WO2013141174A1 - Conductive ink, base material including conductor, and production method for base material including conductor - Google Patents

Conductive ink, base material including conductor, and production method for base material including conductor Download PDF

Info

Publication number
WO2013141174A1
WO2013141174A1 PCT/JP2013/057527 JP2013057527W WO2013141174A1 WO 2013141174 A1 WO2013141174 A1 WO 2013141174A1 JP 2013057527 W JP2013057527 W JP 2013057527W WO 2013141174 A1 WO2013141174 A1 WO 2013141174A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
conductive ink
copper
conductor
fine particles
Prior art date
Application number
PCT/JP2013/057527
Other languages
French (fr)
Japanese (ja)
Inventor
智 柏原
平社 英之
米田 貴重
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2013141174A1 publication Critical patent/WO2013141174A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/36Inkjet printing inks based on non-aqueous solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1208Pretreatment of the circuit board, e.g. modifying wetting properties; Patterning by using affinity patterns
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1173Differences in wettability, e.g. hydrophilic or hydrophobic areas

Definitions

  • the present invention relates to a conductive ink, a base material with a conductor, and a method for manufacturing a base material with a conductor.
  • a conductive ink made of a dispersion liquid in which fine metal particles such as silver and copper are dispersed in a solvent is printed on a substrate by ink jet printing.
  • a method of forming a conductor by printing by a method such as the above and heating is known.
  • a pattern liquid material (functional liquid) is directly arranged on a substrate, and then a desired pattern is formed by heat treatment or laser irradiation, or a lyophilic region and a liquid repellent region
  • a lyophilic liquid repellent pattern There is a method of forming a desired pattern by applying a functional liquid on a substrate provided with the above pattern (hereinafter also referred to as a lyophilic liquid repellent pattern).
  • Patent Document 1 discloses a method of forming a flat pattern by curing each time one droplet is applied.
  • Patent Document 2 in droplet printing by an inkjet method, a substrate on which a pattern is formed is surface-treated with a low-boiling liquid containing fluorine, and the surface energy is temporarily lowered to spread ink droplets. A method of suppressing this is disclosed.
  • Patent Document 3 discloses a method of forming a lyophilic liquid repellent pattern by controlling the concentration of a component that exhibits liquid repellency contained in a coating liquid that imparts liquid repellency to the surface of a substrate or the like. .
  • the conductive ink 4 is applied on the lyophilic liquid-repellent pattern having the lyophilic part 3 and the lyophobic part 2, as shown in FIG. Even when it is formed, there is a problem that the conductive ink residue 5 is generated in the liquid repellent portion 2 because the surface tension of the conductive ink is not sufficient.
  • the present invention has been made in order to solve the above problem. Even when a wiring having a wiring width of 50 ⁇ m or less is formed by printing on a lyophilic liquid repellent pattern, there is no ink residue in the liquid repellent portion, and the volume is reduced.
  • An object of the present invention is to provide a conductive ink capable of forming a conductor having a low resistivity.
  • Another object of the present invention is to provide a method for producing a substrate with a conductor that is suitable for forming a highly reliable wiring having no ink residue in the liquid repellent portion.
  • the present invention provides the following conductive ink, substrate with conductor, and method for producing a substrate with conductor.
  • a main solvent which is a water-insoluble organic solvent
  • a dispersion solvent comprising: an additive solvent having a boiling point exceeding the boiling point of the main solvent and having a surface tension at 20 ° C. of 35 to 73 dyn / cm; Copper hydride fine particles dispersed in the dispersion solvent;
  • a conductive ink comprising: (2) The conductive ink according to (1), wherein a content ratio of the additive solvent is 0.2 to 10.0% by mass with respect to the main solvent.
  • the conductive ink according to any one of (1) to (5) is used on the surface of a polymer film having a pattern of a lyophilic region and a liquid repellent region formed on a substrate.
  • preparing a substrate Forming a polymer film having a pattern of a lyophilic region and a liquid repellent region on the substrate; Forming a conductive ink coating layer according to any one of (1) to (5) on the surface of the polymer film; And a step of heating the coating layer to form a conductor containing copper.
  • the method for producing a substrate with a conductor of the present invention can produce a substrate with a conductor having a small volume resistivity and no ink residue in the liquid repellent part.
  • the conductive ink of the present invention comprises a main solvent which is a water-insoluble organic solvent, and an additive solvent having a boiling point exceeding the boiling point of the main solvent and having a surface tension at 20 ° C. of 35 to 73 dyn / cm.
  • a dispersion solvent containing the copper hydride fine particles dispersed in the dispersion solvent is conductive when printed on a lyophilic liquid repellent pattern having a liquid repellent part 2 and a lyophilic part 3 on a substrate 1.
  • the ink 4 stays on the lyophilic portion 3, and a conductor can be formed without causing ink residue in the lyophobic portion 2.
  • the solvent in which the copper hydride fine particles are dispersed includes a main solvent having a relatively low boiling point and an additive solvent having a boiling point higher than that of the main solvent. Therefore, the additive solvent having a high boiling point is concentrated in the process of heating the coating layer of the conductive ink, and sufficient surface tension is imparted to the conductive ink. This surface tension prevents the ink from spreading and stays in the lyophilic region on the surface of the polymer film having the lyophilic liquid repellent pattern, and a conductor can be formed without leaving a residue in the liquid repellent region.
  • the “lyophilic region” may be referred to as “lyophilic portion”, and the “liquid repellent region” may be referred to as “liquid repellent portion”.
  • the conductive ink of the embodiment each component contained in the conductive ink of the embodiment will be described.
  • the copper hydride fine particles become a conductive component of the conductive ink of the embodiment.
  • the copper hydride fine particles it is preferable to use copper hydride fine particles in a copper hydride fine particle dispersion produced by a method to be described later, but it is not limited thereto.
  • the copper hydride fine particle dispersion produced by the method described later contains not only the copper hydride fine particles but also an alkylamine having a boiling point of 250 ° C. or less, which is a protective agent, the copper hydride fine particles.
  • the conductive ink of the present invention can be obtained by using the dispersion as it is. A method for preparing the conductive ink of the present invention using the copper hydride fine particle dispersion will be described later.
  • the average primary particle size of the copper hydride fine particles is preferably 5 to 100 nm, more preferably 5 to 70 nm, and particularly preferably 5 to 35 nm. If the average primary particle diameter of the copper hydride fine particles is 100 nm or less, the sinterability at a low temperature, which is a feature of the fine particles, becomes good, and the volume resistivity of the obtained conductor can be lowered. Moreover, if the average primary particle diameter of the copper hydride fine particles is 5 nm or more, the copper hydride fine particles can be stably dispersed.
  • the average primary particle size of the copper hydride fine particles was determined by measuring the particle size of 100 randomly extracted fine particles using a transmission electron microscope (TEM) or a scanning electron microscope (SEM). This is a value obtained by averaging the values of.
  • the content (concentration) of copper hydride fine particles as a solid content in the conductive ink is preferably 10 to 70% by mass. More preferably, it is 15 mass% or more, More preferably, it is 20 mass% or more. More preferably, it is 60 mass% or less, More preferably, it is 50 mass% or less, More preferably, it is 40 mass% or less.
  • the content (concentration) of the copper hydride fine particles as a solid content is 10% by mass or more, it is easy to form a conductor having a sufficient thickness. If the content ratio of the copper hydride fine particles is 70% by mass or less, it is easy to control ink characteristics such as viscosity and surface tension, and it becomes easy to form a conductor.
  • the dispersion containing the copper hydride fine particles contained in the conductive ink of the present invention contains a copper (II) salt with a hydride reducing agent in the presence of an alkylamine (B) in a solvent (A) described below. It is preferably obtained by a reduction method. Hereinafter, this manufacturing method will be described.
  • the copper (II) salt a salt capable of forming an alkylamine (B) and a copper (II) amine complex can be used.
  • the copper (II) salt may be an anhydride or a hydrate.
  • the copper (II) salt is represented by CuX 2 or CuY.
  • X is a monovalent base and Y is a divalent base.
  • a salt in which the boiling point or decomposition point of this liberated HX or H 2 Y (hereinafter also referred to as free acid) is 150 ° C. or less. This is because the free acid produced by the reduction of the copper (II) salt is likely to volatilize during heating during conductor formation, and easily forms a conductor with a low volume resistivity.
  • Examples of the copper (II) salt include copper oxalate (II) (decomposition point of liberated oxalic acid: 189.5 ° C.), copper chloride (II) (boiling point of liberated hydrochloric acid 110 ° C.), copper acetate (II ) (Boiling point of free acetic acid: 118 ° C.), copper (II) formate (boiling point of free formic acid: 100.75 ° C.), copper (II) nitrate (boiling point of free nitric acid: 82.6 ° C.), copper sulfate (II) (boiling point of free sulfuric acid: 290 ° C), copper (II) tartrate (boiling point of free tartaric acid, decomposition point: unknown), copper (II) citrate (decomposition point of free citric acid: 175 ° C) , Copper carbonate (II), and copper (II) oleate (
  • copper (II) acetate copper (II) formate, copper (II) nitrate, and copper (II) carbonate are preferred.
  • a copper (II) salt may be used individually by 1 type, and may use 2 or more types together.
  • hydride-based reducing agents examples include NaBH 4 , LiBH 4 , Zn (BH 4 ) 2 , (CH 3 ) 4 NBH (OCOCH 3 ) 3 , NaBH 3 CN, LiAlH 4 , (i-Bu) 2 AlH (DIBAL ), LiAlH (t-BuO) 3 , NaAlH 2 (OCH 2 CH 2 OCH 3 ) 2 (Red-Al), and the like.
  • at least one selected from the group consisting of NaBH 4 , LiBH 4 , and NaBH 3 CN is preferable because the reduction rate, which is important for controlling the particle size of the copper hydride fine particles, can be easily adjusted.
  • a hydride type reducing agent may be used individually by 1 type, and may use 2 or more types together.
  • the solvent (A) is a solvent having an SP value of 8 to 12.
  • the SP value is 8 to 12
  • the compatibility between the solvent (A) and water is low, and the mixing of water into the reaction system can be suppressed. Thereby, it can suppress that the hydride type
  • the SP value of the solvent (A) is more preferably 8.5 to 9.5.
  • Examples of the solvent (A) include cyclohexane (SP value 8.2), isobutyl acetate (SP value 8.3), isopropyl acetate (SP value 8.4), butyl acetate (SP value 8.5), and tetrachloride.
  • the solvent (A) a solvent inert to the hydride reducing agent used for the reduction reaction is used. That is, as the solvent (A), a solvent that is not reduced by the hydride reducing agent used in the reduction reaction or a solvent that does not have active hydrogen is preferable because it can suppress the inactivation of the hydride reducing agent.
  • hydrocarbons such as toluene, xylene, and benzene; ethers such as tetrahydrofuran; ethyl acetate, from the viewpoint of easy control of the reduction reaction and dispersibility of the produced copper hydride fine particles.
  • Esters such as isopropyl acetate and isobutyl acetate are preferred, and toluene and xylene are particularly preferred.
  • a solvent (A) may be used individually by 1 type, and may use 2 or more types together.
  • hydride-based reducing agents have different reducing power depending on the type. For example, NaBH 4 does not reduce esters, whereas LiAlH 4 reduces esters. Therefore, an appropriate solvent is selected from the solvent (A) depending on the type of hydride-based reducing agent used.
  • the alkylamine (B) is an alkylamine having an alkyl group having 7 or more carbon atoms and having a boiling point of 250 ° C. or lower. If the carbon number of the alkyl group in the alkylamine (B) is 7 or more, the dispersibility of the produced copper hydride fine particles will be good. In the present invention, since the reaction field is an organic phase, it is not necessary to use an alkylamine having a large carbon number for the purpose of protection from water.
  • the number of carbon atoms of the alkyl group in the alkylamine (B) is preferably 11 or less from the viewpoint of suppressing the boiling point from becoming too high.
  • the boiling point of the alkylamine (B) is 250 ° C. or less, the alkylamine (B) is detached from the surface of the fine particles and volatilizes to form a conductor with a low volume resistivity when the conductor is formed using the conductive ink. it can.
  • the boiling point of the alkylamine (B) is preferably 250 ° C. or less, and more preferably 200 ° C. or less, from the viewpoint of desorption and volatility during heating.
  • the boiling point of the alkylamine (B) is usually preferably 150 ° C. or higher from the viewpoint that the alkyl group has 7 or more carbon atoms.
  • the alkyl group of the alkylamine (B) is preferably a linear alkyl group from the viewpoint of dispersion stability of the obtained copper hydride fine particles.
  • the alkyl group of the alkylamine (B) may be a branched alkyl group.
  • alkylamine (B) examples include n-heptylamine (alkyl group having 7 carbon atoms and a boiling point of 157 ° C.), n-octylamine (alkyl group having 8 carbon atoms and a boiling point of 176 ° C.), n-nonylamine (carbon of the alkyl group). (9, boiling point: 201 ° C.), 1-aminodecane (alkyl group having 10 carbon atoms, boiling point: 220 ° C.), 1-aminoundecane (alkyl group having 11 carbon atoms, boiling point: 242 ° C.), n-heptylamine, n- Octylamine is more preferred.
  • An alkylamine (B) may be used individually by 1 type, and may use 2 or more types together.
  • copper hydride fine particles are generated by reducing a copper (II) salt with a hydride-based reducing agent in the presence of an alkylamine (B).
  • a copper (II) salt with a hydride-based reducing agent in the presence of an alkylamine (B).
  • the copper (II) amine complex is formed by a hydride reducing agent. Reduced.
  • formation of the copper hydride lump by rapid reduction of the copper (II) salt can be suppressed, and copper hydride fine particles in which alkylamine (B) is coordinated on the surface of the copper hydride fine particles are generated.
  • the order of adding the copper (II) salt, hydride reducing agent, and alkylamine (B) to the solvent (A) is preferably the order of alkylamine (B), copper (II) salt, and hydride reducing agent.
  • the order of adding the copper (II) salt, the hydride reducing agent, and the alkylamine (B) to the solvent (A) is the order in which the reduction reaction with the hydride reducing agent proceeds in the presence of the alkylamine (B). If there is, the order is not limited.
  • the alkylamine (B), the hydride reducing agent, and the copper (II) salt may be added to the solvent (A) in this order.
  • the hydride reducing agent is present in a solid state in the solvent (A), and after the copper (II) amine complex is formed in the solvent (A), the copper (II) present in the solid state.
  • Amine complex reacts with hydride reducing agent.
  • a hydride reducing agent, an alkylamine (B), and a copper (II) salt may be added in this order.
  • the reduction reaction with the hydride-based reducing agent may be performed while stirring the solvent (A). This facilitates the reduction reaction.
  • the reaction temperature is preferably 0 to 80 ° C, more preferably 15 to 50 ° C. If reaction temperature is 0 degreeC or more, a reductive reaction will advance easily. If reaction temperature is 80 degrees C or less, the dispersibility of the copper hydride microparticles in the obtained copper hydride microparticle dispersion liquid will be favorable, As a result, it will become easy to form a conductor with small volume resistivity.
  • the addition amount of the copper (II) salt is preferably 0.1 ⁇ 10 ⁇ 3 mol or more with respect to 1 g of the solvent (A) from the viewpoint of productivity of copper hydride fine particles, and preferably 0.15 ⁇ 10 ⁇ 3. Mole or more is more preferable, and 0.25 ⁇ 10 ⁇ 3 mol or more is particularly preferable. Further, the addition amount of the copper (II) salt is preferably 0.65 ⁇ 10 ⁇ 3 mol or less with respect to 1 g of the solvent (A) from the viewpoint of easy control of the reduction reaction, and 0.6 ⁇ 10 ⁇ 3 mol or less is more preferable, and 0.5 ⁇ 10 ⁇ 3 mol or less is particularly preferable.
  • the addition amount of the alkylamine (B) is 0.2 ⁇ 10 ⁇ with respect to 1 g of the solvent (A) because the dispersibility of the copper hydride fine particles in the obtained copper hydride fine particle dispersion becomes good. 3 mol or more is preferable, 0.25 ⁇ 10 ⁇ 3 mol or more is more preferable, and 0.3 ⁇ 10 ⁇ 3 mol or more is particularly preferable.
  • the amount of alkylamine (B) added is excessive, alkylamine (B) that could not be coordinated to the copper (II) salt may remain at the time of conductor formation and increase the volume resistivity of the conductor. is there.
  • the upper limit of the amount of the alkylamine (B) is preferably 0.75 ⁇ 10 ⁇ 3 mol or less, more preferably 0.7 ⁇ 10 ⁇ 3 mol or less, with respect to 1 g of the solvent (A). 6 ⁇ 10 ⁇ 3 mol or less is particularly preferable.
  • the addition amount of the hydride-based reducing agent is preferably 0.25 ⁇ 10 ⁇ 3 mol or more with respect to 1 g of the solvent (A) from the viewpoint of the yield of copper hydride fine particles, preferably 0.3 ⁇ 10 ⁇ 3 mol.
  • the above is more preferable, and 0.35 ⁇ 10 ⁇ 3 mol or more is particularly preferable.
  • the amount of the hydride reducing agent added is preferably 0.65 ⁇ 10 ⁇ 3 mol or less with respect to 1 g of the solvent (A) from the viewpoint of easy control of the reduction reaction, preferably 0.55 ⁇ 10 ⁇ 3.
  • the molar amount is more preferably less than or equal to 0.5 ⁇ 10 ⁇ 3 mol or less.
  • the molar ratio of the copper (II) salt and the alkylamine (B) added to the solvent (A) is that the dispersion stability of the produced copper hydride fine particles is good. Therefore, 1.8 or less is preferable, 1.4 or less is more preferable, and 1.2 or less is particularly preferable. Further, the molar ratio (Cu / alkylamine) is preferably 0.64 or more from the viewpoint of easy desorption and volatilization of the alkylamine (B) from the surface of the fine particles by heating during conductor formation, The above is more preferable.
  • the molar ratio of the copper (II) salt added to the solvent (A) and the hydride reducing agent (R) (hereinafter referred to as Cu / hydride reducing agent) is 1.42 in that the reduction reaction easily proceeds.
  • the following is preferable, 1.3 or less is more preferable, and 1.2 or less is particularly preferable.
  • the molar ratio (Cu / hydride-based reducing agent) is preferably 0.7 or more, more preferably 0.8 or more, and particularly preferably 0.9 or more, from the viewpoint of easy control of the reduction reaction.
  • a copper hydride fine particle dispersion in which copper hydride fine particles (primary particles) having an average primary particle diameter of 5 to 100 nm, more preferably 5 to 70 nm, particularly preferably 5 to 35 nm are dispersed in the solvent (A) is obtained. It is done.
  • the average primary particle diameter of the copper hydride fine particles can be adjusted by the addition amount of the alkylamine (B) and the addition amount of the hydride reducing agent. By increasing the addition amount of the alkylamine (B), the average primary particle diameter of the copper hydride fine particles tends to decrease. Moreover, there exists a tendency for the average primary particle diameter of a copper hydride microparticle to become small by reducing the addition amount of a hydride type
  • the concentration of the copper hydride fine particles as a solid content in the obtained copper hydride fine particle dispersion is preferably 1 to 6% by mass, more preferably 2.5 to 4.5% by mass, based on 100% by mass of the entire dispersion. .
  • the concentration process takes time, and the productivity may be lowered. If the copper hydride fine particle solid content concentration of the copper hydride fine particle dispersion exceeds 6% by mass, the dispersion stability of the copper hydride fine particles in the dispersion may be lowered.
  • the dispersion solvent of the conductive ink of the embodiment includes a main solvent (S) and an additive solvent (s).
  • a solvent of the copper hydride fine particle dispersion obtained by the above production method solvent (A) which is a solvent having an SP value of 8 to 12) may be used, and other solvent ( That is, a solvent having an SP value of less than 8 or more than 12.
  • the solvent (C) may be used. That is, the conductive ink of the present invention can be obtained by adjusting the solid content concentration and viscosity of the copper hydride fine particle dispersion produced by the production method.
  • the solvent (A) may contain the main solvent (S), and may contain the addition solvent (s).
  • the solvent (C) may contain the main solvent (S), and may contain the added solvent (s).
  • the conductive ink of the present invention directly contains the alkylamine (B) that functions as a dispersant that functions to disperse the copper hydride fine particles in a solvent or as a protective agent.
  • a known solvent replacement method can be employed as a method of replacing the solvent (A) of the copper hydride fine particle dispersion with the solvent (C).
  • the solvent (C) is added while concentrating the solvent (A) under reduced pressure. The method of doing is mentioned.
  • the main solvent (S) of the conductive ink of the embodiment of the present invention a water-insoluble organic solvent is used.
  • water-insoluble means that the amount dissolved in 100 g of water at room temperature (20 ° C.) is 0.5 g or less.
  • the main solvent (S) is preferably an organic solvent having a small polarity from the viewpoint of affinity with the alkylamine (B).
  • the main solvent (S) is preferably one that does not cause thermal decomposition by heating when forming the conductor.
  • Examples of the main solvent (S) include decane (insoluble in water), dodecane (insoluble in water), tetradecane (insoluble in water), decene (insoluble in water), dodecene (insoluble in water), and the like. Tetradecene (insoluble in water), dipentene (dissolved in 100 g of water 0.001 g (20 ° C.)), ⁇ -terpineol (dissolved in 100 g of water 0.5 g (20 ° C.)), mesitylene (in water) Insoluble.), Non-aromatic solvents for printing inks, and commercially available petroleum hydrocarbon solvents such as mineral spirits.
  • a main solvent (S) may be used individually by 1 type, and may use 2 or more types together.
  • the content of the main solvent (S) is preferably 40 to 90% by mass, particularly preferably 50 to 80% by mass, based on 100% by mass of the entire conductive ink, from the viewpoint of dispersibility of each component contained in the conductive ink.
  • the conductive ink of the present invention contains an additive solvent (s) as a dispersion medium for copper hydride fine particles.
  • the added solvent (s) may be added to the main solvent (S) when replacing the solvent in the course of producing the copper hydride fine particle dispersion, or may be added after replacing the solvent.
  • the solvent (A) may contain the addition solvent (s), and in this case, the solvent concentration of the copper hydride fine particle dispersion produced by the production method can be adjusted and obtained.
  • the added solvent (s) has a boiling point exceeding the boiling point of the main solvent, which is a water-insoluble organic solvent, and has a surface tension of 35 to 73 dyn / cm at 20 ° C.
  • the main solvent having a relatively low boiling point evaporates. In the process, it remains in the dispersion solvent and concentrates, and functions to impart surface tension to the conductive ink. Therefore, the added solvent (s) has a boiling point exceeding that of the main solvent.
  • the added solvent (s) has a surface tension of 35 dyn / cm or more at 20 ° C., preferably 40 dyn / cm or more, and more preferably 45 dyn / cm or more.
  • the surface tension at 20 ° C. is less than 35 dyn / cm, the surface tension of the conductive ink is not sufficient, and there is a possibility that an ink residue may remain.
  • the ink residue causes disconnection, short circuit, and migration of the conductor wiring formed from the conductive ink.
  • the added solvent (s) has a surface tension at 20 ° C. of 73 dyn / cm or less.
  • the surface tension is a value measured with a surface tension meter (manufactured by Kyowa Interface Science Co., Ltd., device name: DY-500).
  • additional solvent (s) examples include pyrrolidone, N-methylpyrrolidone, imidazole, 1-methylimidazole, 1,3-dimethylimidazole, butanediol, glycerin, ethylene glycol, diethylene glycol, triethylene glycol, formamide, and triethanol. Examples include amines, triethylene glycol monomethyl ether, and triethylene glycol monoethyl ether.
  • additive solvents (s) may be used individually by 1 type, and may use 2 or more types together.
  • glycerin, ethylene glycol, and diethylene glycol are particularly preferred from the viewpoints of handleability and availability.
  • the content of the added solvent (s) is preferably 0.2 to 10.0% by mass, particularly preferably 0.5 to 5.0% by mass with respect to the main solvent (S).
  • the content ratio of the additive solvent (s) is 0.2% by mass or more, sufficient surface tension can be imparted to the conductive ink, and when it is 10.0% by mass or less, the coating property of the conductive ink is excellent.
  • the conductive ink according to the embodiment of the present invention is a protective agent for dispersing copper hydride fine particles, which are conductive components, in the dispersion solvent in addition to the main solvent (S), the additive solvent (s), and the copper hydride fine particles. And may contain an alkylamine.
  • the alkylamine (B) added in the production process is used in the conductive ink.
  • the conductive ink of the present invention may contain a silane coupling agent and other additives in addition to the main solvent, additive solvent, copper hydride fine particles, and alkylamine.
  • examples of other additives include antifoaming agents, wetting and dispersing agents, leveling agents, anti-drying agents, rheology control agents, and adhesion imparting agents.
  • the concentration of the solid content (copper hydride fine particle solid content) of the conductive ink of the present invention varies depending on the required viscosity, but is preferably 10 to 70% by mass based on 100% by mass of the entire conductive ink. More preferably, it is 15 mass% or more, More preferably, it is 20 mass% or more. More preferably, it is 60 mass% or less, More preferably, it is 50 mass% or less, More preferably, it is 40 mass% or less.
  • the solid content concentration of the copper hydride fine particles in the conductive ink is 10% by mass or more, it is easy to form a conductor having a sufficient thickness.
  • the solid content concentration of the copper hydride fine particles in the conductive ink is 70% by mass or less, it is easy to control ink characteristics such as viscosity and surface tension, and it becomes easy to form a conductor.
  • the viscosity of the conductive ink of the present invention is preferably 5 to 60 mPa ⁇ s, more preferably 8 to 40 mPa ⁇ s. If the viscosity of the conductive ink is 5 mPa ⁇ s or more, the ink can be ejected with high accuracy. If the viscosity of the conductive ink is 60 mPa ⁇ s or less, it can be applied to almost all available inkjet heads.
  • the surface tension of the conductive ink of the present invention at 20 ° C. is preferably 20 to 45 dyn / cm, more preferably 25 to 40 dyn / cm. If the surface tension of the conductive ink is not less than the lower limit of the above range, the ink can be ejected with high accuracy. If the surface tension of the conductive ink is not more than the upper limit of the above range, it can be applied to almost all available inkjet heads.
  • the viscosity of the conductive ink is a value measured at 20 ° C. with a B-type viscometer (manufactured by Toki Sangyo Co., Ltd., apparatus name: TVB35L).
  • the surface tension is a value measured by a surface tension meter (manufactured by Kyowa Interface Science Co., Ltd., device name: DY-500).
  • the alkylamine bonded and coordinated to the surface of the copper hydride fine particles is released. Then, the copper hydride from which the alkylamine has been eliminated from the surface changes to, for example, metallic copper by heating at 60 ° C. or higher. The metallic copper fine particles generated in this way are melted and bonded to form a conductor.
  • the manufacturing method of the base material with a conductor of this invention has the following processes.
  • (2) A step of forming a polymer film having a pattern of a lyophilic region and a liquid repellent region on the substrate (hereinafter also referred to as a polymer film forming step).
  • (3) A step of applying the conductive ink of the present invention to the surface of the polymer film to form a coating layer (hereinafter also referred to as a coating step).
  • a step of heating the coating layer to form a conductor containing copper hereinafter also referred to as a conductor forming step).
  • the formed conductor is a conductor mainly composed of copper.
  • a conductor mainly composed of copper means that copper is most contained among the elements constituting the conductor.
  • the substrate used in the present invention has an acid treatment (treatment using diluted hydrofluoric acid, sulfuric acid, hydrochloric acid, etc.), alkali treatment (treatment using an aqueous sodium hydroxide solution) or the like depending on the purpose. Those subjected to ultrasonic cleaning or the like with pure water or an organic solvent may be used. Moreover, you may perform the passivation process (process which forms films
  • the polymer film is not particularly limited as long as it can form a lyophilic liquid repellent pattern.
  • a polyimide, epoxy resin, polyester resin, acrylic resin, fluororesin having a hydrophobic group in the side chain, a coating composition containing a curable composition capable of forming a lyophilic liquid-repellent pattern and a solvent is used. And a polymer film formed.
  • the thickness of the polymer film can be appropriately set according to the application, and is usually 0.1 to 100.0 ⁇ m, preferably 0.2 to 50.0 ⁇ m.
  • Examples of the method for applying the conductive ink include offset gravure coating, direct gravure coating, roll coating, air doctor coating, blade coating, knife coating, spray coating, inkjet coating, spin coating, and slot die coating. Of these, inkjet coating and slot die coating are particularly preferable from the viewpoints of workability, yield of ink to be used, and positional accuracy of printing.
  • the diameter of the ink ejection hole is set to 0.5 to 100 ⁇ m from the viewpoint of easy formation of a conductor having a desired pattern, and the diameter of the conductive ink when adhered on the substrate is set to 1 to 100 ⁇ m. It is preferable to make it.
  • the heating temperature after applying the conductive ink on the substrate is preferably 60 to 300 ° C, more preferably 60 to 150 ° C.
  • the heating time may be set according to the heating temperature so that the conductor can be formed by volatilizing the dispersion solvent, the acid released from the copper (II) salt, the alkylamine (B) released from the surface of the fine particles, and the like.
  • the thickness of the conductor is preferably 0.3 to 2.0 ⁇ m.
  • the volume resistivity of the conductor is preferably 3 to 35 ⁇ ⁇ cm.
  • the volume resistivity of the conductor was determined by measuring the surface resistance value of the conductor using a four-probe resistance meter (for example, manufactured by Mitsubishi Yuka Co., Ltd., device name: Loresta GP MCP-T610). It can be determined by multiplying the value by the conductor thickness.
  • Examples 1 to 3 are examples, and example 4 is a comparative example. Examples of identification of fine particles, measurement of average particle diameter of fine particles, measurement of conductor thickness, measurement of conductor volume resistivity, and method of conductor peelability test in Examples and Comparative Examples are shown below. .
  • the particle size of 100 randomly extracted fine particles was measured with a transmission electron microscope (manufactured by Hitachi, Ltd., device name: H-9000) or a scanning electron microscope (manufactured by Hitachi, Ltd., device name: S-800). The average particle size was determined by averaging the values.
  • a photosensitive fluororesin (trade name: AL-X, manufactured by Asahi Glass Co., Ltd.) is spin-coated at 1,000 rpm for 30 seconds on the surface of a soda lime glass substrate, and heated for 20 minutes using a 150 ° C. hot plate. As a result, a polymer film having a thickness of 1 ⁇ m was formed.
  • the surface of the polymer film was partially irradiated with ultraviolet rays (i-line 365 nm) through a mask pattern to obtain a lyophilic liquid repellent pattern having a length of 5 cm and a width of 20 ⁇ m.
  • UV irradiation the product name MA-8 manufactured by SUSS was used, and the irradiation condition was 100 J / cm 2 .
  • Example 1 Manufacture of copper hydride particles
  • To a glass container 300 g of toluene, 30 g of copper (II) formate tetrahydrate as a copper (II) salt, and 15 g of n-heptylamine (boiling point 157 ° C.) as an alkylamine were added and stirred.
  • NaBH 4 which is a hydride reducing agent
  • the fine particles in the obtained dispersion were collected and identified by X-ray diffraction, it was confirmed to be copper hydride fine particles.
  • the average primary particle diameter of the copper hydride fine particles (primary particles) was 10 nm. Further, the solid content concentration of the obtained copper hydride fine particle dispersion was 4% by mass.
  • the obtained copper hydride fine particle dispersion was subjected to solvent substitution under reduced pressure to prepare a conductive ink. That is, after the copper hydride fine particle dispersion was concentrated under reduced pressure, 2 mass% diethylene glycol (boiling point 244.8 ° C., 20 ° C.) was added to dodecane (boiling point 216.3 ° C., surface tension 25.4 dyn / cm at 20 ° C.). The solvent was replaced by adding a material having a surface tension of 48.5 dyn / cm), so that the solid content concentration of the copper hydride fine particles was 30% by mass.
  • Example 2 After concentration of the copper hydride fine particle dispersion shown in Example 1 under reduced pressure, 0.5 mass% glycerin (boiling point 290.0 ° C., surface tension 63.3 dyn / cm at 20 ° C.) was added to dodecane. In addition, solvent substitution was performed to prepare a conductive ink having a solid content concentration of copper hydride fine particles of 30% by mass.
  • the obtained conductive ink it printed on the polymer film surface in which the wiring pattern was formed like Example 1, and obtained the base material with a conductor.
  • the thickness of the conductor was 0.35 ⁇ m, and the volume resistivity was 16 ⁇ ⁇ cm.
  • the wiring width confirmed by SEM was 20.5 ⁇ m, and no Cu residue was observed in the liquid repellent part.
  • Example 3 After the copper hydride fine particle dispersion shown in Example 1 was concentrated under reduced pressure, decane (boiling point: 174.1 ° C., surface tension at 20 ° C .: 23.9 dyn / cm) was added to 2% by mass of ethylene glycol ((boiling point: 197.9). Then, the solvent was replaced by adding a surface tension of 46.5 dyn / cm) at 20 ° C., and a conductive ink having a solid content concentration of copper hydride fine particles of 30% by mass was prepared.
  • the obtained conductive ink it printed on the polymer film surface in which the wiring pattern was formed like Example 1, and obtained the base material with a conductor.
  • the thickness of the conductor was 0.38 ⁇ m, and the volume resistivity was 12 ⁇ ⁇ cm.
  • the wiring width confirmed by SEM was 20.5 ⁇ m, and no Cu residue was observed in the liquid repellent part.
  • Example 4 After the copper hydride fine particle dispersion shown in Example 1 was concentrated under reduced pressure, dodecane (boiling point 216.3 ° C., surface tension 25.4 dyn / cm at 20 ° C.) was added as a solvent, and the solid content of the copper hydride particles Solvent replacement was performed so that the concentration was 30% by mass.
  • the obtained conductive ink it printed on the polymer film surface in which the wiring pattern was formed like Example 1, and obtained the base material with a conductor.
  • the thickness of the conductor was 0.36 ⁇ m, and the volume resistivity was 20 ⁇ ⁇ cm.
  • the wiring width confirmed by SEM was 30.8 ⁇ m, and several Cu residues were confirmed in the liquid repellent part.
  • Table 1 shows the composition, surface tension, volume resistivity, and presence / absence of Cu residue in the liquid repellent portion of Examples 1 to 4.
  • Examples 1 to 3 use the conductive ink of the present invention, so that there is no residue in the liquid repellent part. Also, the volume resistivity is sufficiently small. On the other hand, in Example 4, since the conductive ink of the present invention was not used, a residue was confirmed in the liquid repellent portion. Thus, by using the conductive ink of the present invention, it is possible to obtain a conductor wiring having a small volume resistivity and no residue in the liquid repellent part.
  • a conductor having no residue can be formed in the liquid repellent portion.
  • a base material with a conductor of this invention there is no residue on a base material, a base material with a conductor with small volume resistivity can be manufactured, and it is used suitably as a highly reliable wiring board.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Conductive Materials (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

Provided is a conductive ink having no ink residue on a liquid-repellant section, even if printed upon a lyophilic/lyophobic pattern and forming wiring having a wiring width of no more than 50 µm. Also provided is a production method for a base material including a conductor, suitable for the formation of highly reliable wiring, without ink residue on the liquid-repellant section. The conductive ink includes: a dispersion solvent including a main solvent being a non-aqueous organic solvent, and an added solvent having a boiling point greater than the boiling point of the main solvent, and having a surface tension at 20°C of 35-73 dyn/cm; and copper hydride fine particles dispersed in the dispersion solvent.

Description

導電インク、導体付き基材及び導体付き基材の製造方法Conductive ink, base material with conductor, and method for manufacturing base material with conductor
 本発明は導電インク、導体付き基材及び導体付き基材の製造方法に関する。 The present invention relates to a conductive ink, a base material with a conductor, and a method for manufacturing a base material with a conductor.
 電子回路又は集積回路等に使用される所定パターンからなる配線等を形成する方法として、銀、銅等の金属微粒子が溶媒中に分散された分散液からなる導電インクを、基材上にインクジェット印刷等の方法により印刷し、加熱して導体を形成する方法が知られている。このインクジェット法には、パターン用の液体材料(機能液)を基板に直接パターン配置し、その後熱処理やレーザ照射を行って所望のパターンを形成する方法や、親液性領域と撥液性領域とのパターン(以下、親液撥液パターンともいう。)を付与した基板上に機能液を塗布して所望のパターンを形成する方法等がある。これらの方法によれば、プロセスが大幅に簡略化されるとともに、パターン位置に原材料を直接配置できるというメリットがある。 As a method for forming a wiring having a predetermined pattern used in an electronic circuit or an integrated circuit, a conductive ink made of a dispersion liquid in which fine metal particles such as silver and copper are dispersed in a solvent is printed on a substrate by ink jet printing. A method of forming a conductor by printing by a method such as the above and heating is known. In this ink jet method, a pattern liquid material (functional liquid) is directly arranged on a substrate, and then a desired pattern is formed by heat treatment or laser irradiation, or a lyophilic region and a liquid repellent region There is a method of forming a desired pattern by applying a functional liquid on a substrate provided with the above pattern (hereinafter also referred to as a lyophilic liquid repellent pattern). These methods are advantageous in that the process is greatly simplified and the raw material can be directly arranged at the pattern position.
 近年、デバイスを構成する回路の高密度化が進み、配線についてもさらなる微細化、細線化が要求されている。しかしながら、上述した導電インクを用いたパターン形成方法では、液滴が基板上で広がるため、微細なパターンを安定的に形成するのが困難であった。特に、パターンが導体であるため、上述した液滴の広がりによって、液だまり(バルジ)や残渣が生じ、それが断線や短絡等の不具合の発生原因となるおそれがあった。 In recent years, the density of circuits constituting a device has been increased, and further miniaturization and thinning of wiring have been required. However, in the pattern forming method using the conductive ink described above, it is difficult to stably form a fine pattern because droplets spread on the substrate. In particular, since the pattern is a conductor, a liquid pool (bulge) or a residue is generated due to the spread of the above-described droplets, which may cause problems such as disconnection or short circuit.
 このような問題に対して、例えば、特許文献1には、液滴を1滴塗布する毎に硬化させることにより平坦なパターンを形成する方法が開示されている。特許文献2には、インクジェット法による液滴印刷において、パターンの形成される基板を、フッ素を含んだ低沸点液体で表面処理し、その表面エネルギーを一時的に低くすることでインク液滴の広がりを抑制する方法が開示されている。特許文献3には、基板等の表面に撥液性を付与するコーティング液に含まれる撥液性を発現する成分の濃度を制御することによって親液撥液パターンを形成する方法が開示されている。しかしながら、これらの方法を用いて配線を形成する場合には、図2に示すように、親液部3と撥液部2を有する親液撥液パターン上に導電インク4を塗布し、導体を形成した場合であっても、導電インクの表面張力が充分でないために撥液部2に導電インクの残渣5が生じるという問題があった。 For such a problem, for example, Patent Document 1 discloses a method of forming a flat pattern by curing each time one droplet is applied. In Patent Document 2, in droplet printing by an inkjet method, a substrate on which a pattern is formed is surface-treated with a low-boiling liquid containing fluorine, and the surface energy is temporarily lowered to spread ink droplets. A method of suppressing this is disclosed. Patent Document 3 discloses a method of forming a lyophilic liquid repellent pattern by controlling the concentration of a component that exhibits liquid repellency contained in a coating liquid that imparts liquid repellency to the surface of a substrate or the like. . However, when the wiring is formed using these methods, the conductive ink 4 is applied on the lyophilic liquid-repellent pattern having the lyophilic part 3 and the lyophobic part 2, as shown in FIG. Even when it is formed, there is a problem that the conductive ink residue 5 is generated in the liquid repellent portion 2 because the surface tension of the conductive ink is not sufficient.
日本国特開2007-329446号公報Japanese Unexamined Patent Publication No. 2007-329446 日本国特開2008-311648号公報Japanese Unexamined Patent Publication No. 2008-31648 日本国特開2009-255007号公報Japanese Unexamined Patent Publication No. 2009-255007
 本発明は、上記問題を解決するためになされたもので、親液撥液パターン上に印刷し配線幅が50μm以下の配線を形成する場合にも、撥液部にインクの残渣がなく、体積抵抗率の小さい導体を形成できる導電インクの提供を目的とする。
 また、本発明は、撥液部にインクの残渣がなく、信頼性の高い配線の形成に好適な導体付き基材の製造方法の提供を目的とする。
The present invention has been made in order to solve the above problem. Even when a wiring having a wiring width of 50 μm or less is formed by printing on a lyophilic liquid repellent pattern, there is no ink residue in the liquid repellent portion, and the volume is reduced. An object of the present invention is to provide a conductive ink capable of forming a conductor having a low resistivity.
Another object of the present invention is to provide a method for producing a substrate with a conductor that is suitable for forming a highly reliable wiring having no ink residue in the liquid repellent portion.
 本発明は、以下の導電インク、導体付き基材及び導体付き基材の製造方法を提供する。
(1)非水溶性の有機溶媒である主溶媒と、
 前記主溶媒の沸点を超える沸点を持ち、かつ20℃での表面張力が35~73dyn/cmである添加溶媒と、を含む分散溶媒と、
 前記分散溶媒中に分散された水素化銅微粒子と、
を含むことを特徴とする導電インク。
(2)前記添加溶媒の含有割合は、前記主溶媒に対して0.2~10.0質量%である(1)記載の導電インク。
(3)前記水素化銅微粒子の含有割合は、導電インク全体の、10~50質量%である(1)又は(2)記載の導電インク。
(4)前記主溶媒の含有割合は、導電インク全体の、40~90質量%である(1)乃至(3)のいずれか1つに記載の導電インク。
(5)前記水素化銅微粒子の平均一次粒子径は、5~100nmである(1)乃至(4)のいずれか1つに記載の導電インク。
(6)基材上に形成された親液性領域と撥液性領域とのパターンを有する高分子膜の表面に、(1)乃至(5)のいずれか1つに記載の導電インクを用いて形成された導体を有することを特徴とする導体付き基材。
The present invention provides the following conductive ink, substrate with conductor, and method for producing a substrate with conductor.
(1) a main solvent which is a water-insoluble organic solvent;
A dispersion solvent comprising: an additive solvent having a boiling point exceeding the boiling point of the main solvent and having a surface tension at 20 ° C. of 35 to 73 dyn / cm;
Copper hydride fine particles dispersed in the dispersion solvent;
A conductive ink comprising:
(2) The conductive ink according to (1), wherein a content ratio of the additive solvent is 0.2 to 10.0% by mass with respect to the main solvent.
(3) The conductive ink according to (1) or (2), wherein the content ratio of the copper hydride fine particles is 10 to 50% by mass of the entire conductive ink.
(4) The conductive ink according to any one of (1) to (3), wherein the content ratio of the main solvent is 40 to 90% by mass of the entire conductive ink.
(5) The conductive ink according to any one of (1) to (4), wherein the copper hydride fine particles have an average primary particle diameter of 5 to 100 nm.
(6) The conductive ink according to any one of (1) to (5) is used on the surface of a polymer film having a pattern of a lyophilic region and a liquid repellent region formed on a substrate. A base material with a conductor, characterized in that it has a conductor formed.
(7)基材を準備する工程と、
 前記基材上に、親液性領域と撥液性領域とのパターンを有する高分子膜を形成する工程と、
 前記高分子膜表面に(1)乃至(5)のいずれか1つに記載の導電インクの塗布層を形成する工程と、
 前記塗布層を加熱して、銅を含む導体を形成する工程と
 を有することを特徴とする導体付き基材の製造方法。
(7) preparing a substrate;
Forming a polymer film having a pattern of a lyophilic region and a liquid repellent region on the substrate;
Forming a conductive ink coating layer according to any one of (1) to (5) on the surface of the polymer film;
And a step of heating the coating layer to form a conductor containing copper.
 本発明の導電インクは、親液撥液パターンを有する高分子膜上に印刷し配線幅が50μm以下の配線を形成する場合に、撥液部にインクの残渣がなく、精密に導体を形成できる。本発明の導体付き基材の製造方法は、撥液部にインクの残渣がなく、体積抵抗率の小さい導体付き基材を製造できる。 When the conductive ink of the present invention is printed on a polymer film having a lyophilic liquid repellent pattern to form a wiring having a wiring width of 50 μm or less, there is no ink residue in the liquid repellent portion, and a conductor can be accurately formed. . The method for producing a substrate with a conductor of the present invention can produce a substrate with a conductor having a small volume resistivity and no ink residue in the liquid repellent part.
本発明の導電インクにより親液撥液パターン表面に導体を形成した場合を模式的に示す図である。It is a figure which shows typically the case where a conductor is formed in the lyophilic liquid repellent pattern surface with the conductive ink of this invention. 従来の導電インクにより親液撥液パターン表面に導体を形成した場合を模式的に示す図である。It is a figure which shows typically the case where a conductor is formed in the lyophilic liquid repellent pattern surface with the conventional conductive ink.
 以下、本発明の実施の形態について説明する。なお、本発明は、以下に記載する実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described. Note that the present invention is not limited to the embodiments described below.
 本発明の導電インクは、非水溶性の有機溶媒である主溶媒と、この主溶媒の沸点を超える沸点を持ち、かつ20℃での表面張力が35~73dyn/cmである添加溶媒と、を含む分散溶媒と、この分散溶媒中に分散された水素化銅微粒子とを含有する。したがって、図1に模式的に示すように、本発明の導電インク4は、基材1上の、撥液部2と親液部3を有する親液撥液パターン上に印刷する場合に、導電インク4が親液部3上に留まり、撥液部2にインクの残渣を生じずに導体を形成できる。 The conductive ink of the present invention comprises a main solvent which is a water-insoluble organic solvent, and an additive solvent having a boiling point exceeding the boiling point of the main solvent and having a surface tension at 20 ° C. of 35 to 73 dyn / cm. A dispersion solvent containing the copper hydride fine particles dispersed in the dispersion solvent. Therefore, as schematically shown in FIG. 1, the conductive ink 4 of the present invention is conductive when printed on a lyophilic liquid repellent pattern having a liquid repellent part 2 and a lyophilic part 3 on a substrate 1. The ink 4 stays on the lyophilic portion 3, and a conductor can be formed without causing ink residue in the lyophobic portion 2.
 本発明の導電インクは、水素化銅微粒子を分散させる溶媒が、沸点の比較的低い主溶媒と主溶媒より沸点の高い添加溶媒を含む。そのため、導電インクの塗布層を加熱する過程で沸点の高い添加溶媒が濃縮され、導電インクに充分な表面張力を付与する。この表面張力によりインクが濡れ広がることなく親液撥液パターンを有する高分子膜表面の親液性領域に留まり、撥液性領域に残渣を残さずに導体を形成できる。 なお、本明細書において、「親液性領域」を「親液部」、「撥液性領域」を「撥液部」ということもある。
 以下、実施形態の導電インクに含有される各成分について説明する。
In the conductive ink of the present invention, the solvent in which the copper hydride fine particles are dispersed includes a main solvent having a relatively low boiling point and an additive solvent having a boiling point higher than that of the main solvent. Therefore, the additive solvent having a high boiling point is concentrated in the process of heating the coating layer of the conductive ink, and sufficient surface tension is imparted to the conductive ink. This surface tension prevents the ink from spreading and stays in the lyophilic region on the surface of the polymer film having the lyophilic liquid repellent pattern, and a conductor can be formed without leaving a residue in the liquid repellent region. In the present specification, the “lyophilic region” may be referred to as “lyophilic portion”, and the “liquid repellent region” may be referred to as “liquid repellent portion”.
Hereinafter, each component contained in the conductive ink of the embodiment will be described.
<水素化銅微粒子>
 水素化銅微粒子は、実施形態の導電インクの導電成分となるものである。
 水素化銅微粒子としては、後述する方法により製造される水素化銅微粒子分散液中の水素化銅微粒子を用いることが好ましいが、それに限定されない。なお、後述する方法で製造される水素化銅微粒子分散液には、水素化銅微粒子だけでなく、保護剤である沸点が250℃以下のアルキルアミンが含有されているので、この水素化銅微粒子分散液をそのまま使用して、本発明の導電インクを得ることができる。水素化銅微粒子分散液を用いて本発明の導電インクを調製する方法については、後述する。
<Copper hydride fine particles>
The copper hydride fine particles become a conductive component of the conductive ink of the embodiment.
As the copper hydride fine particles, it is preferable to use copper hydride fine particles in a copper hydride fine particle dispersion produced by a method to be described later, but it is not limited thereto. In addition, since the copper hydride fine particle dispersion produced by the method described later contains not only the copper hydride fine particles but also an alkylamine having a boiling point of 250 ° C. or less, which is a protective agent, the copper hydride fine particles. The conductive ink of the present invention can be obtained by using the dispersion as it is. A method for preparing the conductive ink of the present invention using the copper hydride fine particle dispersion will be described later.
 水素化銅微粒子(一次粒子)の平均一次粒子径は、5~100nmが好ましく、5~70nmがより好ましく、5~35nmが特に好ましい。水素化銅微粒子の平均一次粒子径が100nm以下であれば、微粒子の特徴である低温での焼結性が良好となり、得られる導体の体積抵抗率を低くすることが可能になる。また、水素化銅微粒子の平均一次粒子径が5nm以上であれば、水素化銅微粒子を安定に分散させることができる。
 なお、水素化銅微粒子の平均一次粒子径は、無作為に抽出した100個の微粒子の粒子径を、透過型電子顕微鏡(TEM)又は走査型電子顕微鏡(SEM)を使用して測定し、それらの値を平均して求めた値である。
The average primary particle size of the copper hydride fine particles (primary particles) is preferably 5 to 100 nm, more preferably 5 to 70 nm, and particularly preferably 5 to 35 nm. If the average primary particle diameter of the copper hydride fine particles is 100 nm or less, the sinterability at a low temperature, which is a feature of the fine particles, becomes good, and the volume resistivity of the obtained conductor can be lowered. Moreover, if the average primary particle diameter of the copper hydride fine particles is 5 nm or more, the copper hydride fine particles can be stably dispersed.
The average primary particle size of the copper hydride fine particles was determined by measuring the particle size of 100 randomly extracted fine particles using a transmission electron microscope (TEM) or a scanning electron microscope (SEM). This is a value obtained by averaging the values of.
 導電インクにおける、固形分としての水素化銅微粒子の含有割合(濃度)は、10~70質量%が好ましい。より好ましくは15質量%以上であり、さらに好ましくは20質量%以上である。また、より好ましくは60質量%以下であり、さらに好ましくは50質量%以下、さらに好ましくは40質量%以下である。導電インクにおいて、固形分としての水素化銅微粒子の含有割合(濃度)が10質量%以上であれば、充分な厚みを有する導体を形成しやすい。水素化銅微粒子の含有割合が70質量%以下であれば、粘度、表面張力等のインク特性の制御が容易であり、導体の形成が容易になる。 The content (concentration) of copper hydride fine particles as a solid content in the conductive ink is preferably 10 to 70% by mass. More preferably, it is 15 mass% or more, More preferably, it is 20 mass% or more. More preferably, it is 60 mass% or less, More preferably, it is 50 mass% or less, More preferably, it is 40 mass% or less. In the conductive ink, when the content (concentration) of the copper hydride fine particles as a solid content is 10% by mass or more, it is easy to form a conductor having a sufficient thickness. If the content ratio of the copper hydride fine particles is 70% by mass or less, it is easy to control ink characteristics such as viscosity and surface tension, and it becomes easy to form a conductor.
<水素化銅微粒子分散液の製造方法>
 本発明の導電インクに含まれる、水素化銅微粒子を含有する分散液は、以下に説明する溶媒(A)中でアルキルアミン(B)の存在下、ヒドリド系還元剤により銅(II)塩を還元する方法により得ることが好ましい。以下、この製造方法について説明する。
<Method for producing copper hydride fine particle dispersion>
The dispersion containing the copper hydride fine particles contained in the conductive ink of the present invention contains a copper (II) salt with a hydride reducing agent in the presence of an alkylamine (B) in a solvent (A) described below. It is preferably obtained by a reduction method. Hereinafter, this manufacturing method will be described.
 銅(II)塩としては、アルキルアミン(B)と銅(II)アミン錯体を形成可能な塩が使用できる。銅(II)塩は、無水物でも水和物でもよい。
 銅(II)塩は、CuX又はCuYで表される。ここで、Xは1価の塩基、Yは2価の塩基である。この銅(II)塩がヒドリド系還元剤によって還元されて水素化銅微粒子が生成する際、銅(II)塩に含まれるXはHXとして、YはHYとして、遊離すると考えられる。本発明においては、この遊離するHX又はHY(以下、遊離酸ともいう。)の沸点又は分解点が150℃以下となる塩を用いることが好ましい。これは、銅(II)塩の還元により生じる遊離酸が導体形成の際の加熱時に揮発しやすく、体積抵抗率の低い導体を形成しやすいからである。
As the copper (II) salt, a salt capable of forming an alkylamine (B) and a copper (II) amine complex can be used. The copper (II) salt may be an anhydride or a hydrate.
The copper (II) salt is represented by CuX 2 or CuY. Here, X is a monovalent base and Y is a divalent base. When this copper (II) salt is reduced by a hydride-based reducing agent to produce copper hydride fine particles, it is considered that X contained in the copper (II) salt is liberated as HX and Y as H 2 Y. In the present invention, it is preferable to use a salt in which the boiling point or decomposition point of this liberated HX or H 2 Y (hereinafter also referred to as free acid) is 150 ° C. or less. This is because the free acid produced by the reduction of the copper (II) salt is likely to volatilize during heating during conductor formation, and easily forms a conductor with a low volume resistivity.
 銅(II)塩としては、例えば、シュウ酸銅(II)(遊離するシュウ酸の分解点:189.5℃)、塩化銅(II)(遊離する塩酸の沸点110℃)、酢酸銅(II)(遊離する酢酸の沸点:118℃)、ギ酸銅(II)(遊離するギ酸の沸点:100.75℃)、硝酸銅(II)(遊離する硝酸の沸点:82.6℃)、硫酸銅(II)(遊離する硫酸の沸点:290℃)、酒石酸銅(II)(遊離する酒石酸の沸点、分解点:不明)、クエン酸銅(II)(遊離するクエン酸の分解点:175℃)、炭酸銅(II)、オレイン酸銅(II)(遊離するオレイン酸の沸点:193℃/100Pa、分解点:400℃以上)が挙げられる。なかでも、酢酸銅(II)、ギ酸銅(II)、硝酸銅(II)、炭酸銅(II)が好ましい。
 銅(II)塩は、1種を単独で使用してもよく、2種以上を併用してもよい。
Examples of the copper (II) salt include copper oxalate (II) (decomposition point of liberated oxalic acid: 189.5 ° C.), copper chloride (II) (boiling point of liberated hydrochloric acid 110 ° C.), copper acetate (II ) (Boiling point of free acetic acid: 118 ° C.), copper (II) formate (boiling point of free formic acid: 100.75 ° C.), copper (II) nitrate (boiling point of free nitric acid: 82.6 ° C.), copper sulfate (II) (boiling point of free sulfuric acid: 290 ° C), copper (II) tartrate (boiling point of free tartaric acid, decomposition point: unknown), copper (II) citrate (decomposition point of free citric acid: 175 ° C) , Copper carbonate (II), and copper (II) oleate (boiling point of liberated oleic acid: 193 ° C./100 Pa, decomposition point: 400 ° C. or higher). Of these, copper (II) acetate, copper (II) formate, copper (II) nitrate, and copper (II) carbonate are preferred.
A copper (II) salt may be used individually by 1 type, and may use 2 or more types together.
 ヒドリド系還元剤としては、例えば、NaBH、LiBH、Zn(BH、(CHNBH(OCOCH、NaBHCN、LiAlH、(i-Bu)AlH(DIBAL)、LiAlH(t-BuO)、NaAlH(OCHCHOCH(Red-Al)等が挙げられる。なかでも、水素化銅微粒子の粒子径の制御に重要である還元速度が調節しやすい点から、NaBH、LiBH、及びNaBHCNからなる群から選ばれる1種以上が好ましい。
 ヒドリド系還元剤は、1種を単独で使用してもよく、2種以上を併用してもよい。
Examples of hydride-based reducing agents include NaBH 4 , LiBH 4 , Zn (BH 4 ) 2 , (CH 3 ) 4 NBH (OCOCH 3 ) 3 , NaBH 3 CN, LiAlH 4 , (i-Bu) 2 AlH (DIBAL ), LiAlH (t-BuO) 3 , NaAlH 2 (OCH 2 CH 2 OCH 3 ) 2 (Red-Al), and the like. Among these, at least one selected from the group consisting of NaBH 4 , LiBH 4 , and NaBH 3 CN is preferable because the reduction rate, which is important for controlling the particle size of the copper hydride fine particles, can be easily adjusted.
A hydride type reducing agent may be used individually by 1 type, and may use 2 or more types together.
 溶媒(A)は、SP値が8~12の溶媒である。SP値が8~12であれば、溶媒(A)と水との相溶性が低く、反応系中に水が混入することを抑制できる。これにより、溶媒(A)中に溶解したヒドリド系還元剤が水と反応して不活性化することを抑制できる。
 溶媒(A)のSP値は、8.5~9.5がより好ましい。
The solvent (A) is a solvent having an SP value of 8 to 12. When the SP value is 8 to 12, the compatibility between the solvent (A) and water is low, and the mixing of water into the reaction system can be suppressed. Thereby, it can suppress that the hydride type | system | group reducing agent melt | dissolved in the solvent (A) reacts with water and inactivates.
The SP value of the solvent (A) is more preferably 8.5 to 9.5.
 溶媒(A)としては、例えば、シクロヘキサン(SP値8.2)、酢酸イソブチル(SP値8.3)、酢酸イソプロピル(SP値8.4)、酢酸ブチル(SP値8.5)、四塩化炭素(SP値8.6)、エチルベンゼン(SP値8.8)、キシレン(SP値8.8)、トルエン(SP値8.9)、酢酸エチル(SP値9.1)、テトラヒドロフラン(SP値9.1)、ベンゼン(SP値9.2)、クロロホルム(SP値9.3)、塩化メチレン(SP値9.7)、二硫化炭素(SP値10.0)、酢酸(SP値10.1)、ピリジン(SP値10.7)、ジメチルホルムアミド(SP値12.0)等が挙げられる。 Examples of the solvent (A) include cyclohexane (SP value 8.2), isobutyl acetate (SP value 8.3), isopropyl acetate (SP value 8.4), butyl acetate (SP value 8.5), and tetrachloride. Carbon (SP value 8.6), ethylbenzene (SP value 8.8), xylene (SP value 8.8), toluene (SP value 8.9), ethyl acetate (SP value 9.1), tetrahydrofuran (SP value) 9.1), benzene (SP value 9.2), chloroform (SP value 9.3), methylene chloride (SP value 9.7), carbon disulfide (SP value 10.0), acetic acid (SP value 10. 1), pyridine (SP value 10.7), dimethylformamide (SP value 12.0) and the like.
 また、溶媒(A)としては、還元反応に使用するヒドリド系還元剤に対して不活性な溶媒を使用する。すなわち、溶媒(A)としては、還元反応に使用するヒドリド系還元剤によって還元されない溶媒、又は活性水素を持たない溶媒が、ヒドリド系還元剤が不活性化することを抑制できるので好ましい。 Further, as the solvent (A), a solvent inert to the hydride reducing agent used for the reduction reaction is used. That is, as the solvent (A), a solvent that is not reduced by the hydride reducing agent used in the reduction reaction or a solvent that does not have active hydrogen is preferable because it can suppress the inactivation of the hydride reducing agent.
 溶媒(A)としては、還元反応の制御が容易な点、及び生成する水素化銅微粒子の分散性の点から、トルエン、キシレン、ベンゼン等の炭化水素類;テトラヒドロフラン等のエーテル類;酢酸エチル、酢酸イソプロピル、酢酸イソブチル等のエステル類が好ましく、トルエン、キシレンが特に好ましい。
 溶媒(A)は、1種を単独で使用してもよく、2種以上を併用してもよい。
As the solvent (A), hydrocarbons such as toluene, xylene, and benzene; ethers such as tetrahydrofuran; ethyl acetate, from the viewpoint of easy control of the reduction reaction and dispersibility of the produced copper hydride fine particles. Esters such as isopropyl acetate and isobutyl acetate are preferred, and toluene and xylene are particularly preferred.
A solvent (A) may be used individually by 1 type, and may use 2 or more types together.
 また、ヒドリド系還元剤は種類によって還元力に差がある。例えば、NaBHはエステル類を還元しないが、LiAlHはエステル類を還元する。よって、使用するヒドリド系還元剤の種類により、前記溶媒(A)から適切な溶媒を選択して使用する。 Further, hydride-based reducing agents have different reducing power depending on the type. For example, NaBH 4 does not reduce esters, whereas LiAlH 4 reduces esters. Therefore, an appropriate solvent is selected from the solvent (A) depending on the type of hydride-based reducing agent used.
 アルキルアミン(B)は、炭素数7以上のアルキル基を有し、かつ沸点が250℃以下のアルキルアミンである。
 アルキルアミン(B)におけるアルキル基の炭素数が7以上であれば、生成する水素化銅微粒子の分散性が良好となる。なお、本発明では反応場が有機相であるため、水からの保護を目的として、炭素数の大きいアルキルアミンを使用する必要がない。アルキルアミン(B)におけるアルキル基の炭素数は、沸点が高くなりすぎることを抑制する点から、11以下が好ましい。
The alkylamine (B) is an alkylamine having an alkyl group having 7 or more carbon atoms and having a boiling point of 250 ° C. or lower.
If the carbon number of the alkyl group in the alkylamine (B) is 7 or more, the dispersibility of the produced copper hydride fine particles will be good. In the present invention, since the reaction field is an organic phase, it is not necessary to use an alkylamine having a large carbon number for the purpose of protection from water. The number of carbon atoms of the alkyl group in the alkylamine (B) is preferably 11 or less from the viewpoint of suppressing the boiling point from becoming too high.
 アルキルアミン(B)の沸点が250℃以下であれば、導電インクを用いて導体を形成する際に、アルキルアミン(B)が微粒子表面から脱離し、揮発して体積抵抗率の低い導体を形成できる。アルキルアミン(B)の沸点は、加熱時の脱離性及び揮発性の点から、250℃以下が好ましく、200℃以下がより好ましい。また、アルキルアミン(B)の沸点は、アルキル基の炭素数を7以上とする点から、通常は150℃以上が好ましい。 If the boiling point of the alkylamine (B) is 250 ° C. or less, the alkylamine (B) is detached from the surface of the fine particles and volatilizes to form a conductor with a low volume resistivity when the conductor is formed using the conductive ink. it can. The boiling point of the alkylamine (B) is preferably 250 ° C. or less, and more preferably 200 ° C. or less, from the viewpoint of desorption and volatility during heating. Moreover, the boiling point of the alkylamine (B) is usually preferably 150 ° C. or higher from the viewpoint that the alkyl group has 7 or more carbon atoms.
 アルキルアミン(B)のアルキル基は、得られる水素化銅微粒子の分散安定性の点から、直鎖アルキル基が好ましい。ただし、アルキルアミン(B)のアルキル基は、分岐アルキル基であってもよい。 The alkyl group of the alkylamine (B) is preferably a linear alkyl group from the viewpoint of dispersion stability of the obtained copper hydride fine particles. However, the alkyl group of the alkylamine (B) may be a branched alkyl group.
 アルキルアミン(B)としては、n-ヘプチルアミン(アルキル基の炭素数7、沸点157℃)、n-オクチルアミン(アルキル基の炭素数8、沸点176℃)、n-ノニルアミン(アルキル基の炭素数9、沸点201℃)、1-アミノデカン(アルキル基の炭素数10、沸点220℃)、1-アミノウンデカン(アルキル基の炭素数11、沸点242℃)が好ましく、n-ヘプチルアミン、n-オクチルアミンがより好ましい。
 アルキルアミン(B)は、1種を単独で使用してもよく、2種以上を併用してもよい。
Examples of the alkylamine (B) include n-heptylamine (alkyl group having 7 carbon atoms and a boiling point of 157 ° C.), n-octylamine (alkyl group having 8 carbon atoms and a boiling point of 176 ° C.), n-nonylamine (carbon of the alkyl group). (9, boiling point: 201 ° C.), 1-aminodecane (alkyl group having 10 carbon atoms, boiling point: 220 ° C.), 1-aminoundecane (alkyl group having 11 carbon atoms, boiling point: 242 ° C.), n-heptylamine, n- Octylamine is more preferred.
An alkylamine (B) may be used individually by 1 type, and may use 2 or more types together.
 このような水素化銅微粒子分散液の製造方法では、アルキルアミン(B)の存在下において、ヒドリド系還元剤で銅(II)塩を還元することで水素化銅微粒子を生成させる。アルキルアミン(B)の存在下では、アルキルアミン(B)が銅(II)に配位して銅(II)アミン錯体が形成された後、該銅(II)アミン錯体がヒドリド系還元剤によって還元される。これにより、銅(II)塩の急激な還元による水素化銅の塊の形成を抑制でき、水素化銅の微粒子の表面にアルキルアミン(B)が配位した水素化銅微粒子が生成する。 In such a method for producing a copper hydride fine particle dispersion, copper hydride fine particles are generated by reducing a copper (II) salt with a hydride-based reducing agent in the presence of an alkylamine (B). In the presence of alkylamine (B), after alkylamine (B) is coordinated to copper (II) to form a copper (II) amine complex, the copper (II) amine complex is formed by a hydride reducing agent. Reduced. Thereby, formation of the copper hydride lump by rapid reduction of the copper (II) salt can be suppressed, and copper hydride fine particles in which alkylamine (B) is coordinated on the surface of the copper hydride fine particles are generated.
 また、この製造方法では、ヒドリド系還元剤の溶媒(A)に対する溶解性がさほど高くないため、ヒドリド系還元剤の大半が固形状で溶媒(A)中に存在し、一部が溶媒(A)中に溶解している。この溶媒(A)中に溶解しているヒドリド系還元剤が銅(II)塩を還元して消費されると、固形状で存在するヒドリド系還元剤が溶媒(A)に徐々に溶解する。そして、溶媒(A)に徐々に溶解したヒドリド系還元剤が順次還元反応に寄与するので、還元反応が急激に進行せず、水素化銅微粒子が安定して生成する。
 生成する水素化銅微粒子は、表面にアルキルアミン(B)が配位していることで、溶媒(A)中に分散できる。
Moreover, in this manufacturing method, since the solubility with respect to the solvent (A) of a hydride type | system | group reducing agent is not so high, most of a hydride type | system | group reducing agent exists in a solvent (A) in a solid state, and a part is solvent (A ) Is dissolved in. When the hydride reducing agent dissolved in the solvent (A) reduces and consumes the copper (II) salt, the hydride reducing agent present in a solid state gradually dissolves in the solvent (A). And since the hydride type | system | group reducing agent which melt | dissolved in the solvent (A) gradually contributes to a reduction reaction, a reduction reaction does not advance rapidly but a copper hydride microparticles | fine-particles produce | generate stably.
The produced copper hydride fine particles can be dispersed in the solvent (A) because the alkylamine (B) is coordinated on the surface.
 銅(II)塩、ヒドリド系還元剤、アルキルアミン(B)を溶媒(A)に添加する順序は、アルキルアミン(B)、銅(II)塩、ヒドリド系還元剤の順が好ましい。これにより、前記銅(II)アミン錯体が形成された後に、該銅(II)アミン錯体のヒドリド系還元剤による還元が進行しやすくなり、水素化銅微粒子がより安定して得られる。
 ただし、銅(II)塩、ヒドリド系還元剤、アルキルアミン(B)を溶媒(A)に添加する順序は、ヒドリド系還元剤による還元反応がアルキルアミン(B)の存在下で進行する順序であれば前記順序には限定されない。例えば、溶媒(A)に、アルキルアミン(B)、ヒドリド系還元剤、銅(II)塩の順に添加してもよい。この場合、ヒドリド系還元剤は溶媒(A)中に固形状で存在しており、溶媒(A)中で前記銅(II)アミン錯体が形成された後、固形状で存在する該銅(II)アミン錯体がヒドリド系還元剤と反応する。さらに、ヒドリド系還元剤、アルキルアミン(B)、銅(II)塩の順に添加しても、差し支えない。
The order of adding the copper (II) salt, hydride reducing agent, and alkylamine (B) to the solvent (A) is preferably the order of alkylamine (B), copper (II) salt, and hydride reducing agent. Thereby, after the said copper (II) amine complex is formed, reduction | restoration by the hydride type | system | group reducing agent of this copper (II) amine complex becomes easy to advance, and copper hydride microparticles | fine-particles are obtained more stably.
However, the order of adding the copper (II) salt, the hydride reducing agent, and the alkylamine (B) to the solvent (A) is the order in which the reduction reaction with the hydride reducing agent proceeds in the presence of the alkylamine (B). If there is, the order is not limited. For example, the alkylamine (B), the hydride reducing agent, and the copper (II) salt may be added to the solvent (A) in this order. In this case, the hydride reducing agent is present in a solid state in the solvent (A), and after the copper (II) amine complex is formed in the solvent (A), the copper (II) present in the solid state. ) Amine complex reacts with hydride reducing agent. Further, a hydride reducing agent, an alkylamine (B), and a copper (II) salt may be added in this order.
 ヒドリド系還元剤による還元反応は、溶媒(A)を撹拌しながら行ってもよい。これにより、還元反応が進行しやすくなる。
 反応温度は、0~80℃が好ましく、15~50℃がより好ましい。反応温度が0℃以上であれば、還元反応が進行しやすい。反応温度が80℃以下であれば、得られる水素化銅微粒子分散液中の水素化銅微粒子の分散性が良好であり、その結果、体積抵抗率の小さい導体を形成しやすくなる。
The reduction reaction with the hydride-based reducing agent may be performed while stirring the solvent (A). This facilitates the reduction reaction.
The reaction temperature is preferably 0 to 80 ° C, more preferably 15 to 50 ° C. If reaction temperature is 0 degreeC or more, a reductive reaction will advance easily. If reaction temperature is 80 degrees C or less, the dispersibility of the copper hydride microparticles in the obtained copper hydride microparticle dispersion liquid will be favorable, As a result, it will become easy to form a conductor with small volume resistivity.
 銅(II)塩の添加量は、水素化銅微粒子の生産性の点から、溶媒(A)の1gに対して、0.1×10-3モル以上が好ましく、0.15×10-3モル以上がより好ましく、0.25×10-3モル以上が特に好ましい。また、銅(II)塩の添加量は、還元反応の制御が容易な点から、溶媒(A)の1gに対して、0.65×10-3モル以下が好ましく、0.6×10-3モル以下がより好ましく、0.5×10-3モル以下が特に好ましい。 The addition amount of the copper (II) salt is preferably 0.1 × 10 −3 mol or more with respect to 1 g of the solvent (A) from the viewpoint of productivity of copper hydride fine particles, and preferably 0.15 × 10 −3. Mole or more is more preferable, and 0.25 × 10 −3 mol or more is particularly preferable. Further, the addition amount of the copper (II) salt is preferably 0.65 × 10 −3 mol or less with respect to 1 g of the solvent (A) from the viewpoint of easy control of the reduction reaction, and 0.6 × 10 − 3 mol or less is more preferable, and 0.5 × 10 −3 mol or less is particularly preferable.
 アルキルアミン(B)の添加量は、得られる水素化銅微粒子分散液中の水素化銅微粒子の分散性が良好になる点から、溶媒(A)の1gに対して、0.2×10-3モル以上が好ましく、0.25×10-3モル以上がより好ましく、0.3×10-3モル以上が特に好ましい。また、アルキルアミン(B)の添加量が過剰であると、銅(II)塩に配位しきれなかったアルキルアミン(B)が導体形成時に残留し、導体の体積抵抗率を上昇させるおそれがある。よって、アルキルアミン(B)の量の上限は、溶媒(A)の1gに対して、0.75×10-3モル以下が好ましく、0.7×10-3モル以下がより好ましく、0.6×10-3モル以下が特に好ましい。 The addition amount of the alkylamine (B) is 0.2 × 10 − with respect to 1 g of the solvent (A) because the dispersibility of the copper hydride fine particles in the obtained copper hydride fine particle dispersion becomes good. 3 mol or more is preferable, 0.25 × 10 −3 mol or more is more preferable, and 0.3 × 10 −3 mol or more is particularly preferable. In addition, if the amount of alkylamine (B) added is excessive, alkylamine (B) that could not be coordinated to the copper (II) salt may remain at the time of conductor formation and increase the volume resistivity of the conductor. is there. Therefore, the upper limit of the amount of the alkylamine (B) is preferably 0.75 × 10 −3 mol or less, more preferably 0.7 × 10 −3 mol or less, with respect to 1 g of the solvent (A). 6 × 10 −3 mol or less is particularly preferable.
 ヒドリド系還元剤の添加量は、水素化銅微粒子の収率の点から、溶媒(A)の1gに対して、0.25×10-3モル以上が好ましく、0.3×10-3モル以上がより好ましく、0.35×10-3モル以上が特に好ましい。また、ヒドリド系還元剤の添加量は、還元反応の制御が容易な点から、溶媒(A)の1gに対して、0.65×10-3モル以下が好ましく、0.55×10-3モル以下がより好ましく、0.5×10-3モル以下が特に好ましい。 The addition amount of the hydride-based reducing agent is preferably 0.25 × 10 −3 mol or more with respect to 1 g of the solvent (A) from the viewpoint of the yield of copper hydride fine particles, preferably 0.3 × 10 −3 mol. The above is more preferable, and 0.35 × 10 −3 mol or more is particularly preferable. The amount of the hydride reducing agent added is preferably 0.65 × 10 −3 mol or less with respect to 1 g of the solvent (A) from the viewpoint of easy control of the reduction reaction, preferably 0.55 × 10 −3. The molar amount is more preferably less than or equal to 0.5 × 10 −3 mol or less.
 溶媒(A)中に添加する銅(II)塩とアルキルアミン(B)のモル比(以下、Cu/アルキルアミンと示す。)は、生成する水素化銅微粒子の分散安定性が良好となる点から、1.8以下が好ましく、1.4以下がより好ましく、1.2以下が特に好ましい。また、前記モル比(Cu/アルキルアミン)は、導体形成時の加熱による、アルキルアミン(B)の微粒子表面からの脱離及び揮発が容易な点から、0.64以上が好ましく、0.85以上がより好ましい。 The molar ratio of the copper (II) salt and the alkylamine (B) added to the solvent (A) (hereinafter referred to as Cu / alkylamine) is that the dispersion stability of the produced copper hydride fine particles is good. Therefore, 1.8 or less is preferable, 1.4 or less is more preferable, and 1.2 or less is particularly preferable. Further, the molar ratio (Cu / alkylamine) is preferably 0.64 or more from the viewpoint of easy desorption and volatilization of the alkylamine (B) from the surface of the fine particles by heating during conductor formation, The above is more preferable.
 溶媒(A)に添加する銅(II)塩とヒドリド系還元剤(R)のモル比(以下、Cu/ヒドリド系還元剤と示す。)は、還元反応が進行しやすい点から、1.42以下が好ましく、1.3以下がより好ましく、1.2以下が特に好ましい。また、前記モル比(Cu/ヒドリド系還元剤)は、還元反応の制御が容易な点から、0.7以上が好ましく、0.8以上がより好ましく、0.9以上が特に好ましい。 The molar ratio of the copper (II) salt added to the solvent (A) and the hydride reducing agent (R) (hereinafter referred to as Cu / hydride reducing agent) is 1.42 in that the reduction reaction easily proceeds. The following is preferable, 1.3 or less is more preferable, and 1.2 or less is particularly preferable. The molar ratio (Cu / hydride-based reducing agent) is preferably 0.7 or more, more preferably 0.8 or more, and particularly preferably 0.9 or more, from the viewpoint of easy control of the reduction reaction.
 こうして平均一次粒子径が5~100nm、より好ましくは5~70nm、特に好ましくは5~35nmの水素化銅微粒子(一次粒子)が、溶媒(A)に分散された水素化銅微粒子分散液が得られる。水素化銅微粒子の平均一次粒子径は、アルキルアミン(B)の添加量、及びヒドリド系還元剤の添加量により調節できる。アルキルアミン(B)の添加量を多くすることで、水素化銅微粒子の平均一次粒子径が小さくなる傾向がある。また、ヒドリド系還元剤の添加量を少なくすることで、水素化銅微粒子の平均一次粒子径が小さくなる傾向がある。 In this way, a copper hydride fine particle dispersion in which copper hydride fine particles (primary particles) having an average primary particle diameter of 5 to 100 nm, more preferably 5 to 70 nm, particularly preferably 5 to 35 nm are dispersed in the solvent (A) is obtained. It is done. The average primary particle diameter of the copper hydride fine particles can be adjusted by the addition amount of the alkylamine (B) and the addition amount of the hydride reducing agent. By increasing the addition amount of the alkylamine (B), the average primary particle diameter of the copper hydride fine particles tends to decrease. Moreover, there exists a tendency for the average primary particle diameter of a copper hydride microparticle to become small by reducing the addition amount of a hydride type | system | group reducing agent.
 得られる水素化銅微粒子分散液における固形分としての水素化銅微粒子の濃度は、分散液全体を100質量%として、1~6質量%が好ましく、2.5~4.5質量%がより好ましい。水素化銅微粒子分散液の前記水素化銅微粒子固形分濃度が1質量%未満であると、濃縮工程に時間がかかり、生産性が低下するおそれがある。水素化銅微粒子分散液の水素化銅微粒子固形分濃度が6質量%を超えると、分散液中の水素化銅微粒子の分散安定性が低下するおそれがある。 The concentration of the copper hydride fine particles as a solid content in the obtained copper hydride fine particle dispersion is preferably 1 to 6% by mass, more preferably 2.5 to 4.5% by mass, based on 100% by mass of the entire dispersion. . When the solid content concentration of the copper hydride fine particles in the copper hydride fine particle dispersion is less than 1% by mass, the concentration process takes time, and the productivity may be lowered. If the copper hydride fine particle solid content concentration of the copper hydride fine particle dispersion exceeds 6% by mass, the dispersion stability of the copper hydride fine particles in the dispersion may be lowered.
<分散溶媒>
 実施形態の導電インクの分散溶媒は主溶媒(S)と添加溶媒(s)とを含む。分散溶媒としては、前記製造方法により得られた水素化銅微粒子分散液の溶媒(SP値が8~12の溶媒である溶媒(A))を使用してもよく、それ以外の他の溶媒(すなわち、SP値が8未満または12超の溶媒。以下、溶媒(C)と記す。)を使用してもよい。つまり、本発明の導電インクは、前記製造方法で製造された水素化銅微粒子分散液の固形分濃度や粘度を調整して得ることができる。
<Dispersion solvent>
The dispersion solvent of the conductive ink of the embodiment includes a main solvent (S) and an additive solvent (s). As the dispersion solvent, a solvent of the copper hydride fine particle dispersion obtained by the above production method (solvent (A) which is a solvent having an SP value of 8 to 12) may be used, and other solvent ( That is, a solvent having an SP value of less than 8 or more than 12. Hereinafter, the solvent (C) may be used. That is, the conductive ink of the present invention can be obtained by adjusting the solid content concentration and viscosity of the copper hydride fine particle dispersion produced by the production method.
 また、前記製造方法で得られた水素化銅微粒子分散液の溶媒を置換し、すなわち、例えば溶媒(A)を溶媒(C)に置換し、さらに固形分濃度や粘度を調整することで、本発明の導電インクを得ることができる。この場合、溶媒(A)は主溶媒(S)を含んでいてもよく、添加溶媒(s)を含んでいてもよい。同様に溶媒(C)が主溶媒(S)を含んでいてもよく、添加溶媒(s)を含んでいてもよい。いずれの場合も、本発明の導電インクには、水素化銅微粒子を溶媒中に分散させる働きをする分散剤、または保護剤としての働きもする前記アルキルアミン(B)がそのまま含有される。 Further, by replacing the solvent of the copper hydride fine particle dispersion obtained by the above production method, that is, for example, replacing the solvent (A) with the solvent (C), and further adjusting the solid content concentration and viscosity, The conductive ink of the invention can be obtained. In this case, the solvent (A) may contain the main solvent (S), and may contain the addition solvent (s). Similarly, the solvent (C) may contain the main solvent (S), and may contain the added solvent (s). In any case, the conductive ink of the present invention directly contains the alkylamine (B) that functions as a dispersant that functions to disperse the copper hydride fine particles in a solvent or as a protective agent.
 水素化銅微粒子分散液の溶媒(A)を溶媒(C)に置換する方法としては、公知の溶媒置換方法を採用でき、例えば、溶媒(A)を減圧濃縮しつつ、溶媒(C)を添加する方法が挙げられる。 As a method of replacing the solvent (A) of the copper hydride fine particle dispersion with the solvent (C), a known solvent replacement method can be employed. For example, the solvent (C) is added while concentrating the solvent (A) under reduced pressure. The method of doing is mentioned.
 (主溶媒)
 本発明の実施形態の導電インクの主溶媒(S)としては、非水溶性の有機溶媒を使用する。なお、本明細書において、「非水溶性」とは、室温(20℃)における水100gへの溶解量が0.5g以下であることを意味する。主溶媒(S)は、前記アルキルアミン(B)との親和性の点から、極性の小さい有機溶媒が好ましい。また、主溶媒(S)は、導体を形成する際の加熱によって熱分解を起こさないものが好ましい。
(Main solvent)
As the main solvent (S) of the conductive ink of the embodiment of the present invention, a water-insoluble organic solvent is used. In the present specification, “water-insoluble” means that the amount dissolved in 100 g of water at room temperature (20 ° C.) is 0.5 g or less. The main solvent (S) is preferably an organic solvent having a small polarity from the viewpoint of affinity with the alkylamine (B). In addition, the main solvent (S) is preferably one that does not cause thermal decomposition by heating when forming the conductor.
 主溶媒(S)としては、例えば、デカン(水に不溶。)、ドデカン(水に不溶。)、テトラデカン(水に不溶。)、デセン(水に不溶。)、ドデセン(水に不溶。)、テトラデセン(水に不溶。)、ジペンテン(水100gへの溶解量0.001g(20℃)。)、α-テルピネオール(水100gへの溶解量0.5g(20℃)。)、メシチレン(水に不溶。)等や印刷インキ用ノンアロマ溶剤、ミネラルスピリットなどの市販の石油系炭化水素系溶媒が挙げられる。なかでも、導電インクの乾燥性の制御、塗布性の制御が容易である点から、α-テルピネオール、デカン、ドデカン、テトラデカンが好ましい。
 主溶媒(S)は、1種を単独で使用してもよく、2種以上を併用してもよい。
 主溶媒(S)の含有割合は、導電インクに含まれる各成分の分散性の点から、導電インク全体を100質量%として、40~90質量%が好ましく、50~80質量%が特に好ましい。
Examples of the main solvent (S) include decane (insoluble in water), dodecane (insoluble in water), tetradecane (insoluble in water), decene (insoluble in water), dodecene (insoluble in water), and the like. Tetradecene (insoluble in water), dipentene (dissolved in 100 g of water 0.001 g (20 ° C.)), α-terpineol (dissolved in 100 g of water 0.5 g (20 ° C.)), mesitylene (in water) Insoluble.), Non-aromatic solvents for printing inks, and commercially available petroleum hydrocarbon solvents such as mineral spirits. Of these, α-terpineol, decane, dodecane, and tetradecane are preferable because the drying property and the coating property of the conductive ink can be easily controlled.
A main solvent (S) may be used individually by 1 type, and may use 2 or more types together.
The content of the main solvent (S) is preferably 40 to 90% by mass, particularly preferably 50 to 80% by mass, based on 100% by mass of the entire conductive ink, from the viewpoint of dispersibility of each component contained in the conductive ink.
(添加溶媒)
 本発明の導電インクは、水素化銅微粒子の分散媒体として添加溶媒(s)を含有する。添加溶媒(s)は、水素化銅微粒子分散液を製造する過程で、溶媒置換する際に主溶媒(S)に添加して置換してもよく、溶媒置換した後に添加してもよい。また、溶媒(A)が添加溶媒(s)を含んでいてもよく、この場合、前記製造方法で製造された水素化銅微粒子分散液の溶媒濃度を調整して得ることができる。
(Addition solvent)
The conductive ink of the present invention contains an additive solvent (s) as a dispersion medium for copper hydride fine particles. The added solvent (s) may be added to the main solvent (S) when replacing the solvent in the course of producing the copper hydride fine particle dispersion, or may be added after replacing the solvent. Moreover, the solvent (A) may contain the addition solvent (s), and in this case, the solvent concentration of the copper hydride fine particle dispersion produced by the production method can be adjusted and obtained.
 添加溶媒(s)は、非水溶性の有機溶媒である主溶媒の沸点を超える沸点を持ち、かつ20℃での表面張力が35~73dyn/cmである。
 添加溶媒(s)は、基材上の親液撥液パターンを有する高分子膜に塗布された本発明の導電インクを加熱して導体を形成する際に、比較的沸点の低い主溶媒が蒸発する過程で分散溶媒中に残留し濃縮され、導電インクに表面張力を付与する働きをする。したがって、添加溶媒(s)は、その沸点が主溶媒の沸点を超えるものである。
The added solvent (s) has a boiling point exceeding the boiling point of the main solvent, which is a water-insoluble organic solvent, and has a surface tension of 35 to 73 dyn / cm at 20 ° C.
When the conductive ink of the present invention is heated to form the conductor by adding the solvent (s) to the polymer film having a lyophilic liquid-repellent pattern on the substrate, the main solvent having a relatively low boiling point evaporates. In the process, it remains in the dispersion solvent and concentrates, and functions to impart surface tension to the conductive ink. Therefore, the added solvent (s) has a boiling point exceeding that of the main solvent.
 添加溶媒(s)は、20℃において表面張力が35dyn/cm以上であり、40dyn/cm以上であることが好ましく、45dyn/cm以上がさらに好ましい。20℃での表面張力が35dyn/cm未満であると、導電インクの表面張力が充分でなく、インクの残渣が残るおそれがある。インクの残渣は、導電インクから形成された導体配線の断線や、短絡、マイグレーションを生じさせる原因となる。入手が容易である点から、添加溶媒(s)は、20℃での表面張力が73dyn/cm以下である。なお、表面張力は表面張力計(協和界面科学社製、装置名:DY-500)により測定した値である。 The added solvent (s) has a surface tension of 35 dyn / cm or more at 20 ° C., preferably 40 dyn / cm or more, and more preferably 45 dyn / cm or more. When the surface tension at 20 ° C. is less than 35 dyn / cm, the surface tension of the conductive ink is not sufficient, and there is a possibility that an ink residue may remain. The ink residue causes disconnection, short circuit, and migration of the conductor wiring formed from the conductive ink. From the viewpoint of easy availability, the added solvent (s) has a surface tension at 20 ° C. of 73 dyn / cm or less. The surface tension is a value measured with a surface tension meter (manufactured by Kyowa Interface Science Co., Ltd., device name: DY-500).
 このような添加溶媒(s)としては、ピロリドン、N-メチルピロリドン、イミダゾール、1-メチルイミダゾール、1、3-ジメチルイミダゾール、ブタンジオール、グリセリン、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ホルムアミド、トリエタノールアミン、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル等が挙げられる。これらの添加溶媒(s)は、1種を単独で使用してもよく、2種以上を併用してもよい。
 添加溶媒(s)としては、取り扱い性、入手のし易さの点から、グリセリン、エチレングリコール、ジエチレングリコールが特に好ましい。
 添加溶媒(s)の含有割合は、主溶媒(S)に対して0.2~10.0質量%が好ましく、0.5~5.0質量%が特に好ましい。添加溶媒(s)の含有割合が0.2質量%以上であると、導電インクに充分な表面張力を付与でき、10.0質量%以下であると、導電インクの塗布性に優れる。
Examples of such additional solvent (s) include pyrrolidone, N-methylpyrrolidone, imidazole, 1-methylimidazole, 1,3-dimethylimidazole, butanediol, glycerin, ethylene glycol, diethylene glycol, triethylene glycol, formamide, and triethanol. Examples include amines, triethylene glycol monomethyl ether, and triethylene glycol monoethyl ether. These additive solvents (s) may be used individually by 1 type, and may use 2 or more types together.
As the additive solvent (s), glycerin, ethylene glycol, and diethylene glycol are particularly preferred from the viewpoints of handleability and availability.
The content of the added solvent (s) is preferably 0.2 to 10.0% by mass, particularly preferably 0.5 to 5.0% by mass with respect to the main solvent (S). When the content ratio of the additive solvent (s) is 0.2% by mass or more, sufficient surface tension can be imparted to the conductive ink, and when it is 10.0% by mass or less, the coating property of the conductive ink is excellent.
 本発明の実施形態の導電インクは、前記した主溶媒(S)、添加溶媒(s)及び水素化銅微粒子以外に、導電成分である水素化銅微粒子を前記分散溶媒中に分散する保護剤として、アルキルアミンを含有していてもよい。
 前記製造方法で製造される水素化銅微粒子分散液をそのままで、又は溶媒置換して実施形態の導電インクとする場合には、製造工程で添加される前記アルキルアミン(B)が、導電インクにおける保護剤となる。本発明の導電インクにおいては、このような態様に限定されず、別に保護剤としてアルキルアミンを添加してもよい。
The conductive ink according to the embodiment of the present invention is a protective agent for dispersing copper hydride fine particles, which are conductive components, in the dispersion solvent in addition to the main solvent (S), the additive solvent (s), and the copper hydride fine particles. And may contain an alkylamine.
When the copper hydride fine particle dispersion produced by the production method is used as it is or by replacing the solvent to obtain the conductive ink of the embodiment, the alkylamine (B) added in the production process is used in the conductive ink. Becomes a protective agent. In the conductive ink of this invention, it is not limited to such an aspect, You may add an alkylamine as a protective agent separately.
 本発明の導電インクは、前記した主溶媒、添加溶媒及び水素化銅微粒子及びアルキルアミン以外に、シランカップリング剤やその他の添加剤を含有していてもよい。その他の添加剤としては、消泡剤、湿潤分散剤、レベリング剤、乾き防止剤、レオロジーコントロール剤、密着性付与剤が挙げられる。 The conductive ink of the present invention may contain a silane coupling agent and other additives in addition to the main solvent, additive solvent, copper hydride fine particles, and alkylamine. Examples of other additives include antifoaming agents, wetting and dispersing agents, leveling agents, anti-drying agents, rheology control agents, and adhesion imparting agents.
 本発明の導電インクの固形分(水素化銅微粒子固形分)の濃度は、要求される粘度によっても異なるが、導電インク全体を100質量%として、10~70質量%が好ましい。より好ましくは15質量%以上であり、さらに好ましくは20質量%以上である。また、より好ましくは60質量%以下であり、さらに好ましくは50質量%以下、さらに好ましくは40質量%以下である。導電インクの水素化銅微粒子固形分濃度が10質量%以上であれば、充分な厚みを有する導体を形成しやすい。導電インクの水素化銅微粒子固形分濃度が70質量%以下であれば、粘度、表面張力等のインク特性の制御が容易であり、導体の形成が容易になる。 The concentration of the solid content (copper hydride fine particle solid content) of the conductive ink of the present invention varies depending on the required viscosity, but is preferably 10 to 70% by mass based on 100% by mass of the entire conductive ink. More preferably, it is 15 mass% or more, More preferably, it is 20 mass% or more. More preferably, it is 60 mass% or less, More preferably, it is 50 mass% or less, More preferably, it is 40 mass% or less. When the solid content concentration of the copper hydride fine particles in the conductive ink is 10% by mass or more, it is easy to form a conductor having a sufficient thickness. When the solid content concentration of the copper hydride fine particles in the conductive ink is 70% by mass or less, it is easy to control ink characteristics such as viscosity and surface tension, and it becomes easy to form a conductor.
 本発明の導電インクの粘度は、5~60mPa・sが好ましく、8~40mPa・sがより好ましい。導電インクの粘度が5mPa・s以上であれば、精度良くインクを吐出できる。導電インクの粘度が60mPa・s以下であれば、入手しうるほとんどのインクジェットヘッドに適用可能となる。 The viscosity of the conductive ink of the present invention is preferably 5 to 60 mPa · s, more preferably 8 to 40 mPa · s. If the viscosity of the conductive ink is 5 mPa · s or more, the ink can be ejected with high accuracy. If the viscosity of the conductive ink is 60 mPa · s or less, it can be applied to almost all available inkjet heads.
 本発明導電インクの20℃での表面張力が、20~45dyn/cmが好ましく、25~40dyn/cmがより好ましい。導電インクの表面張力が前記範囲の下限以上であれば、精度良くインクを吐出できる。導電インクの表面張力が前記範囲の上限以下であれば、入手し得るほとんどのインクジェットヘッドに適用可能となる。
 なお、本明細書において、導電インクの粘度は、B型粘度計(東機産業社製、装置名:TVB35L)で20℃で測定した値である。表面張力は表面張力計(協和界面科学社製、装置名:DY-500)により測定した値である。
The surface tension of the conductive ink of the present invention at 20 ° C. is preferably 20 to 45 dyn / cm, more preferably 25 to 40 dyn / cm. If the surface tension of the conductive ink is not less than the lower limit of the above range, the ink can be ejected with high accuracy. If the surface tension of the conductive ink is not more than the upper limit of the above range, it can be applied to almost all available inkjet heads.
In this specification, the viscosity of the conductive ink is a value measured at 20 ° C. with a B-type viscometer (manufactured by Toki Sangyo Co., Ltd., apparatus name: TVB35L). The surface tension is a value measured by a surface tension meter (manufactured by Kyowa Interface Science Co., Ltd., device name: DY-500).
 本発明の導電インクにおいては、加熱することで、水素化銅微粒子の表面に結合し配位したアルキルアミンが脱離する。そして、表面からアルキルアミンが脱離した水素化銅は、例えば、60℃以上の加熱によって金属銅に変化する。そして、こうして生じた金属銅微粒子どうしが溶融、結合されて導体が形成される。 In the conductive ink of the present invention, when heated, the alkylamine bonded and coordinated to the surface of the copper hydride fine particles is released. Then, the copper hydride from which the alkylamine has been eliminated from the surface changes to, for example, metallic copper by heating at 60 ° C. or higher. The metallic copper fine particles generated in this way are melted and bonded to form a conductor.
<導体付き基材の製造方法>
 本発明の導体付き基材の製造方法は、以下の工程を有する。
 (1)基材を準備する工程。
 (2)前記基材上に、親液性領域と撥液性領域とのパターンを有する高分子膜を形成する工程(以下、高分子膜形成工程ともいう。)。
 (3)前記高分子膜表面に本発明の導電インクを塗布して塗布層を形成する工程(以下、塗布工程ともいう。)。
 (4)前記塗布層を加熱して、銅を含む導体を形成する工程(以下、導体形成工程ともいう。)。
 上記(4)の工程において、形成される導体は、銅を主体とする導体である。ここで、「銅を主体とする導体」とは、導体を構成する要素のうち、銅が最も多く含まれることを意味する。
<Manufacturing method of substrate with conductor>
The manufacturing method of the base material with a conductor of this invention has the following processes.
(1) A step of preparing a base material.
(2) A step of forming a polymer film having a pattern of a lyophilic region and a liquid repellent region on the substrate (hereinafter also referred to as a polymer film forming step).
(3) A step of applying the conductive ink of the present invention to the surface of the polymer film to form a coating layer (hereinafter also referred to as a coating step).
(4) A step of heating the coating layer to form a conductor containing copper (hereinafter also referred to as a conductor forming step).
In the step (4), the formed conductor is a conductor mainly composed of copper. Here, “a conductor mainly composed of copper” means that copper is most contained among the elements constituting the conductor.
(基材)
 基材としては、ガラス基板、プラスチック基材(PET基材、PEN基材、ポリイミド基材、ポリカーボネート基材等。)、繊維強化複合材料(ガラス繊維強化プラスチック基板等。)等が挙げられる。
 本発明に用いる基材は、目的に応じて、その表面に酸処理(希釈したフッ酸、硫酸、塩酸等を用いた処理)、アルカリ処理(水酸化ナトリウム水溶液等を用いた処理)又は、超純水や有機溶媒で超音波洗浄等が施されたものを用いてもよい。また、パッシベーション処理(基材表面に酸化物等の膜を形成する処理)を行ってもよい。
 基材の表面には、例えば以下のように親液性領域と撥液性領域とのパターンを有する高分子膜を形成する。
(Base material)
Examples of the substrate include glass substrates, plastic substrates (PET substrates, PEN substrates, polyimide substrates, polycarbonate substrates, etc.), fiber reinforced composite materials (glass fiber reinforced plastic substrates, etc.), and the like.
The substrate used in the present invention has an acid treatment (treatment using diluted hydrofluoric acid, sulfuric acid, hydrochloric acid, etc.), alkali treatment (treatment using an aqueous sodium hydroxide solution) or the like depending on the purpose. Those subjected to ultrasonic cleaning or the like with pure water or an organic solvent may be used. Moreover, you may perform the passivation process (process which forms films | membranes, such as an oxide, on the base-material surface).
For example, a polymer film having a pattern of a lyophilic region and a liquid repellent region is formed on the surface of the substrate as follows.
(高分子膜形成工程)
 高分子膜としては、親液撥液パターンを形成できるものであれば特に限定されない。高分子膜としては、側鎖に疎水基を有するポリイミド、エポキシ樹脂、ポリエステル樹脂、アクリル樹脂、フッ素樹脂、親液撥液パターンを形成できる硬化性組成物と溶剤とを含む塗布用組成物を用いて形成される高分子膜等が挙げられる。
(Polymer film forming process)
The polymer film is not particularly limited as long as it can form a lyophilic liquid repellent pattern. As the polymer film, a polyimide, epoxy resin, polyester resin, acrylic resin, fluororesin having a hydrophobic group in the side chain, a coating composition containing a curable composition capable of forming a lyophilic liquid-repellent pattern and a solvent is used. And a polymer film formed.
 高分子膜の厚さは、用途に応じて適宜設定でき、通常、0.1~100.0μmであり、0.2~50.0μmが好ましい。 The thickness of the polymer film can be appropriately set according to the application, and is usually 0.1 to 100.0 μm, preferably 0.2 to 50.0 μm.
(塗布工程)
 導体インクを塗布する方法としては、オフセットグラビアコート、ダイレクトグラビアコート、ロールコート、エアドクターコート、ブレードコート、ナイフコート、スプレーコート、インクジェットコート、スピンコート、スロットダイコート等の方法が挙げられる。中でも、作業性、使用するインクの歩留まりおよび印刷の位置精度の点から、インクジェットコート、スロットダイコートが特に好ましい。
(Coating process)
Examples of the method for applying the conductive ink include offset gravure coating, direct gravure coating, roll coating, air doctor coating, blade coating, knife coating, spray coating, inkjet coating, spin coating, and slot die coating. Of these, inkjet coating and slot die coating are particularly preferable from the viewpoints of workability, yield of ink to be used, and positional accuracy of printing.
 インクジェットコートの場合、所望のパターンの導体の形成が容易な点から、インク吐出孔の孔径を0.5~100μmとし、基材上に付着した際の導電インクの直径が1~100μmとなるようにすることが好ましい。 In the case of inkjet coating, the diameter of the ink ejection hole is set to 0.5 to 100 μm from the viewpoint of easy formation of a conductor having a desired pattern, and the diameter of the conductive ink when adhered on the substrate is set to 1 to 100 μm. It is preferable to make it.
 基材上に導電インクを塗布した後の加熱温度は、60~300℃が好ましく、60~150℃がより好ましい。
 加熱時間は、加熱温度に応じて、分散溶媒、銅(II)塩から遊離した酸、微粒子表面から脱離したアルキルアミン(B)等を揮発させて導体が形成できる時間を設定すればよい。
 また、加熱は、形成する導体の酸化を抑制しやすい点から、窒素雰囲気等の不活性雰囲気下で行うことが好ましい。
The heating temperature after applying the conductive ink on the substrate is preferably 60 to 300 ° C, more preferably 60 to 150 ° C.
The heating time may be set according to the heating temperature so that the conductor can be formed by volatilizing the dispersion solvent, the acid released from the copper (II) salt, the alkylamine (B) released from the surface of the fine particles, and the like.
Moreover, it is preferable to perform heating in inert atmosphere, such as nitrogen atmosphere, from the point which is easy to suppress the oxidation of the conductor to form.
 導体の厚さは、0.3~2.0μmが好ましい。
 導体の体積抵抗率は、3~35μΩ・cmが好ましい。導体の体積抵抗率は、四探針式抵抗計(例えば、三菱油化社製、装置名:ロレスタGP MCP-T610)を使用して、導体の表面抵抗値を測定し、測定された表面抵抗値に導体の厚さを乗じることで求めることができる。
The thickness of the conductor is preferably 0.3 to 2.0 μm.
The volume resistivity of the conductor is preferably 3 to 35 μΩ · cm. The volume resistivity of the conductor was determined by measuring the surface resistance value of the conductor using a four-probe resistance meter (for example, manufactured by Mitsubishi Yuka Co., Ltd., device name: Loresta GP MCP-T610). It can be determined by multiplying the value by the conductor thickness.
 以上説明した導体付き基材の製造方法によれば、加熱過程で充分な表面張力を発現する導電インクを用いるため、インクの残渣がなく、体積抵抗率の小さい導体を有する導体付き基材が得られる。 According to the method for manufacturing a substrate with conductor described above, since the conductive ink that expresses sufficient surface tension during the heating process is used, a substrate with conductor having no conductor of ink and a conductor having a small volume resistivity is obtained. It is done.
 以下、実施例によって本発明を詳細に説明するが、本発明は以下の実施例に限定されない。例1~3は実施例であり、例4は比較例である。実施例及び比較例における微粒子の同定、微粒子の平均粒子径の測定、導体の厚さの測定、導体の体積抵抗率の測定の各方法、及び導体の剥離性試験の方法を、それぞれ以下に示す。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the following examples. Examples 1 to 3 are examples, and example 4 is a comparative example. Examples of identification of fine particles, measurement of average particle diameter of fine particles, measurement of conductor thickness, measurement of conductor volume resistivity, and method of conductor peelability test in Examples and Comparative Examples are shown below. .
[微粒子の同定]
 微粒子の同定は、X線回折装置(リガク機器社製、装置名:RINT2500)を使用して行った。
[Identification of fine particles]
The identification of the fine particles was performed using an X-ray diffraction apparatus (manufactured by Rigaku Instruments Co., Ltd., apparatus name: RINT2500).
[微粒子の平均粒子径]
 無作為に抽出した100個の微粒子の粒子径を、透過型電子顕微鏡(日立製作所社製、装置名:H-9000)又は走査型電子顕微鏡(日立製作所社製、装置名:S-800)を使用して測定し、それらの値を平均して平均粒子径を求めた。
[Average particle size of fine particles]
The particle size of 100 randomly extracted fine particles was measured with a transmission electron microscope (manufactured by Hitachi, Ltd., device name: H-9000) or a scanning electron microscope (manufactured by Hitachi, Ltd., device name: S-800). The average particle size was determined by averaging the values.
[導体の厚さ]
 接触式膜厚測定装置(Veeco社製、装置名:DEKTAK150)を使用して測定した。
[Conductor thickness]
It measured using the contact-type film thickness measuring apparatus (the product made by Veeco, apparatus name: DEKTAK150).
[導体の体積抵抗率]
 四探針式抵抗計(三菱油化社製、装置名:ロレスタGP MCP-T610)を使用して、導体の表面抵抗値を測定した。測定された表面抵抗値に導体の厚さを乗じて、体積抵抗率を求めた。
[Volume resistivity of conductor]
Using a four-probe resistance meter (manufactured by Mitsubishi Yuka Co., Ltd., apparatus name: Loresta GP MCP-T610), the surface resistance value of the conductor was measured. The volume resistivity was determined by multiplying the measured surface resistance value by the thickness of the conductor.
[親液撥液パターンを有する高分子膜の形成]
 ソーダライム系ガラス基板の表面に感光性フッ素樹脂(商品名:AL-X、旭硝子社製)を1,000回転/分で30秒、スピンコートし、150℃のホットプレートを用いて20分間加熱することによって膜厚1μmの高分子膜を形成した。
 高分子膜の表面に、マスクパターンを介して紫外線(i線365nm)を部分的に照射し長さ5cm、幅20μmの親液撥液パターンを得た。紫外線の照射は、SUSS社製の製品名:MA-8を用い、照射条件は100J/cmとした。
[Formation of polymer film having lyophilic liquid repellent pattern]
A photosensitive fluororesin (trade name: AL-X, manufactured by Asahi Glass Co., Ltd.) is spin-coated at 1,000 rpm for 30 seconds on the surface of a soda lime glass substrate, and heated for 20 minutes using a 150 ° C. hot plate. As a result, a polymer film having a thickness of 1 μm was formed.
The surface of the polymer film was partially irradiated with ultraviolet rays (i-line 365 nm) through a mask pattern to obtain a lyophilic liquid repellent pattern having a length of 5 cm and a width of 20 μm. For UV irradiation, the product name MA-8 manufactured by SUSS was used, and the irradiation condition was 100 J / cm 2 .
[例1]
(水素化銅粒子の製造)
 ガラス容器に、トルエン300gと、銅(II)塩としてギ酸銅(II)四水和物30g、及びアルキルアミンとしてn-ヘプチルアミン(沸点157℃)15gを加えて撹拌した。次いで、ヒドリド系還元剤であるNaBHの4.5gを添加し、撹拌することによって、微粒子がトルエン中に分散した黒色の分散液を得た。
[Example 1]
(Manufacture of copper hydride particles)
To a glass container, 300 g of toluene, 30 g of copper (II) formate tetrahydrate as a copper (II) salt, and 15 g of n-heptylamine (boiling point 157 ° C.) as an alkylamine were added and stirred. Next, 4.5 g of NaBH 4 which is a hydride reducing agent was added and stirred to obtain a black dispersion liquid in which fine particles were dispersed in toluene.
 得られた分散液中の微粒子を回収し、X線回折で同定を行ったところ、水素化銅微粒子であることが確認された。水素化銅微粒子(一次粒子)の平均一次粒子径は10nmであった。また、得られた水素化銅微粒子分散液の固形分濃度は4質量%であった。 When the fine particles in the obtained dispersion were collected and identified by X-ray diffraction, it was confirmed to be copper hydride fine particles. The average primary particle diameter of the copper hydride fine particles (primary particles) was 10 nm. Further, the solid content concentration of the obtained copper hydride fine particle dispersion was 4% by mass.
(導電インクの調製)
 得られた水素化銅微粒子分散液に対して、減圧下で溶媒置換を行い、導電インクを調製した。すなわち、前記水素化銅微粒子分散液を減圧濃縮した後、ドデカン(沸点216.3℃、20℃での表面張力25.4dyn/cm)に2質量%のジエチレングリコール(沸点244.8℃、20℃での表面張力48.5dyn/cm)を添加したものを加えて溶媒置換を行い、水素化銅微粒子の固形分濃度が30質量%となるようにした。
(Preparation of conductive ink)
The obtained copper hydride fine particle dispersion was subjected to solvent substitution under reduced pressure to prepare a conductive ink. That is, after the copper hydride fine particle dispersion was concentrated under reduced pressure, 2 mass% diethylene glycol (boiling point 244.8 ° C., 20 ° C.) was added to dodecane (boiling point 216.3 ° C., surface tension 25.4 dyn / cm at 20 ° C.). The solvent was replaced by adding a material having a surface tension of 48.5 dyn / cm), so that the solid content concentration of the copper hydride fine particles was 30% by mass.
(配線パターンの形成)
 前記で得られた導電インクを使用し、産業用インクジェットプリンタ(富士フィルムグラフィックシステム社製、装置名:DMP2813)により、基材上に形成した高分子膜表面に印刷した。印刷後の基材を、窒素雰囲気下、150℃で1時間加熱し、導体付き基材を得た。導体の厚さは0.31μm、体積抵抗率は18μΩ・cmであった。
 加熱後、SEM(撮像倍率5,000倍)により確認された配線幅は20.5μmで、撥液部にCuの残渣は確認されなかった。
(Formation of wiring pattern)
Using the conductive ink obtained above, printing was performed on the surface of the polymer film formed on the substrate by an industrial inkjet printer (manufactured by Fuji Film Graphic System Co., Ltd., device name: DMP2813). The substrate after printing was heated at 150 ° C. for 1 hour in a nitrogen atmosphere to obtain a substrate with a conductor. The thickness of the conductor was 0.31 μm, and the volume resistivity was 18 μΩ · cm.
After heating, the wiring width confirmed by SEM (imaging magnification: 5,000 times) was 20.5 μm, and no Cu residue was observed in the liquid repellent part.
[例2]
 例1で示した水素化銅微粒子分散液を減圧濃縮した後、ドデカンに0.5質量%のグリセリン(沸点290.0℃、20℃での表面張力63.3dyn/cm)を添加したものを加えて溶媒置換を行い、水素化銅微粒子の固形分濃度が30質量%となる導電インクを調製した。
[Example 2]
After concentration of the copper hydride fine particle dispersion shown in Example 1 under reduced pressure, 0.5 mass% glycerin (boiling point 290.0 ° C., surface tension 63.3 dyn / cm at 20 ° C.) was added to dodecane. In addition, solvent substitution was performed to prepare a conductive ink having a solid content concentration of copper hydride fine particles of 30% by mass.
 次いで、得られた導電インクを使用し、例1と同様にして配線パターンを形成した高分子膜表面に印刷し、導体付き基材を得た。導体の厚さは0.35μm、体積抵抗率は16μΩ・cmであった。
 加熱後、SEMにより確認された配線幅は20.5μmで、撥液部にCuの残渣は確認されなかった。
Subsequently, using the obtained conductive ink, it printed on the polymer film surface in which the wiring pattern was formed like Example 1, and obtained the base material with a conductor. The thickness of the conductor was 0.35 μm, and the volume resistivity was 16 μΩ · cm.
After heating, the wiring width confirmed by SEM was 20.5 μm, and no Cu residue was observed in the liquid repellent part.
[例3]
 例1で示した水素化銅微粒子分散液を減圧濃縮した後、デカン(沸点174.1℃、20℃での表面張力23.9dyn/cm)に2質量%のエチレングリコール((沸点197.9℃、20℃での表面張力46.5dyn/cm)を添加したものを加えて溶媒置換を行い、水素化銅微粒子の固形分濃度が30質量%となる導電インクを調製した。
[Example 3]
After the copper hydride fine particle dispersion shown in Example 1 was concentrated under reduced pressure, decane (boiling point: 174.1 ° C., surface tension at 20 ° C .: 23.9 dyn / cm) was added to 2% by mass of ethylene glycol ((boiling point: 197.9). Then, the solvent was replaced by adding a surface tension of 46.5 dyn / cm) at 20 ° C., and a conductive ink having a solid content concentration of copper hydride fine particles of 30% by mass was prepared.
 次いで、得られた導電インクを使用し、例1と同様にして配線パターンを形成した高分子膜表面に印刷し、導体付き基材を得た。導体の厚さは0.38μm、体積抵抗率は12μΩ・cmであった。
 加熱後、SEMにより確認された配線幅は20.5μmで、撥液部にCuの残渣は確認されなかった。
Subsequently, using the obtained conductive ink, it printed on the polymer film surface in which the wiring pattern was formed like Example 1, and obtained the base material with a conductor. The thickness of the conductor was 0.38 μm, and the volume resistivity was 12 μΩ · cm.
After heating, the wiring width confirmed by SEM was 20.5 μm, and no Cu residue was observed in the liquid repellent part.
[例4]
 例1で示した水素化銅微粒子分散液を減圧濃縮した後、ドデカン(沸点216.3℃、20℃での表面張力25.4dyn/cm)を溶媒として添加し、水素化銅粒子の固形分濃度が30質量%となるように、溶媒置換を行った。
[Example 4]
After the copper hydride fine particle dispersion shown in Example 1 was concentrated under reduced pressure, dodecane (boiling point 216.3 ° C., surface tension 25.4 dyn / cm at 20 ° C.) was added as a solvent, and the solid content of the copper hydride particles Solvent replacement was performed so that the concentration was 30% by mass.
 次いで、得られた導電インクを使用し、例1と同様にして配線パターンを形成した高分子膜表面に印刷し、導体付き基材を得た。導体の厚さは0.36μm、体積抵抗率は20μΩ・cmであった。
 焼成後、SEMで確認された配線幅は30.8μmで、撥液部に数ヵ所Cuの残渣が確認された。
Subsequently, using the obtained conductive ink, it printed on the polymer film surface in which the wiring pattern was formed like Example 1, and obtained the base material with a conductor. The thickness of the conductor was 0.36 μm, and the volume resistivity was 20 μΩ · cm.
After firing, the wiring width confirmed by SEM was 30.8 μm, and several Cu residues were confirmed in the liquid repellent part.
 例1~4における導電インクの組成及び表面張力、体積抵抗率、撥液部のCuの残渣の有無を表1に示す。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows the composition, surface tension, volume resistivity, and presence / absence of Cu residue in the liquid repellent portion of Examples 1 to 4.
Figure JPOXMLDOC01-appb-T000001
 表1より、例1~3は本発明の導電インクを用いているため、撥液部に残渣がないことが分かる。また、体積抵抗率も充分に小さい。これに対して、例4では、本発明の導電インクを用いていないため、撥液部に残渣が確認されている。
 このように、本発明の導電インクを用いることにより撥液部に残渣のない体積抵抗率の小さい導体配線を得ることができる。
From Table 1, it can be seen that Examples 1 to 3 use the conductive ink of the present invention, so that there is no residue in the liquid repellent part. Also, the volume resistivity is sufficiently small. On the other hand, in Example 4, since the conductive ink of the present invention was not used, a residue was confirmed in the liquid repellent portion.
Thus, by using the conductive ink of the present invention, it is possible to obtain a conductor wiring having a small volume resistivity and no residue in the liquid repellent part.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは、当業者にとって明らかである。
 本出願は、2012年3月22日出願の日本特許出願2012-065119に基づくものであり、その内容はここに参照として取り込まれる。
Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2012-065119 filed on Mar. 22, 2012, the contents of which are incorporated herein by reference.
 本発明の導電インクによれば、撥液部に残渣のない導体を形成できる。また、本発明の導体付き基材の製造方法によれば、基材上に残渣がなく、体積抵抗率の小さい導体付き基材を製造でき、信頼性の高い配線基板として好適に用いられる。 According to the conductive ink of the present invention, a conductor having no residue can be formed in the liquid repellent portion. Moreover, according to the manufacturing method of the base material with a conductor of this invention, there is no residue on a base material, a base material with a conductor with small volume resistivity can be manufactured, and it is used suitably as a highly reliable wiring board.
 1…基材、2…撥液部、3…親液部、4…導電インクまたは導電インクにより形成された導体、5…導電インクの残渣 DESCRIPTION OF SYMBOLS 1 ... Base material, 2 ... Liquid repellent part, 3 ... Lipophilic part, 4 ... Conductive ink or the conductor formed with the conductive ink, 5 ... Residue of conductive ink

Claims (7)

  1.  非水溶性の有機溶媒である主溶媒と、
     前記主溶媒の沸点を超える沸点を持ち、かつ20℃での表面張力が35~73dyn/cmである添加溶媒と、を含む分散溶媒と、
     前記分散溶媒中に分散された水素化銅微粒子と、
    を含むことを特徴とする導電インク。
    A main solvent which is a water-insoluble organic solvent;
    A dispersion solvent comprising: an additive solvent having a boiling point exceeding the boiling point of the main solvent and having a surface tension at 20 ° C. of 35 to 73 dyn / cm;
    Copper hydride fine particles dispersed in the dispersion solvent;
    A conductive ink comprising:
  2.  前記添加溶媒の含有割合は、前記主溶媒に対して0.2~10.0質量%である請求項1記載の導電インク。 The conductive ink according to claim 1, wherein a content ratio of the additive solvent is 0.2 to 10.0% by mass with respect to the main solvent.
  3.  前記水素化銅微粒子の含有割合は、導電インク全体の、10~50質量%である請求項1又は2記載の導電インク。 The conductive ink according to claim 1 or 2, wherein a content ratio of the copper hydride fine particles is 10 to 50% by mass of the entire conductive ink.
  4.  前記主溶媒の含有割合は、導電インク全体の、40~90質量%である請求項1乃至3のいずれか1項記載の導電インク。 The conductive ink according to any one of claims 1 to 3, wherein a content ratio of the main solvent is 40 to 90 mass% with respect to the entire conductive ink.
  5.  前記水素化銅微粒子の平均一次粒子径は、5~100nmである請求項1乃至4のいずれか1項記載の導電インク。 The conductive ink according to any one of claims 1 to 4, wherein the copper hydride fine particles have an average primary particle diameter of 5 to 100 nm.
  6.  基材上に形成された親液性領域と撥液性領域とのパターンを有する高分子膜の表面に、請求項1乃至5いずれか1項に記載の導電インクを用いて形成された導体を有することを特徴とする導体付き基材。 A conductor formed using the conductive ink according to any one of claims 1 to 5 on a surface of a polymer film having a pattern of a lyophilic region and a liquid repellent region formed on a substrate. A base material with a conductor, comprising:
  7.  基材を準備する工程と、
     前記基材上に、親液性領域と撥液性領域とのパターンを有する高分子膜を形成する工程と、
     前記高分子膜表面に請求項1乃至5のいずれか1項に記載の導電インクの塗布層を形成する工程と、
     前記塗布層を加熱して、銅を含む導体を形成する工程と
     を有することを特徴とする導体付き基材の製造方法。
    Preparing a substrate;
    Forming a polymer film having a pattern of a lyophilic region and a liquid repellent region on the substrate;
    Forming a conductive ink coating layer according to any one of claims 1 to 5 on the surface of the polymer film;
    And a step of heating the coating layer to form a conductor containing copper.
PCT/JP2013/057527 2012-03-22 2013-03-15 Conductive ink, base material including conductor, and production method for base material including conductor WO2013141174A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-065119 2012-03-22
JP2012065119A JP2015110683A (en) 2012-03-22 2012-03-22 Conductive ink, substrate with conductor, and production method of substrate with conductor

Publications (1)

Publication Number Publication Date
WO2013141174A1 true WO2013141174A1 (en) 2013-09-26

Family

ID=49222633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057527 WO2013141174A1 (en) 2012-03-22 2013-03-15 Conductive ink, base material including conductor, and production method for base material including conductor

Country Status (3)

Country Link
JP (1) JP2015110683A (en)
TW (1) TW201343823A (en)
WO (1) WO2013141174A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6633488B2 (en) * 2015-09-29 2020-01-22 三ツ星ベルト株式会社 Method of manufacturing conductive paste and substrate with conductive film
IL247113B (en) * 2016-08-04 2018-02-28 Copprint Tech Ltd Formulations and processes for producing highly conductive copper patterns
JP2020111651A (en) * 2019-01-09 2020-07-27 凸版印刷株式会社 Coating agent, printed matter and production method of printed matter
CN116554735B (en) * 2023-05-31 2024-08-02 深圳市光羿科技有限公司 Conductive ink and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004110925A1 (en) * 2003-06-10 2004-12-23 Asahi Glass Company, Limited Metal hydride fine particle, method for producing same, liquid dispersion containing metal hydride fine particle, and metallic material
WO2006041030A1 (en) * 2004-10-08 2006-04-20 Mitsui Mining & Smelting Co., Ltd. Conductive ink
WO2006109410A1 (en) * 2005-04-12 2006-10-19 Asahi Glass Company, Limited Ink composition and metallic material
JP2007146117A (en) * 2005-11-04 2007-06-14 Mitsui Mining & Smelting Co Ltd Nickel ink and electrically conductive film formed from the same
JP2008263129A (en) * 2007-04-13 2008-10-30 Asahi Glass Co Ltd Manufacturing method of printed wiring board
JP2011214001A (en) * 2010-03-19 2011-10-27 Fujifilm Corp Inkjet ink, surface metal film material and method for manufacturing the same, metal pattern material and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004110925A1 (en) * 2003-06-10 2004-12-23 Asahi Glass Company, Limited Metal hydride fine particle, method for producing same, liquid dispersion containing metal hydride fine particle, and metallic material
WO2006041030A1 (en) * 2004-10-08 2006-04-20 Mitsui Mining & Smelting Co., Ltd. Conductive ink
WO2006109410A1 (en) * 2005-04-12 2006-10-19 Asahi Glass Company, Limited Ink composition and metallic material
JP2007146117A (en) * 2005-11-04 2007-06-14 Mitsui Mining & Smelting Co Ltd Nickel ink and electrically conductive film formed from the same
JP2008263129A (en) * 2007-04-13 2008-10-30 Asahi Glass Co Ltd Manufacturing method of printed wiring board
JP2011214001A (en) * 2010-03-19 2011-10-27 Fujifilm Corp Inkjet ink, surface metal film material and method for manufacturing the same, metal pattern material and method for manufacturing the same

Also Published As

Publication number Publication date
JP2015110683A (en) 2015-06-18
TW201343823A (en) 2013-11-01

Similar Documents

Publication Publication Date Title
TWI640581B (en) Additives and modifiers for solvent-and water-based metallic conductive inks
KR101418276B1 (en) Synthetic method of preventing metal nano-particle from having oxidized film and method of forming conductive metal thin film via solution-processed
US20100068409A1 (en) Ink jet printable compositions
US8680309B2 (en) Metal organic precursor, a method of preparing the same, and a method of forming a conductive metal film or pattern
JP2009527076A (en) Silver organosol ink for conductive line pattern formation
TW201523641A (en) Method for producing dispersion liquid containing silver nanoparticles, and dispersion liquid containing silver nanoparticles
KR20070113244A (en) Ink jet printable compositions for preparing electronic devices and patterns
JP6843437B2 (en) Method for producing silver nanoparticle dispersion and method for producing silver nanoparticle ink
CN102504647A (en) Conductive ink based on nano metal and application thereof in different jet printing methods and photographic paper
TWI540188B (en) Electroconductive aqueous ink for ink-jet recording and manufacturing method for electric and electronic component
WO2013141174A1 (en) Conductive ink, base material including conductor, and production method for base material including conductor
US20080193667A1 (en) Ink Jet Printable Compositions
TW201512453A (en) Method for producing electroconductive film and electroconductive film
TW201710416A (en) Composition for manufacturing metal nanoparticles
US20140009545A1 (en) Conductive ink formulas for improved inkjet delivery
JPWO2012053456A1 (en) Method for producing copper hydride fine particle dispersion, conductive ink and method for producing substrate with conductor
WO2013141172A1 (en) Conductive ink and production method for base material including conductor
KR100911439B1 (en) Aqueous conductive ink composition for inkjet printer using nano-silver colloidal solution and method forming electrode pattern by inkjet printing
CN110922812B (en) Low-temperature high-conductivity nano-silver conductive ink and preparation method and application thereof
WO2016125355A1 (en) Electroconductive microparticles
Zhao et al. Preparation of silver nanoparticles and application in water-based conductive inks
TW201344712A (en) Method for producing conductor film
KR101344846B1 (en) Method for fabricating the active devices using electrohydrodynamic-jet printable metal nano-ink
JP2008235035A (en) Metal nanoparticle paste and manufacturing method of metal nanoparticle paste
JP6111587B2 (en) Method for manufacturing conductive substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13764592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP