の種類が一致する前記関係に当てはめて固有熱抵抗を求める算出手段とを備えることを特徴とする土壌の固有熱抵抗測定装置。   Storage means for storing the relationship between specific resistance and specific thermal resistance obtained in advance for each type of soil, and input means for reading the soil type at the survey site and the measured value of the specific resistance of the soil at the survey site And a calculation means for obtaining the specific thermal resistance by applying the measured value to the relationship in which the types of soil coincide with each other. 少なくとも、記憶手段に予め記憶されている土壌の種類毎に求められた比抵抗と固有熱抵抗との関係を読み込む手段、調査現場の土壌の種類と前記調査現場において新たに計測された土壌の比抵抗の計測値とを読み込む手段、前記計測値を土壌の種類が一致する前記関係に当てはめて固有熱抵抗を求める手段としてコンピュータを機能させるための土壌の固有熱抵抗測定用プログラム。   At least means for reading the relationship between the specific resistance and the specific thermal resistance obtained for each kind of soil pre-stored in the storage means, the ratio of the soil type at the survey site and the newly measured soil ratio at the survey site A program for measuring the specific thermal resistance of soil for reading the measured value of resistance and applying the measured value to the relationship in which the types of soil match to determine the specific thermal resistance. 土壌の比抵抗と固有熱抵抗との関係を土壌の種類毎に予め求めて第1の関係とすると共に、土壌の種類とS波速度との関係を地質の種類毎に予め求めて第2の関係とし、調査現場において土壌の比抵抗とS波速度を実際に計測し、前記S波速度の計測値を地質の種類が一致する前記第2の関係に当てはめて土壌の種類を推定すると共に、推定した土壌の種類と一致する前記第1の関係に前記比抵抗の計測値を当てはめて前記調査現場の固有熱抵抗を求めることを特徴とする土壌の固有熱抵抗の測定方法。   The relationship between the specific resistance of the soil and the specific heat resistance is determined in advance for each type of soil and is set as the first relationship, and the relationship between the type of soil and the S wave velocity is determined in advance for each type of geology As a relation, the soil resistivity and S wave velocity are actually measured at the investigation site, and the measured value of the S wave velocity is applied to the second relationship with the same geological type to estimate the type of soil, A specific heat resistance measurement method for soil, wherein the specific heat resistance at the investigation site is obtained by applying the measured value of the specific resistance to the first relationship that matches the estimated kind of soil. 土壌の種類毎に予め求められた比抵抗と固有熱抵抗との第1の関係および地質の種類毎に予め求められた土壌の種類とS波速度との第2の関係を記憶している記憶手段と、調査現場の地質の種類および前記調査現場における土壌のS波速度の計測値および前記調査現場における土壌の比抵抗の計測値を読み込む入力手段と、前記S波速度の計測値を地質の種類が一致する前記第2の関係に当てはめて土壌の種類を推定すると共に、推定した土壌の種類と一致する前記第1の関係に前記比抵抗の計測値を当てはめて固有熱抵抗を求める算出手段とを備えることを特徴とする土壌の固有熱抵抗測定装置。   A memory storing a first relationship between specific resistance and specific thermal resistance obtained in advance for each soil type and a second relationship between soil type and S wave velocity obtained in advance for each geological type Means, input means for reading the measured geological type of the survey site, the measured value of the S wave velocity of the soil at the survey site and the measured value of the specific resistance of the soil at the survey site, and the measured value of the S wave velocity A calculating means for estimating the specific thermal resistance by applying the second relation of matching type to estimate the kind of soil and applying the measured value of the specific resistance to the first relation of matching the estimated kind of soil. An apparatus for measuring the specific thermal resistance of soil, comprising: 少なくとも、記憶手段に予め記憶されている土壌の種類毎に求められた比抵抗と固有熱抵抗との関係である第1の関係および地質の種類毎に予め求められた土壌の種類とS波速度との関係である第2の関係を読み込む手段、調査現場の地質の種類および前記調査現場において新たに計測された土壌のS波速度の計測値および前記調査現場において新たに計測された土壌の比抵抗の計測値を読み込む手段、前記S波速度の計測値を地質の種類が一致する前記第2の関係に当てはめて土壌の種類を推定すると共に、推定した土壌の種類と一致する前記第1の関係に前記土壌の比抵抗の計測値を当てはめて固有熱抵抗を求める手段としてコンピュータを機能させるための土壌の固有熱抵抗測定用プログラム。

At least the first relationship that is the relationship between the specific resistance and the specific thermal resistance obtained for each type of soil stored in advance in the storage means, and the soil type and S wave velocity that are determined in advance for each type of geology Means for reading the second relationship which is the relationship between the soil, the type of geology at the survey site, the measured value of the S wave velocity of the soil newly measured at the survey site, and the ratio of the soil newly measured at the survey site Means for reading the measured value of the resistance, applying the measured value of the S wave velocity to the second relationship in which the geological type matches, estimating the soil type, and matching the estimated first soil type A program for measuring the specific heat resistance of soil for causing the computer to function as a means for obtaining the specific heat resistance by applying the measured value of the specific resistance of the soil to the relationship.

JP2010116755A 2009-05-20 2010-05-20 Measuring method, measuring apparatus and measuring program for specific heat resistance of soil Active JP5698467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010116755A JP5698467B2 (en) 2009-05-20 2010-05-20 Measuring method, measuring apparatus and measuring program for specific heat resistance of soil

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009122159 2009-05-20
JP2009122159 2009-05-20
JP2010116755A JP5698467B2 (en) 2009-05-20 2010-05-20 Measuring method, measuring apparatus and measuring program for specific heat resistance of soil

Publications (2)

Publication Number Publication Date
JP2011002448A JP2011002448A (en) 2011-01-06
JP5698467B2 true JP5698467B2 (en) 2015-04-08

Family

ID=43560497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010116755A Active JP5698467B2 (en) 2009-05-20 2010-05-20 Measuring method, measuring apparatus and measuring program for specific heat resistance of soil

Country Status (1)

Country Link
JP (1) JP5698467B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5250061B2 (en) 2011-01-07 2013-07-31 株式会社エヌ・ティ・ティ・ドコモ COMMUNICATION CONTROL METHOD, MOBILE COMMUNICATION SYSTEM, AND MOBILE TERMINAL DEVICE
JP5944730B2 (en) * 2012-04-24 2016-07-05 東亜建設工業株式会社 Construction management method for residual soil saturation
JP5872967B2 (en) * 2012-06-05 2016-03-01 大成建設株式会社 Management method of fine aggregate moisture content
CN113075250B (en) * 2021-01-11 2022-12-09 太原碧蓝水利工程设计股份有限公司 Normal temperature heat conductivity coefficient prediction model

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62133343A (en) * 1985-12-06 1987-06-16 Kandenkou:Kk Method for measuring moisture content of ground
JP2003035691A (en) * 2001-07-23 2003-02-07 Univ Kansai Apparatus for measuring geological characteristic in rock

Also Published As

Publication number Publication date
JP2011002448A (en) 2011-01-06

Similar Documents

Publication Publication Date Title
Tarantino et al. Field measurement of suction, water content, and water permeability
US7040145B2 (en) Method and apparatus for measuring dry density and water content of soil
Long et al. Relationship between electrical resistivity and basic geotechnical parameters for marine clays
Vaz et al. Contribution of water content and bulk density to field soil penetration resistance as measured by a combined cone penetrometer–TDR probe
Doussan et al. Prediction of unsaturated soil hydraulic conductivity with electrical conductivity
JP5698467B2 (en) Measuring method, measuring apparatus and measuring program for specific heat resistance of soil
Wang et al. A laboratory study of the correlation between the thermal conductivity and electrical resistivity of soil
KR101651536B1 (en) System for evaluating compaction degree of railway roadbed using tdr (time domain reflectometry),and method for the same
Hazreek et al. Soil identification using field electrical resistivity method
Peng et al. An improved thermo‐TDR technique for monitoring soil thermal properties, water content, bulk density, and porosity
Olafuyi et al. Spontaneous imbibition in small cores
Drnevich et al. Water content and density of soil insitu by the purdue TDR method
Jung et al. Effects of temperature compensation on electrical resistivity during subsurface characterization
Curioni et al. Extending TDR capability for measuring soil density and water content for field condition monitoring
Ahmad Afip et al. Measurement of peat soil shear strength using Wenner four-point probes and vane shear strength methods
CN216767359U (en) Fracturing monitoring experiment device
Carpenter Jr et al. Designing for a low resistance earth interface (grounding)
Lin et al. Development of TDR penetrometer through theoretical and laboratory investigations: 2. Measurement of soil electrical conductivity
Adelakun et al. Design of a multilevel TDR probe for measuring soil water content at different depths
Cassiani et al. Time-lapse surface-to-surface GPR measurements to monitor a controlled infiltration experiment
CN106442621A (en) In-situ measurement probe for stratigraphic thermophysical parameters
Thakur et al. Evaluation of various pedo-transfer functions for developing soil-water characteristic curve of a silty soil
Al-Shammary et al. A new digital electromechanical system for measurement of soil bulk density
Vaz Use of a combined penetrometer-TDR moisture probe for soil compaction studies
French et al. Cold regions hydrogeophysics: Physical characterisation and monitoring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150213

R150 Certificate of patent or registration of utility model

Ref document number: 5698467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250