JP5872545B2 - Thermally conductive composition and method for producing thermal conductor - Google Patents

Thermally conductive composition and method for producing thermal conductor Download PDF

Info

Publication number
JP5872545B2
JP5872545B2 JP2013507784A JP2013507784A JP5872545B2 JP 5872545 B2 JP5872545 B2 JP 5872545B2 JP 2013507784 A JP2013507784 A JP 2013507784A JP 2013507784 A JP2013507784 A JP 2013507784A JP 5872545 B2 JP5872545 B2 JP 5872545B2
Authority
JP
Japan
Prior art keywords
silver
conductive composition
heat
fine particles
heat conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013507784A
Other languages
Japanese (ja)
Other versions
JPWO2012133767A1 (en
Inventor
亜由子 鈴木
亜由子 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namics Corp
Original Assignee
Namics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namics Corp filed Critical Namics Corp
Priority to JP2013507784A priority Critical patent/JP5872545B2/en
Publication of JPWO2012133767A1 publication Critical patent/JPWO2012133767A1/en
Application granted granted Critical
Publication of JP5872545B2 publication Critical patent/JP5872545B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/8388Hardening the adhesive by cooling, e.g. for thermoplastics or hot-melt adhesives

Description

本発明は、熱伝導性組成物及びそれを加熱処理して得られる熱伝導体に関する。   The present invention relates to a heat conductive composition and a heat conductor obtained by heat-treating the composition.

従来、半導体チップをリードフレーム等の金属板に接着・固定(ダイボンディング)するために、銀粉末、熱硬化性樹脂、及び溶剤を含む銀ペーストが用いられている。この銀ペーストを用いてチップを接着・固定した場合には、銀は高い熱伝導率を有しているために、チップで発生した熱を速やかにリードフレームに逃がすことができる。また、樹脂の硬化温度が比較的低いために、チップの接着・固定の際に、チップが熱によって劣化を起こしにくい。また、銀ペーストに含まれる銀や樹脂は、金などに比べて安価である。さらには、銀ペーストに含まれる粘度調製剤(溶剤)の添加量を調整することによって、銀ペーストの粘度やチクソトロピーを制御できる。銀ペーストは、取り扱いが容易であるため、印刷による塗布や、注入、滴下等により、接着面へ選択的にかつ一定量付与することができる。このため、銀ペーストは、チップの接着・固定に多く用いられている。   Conventionally, a silver paste containing silver powder, a thermosetting resin, and a solvent has been used for bonding and fixing (die bonding) a semiconductor chip to a metal plate such as a lead frame. When the chip is bonded and fixed using this silver paste, the heat generated in the chip can be quickly released to the lead frame because silver has a high thermal conductivity. Further, since the curing temperature of the resin is relatively low, the chip is not easily deteriorated by heat when the chip is bonded and fixed. Further, silver and resin contained in the silver paste are cheaper than gold. Furthermore, the viscosity and thixotropy of the silver paste can be controlled by adjusting the addition amount of the viscosity adjusting agent (solvent) contained in the silver paste. Since the silver paste is easy to handle, it can be applied selectively and in a certain amount to the adhesive surface by application by printing, injection, dripping or the like. For this reason, silver paste is often used for bonding and fixing chips.

このような銀ペーストとして、特許文献1には、銀粉、熱硬化性樹脂および溶剤を含有する導電性ペーストに、銀粉よりも小さい球状の銀微粒子を混在させてなる銀ペーストが開示されている。特許文献2には、銀粉、熱硬化性樹脂、及びスルフィド結合と水酸基を有する化合物を含む熱伝導性樹脂組成物が開示されている。特許文献3には、高級脂肪酸または高級脂肪酸の誘導体で被覆された銀粒子を加熱処理して得られる電子回路接続用バンプの製造方法が開示されている。特許文献4には、銀イオンを還元して得られる銀微粒子と、接着剤成分としての熱硬化性樹脂とを含む、熱伝導性に優れる接着ペーストが開示されている。   As such a silver paste, Patent Document 1 discloses a silver paste in which spherical silver fine particles smaller than silver powder are mixed in a conductive paste containing silver powder, a thermosetting resin, and a solvent. Patent Document 2 discloses a thermally conductive resin composition containing silver powder, a thermosetting resin, and a compound having a sulfide bond and a hydroxyl group. Patent Document 3 discloses a method for producing a bump for connecting an electronic circuit obtained by heat-treating silver particles coated with a higher fatty acid or a derivative of higher fatty acid. Patent Document 4 discloses an adhesive paste having excellent thermal conductivity, including silver fine particles obtained by reducing silver ions and a thermosetting resin as an adhesive component.

特開平11−150135号公報JP-A-11-150135 特開2009−191214号公報JP 2009-191214 A 特開2009−289745号公報JP 2009-289745 A 特開2003−183616号公報JP 2003-183616 A

近年、半導体チップを用いた電子部品の高性能化により、チップからの発熱量が増加しており、チップをリードフレームに接着・固定するための銀ペーストには、高い熱伝導率を有することがより強く要求されている。   In recent years, the amount of heat generated from the chip has increased due to the high performance of electronic components using semiconductor chips, and the silver paste for bonding and fixing the chip to the lead frame has a high thermal conductivity. There is a stronger demand.

そこで、本発明は、高い熱伝導率を有する熱伝導体を得ることのできる熱伝導性組成物を提供することを目的とする。   Then, an object of this invention is to provide the heat conductive composition which can obtain the heat conductor which has high heat conductivity.

本発明者らは、上記の課題を解決するために研究を行った。
その結果、本発明者らは、銀粉と、銀微粒子と、脂肪酸銀と、アミンとを含有する熱伝導性組成物を用いることによって、従来の銀粉及び銀微粒子を含む銀ペーストよりも、高い熱伝導率を有する熱伝導体が得られることを発見した。
本発明は、このような新規な発見に基づいて完成されたものである。
The present inventors have conducted research in order to solve the above problems.
As a result, the present inventors use a thermally conductive composition containing silver powder, silver fine particles, fatty acid silver, and an amine, so that the heat is higher than that of conventional silver powder and silver paste containing silver fine particles. It has been discovered that a thermal conductor with conductivity can be obtained.
The present invention has been completed based on such a novel discovery.

本発明は、(A)銀粉と、(B)銀微粒子と、(C)脂肪酸銀と、(D)アミンとを含有することを特徴とする熱伝導性組成物である。   The present invention is a thermally conductive composition characterized by containing (A) silver powder, (B) silver fine particles, (C) fatty acid silver, and (D) amine.

前記(A)銀粉は、平均粒径が0.3μm〜100μmであることが好ましい。   The (A) silver powder preferably has an average particle size of 0.3 μm to 100 μm.

前記(B)銀微粒子は、
1次粒子の平均粒子径が50〜150nmであり、
結晶子径が20〜50nmであり、かつ、
結晶子径に対する平均粒子径の比が1〜7.5であることが好ましい。
The silver fine particles (B)
The average particle diameter of the primary particles is 50 to 150 nm,
The crystallite diameter is 20-50 nm, and
The ratio of the average particle diameter to the crystallite diameter is preferably 1 to 7.5.

前記(B)銀微粒子は、カルボン酸の銀塩と脂肪族第一級アミンとを混合し、次いで還元剤を添加して、反応温度20〜80℃で銀微粒子を析出させることにより製造されたものであることが好ましい。   The silver fine particles (B) were produced by mixing a silver salt of a carboxylic acid and an aliphatic primary amine and then adding a reducing agent to precipitate silver fine particles at a reaction temperature of 20 to 80 ° C. It is preferable.

本発明の熱伝導性組成物は、さらに、(E)銀レジネートを含有することが好ましい。   It is preferable that the heat conductive composition of this invention contains (E) silver resinate further.

本発明の熱伝導性組成物は、さらに、(F)樹脂を含有することが好ましい。   It is preferable that the heat conductive composition of this invention contains (F) resin further.

本発明は、上記いずれかの熱伝導性組成物を100〜400℃の温度範囲で加熱処理して得られる熱伝導体を提供する。   This invention provides the heat conductor obtained by heat-processing one of the said heat conductive compositions in the temperature range of 100-400 degreeC.

本発明は、上記いずれかの熱伝導性組成物を含む接着剤を提供する。
本発明は、上記の熱伝導体を含む電子部品を提供する。
This invention provides the adhesive agent containing one of the said heat conductive compositions.
The present invention provides an electronic component including the above heat conductor.

本発明によれば、高い熱伝導率を有する熱伝導体を得ることのできる熱伝導性組成物を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the heat conductive composition which can obtain the heat conductor which has high heat conductivity can be provided.

実施例1〜3の熱伝導性組成物より得られた熱伝導体膜の断面の電子顕微鏡写真を示している。The electron micrograph of the cross section of the heat conductive film obtained from the heat conductive composition of Examples 1-3 is shown. 比較例1〜3の熱伝導性組成物より得られた熱伝導体膜の断面の電子顕微鏡写真を示している。The electron micrograph of the cross section of the heat conductive film obtained from the heat conductive composition of Comparative Examples 1-3 is shown.

以下、本発明を実施するための形態について詳細に説明する。
本発明の実施形態に係る熱伝導性組成物は、(A)銀粉、(B)銀微粒子、(C)脂肪酸銀、及び(D)アミンを含有することを特徴とする。
Hereinafter, embodiments for carrying out the present invention will be described in detail.
The heat conductive composition which concerns on embodiment of this invention is characterized by containing (A) silver powder, (B) silver fine particle, (C) fatty acid silver, and (D) amine.

(A)銀粉
本発明における銀粉としては、純銀または銀合金からなる粉末を用いることができる。銀粉の形状は、特に限定されず、例えば、球状、粒状、あるいはフレーク状(鱗片状)の銀粉を用いることが可能である。
(A) Silver powder As silver powder in this invention, the powder which consists of pure silver or a silver alloy can be used. The shape of the silver powder is not particularly limited, and for example, spherical, granular, or flaky (flaky) silver powder can be used.

本発明において用いる銀粉の平均粒径は、0.3μm〜100μmが好ましく、より好ましくは1μm〜50μmであり、最も好ましくは2.4μm〜16μmである。ここでいう平均粒径は、レーザー回折散乱式粒度分布測定法により得られる一次粒子の平均粒径(D50)のことを意味する。   The average particle diameter of the silver powder used in the present invention is preferably 0.3 μm to 100 μm, more preferably 1 μm to 50 μm, and most preferably 2.4 μm to 16 μm. The average particle size here means the average particle size (D50) of primary particles obtained by a laser diffraction / scattering particle size distribution measurement method.

熱伝導体の熱伝導率を高くするためには、熱伝導性組成物に含まれる銀粉の粒径を大きくするのが好ましい。しかし、銀粉の粒径が大きすぎる場合、熱伝導性組成物のデバイスへの塗布特性や作業性が損なわれることになる。したがって、デバイスへの塗布特性や作業性が損なわれない限りにおいて、粒径の大きい銀粉を用いることが好ましい。これらのことを考慮すると、本発明において用いる銀粉の平均粒径は、上記の範囲であることが好ましい。   In order to increase the thermal conductivity of the thermal conductor, it is preferable to increase the particle size of the silver powder contained in the thermal conductive composition. However, if the particle size of the silver powder is too large, the coating properties and workability of the thermally conductive composition on the device will be impaired. Therefore, it is preferable to use silver powder having a large particle size as long as the coating properties and workability to the device are not impaired. Considering these matters, the average particle diameter of the silver powder used in the present invention is preferably in the above range.

また、充填密度(タップ密度)が高い銀粉を用いることによって、銀粉同士の接触点あるいは接触面を増やすことができる。その結果、銀粉同士の熱伝導点あるいは熱伝導面を増やすことができる。銀粉の充填密度をより高くするためには、粒度分布及び/又は形状の異なる複数種の銀粉を混合して用いることが好ましい。   Moreover, the contact point or contact surface of silver powder can be increased by using silver powder with a high filling density (tap density). As a result, the heat conduction point or heat conduction surface between silver powders can be increased. In order to increase the packing density of silver powder, it is preferable to use a mixture of a plurality of types of silver powder having different particle size distributions and / or shapes.

本発明の熱伝導性組成物は、銀粉同士の熱伝導点における金属融着を促進するための添加剤を含んでいる。このような添加剤を含むことによって、熱伝導性組成物を加熱して得られる熱伝導体の内部に、より大きな熱伝導パスが形成される。本発明では、このような添加剤として、後述の(C)脂肪酸銀、及び、(D)アミンを用いている。   The heat conductive composition of the present invention contains an additive for promoting metal fusion at a heat conduction point between silver powders. By including such an additive, a larger heat conduction path is formed inside the heat conductor obtained by heating the heat conductive composition. In the present invention, the following (C) fatty acid silver and (D) amine are used as such additives.

銀粉の製造方法は、特に限定されない。銀粉は、例えば、還元法、粉砕法、電解法、アトマイズ法、熱処理法、あるいはそれらの組合せによって製造することができる。フレーク状の銀粉は、例えば、球状または粒状の銀粒子を、ボールミル等によって押し潰すことによって製造することができる。   The method for producing silver powder is not particularly limited. Silver powder can be produced by, for example, a reduction method, a pulverization method, an electrolysis method, an atomization method, a heat treatment method, or a combination thereof. The flaky silver powder can be produced, for example, by crushing spherical or granular silver particles with a ball mill or the like.

(B)銀微粒子
本発明における銀微粒子は、例えば、上記した銀粉よりも相対的に小さい平均粒径を有する、純銀あるいは銀合金からなる粒子である。
(B) Silver fine particles The silver fine particles in the present invention are, for example, particles made of pure silver or a silver alloy having an average particle size relatively smaller than that of the above-described silver powder.

本発明の銀微粒子は、1次粒子の平均粒径が40〜150nmであり、好ましくは50〜150nmであり、より好ましくは70〜140nmである。銀微粒子の平均粒径がこの範囲であると、銀微粒子の凝集が抑制され、銀ペーストの保存安定性が良好になる。なお、ここでいう平均粒径は、走査型電子顕微鏡(SEM)で粒子を観察して画像解析により求めたヘイウッド径の平均値のことを意味する。   In the silver fine particles of the present invention, the average particle size of primary particles is 40 to 150 nm, preferably 50 to 150 nm, and more preferably 70 to 140 nm. When the average particle diameter of the silver fine particles is within this range, aggregation of the silver fine particles is suppressed, and the storage stability of the silver paste is improved. Here, the average particle diameter means an average value of Haywood diameters obtained by observing particles with a scanning electron microscope (SEM) and image analysis.

本発明において用いる銀微粒子は、結晶子径が15〜50nmであり、好ましくは20〜50nmである。結晶子径がこの範囲であると、熱伝導性組成物を加熱処理した時の体積収縮が抑制されるとともに、加熱処理後に形成される熱伝導体の緻密性や表面平滑性が向上する。なお、この結晶子径は、CuのKα線を線源とした粉末X線回折法による測定から、面指数(1,1,1)面ピークの半値幅を求め、Scherrerの式より計算した値のことを意味する。   The silver fine particles used in the present invention have a crystallite diameter of 15 to 50 nm, preferably 20 to 50 nm. When the crystallite diameter is within this range, volume shrinkage when the heat conductive composition is heat-treated is suppressed, and the denseness and surface smoothness of the heat conductor formed after the heat treatment are improved. The crystallite diameter is a value calculated from Scherrer's equation by obtaining the half-value width of the plane index (1,1,1) plane peak from powder X-ray diffractometry using Cu Kα ray as a radiation source. Means that.

本発明において用いる銀微粒子は、1次銀微粒子の結晶子径に対する平均粒子径の比(平均粒子径/結晶子径)が1〜10であり、好ましくは1〜7.5であり、より好ましくは1〜5の範囲である。   In the silver fine particles used in the present invention, the ratio of the average particle diameter to the crystallite diameter of the primary silver fine particles (average particle diameter / crystallite diameter) is 1 to 10, preferably 1 to 7.5, more preferably. Is in the range of 1-5.

本発明において用いる銀微粒子は、カルボン酸の銀塩と脂肪族第一級アミンとを混合し、次いで還元剤を添加して、反応温度20〜80℃で銀微粒子を析出させることにより製造することができる。   The silver fine particles used in the present invention are produced by mixing a silver salt of a carboxylic acid and an aliphatic primary amine and then adding a reducing agent to precipitate silver fine particles at a reaction temperature of 20 to 80 ° C. Can do.

はじめに、カルボン酸の銀塩と脂肪族第一級アミンとを混合して、カルボン酸の銀塩を溶解させた溶液を得る。溶液中では、カルボン酸の銀塩に脂肪族第一級アミンが配位し、一種のアミン錯体を形成していると考えられる。   First, a silver salt of carboxylic acid and an aliphatic primary amine are mixed to obtain a solution in which the silver salt of carboxylic acid is dissolved. In solution, it is considered that an aliphatic primary amine is coordinated to a silver salt of carboxylic acid to form a kind of amine complex.

カルボン酸の銀塩は、脂肪族、芳香族いずれのカルボン酸の銀塩であってもよい。また、カルボン酸の銀塩は、モノカルボン酸の銀塩であっても、ジカルボン酸等のポリカルボン酸の銀塩であってもよい。脂肪族カルボン酸の銀塩は、鎖状脂肪族カルボン酸の銀塩であっても、環状脂肪族カルボン酸の銀塩であってもよい。脂肪族カルボン酸の銀塩は、好ましくは鎖状脂肪族モノカルボン酸の銀塩であり、より好ましくは、酢酸銀、プロピオン酸銀又は酪酸銀であり、特に好ましくは、酢酸銀である。これらは、1種類のみを使用してもよいし、2種以上を併用してもよい。   The silver salt of a carboxylic acid may be a silver salt of any aliphatic or aromatic carboxylic acid. The silver salt of carboxylic acid may be a silver salt of monocarboxylic acid or a silver salt of polycarboxylic acid such as dicarboxylic acid. The silver salt of an aliphatic carboxylic acid may be a silver salt of a chain aliphatic carboxylic acid or a silver salt of a cyclic aliphatic carboxylic acid. The silver salt of an aliphatic carboxylic acid is preferably a silver salt of a chain aliphatic monocarboxylic acid, more preferably silver acetate, silver propionate or silver butyrate, and particularly preferably silver acetate. These may use only 1 type and may use 2 or more types together.

脂肪族第一級アミンは、鎖状脂肪族第一級アミンであっても、環状脂肪族第一級アミンであってもよい。また、モノアミン化合物であっても、ジアミン化合物等のポリアミン化合物であってもよい。脂肪族第一級アミンには、脂肪族炭化水素基の水素原子が、ヒドロキシル基、メトキシ基、エトキシ基等のアルコキシ基で置換されたものであってもよい。脂肪族第一級アミンは、より好ましくは、3−メトキシプロピルアミン、3−アミノプロパノール、又は1,2−ジアミノシクロヘキサンである。これらは、1種類のみを使用してもよいし、2種以上を併用してもよい。   The aliphatic primary amine may be a chain aliphatic primary amine or a cyclic aliphatic primary amine. Moreover, even if it is a monoamine compound, polyamine compounds, such as a diamine compound, may be sufficient. The aliphatic primary amine may be one in which a hydrogen atom of an aliphatic hydrocarbon group is substituted with an alkoxy group such as a hydroxyl group, a methoxy group, or an ethoxy group. The aliphatic primary amine is more preferably 3-methoxypropylamine, 3-aminopropanol, or 1,2-diaminocyclohexane. These may use only 1 type and may use 2 or more types together.

脂肪族第一級アミンの使用量は、カルボン酸の銀塩1当量に対して、1当量以上であることが好ましい。脂肪族第一級アミンの使用量は、カルボン酸の銀塩1当量に対して、1.0〜3.0当量であることが好ましく、より好ましくは1.0〜2.0当量であり、特に好ましくは1.2〜1.8当量である。   The amount of the aliphatic primary amine used is preferably 1 equivalent or more with respect to 1 equivalent of the silver salt of carboxylic acid. The amount of the aliphatic primary amine used is preferably 1.0 to 3.0 equivalents, more preferably 1.0 to 2.0 equivalents, relative to 1 equivalent of the silver salt of the carboxylic acid. Particularly preferred is 1.2 to 1.8 equivalents.

カルボン酸の銀塩と脂肪族第一級アミンとの混合は、有機溶媒の非存在下又は存在下で行うことができる。有機溶媒の使用により、混合を容易にすることができる。有機溶媒の例としては、エタノール、プロパノール、ブタノール等のアルコール類、プロピレングリコールジブチルエーテル等のエーテル類、トルエン等の芳香族炭化水素等が挙げられる。これらの有機溶媒は、1種類のみを使用してもよく、2種以上を併用してもよい。有機溶媒の使用量は任意であり、混合のしやすさ、後の工程での銀微粒子の生産性等を考慮して決定することができる。   Mixing of the silver salt of the carboxylic acid and the aliphatic primary amine can be performed in the absence or presence of an organic solvent. Mixing can be facilitated by the use of organic solvents. Examples of the organic solvent include alcohols such as ethanol, propanol and butanol, ethers such as propylene glycol dibutyl ether, and aromatic hydrocarbons such as toluene. These organic solvents may use only 1 type and may use 2 or more types together. The amount of the organic solvent used is arbitrary, and can be determined in consideration of ease of mixing, productivity of silver fine particles in a later step, and the like.

カルボン酸塩の銀塩と脂肪族第一級アミンとを混合するためには、例えば、第一級脂肪族アミン、又は第一級脂肪族アミンと有機溶媒の混合物を攪拌しながら、カルボン酸の銀塩をこれに添加する。添加終了後も、適宜、攪拌を続けることができる。その間、温度を、20〜80℃に維持することが好ましく、20〜60℃に維持することがより好ましい。   In order to mix the silver salt of the carboxylate and the aliphatic primary amine, for example, while stirring the primary aliphatic amine or the mixture of the primary aliphatic amine and the organic solvent, Silver salt is added to this. Stirring can be continued as appropriate even after the end of the addition. In the meantime, it is preferable to maintain temperature at 20-80 degreeC, and it is more preferable to maintain at 20-60 degreeC.

その後、カルボン酸の銀塩と脂肪族第一級アミンとの混合物に還元剤を添加して、銀微粒子を析出させる。還元剤は、反応の制御の点から、ギ酸、ホルムアルデヒド、アスコルビン酸又はヒドラジンが好ましく、より好ましくは、ギ酸である。これらは1種類のみをしてもよく、2種以上を併用してもよい。還元剤の使用量は、カルボン酸の銀塩に対して酸化還元当量以上であることが好ましく、より好ましくは酸化還元当量の1〜3倍である。   Thereafter, a reducing agent is added to the mixture of the silver salt of carboxylic acid and the aliphatic primary amine to precipitate silver fine particles. The reducing agent is preferably formic acid, formaldehyde, ascorbic acid or hydrazine, more preferably formic acid, from the viewpoint of reaction control. These may be used alone or in combination of two or more. The amount of the reducing agent used is preferably not less than the redox equivalent relative to the silver salt of the carboxylic acid, more preferably 1 to 3 times the redox equivalent.

還元剤の添加及びその後の反応の間は、温度を20℃〜80℃に維持する。温度は、20〜70℃が好ましく、20〜60℃がより好ましい。温度がこの範囲にあると、銀微粒子が十分に成長するとともに、生産性が高くなり、銀微粒子の二次凝集も抑制される。還元剤の添加及びその後の反応に要する時間は、反応装置の規模にも依存するが、通常、10分〜10時間である。なお、還元剤の添加及びその後の反応に際して、必要に応じて、エタノール、プロパノール、ブタノール等のアルコール類、プロピレングリコールジブチルエーテル等のエーテル類、トルエン等の芳香族炭化水素等の有機溶媒を追加で添加することができる。   The temperature is maintained between 20 ° C. and 80 ° C. during the addition of the reducing agent and the subsequent reaction. The temperature is preferably 20 to 70 ° C, and more preferably 20 to 60 ° C. When the temperature is within this range, the silver fine particles are sufficiently grown, the productivity is increased, and secondary aggregation of the silver fine particles is also suppressed. The time required for the addition of the reducing agent and the subsequent reaction is usually 10 minutes to 10 hours, depending on the scale of the reactor. In addition, in the addition of the reducing agent and the subsequent reaction, an organic solvent such as an alcohol such as ethanol, propanol or butanol, an ether such as propylene glycol dibutyl ether, or an aromatic hydrocarbon such as toluene is added as necessary. Can be added.

還元剤の添加及びその後の反応においては、カルボン酸の銀塩と脂肪族第一級アミンとを混合した溶液と、還元剤と、有機溶媒との合計の容積(L)に対する、カルボン酸の銀塩の量(mol)は、1.0〜6.0mol/Lであることが好ましく、2.0〜5.0mol/Lであることがより好ましく、2.0〜4.0mol/Lであることがさらに好ましい。カルボン酸の銀塩の濃度がこの範囲にある場合、反応液の攪拌を十分に行うことが可能であり、反応熱を除去することができる。その結果、析出する銀微粒子の平均粒径が適切となるため、後の工程で行われる沈降デカント、溶媒置換等の操作に支障が生じることを防止することができる。   In the addition of the reducing agent and the subsequent reaction, the silver of the carboxylic acid with respect to the total volume (L) of the mixed solution of the silver salt of the carboxylic acid and the aliphatic primary amine, the reducing agent, and the organic solvent. The amount (mol) of the salt is preferably 1.0 to 6.0 mol / L, more preferably 2.0 to 5.0 mol / L, and 2.0 to 4.0 mol / L. More preferably. When the concentration of the carboxylic acid silver salt is within this range, the reaction solution can be sufficiently stirred, and the heat of reaction can be removed. As a result, since the average particle diameter of the silver fine particles to be precipitated becomes appropriate, it is possible to prevent troubles in operations such as precipitation decantation and solvent replacement performed in the subsequent steps.

カルボン酸の銀塩と脂肪族第一級アミンとを混合した溶液と、任意の有機溶媒とを反応容器に入れた後、この反応容器に還元剤を連続的に供給する。このようなセミバッチ方式で反応を行った場合、還元剤の添加開始から反応終了までの1時間当たりの銀微粒子の析出量は、例えば0.3〜1.0mol/h/Lとなる。したがって、セミバッチ方式で反応を行った場合、銀微粒子の生産性は非常に大きくなる。ここでいう銀微粒子の析出量は、カルボン酸の銀塩と脂肪族第一級アミンとを混合した溶液と、還元剤と、有機溶媒の合計の容積1Lに対する、銀微粒子の析出量を意味する。連続反応方式(連続式完全混合糟、流通式)で反応を行った場合、銀微粒子の生産性はさらに大きくなる。   A solution obtained by mixing a silver salt of a carboxylic acid and an aliphatic primary amine and an arbitrary organic solvent are placed in a reaction vessel, and then a reducing agent is continuously supplied to the reaction vessel. When the reaction is performed in such a semi-batch mode, the amount of silver fine particles deposited per hour from the start of addition of the reducing agent to the end of the reaction is, for example, 0.3 to 1.0 mol / h / L. Therefore, when the reaction is performed in a semi-batch mode, the productivity of silver fine particles becomes very large. The amount of silver fine particles referred to here means the amount of silver fine particles deposited with respect to a total volume of 1 L of a solution obtained by mixing a silver salt of a carboxylic acid and an aliphatic primary amine, a reducing agent, and an organic solvent. . When the reaction is carried out by a continuous reaction system (continuous complete mixing tank, flow system), the productivity of silver fine particles is further increased.

上記の反応により析出した銀微粒子を沈降させた後、デカンテーション等により上澄みを除去するか、又は、アルコール等の溶媒、例えば、メタノール、エタノール、テルピネオール等を添加する。これにより、反応液から銀微粒子を分離することができる。   After the silver fine particles precipitated by the above reaction are allowed to settle, the supernatant is removed by decantation or the like, or a solvent such as alcohol, for example, methanol, ethanol, terpineol or the like is added. Thereby, silver fine particles can be separated from the reaction solution.

なお、上記で説明した銀微粒子の製造方法自体は公知であり、例えば特開2006−183072号公報に開示されている。   In addition, the manufacturing method itself of the silver fine particle demonstrated above is well-known, For example, it is disclosed by Unexamined-Japanese-Patent No. 2006-183072.

(C)脂肪酸銀
本発明における脂肪酸銀としては、例えば、酢酸、プロピオン酸、酪酸、カプリル酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、アクリル酸、オレイン酸、リノール酸、アラキドン酸などの銀塩を用いることができる。この中では、酢酸の銀塩を用いることが最も好ましい。
また、(C)脂肪酸銀として、上記(B)銀微粒子の原料であるカルボン酸の銀塩を用いることもできる。
(C) Fatty acid silver Examples of the fatty acid silver in the present invention include acetic acid, propionic acid, butyric acid, caprylic acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, acrylic acid, oleic acid, linoleic acid, and arachidone. Silver salts such as acids can be used. Of these, the silver salt of acetic acid is most preferably used.
Moreover, the silver salt of the carboxylic acid which is a raw material of the said (B) silver fine particle can also be used as (C) fatty acid silver.

(D)アミン
本発明におけるアミンとしては、第1級アミン、第2級アミン、第3級アミンのいずれであっても用いることができる。アミンの例としては、脂肪族アミン、芳香族アミン、変性ポリアミン(例えば、ポリアミノアミド、ポリアミノイミド、ポリアミノエステル、ポリアミノ尿素、ポリエーテル変性アミンなど)、第三級アミン化合物、イミダゾール化合物(例えば、2−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、2−フェニル−4−メチル −5−ヒドロキシメチルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2,2−ジアミノ−6−[2'−メチルイミダゾリル−(1')]−エチル−s−トリアジンなど)、ヒドラジド化合物、ジシアンアミド化合物、メラミン化合物などが挙げられる。
また、(D)アミンとして、上記(B)銀微粒子の原料である脂肪族第1級アミンを用いることもできる。
(D) Amine As the amine in the present invention, any of primary amine, secondary amine, and tertiary amine can be used. Examples of amines include aliphatic amines, aromatic amines, modified polyamines (eg, polyaminoamides, polyaminoimides, polyaminoesters, polyaminoureas, polyether-modified amines), tertiary amine compounds, imidazole compounds (eg, 2 -Methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2,2-diamino- 6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine, etc.), hydrazide compounds, dicyanamide compounds, melamine compounds and the like.
Further, as the (D) amine, an aliphatic primary amine which is a raw material for the above (B) silver fine particles can also be used.

(E)銀レジネート
本発明の熱伝導性組成物は、さらに、(E)銀レジネートを含有することが好ましい。
本発明において用いる銀レジネートは、以下の式(1)で表される化合物である。
R−S−Ag …(1)
(E) Silver resinate It is preferable that the heat conductive composition of this invention contains (E) silver resinate further.
The silver resinate used in the present invention is a compound represented by the following formula (1).
R-S-Ag (1)

上式(1)において、Agは銀原子を表しており、Sは硫黄原子を表しており、Rはアルキル基を表している。Rで表されるアルキル基の炭素数に特に制限はなく、炭素数は任意である。また、アルキル基は、直鎖状、分岐状、環状のいずれであってもよい。また、アルキル基は、飽和炭化水素から1個の水素を取り除いたアルキル基であってもよいし、不飽和炭化水素から1個の水素を取り除いたアルキル基であってもよい。また、アルキル基は、連続する炭素原子同士の間が酸素原子によって分断されていてもよい。また、アルキル基の水素原子の一部が、ヒドロキシル基等の他の官能基によって置換されていてもよい。   In the above formula (1), Ag represents a silver atom, S represents a sulfur atom, and R represents an alkyl group. There is no restriction | limiting in particular in carbon number of the alkyl group represented by R, Carbon number is arbitrary. The alkyl group may be linear, branched or cyclic. The alkyl group may be an alkyl group obtained by removing one hydrogen from a saturated hydrocarbon, or an alkyl group obtained by removing one hydrogen from an unsaturated hydrocarbon. In the alkyl group, continuous carbon atoms may be separated by an oxygen atom. Moreover, some hydrogen atoms of the alkyl group may be substituted with other functional groups such as a hydroxyl group.

上式(1)で表される銀レジネートは、カルボン酸の銀塩とメルカプタンとの反応物であることが好ましく、カルボン酸の銀塩とt−ドデシルメルカプタンとの反応物であることがより好ましい。   The silver resinate represented by the above formula (1) is preferably a reaction product of a silver salt of a carboxylic acid and a mercaptan, and more preferably a reaction product of a silver salt of a carboxylic acid and t-dodecyl mercaptan. .

カルボン酸の銀塩は、脂肪族、芳香族いずれのカルボン酸の銀塩であってもよい。また、カルボン酸の銀塩は、モノカルボン酸の銀塩であっても、ジカルボン酸等のポリカルボン酸の銀塩であってもよい。また、カルボン酸の銀塩は、鎖状脂肪族カルボン酸の銀塩であってもよく、環状脂肪族カルボン酸の銀塩であってもよい。カルボン酸の銀塩は、好ましくは、酢酸銀、プロピオン酸銀、又は酪酸銀であり、特に好ましくは、酢酸銀である。これらは、1種類のみを使用してもよいし、2種以上を併用してもよい。   The silver salt of a carboxylic acid may be a silver salt of any aliphatic or aromatic carboxylic acid. The silver salt of carboxylic acid may be a silver salt of monocarboxylic acid or a silver salt of polycarboxylic acid such as dicarboxylic acid. The silver salt of a carboxylic acid may be a silver salt of a chain aliphatic carboxylic acid or a silver salt of a cyclic aliphatic carboxylic acid. The silver salt of carboxylic acid is preferably silver acetate, silver propionate, or silver butyrate, and particularly preferably silver acetate. These may use only 1 type and may use 2 or more types together.

メルカプタン(チオール)は、分子中に1個以上のメルカプト基(−SH)を有する化合物である。メルカプタンは、好ましくは、ベンジルメルカプタン、t−ドデシルメルカプタンであり、より好ましくは、t−ドデシルメルカプタンである。これらは、1種類のみを使用してもよいし、2種以上を併用してもよい。   Mercaptan (thiol) is a compound having one or more mercapto groups (—SH) in the molecule. The mercaptan is preferably benzyl mercaptan or t-dodecyl mercaptan, and more preferably t-dodecyl mercaptan. These may use only 1 type and may use 2 or more types together.

上記したカルボン酸の銀塩とメルカプタンとを攪拌しながら混合することによって、銀レジネートを製造することができる。カルボン酸の銀塩とメルカプタンとの混合は、有機溶媒の非存在下又は存在下で行うことができる。有機溶媒の使用により、混合を容易にすることができる。有機溶媒の例としては、エタノール、プロパノール、ブタノール等のアルコール類、プロピレングリコールジブチルエーテル等のエーテル類、シクロヘキサン等の環状炭化水素、トルエン等の芳香族炭化水素等が挙げられる。これらの有機溶媒は、1種類のみを使用してもよいし、2種以上を併用してもよい。   A silver resinate can be produced by mixing the above-described silver salt of carboxylic acid and mercaptan with stirring. Mixing of the silver salt of carboxylic acid and mercaptan can be carried out in the absence or presence of an organic solvent. Mixing can be facilitated by the use of organic solvents. Examples of the organic solvent include alcohols such as ethanol, propanol and butanol, ethers such as propylene glycol dibutyl ether, cyclic hydrocarbons such as cyclohexane, aromatic hydrocarbons such as toluene, and the like. These organic solvents may use only 1 type and may use 2 or more types together.

(F)樹脂
本発明の熱伝導性組成物は、さらに、(F)樹脂を含有することができる。
本発明において用いる樹脂は、熱硬化性樹脂であってもよく、熱可塑性樹脂であってもよい。
熱硬化性樹脂は、特に制限するものではなく、加熱により硬化する樹脂であればよい。熱硬化性樹脂の例としては、エポキシ樹脂、ウレタン樹脂、ビニルエステル樹脂、シリコーン樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、ポリイミド樹脂等を挙げることができる。
熱可塑性樹脂は、特に制限するものではなく、加熱により軟化する樹脂であればよい。熱可塑性樹脂の例としては、エチルセルロース、ニトロセルロース等のセルロース系樹脂、アクリル樹脂、アルキド樹脂、飽和ポリエステル樹脂、ブチラール樹脂、ポリビニルアルコール、ヒドロキシプロピルセルロース等を挙げることができる。
これらの樹脂は、1種類のみを使用してもよいし、2種類以上を併用してもよい。
(F) Resin The heat conductive composition of this invention can contain (F) resin further.
The resin used in the present invention may be a thermosetting resin or a thermoplastic resin.
The thermosetting resin is not particularly limited as long as it is a resin that is cured by heating. Examples of thermosetting resins include epoxy resins, urethane resins, vinyl ester resins, silicone resins, phenol resins, urea resins, melamine resins, unsaturated polyester resins, diallyl phthalate resins, polyimide resins, and the like.
The thermoplastic resin is not particularly limited as long as the resin is softened by heating. Examples of the thermoplastic resin include cellulose resins such as ethyl cellulose and nitrocellulose, acrylic resins, alkyd resins, saturated polyester resins, butyral resins, polyvinyl alcohol, and hydroxypropyl cellulose.
These resins may be used alone or in combination of two or more.

(G)溶剤
本発明の熱伝導性組成物は、粘度調整等のために、さらに、(G)溶剤を含有することができる。
溶剤は、当該分野において公知のものを使用することができる。溶剤の例として、メタノール、エチレングリコール、プロピレングリコール、ジヒドロターピネオール等のアルコール系溶剤;トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、イソプロピルベンゼン、アミルベンゼン、p−シメン、テトラリン及び石油系芳香族炭化水素混合物等の芳香族炭化水素系溶剤;テルピネオール、リナロール、ゲラニオール、シトロネロール等のテルペンアルコール;エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ−n−ブチルエーテル、プロピレングリコールモノ−tert−ブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコ−ルモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル等のエーテルアルコール系溶剤;メチルイソブチルケトン等のケトン系溶剤;並びにエチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等のエステル系溶剤、水等が挙げられる。これらの溶剤は、1種類のみを使用してもよいし、2種類以上を併用してもよい。
(G) Solvent The thermally conductive composition of the present invention may further contain (G) a solvent for viscosity adjustment and the like.
As the solvent, those known in the art can be used. Examples of solvents include alcohol solvents such as methanol, ethylene glycol, propylene glycol, dihydroterpineol; toluene, xylene, ethylbenzene, diethylbenzene, isopropylbenzene, amylbenzene, p-cymene, tetralin, and petroleum aromatic hydrocarbon mixtures, etc. Aromatic hydrocarbon solvents; terpene alcohols such as terpineol, linalool, geraniol, citronellol; ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono-n-butyl ether, propylene Glycol mono-tert-butyl ether, diethylene glycol monoethyl ether, diethylene glycol Ether alcohol solvents such as call monobutyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether and tripropylene glycol monomethyl ether; ketone solvents such as methyl isobutyl ketone; and ethylene glycol monomethyl ether acetate and ethylene glycol monoethyl ether Examples thereof include ester solvents such as acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, and propylene glycol monoethyl ether acetate, and water. These solvents may use only 1 type and may use 2 or more types together.

(H)その他
さらに、本発明の熱伝導性組成物は、以下の物質のいずれか1種以上を含んでもよい。
・無機充填剤(例えば、ヒュームドシリカ、炭酸カルシウム、タルクなど)
・カップリング剤(例えば、γ−グリシドキシプロピルトリメトキシシランなどのシランカップリング剤、テトラオクチルビス(ジトリデシルホスファイト)チタネートなどのチタネートカップリング剤など)
・シランモノマー(例えば、トリス(3−(トリメトキシシリル)プロピル)イソシアヌレート)
・可塑剤(例えば、カルボキシル基末端ポリブタジエン‐アクリロニトリルなどのコポリマー、シリコーンゴム、シリコーンゴムパウダー、シリコーンレジンパウダー、アクリル樹脂パウダーなどの樹脂パウダー)
・難燃剤
・酸化防止剤
・消泡剤
(H) Others Further, the thermally conductive composition of the present invention may include any one or more of the following substances.
・ Inorganic fillers (eg fumed silica, calcium carbonate, talc)
Coupling agents (for example, silane coupling agents such as γ-glycidoxypropyltrimethoxysilane, titanate coupling agents such as tetraoctyl bis (ditridecyl phosphite) titanate)
Silane monomer (for example, tris (3- (trimethoxysilyl) propyl) isocyanurate)
・ Plasticizer (for example, copolymer such as carboxyl-terminated polybutadiene-acrylonitrile, silicone rubber, silicone rubber powder, silicone resin powder, resin powder such as acrylic resin powder)
・ Flame retardants ・ Antioxidants ・ Defoamers

上記(A)銀粉、(B)銀微粒子、(C)脂肪酸銀、及び(D)アミンを加えて混合することによって、本発明の熱伝導性組成物を調製することができる。
また、上記(E)銀レジネート、(F)樹脂、(G)溶剤、及び(H)その他の成分から選択された1種以上を任意成分としてさらに加えて混合することによって、本発明の熱伝導性組成物を調製することができる。
なお、上記(A)〜(H)成分を加える順番は任意であり、上記(A)〜(H)成分を同時に加えて混合してもよいし、上記(A)〜(H)成分を順番に加えて混合してもよい。
By adding and mixing the above (A) silver powder, (B) silver fine particles, (C) fatty acid silver, and (D) amine, the thermally conductive composition of the present invention can be prepared.
Further, by adding one or more selected from the above (E) silver resinate, (F) resin, (G) solvent, and (H) other components as optional components and mixing them, the heat conduction of the present invention. Sex compositions can be prepared.
In addition, the order which adds said (A)-(H) component is arbitrary, Said (A)-(H) component may be added and mixed simultaneously, and said (A)-(H) component may be added in order. You may mix in addition to.

次に、上記のようにして得られた熱伝導性組成物を用いて基板上に熱伝導体を形成する方法について説明する。   Next, a method for forming a heat conductor on a substrate using the heat conductive composition obtained as described above will be described.

上記(A)〜(D)成分、及び、必要に応じて(E)〜(H)成分を混合してペースト状の熱伝導性組成物を調製する。この調製した熱伝導性組成物を、基板上に塗布する。塗布方法は任意であり、例えば、ディスペンス、ジェットディスペンス、孔版印刷、スクリーン印刷、ピン転写、スタンピングなどの方法によって塗布することができる。   The components (A) to (D) and, if necessary, the components (E) to (H) are mixed to prepare a paste-like heat conductive composition. This prepared heat conductive composition is apply | coated on a board | substrate. The application method is arbitrary, and for example, it can be applied by methods such as dispensing, jet dispensing, stencil printing, screen printing, pin transfer, and stamping.

基板上にペースト状の熱伝導性組成物を塗布した後、この熱伝導性組成物を100〜400℃、より好ましくは150〜350℃、さらに好ましくは200〜300℃の温度範囲で加熱処理する。これにより、基板上に、熱伝導体からなる膜を形成することができる。   After applying the paste-like heat conductive composition on the substrate, the heat conductive composition is heat-treated at a temperature range of 100 to 400 ° C, more preferably 150 to 350 ° C, and even more preferably 200 to 300 ° C. . Thereby, the film | membrane which consists of a heat conductor can be formed on a board | substrate.

このようにして得られた熱伝導体膜は、熱伝導率が非常に高いという特性を有している。その理由は明らかではないが、(C)脂肪酸銀、及び、(D)アミンの2つの成分がある種の錯体を形成し、この錯体が銀粉及び銀微粒子同士を互いに接近させることによって、加熱処理の際に銀粉及び銀微粒子同士の融着を促進していると考えられる。   The heat conductor film thus obtained has a characteristic that the heat conductivity is very high. The reason for this is not clear, but (C) the fatty acid silver and (D) the two components of the amine form a kind of complex, and this complex brings the silver powder and the silver fine particles closer to each other, thereby heat treatment. In this case, it is considered that the fusion of the silver powder and the silver fine particles is promoted.

本発明の熱伝導性組成物は、各種電子部品の導電回路の形成、例えば、プリント基板における回路パターンの形成に用いることができる。
また、本発明の熱伝導性組成物は、半導体チップをリードフレームに接着・固定するための接着剤(ダイボンディング剤)として用いることができる。
本発明の熱伝導性組成物を加熱して得られる熱伝導体は、熱伝導率が非常に高い。本発明の熱伝導性組成物を用いることによって、例えばチップで発生した熱を容易に逃がすことのできる放熱性の高い電子部品を製造することができる。
The heat conductive composition of this invention can be used for formation of the conductive circuit of various electronic components, for example, formation of the circuit pattern in a printed circuit board.
The thermally conductive composition of the present invention can be used as an adhesive (die bonding agent) for adhering and fixing a semiconductor chip to a lead frame.
The heat conductor obtained by heating the heat conductive composition of the present invention has a very high heat conductivity. By using the heat conductive composition of the present invention, it is possible to manufacture an electronic component with high heat dissipation that can easily release, for example, heat generated in a chip.

また、本発明の熱伝導性組成物は、チップの接着・固定以外にも、例えば、コンデンサ、抵抗、ダイオード、メモリ、演算素子(CPU)等の基板への接着・固定に用いることができる。   Moreover, the heat conductive composition of this invention can be used for adhesion | attachment / fixation to substrates, such as a capacitor | condenser, resistance, a diode, memory, a computing element (CPU) other than adhesion | attachment / fixation of a chip | tip.

以下、本発明の実施例について説明するが、本発明はこれらに限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited thereto.

(A)銀粉
銀粉は、以下の2種類(A1及びA2)の銀フレークを、1:1の割合で混合したものを使用した。
(A1)
組成「銀」、形状「球状」、粒度分布「D50:1.4μm、D10:0.7μm、D90:4.1μm」、タップ密度「5.1g/ml」
(A2)
組成「銀」、形状「フレーク状」、粒度分布「D50:4.2μm、D10:1.9μm、D90:7.9μm」、タップ密度「5.2g/ml」
(A) Silver powder The silver powder which mixed the following 2 types (A1 and A2) silver flakes in the ratio of 1: 1 was used.
(A1)
Composition “silver”, shape “spherical”, particle size distribution “D50: 1.4 μm, D10: 0.7 μm, D90: 4.1 μm”, tap density “5.1 g / ml”
(A2)
Composition “Silver”, Shape “Flake”, Particle size distribution “D50: 4.2 μm, D10: 1.9 μm, D90: 7.9 μm”, Tap density “5.2 g / ml”

(B)銀微粒子
銀微粒子は、以下の方法で調製した。
まず、10Lのガラス製反応容器に、3−メトキシプロピルアミン4.0kg(45.0mol)を入れた。この3−メトキシプロピルアミンに、反応温度を45℃以下に維持しつつ、酢酸銀5.0kg(30.0mol)を攪拌しながら添加した。酢酸銀を添加した直後において、酢酸銀は透明な溶液であり、3−メトキシプロピルアミンに溶解した。酢酸銀をさらに添加すると、酢酸銀は次第に濁り始めた。酢酸銀を全量添加すると、酢酸銀は濁った灰色の、粘性のある溶液となった。その溶液に、95重量%のギ酸0.7kg(15.0mol)をゆっくり滴下した。ギ酸を滴下した直後、溶液は激しく発熱した。その間、反応温度を30〜45℃に維持した。濁った灰色の、粘性のある溶液は、茶色へ変化し、さらに黒色へ変化した。ギ酸を全量滴下した後、反応が終了した。反応によって得られた混合物を40℃で静置すると、その混合物は二層に分離した。上層は、黄色の透明な液体であった。下層は、沈殿した黒色の銀微粒子であった。上層の液体には、銀が含まれていなかった。上層の液体を、デカンテーションで除去した。メタノールを使用した分離によって、銀含有率90重量%の真球状の銀微粒子を得た。
(B) Silver fine particles Silver fine particles were prepared by the following method.
First, 4.0 kg (45.0 mol) of 3-methoxypropylamine was placed in a 10 L glass reaction vessel. To this 3-methoxypropylamine, 5.0 kg (30.0 mol) of silver acetate was added with stirring while maintaining the reaction temperature at 45 ° C. or lower. Immediately after the addition of silver acetate, silver acetate was a clear solution and dissolved in 3-methoxypropylamine. As more silver acetate was added, the silver acetate gradually began to become cloudy. When all of the silver acetate was added, the silver acetate became a cloudy gray, viscous solution. To the solution, 0.7 kg (15.0 mol) of 95% by weight formic acid was slowly added dropwise. Immediately after the formic acid was added dropwise, the solution exothermed vigorously. Meanwhile, the reaction temperature was maintained at 30-45 ° C. The cloudy gray, viscous solution turned brown and then black. After the entire amount of formic acid was dropped, the reaction was completed. When the mixture obtained by the reaction was allowed to stand at 40 ° C., the mixture was separated into two layers. The upper layer was a yellow transparent liquid. The lower layer was precipitated black silver fine particles. The upper liquid did not contain silver. The upper layer liquid was removed by decantation. Separation using methanol gave true spherical silver fine particles with a silver content of 90% by weight.

得られた銀微粒子は、平均粒子径130nm、結晶子径40nm、平均粒子径/結晶子径=3.25であった。平均粒子径は、走査型電子顕微鏡(SEM)で観察して画像解析により求めたヘイウッド径の平均値である。結晶子径は、マックサイエンス社製X線回折測定装置(M18XHF22)で測定した値であり、CuのKα線を線源とした粉末X線回折法による測定から、面指数(1,1,1)面ピークの半値幅を求め、Scherrerの式より計算した値である。   The obtained silver fine particles had an average particle diameter of 130 nm, a crystallite diameter of 40 nm, and an average particle diameter / crystallite diameter = 3.25. The average particle diameter is an average value of Haywood diameters obtained by image analysis by observation with a scanning electron microscope (SEM). The crystallite diameter is a value measured with an X-ray diffractometer (M18XHF22) manufactured by Mac Science Co., Ltd. From a measurement by a powder X-ray diffraction method using Cu Kα ray as a radiation source, the surface index (1,1,1 ) The half-value width of the surface peak is obtained and calculated from the Scherrer equation.

(C)脂肪酸銀
脂肪酸銀は、酢酸銀を用いた。
(C) Fatty acid silver Silver acetate was used for fatty acid silver.

(D)アミン
アミンは、以下の2種類のアミンを用いた。
(D1)メトキシプロピルアミン
(D2)ジアミノシクロヘキサン
(D) Amine The following two types of amines were used.
(D1) Methoxypropylamine (D2) Diaminocyclohexane

(E)銀レジネート
銀レジネートは、t−ドデシルメルカプタンと酢酸銀との反応物を用いた。
(E) Silver resinate The silver resinate used the reaction material of t-dodecyl mercaptan and silver acetate.

(F)樹脂
樹脂は、ポリエステル粉末を用いた。
(F) Resin Polyester powder was used for the resin.

(G)溶剤
溶剤は、以下の2種類(G1〜G2)の溶剤を用いた。
(G1)メタノール
(G2)ノルマルパラフィン混合物(炭素数C14〜C16の混合物)
(G) Solvent The following two types of solvents (G1 to G2) were used as the solvent.
(G1) Methanol (G2) Normal paraffin mixture (C14-C16 mixture)

上記(A)〜(G)成分を、以下の表1に示す割合で混合した。これにより、実施例1〜3、及び、比較例1〜3の熱伝導性組成物を調製した。なお、表1に示す各成分の配合割合は、全て重量%で示している。   The components (A) to (G) were mixed in the proportions shown in Table 1 below. This prepared the heat conductive composition of Examples 1-3 and Comparative Examples 1-3. In addition, all the mixture ratios of each component shown in Table 1 are shown by weight%.

実施例1〜3及び比較例1〜3の熱伝導性組成物からなる銀ペーストを、孔版印刷法によって、それぞれテフロン(登録商標)製の基板に塗布した。つぎに、基板を、200℃で、30分間、加熱処理した。加熱処理後、塗膜を、テフロン(登録商標)製の基板から剥がし取った。これにより、厚み300μmの熱伝導体からなる膜を得た。熱伝導体からなる膜の熱伝導率を、レーザーフラッシュ法でそれぞれ測定した。測定結果を、上記の表1に示す。   The silver paste which consists of a heat conductive composition of Examples 1-3 and Comparative Examples 1-3 was apply | coated to the board | substrate made from Teflon (trademark), respectively by the stencil printing method. Next, the substrate was heat-treated at 200 ° C. for 30 minutes. After the heat treatment, the coating film was peeled off from the Teflon (registered trademark) substrate. Thereby, a film made of a heat conductor having a thickness of 300 μm was obtained. The thermal conductivity of the film made of a heat conductor was measured by a laser flash method. The measurement results are shown in Table 1 above.

なお、レーザーフラッシュ法とは、熱拡散率を測定する方法であり、サンプル裏面にキセノンフラッシュ光をパルス状に照射し、サンプル表面への熱の伝わり方を赤外線検出器で測定する方法である。熱伝導率は、熱拡散率×比熱×密度で算出することができる。   The laser flash method is a method of measuring the thermal diffusivity, and is a method of irradiating the back surface of the sample with xenon flash light in a pulse shape and measuring how heat is transmitted to the sample surface with an infrared detector. The thermal conductivity can be calculated by thermal diffusivity x specific heat x density.

表1に示す結果から分かる通り、実施例1〜3の熱伝導性組成物を加熱処理して得られた熱伝導体は、熱伝導率が45.0[W/mK]以上であり、高い熱伝導率を有していた。
この結果より、(A)銀粉、(B)銀微粒子、(C)脂肪酸銀、及び(D)アミンを含有する熱伝導性組成物は、(A)銀粉のみ、あるいは、(A)銀粉及び(B)銀微粒子のみを含有する熱伝導性組成物よりも、高い熱伝導率を有する熱伝導体が得られることが実証された。
As can be seen from the results shown in Table 1, the thermal conductor obtained by heat-treating the thermal conductive compositions of Examples 1 to 3 has a thermal conductivity of 45.0 [W / mK] or higher, and high thermal conductivity. Had a rate.
From this result, the thermal conductive composition containing (A) silver powder, (B) silver fine particles, (C) fatty acid silver, and (D) amine is (A) only silver powder or (A) silver powder and ( B) It has been demonstrated that a thermal conductor having a higher thermal conductivity than that of a thermal conductive composition containing only silver fine particles can be obtained.

実施例1と実施例3の結果を比較すれば分かる通り、(E)銀レジネートを含む熱伝導性組成物は、(E)銀レジネートを含まない熱伝導性組成物よりも、高い熱伝導率を有する熱伝導体が得られることが分かった。   As can be seen by comparing the results of Example 1 and Example 3, (E) the thermally conductive composition containing the silver resinate has a higher thermal conductivity than the (E) thermally conductive composition containing no silver resinate. It was found that a heat conductor having

実施例3と比較例2の結果を比較すれば分かる通り、(A)銀粉、(B)銀微粒子、(C)脂肪酸銀、(D)アミン、及び(E)銀レジネートを含有する熱伝導性組成物は、(A)銀粉、(B)銀微粒子、及び(E)銀レジネートのみを含有する熱伝導性組成物よりも、高い熱伝導率を有する熱伝導体が得られることが分かった。   As can be seen by comparing the results of Example 3 and Comparative Example 2, thermal conductivity containing (A) silver powder, (B) silver fine particles, (C) fatty acid silver, (D) amine, and (E) silver resinate. It turned out that the heat conductor which has a heat conductivity higher than a heat conductive composition containing only (A) silver powder, (B) silver fine particles, and (E) silver resinate is obtained.

図1は、実施例1〜3の熱伝導性組成物を加熱して得られた熱伝導体膜の断面の電子顕微鏡写真を示している。図2は、比較例1〜3の熱伝導性組成物を加熱して得られた熱伝導体膜の断面の電子顕微鏡写真を示している。
図1及び図2を比較すれば分かる通り、実施例1〜3の熱伝導性組成物を加熱して得られた熱伝導体膜は、銀粉及び銀微粒子同士が互いに融着することで大きな熱伝導パスを形成しており、高い熱伝導率を有していた。これに対し、比較例1〜3の熱伝導性組成物を加熱して得られた熱伝導体膜は、銀粉及び銀微粒子同士があまり融着しておらず、高い熱伝導率を有していなかった。
FIG. 1 shows an electron micrograph of a cross section of a heat conductive film obtained by heating the heat conductive compositions of Examples 1 to 3. FIG. 2 shows an electron micrograph of a cross section of a heat conductive film obtained by heating the heat conductive compositions of Comparative Examples 1 to 3.
As can be seen from a comparison of FIG. 1 and FIG. 2, the heat conductive film obtained by heating the heat conductive compositions of Examples 1 to 3 is greatly heated by the fusion of silver powder and silver fine particles to each other. A conduction path was formed, and the thermal conductivity was high. On the other hand, the heat conductive films obtained by heating the heat conductive compositions of Comparative Examples 1 to 3 have a high heat conductivity because the silver powder and the silver fine particles are not fused so much. There wasn't.

Claims (8)

(A)銀粉、(B)銀微粒子、(C)脂肪酸銀、及び(D)アミンを含み、  (A) silver powder, (B) silver fine particles, (C) fatty acid silver, and (D) an amine,
前記(A)銀粉は、平均粒径が0.3μm〜100μmであり、  The (A) silver powder has an average particle size of 0.3 μm to 100 μm,
前記(B)銀微粒子は、  The silver fine particles (B)
1次粒子の平均粒子径が50〜150nmであり、    The average particle diameter of the primary particles is 50 to 150 nm,
結晶子径が20〜50nmであり、かつ、    The crystallite diameter is 20-50 nm, and
結晶子径に対する平均粒子径の比が1〜7.5であり、    The ratio of the average particle diameter to the crystallite diameter is 1 to 7.5,
さらに、(E)銀レジネートを含む、  Furthermore, (E) including silver resinate,
熱伝導性組成物。  Thermally conductive composition.
さらに、(F)樹脂を含有する請求項1に記載の熱伝導性組成物。 Furthermore, the heat conductive composition of Claim 1 containing (F) resin. 前記(C)脂肪酸銀は、酢酸銀である、請求項1または請求項2に記載の熱伝導性組成物。The thermally conductive composition according to claim 1 or 2, wherein the (C) fatty acid silver is silver acetate. 前記(D)アミンは、メトキシプロピルアミンまたはジアミノシクロヘキサンである、請求項1から請求項3のうちいずれか1項に記載の熱伝導性組成物。The thermally conductive composition according to any one of claims 1 to 3, wherein the (D) amine is methoxypropylamine or diaminocyclohexane. 前記(E)銀レジネートは、以下の式(1)で表される化合物である、請求項1から請求項4のうちいずれか1項に記載の熱伝導性組成物。The heat conductive composition according to any one of claims 1 to 4, wherein the (E) silver resinate is a compound represented by the following formula (1).
R−S−Ag …(1)  R-S-Ag (1)
(上式(1)において、Agは銀原子を表しており、Sは硫黄原子を表しており、Rはアルキル基を表している。)  (In the above formula (1), Ag represents a silver atom, S represents a sulfur atom, and R represents an alkyl group.)
前記(E)銀レジネートは、t−ドデシルメルカプタンと酢酸銀との反応物である、請求項5に記載の熱伝導性組成物。The thermally conductive composition according to claim 5, wherein the (E) silver resinate is a reaction product of t-dodecyl mercaptan and silver acetate. 請求項1から請求項6のうちいずれか1項に記載の熱伝導性組成物を、100〜400℃の温度範囲で加熱処理する工程を含む、熱伝導体の製造方法 The manufacturing method of a heat conductor including the process of heat-processing the heat conductive composition of any one of Claims 1-6 in the temperature range of 100-400 degreeC. 請求項1から請求項6のうちいずれか1項に記載の熱伝導性組成物を含む接着剤。   The adhesive agent containing the heat conductive composition of any one of Claims 1-6.
JP2013507784A 2011-03-31 2012-03-30 Thermally conductive composition and method for producing thermal conductor Active JP5872545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013507784A JP5872545B2 (en) 2011-03-31 2012-03-30 Thermally conductive composition and method for producing thermal conductor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011079043 2011-03-31
JP2011079043 2011-03-31
JP2013507784A JP5872545B2 (en) 2011-03-31 2012-03-30 Thermally conductive composition and method for producing thermal conductor
PCT/JP2012/058583 WO2012133767A1 (en) 2011-03-31 2012-03-30 Thermally conductive composition and thermal conductor

Publications (2)

Publication Number Publication Date
JPWO2012133767A1 JPWO2012133767A1 (en) 2014-07-28
JP5872545B2 true JP5872545B2 (en) 2016-03-01

Family

ID=46931463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013507784A Active JP5872545B2 (en) 2011-03-31 2012-03-30 Thermally conductive composition and method for producing thermal conductor

Country Status (3)

Country Link
JP (1) JP5872545B2 (en)
TW (1) TWI564381B (en)
WO (1) WO2012133767A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019013231A1 (en) * 2017-07-11 2019-01-17 田中貴金属工業株式会社 Electroconductive adhesive composition
WO2020004342A1 (en) 2018-06-25 2020-01-02 三菱マテリアル株式会社 Silver paste and joined body production method
CN111801183A (en) * 2018-06-25 2020-10-20 三菱综合材料株式会社 Silver paste and method for producing bonded body
WO2021125161A1 (en) 2019-12-19 2021-06-24 三菱マテリアル株式会社 Silver paste, method for producing same, and method for producing jointed article
WO2021125336A1 (en) 2019-12-20 2021-06-24 三菱マテリアル株式会社 Silver paste and method for producing same, and method for producing joined article

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6111535B2 (en) * 2012-05-31 2017-04-12 住友ベークライト株式会社 Thermosetting resin composition, semiconductor device and method for manufacturing semiconductor device
JP6333576B2 (en) * 2013-03-01 2018-05-30 京セラ株式会社 Thermosetting resin composition, semiconductor device and electric / electronic component
JP6140095B2 (en) * 2014-03-28 2017-05-31 富士フイルム株式会社 LAMINATE AND ITS MANUFACTURING METHOD, AND REFLECTOR, MIRROR FILM, ANTIMICROBIAL COAT, CONDUCTIVE FILM, HEAT CONDUCTOR
JP6682455B2 (en) * 2015-02-04 2020-04-15 ナミックス株式会社 Thermally conductive paste and manufacturing method thereof
JP6706100B2 (en) * 2016-03-10 2020-06-03 ナミックス株式会社 Thermally conductive adhesive, dispensing adhesive, screen printing adhesive, and semiconductor device
CN117285876A (en) * 2016-05-26 2023-12-26 株式会社大阪曹達 Conductive adhesive
KR102040529B1 (en) * 2016-08-19 2019-11-06 스미또모 베이크라이트 가부시키가이샤 Die attach pastes and semiconductor devices
JP6574746B2 (en) * 2016-09-21 2019-09-11 矢崎総業株式会社 Conductive paste and wiring board using the same
EP3578283A4 (en) * 2017-01-31 2020-08-19 M. Technique Co., Ltd. Method for manufacturing highly crystalline silver particles
TW201842085A (en) 2017-02-08 2018-12-01 加拿大國家研究委員會 Silver molecular ink with low viscosity and low processing temperature
JP6947280B2 (en) * 2019-12-19 2021-10-13 三菱マテリアル株式会社 Silver paste and its manufacturing method and joint manufacturing method
JP6923063B2 (en) * 2019-12-20 2021-08-18 三菱マテリアル株式会社 Silver paste and its manufacturing method and joint manufacturing method
WO2023190591A1 (en) * 2022-03-31 2023-10-05 パナソニックIpマネジメント株式会社 Silver paste and composite

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11150135A (en) * 1997-11-17 1999-06-02 Nec Corp Conductive paste of superior thermal conductivity and electronic device
JP2005197021A (en) * 2004-01-05 2005-07-21 Murata Mfg Co Ltd Resin curing type conductive paste, and ceramic component using the same
JP2006037145A (en) * 2004-07-23 2006-02-09 Toda Kogyo Corp Silver nano-grain and producing method therefor, and dispersion body containing silver nano-grain
JP2006183072A (en) * 2004-12-27 2006-07-13 Namics Corp Silver particulate, method for producing the same and conductive paste containing silver particulate
WO2009098938A1 (en) * 2008-02-06 2009-08-13 Namics Corporation Thermosetting conductive paste and laminated ceramic electronic component possessing external electrodes formed using same.
JP2011040493A (en) * 2009-08-07 2011-02-24 Namics Corp Multilayered wiring board, and method for manufacturing multilayered wiring board

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11150135A (en) * 1997-11-17 1999-06-02 Nec Corp Conductive paste of superior thermal conductivity and electronic device
JP2005197021A (en) * 2004-01-05 2005-07-21 Murata Mfg Co Ltd Resin curing type conductive paste, and ceramic component using the same
JP2006037145A (en) * 2004-07-23 2006-02-09 Toda Kogyo Corp Silver nano-grain and producing method therefor, and dispersion body containing silver nano-grain
JP2006183072A (en) * 2004-12-27 2006-07-13 Namics Corp Silver particulate, method for producing the same and conductive paste containing silver particulate
WO2009098938A1 (en) * 2008-02-06 2009-08-13 Namics Corporation Thermosetting conductive paste and laminated ceramic electronic component possessing external electrodes formed using same.
JP2011040493A (en) * 2009-08-07 2011-02-24 Namics Corp Multilayered wiring board, and method for manufacturing multilayered wiring board

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019013231A1 (en) * 2017-07-11 2019-01-17 田中貴金属工業株式会社 Electroconductive adhesive composition
KR20200018604A (en) 2017-07-11 2020-02-19 다나카 기킨조쿠 고교 가부시키가이샤 Conductive adhesive composition
JPWO2019013231A1 (en) * 2017-07-11 2020-07-16 田中貴金属工業株式会社 Conductive adhesive composition
JP7069162B2 (en) 2017-07-11 2022-05-17 田中貴金属工業株式会社 Conductive adhesive composition
US11401446B2 (en) 2017-07-11 2022-08-02 Tanaka Kikinzoku Kogyo K.K. Electroconductive adhesive composition
WO2020004342A1 (en) 2018-06-25 2020-01-02 三菱マテリアル株式会社 Silver paste and joined body production method
CN111801183A (en) * 2018-06-25 2020-10-20 三菱综合材料株式会社 Silver paste and method for producing bonded body
WO2021125161A1 (en) 2019-12-19 2021-06-24 三菱マテリアル株式会社 Silver paste, method for producing same, and method for producing jointed article
WO2021125336A1 (en) 2019-12-20 2021-06-24 三菱マテリアル株式会社 Silver paste and method for producing same, and method for producing joined article
US20230057625A1 (en) * 2019-12-20 2023-02-23 Mitsubishi Materials Corporation Silver paste and method for producing same, and method for producing bonded article

Also Published As

Publication number Publication date
JPWO2012133767A1 (en) 2014-07-28
TWI564381B (en) 2017-01-01
TW201247859A (en) 2012-12-01
WO2012133767A1 (en) 2012-10-04

Similar Documents

Publication Publication Date Title
JP5872545B2 (en) Thermally conductive composition and method for producing thermal conductor
US10071426B2 (en) Coated metal fine particle and manufacturing method thereof
KR100895192B1 (en) Organic silver complex compound used in paste for conductive pattern forming
JP6191606B2 (en) Silver nanoparticle, production method thereof, silver nanoparticle dispersion and silver element forming substrate
WO2014084275A1 (en) Conductive paste and method for producing same
JP5720693B2 (en) Method for producing conductive copper particles
WO2011048876A1 (en) Metal nanoparticle containing complex, fluid dispersion thereof and production methods for metal nanoparticle containing complex and fluid dispersion thereof
TW201013704A (en) Conductive inks and pastes
KR20200003887A (en) Thermally conductive conductive adhesive composition
WO2015060245A1 (en) Silver paste and semiconductor device using same, and production method for silver paste
TW201437299A (en) Composition for electroconductive film formation and method of forming electroconductive film by using the same
JP4935175B2 (en) Metal fine particle dispersion and method for producing the same
JP6277751B2 (en) Copper particle dispersion paste and method for producing conductive substrate
JP2006032165A (en) Conductive metal particles and conductive resin composition using them, and conductive adhesive
JP6036185B2 (en) High purity metal nanoparticle dispersion and method for producing the same
JP2016110691A (en) Method for manufacturing conductive substrate and conductive substrate
JP5693253B2 (en) Conductive composition and conductive film
WO2015122430A1 (en) Method for producing metal nanoparticles
JP2013112807A (en) Conductive ink composition and method of producing conductive pattern
WO2018159115A1 (en) Method for manufacturing semiconductor device
WO2013141174A1 (en) Conductive ink, base material including conductor, and production method for base material including conductor
TW200938486A (en) Copper hydride nanoparticle, process for producing the same, metallic paste, and article
JP6404523B1 (en) Method for producing silver nanoparticles
JP7031187B2 (en) Conductor and its forming method, as well as structure and its manufacturing method
JP6237098B2 (en) Dispersant, metal particle dispersion for conductive substrate, and method for producing conductive substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141114

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160113

R150 Certificate of patent or registration of utility model

Ref document number: 5872545

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250