JP5868631B2 - パプリカ色素組成物 - Google Patents

パプリカ色素組成物 Download PDF

Info

Publication number
JP5868631B2
JP5868631B2 JP2011174655A JP2011174655A JP5868631B2 JP 5868631 B2 JP5868631 B2 JP 5868631B2 JP 2011174655 A JP2011174655 A JP 2011174655A JP 2011174655 A JP2011174655 A JP 2011174655A JP 5868631 B2 JP5868631 B2 JP 5868631B2
Authority
JP
Japan
Prior art keywords
paprika
capsanthin
dye composition
content
cryptoxanthin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011174655A
Other languages
English (en)
Other versions
JP2013034446A (ja
Inventor
尚史 海貝
尚史 海貝
桂 村上
桂 村上
佳恵 佐藤
佳恵 佐藤
幸也 久保
幸也 久保
定野 晋
晋 定野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Vitamin Co Ltd
Original Assignee
Riken Vitamin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Vitamin Co Ltd filed Critical Riken Vitamin Co Ltd
Priority to JP2011174655A priority Critical patent/JP5868631B2/ja
Publication of JP2013034446A publication Critical patent/JP2013034446A/ja
Application granted granted Critical
Publication of JP5868631B2 publication Critical patent/JP5868631B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、パプリカ色素組成物に関する。
パプリカ色素は、ナス科トウガラシ(Capsicum annuum Linne)の果実から得られるカロテノイドの一種であるカプサンチンの脂肪酸エステル(以下、単にカプサンチンともいう)を主成分とする油性色素である。パプリカ色素は、天然素材由来の赤色着色料として広く食品等に利用されている。
近年、パプリカ色素の主成分であるカプサンチンは、アディポネクチン増加剤、PAI−1低下剤、血中高密度リポタンパク質コレステロール濃度増加剤といった疾患の予防または治療剤としての効果が注目されており(特許文献1〜3)、いわゆる健康食品や医薬品などの健康の維持・増進を目的とする製品にカプサンチンを配合したものが提案されている。
一方、カロテノイドを健康食品等に配合する場合において、長期間の保存によるカロテノイドの酸化・劣化を抑制するため、或いは錠剤に配合する際に打錠時の圧力による油分の滲みを抑制するためなどの目的で、多芯型構造のマイクロカプセルにカロテノイドを包含することが提案されている(特許文献4)。
しかし、カロテノイドの一種であるカプサンチンを含有するパプリカ色素を多芯型構造のマイクロカプセルに内包させても、カプサンチンの保存安定性が十分に得られないことが問題となっている。そこで、パプリカ色素を多芯型構造のマイクロカプセルに内包させた場合にカプサンチンの保存安定性が十分に発揮される技術が求められている。
特開2010−189291号公報 特開2011−006369号公報 特開2005−112752号公報 特開平9−302379号公報
本発明は、多芯型構造のマイクロカプセルに内包させた場合にカプサンチンの保存安定性が十分に発揮されるパプリカ色素組成物を提供することを課題とする。
本発明者らは、上記課題を解決するため、鋭意検討した結果、β−クリプトキサンチンの含有量を高めた新規なパプリカ色素を用いることにより上記課題が解決されることを見出し、この知見に基づいて本発明をなすに至った。
すなわち、本発明は、
(1)β−クリプトキサンチンの含有量が1.0%以上であるパプリカ色素組成物、
(2)前記(1)記載のパプリカ色素組成物を芯物質として含有し、膜形成物質が親水性高分子ゲル化剤である多芯型マイクロカプセル、
からなっている。
本発明のパプリカ色素組成物を多芯型マイクロカプセルに内包させると、該組成物に含まれるカプサンチンの保存安定性が十分に発揮される。
本発明の多芯型マイクロカプセルは、カプサンチンの保存安定性が十分に付与されているため、カプサンチンによる疾患の予防または治療効果を目的とする健康食品や医薬品などに配合して好ましく使用することができる。
本発明の多芯型ゼラチンマイクロカプセルの構造を示す図。
本発明に係るパプリカ色素としては、ナス科トウガラシ(Capsicum annuum LINNE)の果実より油脂又は有機溶剤で抽出して得られる橙色〜暗褐色の塊、ペースト又は液体で、一般にパプリカオレオレジンと呼称されているもの、該パプリカオレオレジンをアルコール抽出、水蒸気蒸留もしくはアルカリ処理等の手段を単独で又は適宜組み合わせて利用することにより特有の臭いを除去したもの等が挙げられる。
本発明のパプリカ色素組成物は、上記パプリカ色素を更に精製し、β−クリプトキサンチンやカプサンチンの含有量を高めたものが好ましい。該パプリカ色素組成物中のβ−クリプトキサンチンの含有量は、好ましくは1.0%以上、より好ましくは1.5%以上である。該パプリカ色素組成物中のカプサンチンの含有量は、その使用目的、使用対象などにより異なり一様ではないが、例えば5%以上である。
上記β−クリプトキサンチン及びカプサンチンとしては、その水酸基に脂肪酸がエステル結合したエステル体のものと、脂肪酸が結合していないいわゆるフリー体のものが存在するが、本発明ではこれらのうちいずれも好ましく用いられる。該エステル体を構成する脂肪酸としては、例えばパルミチン酸、ミリスチン酸、アラキドン酸、ステアリン酸、ラウリン酸、リノレン酸、オレイン酸またはリノール酸などが挙げられる。
本発明のパプリカ色素組成物中のβ−クリプトキサンチン及びカプサンチンの含有量は、下記方法を実施することにより測定できる。
[β−クリプトキサンチン及びカプサンチン含有量の測定方法]
試料50mgを50mLメスフラスコに秤量する。これにジエチルエーテル20ml、10%水酸化カリウム含有メタノール15mLを加え、10分毎に振り混ぜながら1時間室温に静置する。次いで、内部標準としてβ−apo−8’−carotenal/エタノール溶液(0.4mg/mL)1mLを加え、ジエチルエーテルで50mLにメスアップする。得られた溶液1mLを50mLの遠沈管に分取し、これにジエチルエーテル20mLと飽和食塩水10mLを加えてよく混合する。混合後、室温下、3000rpmで5分間遠心分離し、上清5mLを100mLのナス型フラスコに分取し、エバポレーターで溶媒を留去した後、エタノール2mLを加えて溶解する。得られた溶解液を0.5μmのシリンジフィルター(PTFE)でろ過し、高速液体クロマトグラフィー(HPLC)分析を下記条件で行う。得られたHPLCチャートからβ−クリプトキサンチン、カプサンチン及び内部標準のピーク面積をそれぞれ求め、これら面積に基づき試料中のβ−クリプトキサンチン及びカプサンチンの含有量(%)を算出する。
<HPLC分析条件>
機器:Alliance 2695(Waters社製)
データ処理装置:Empower(Waters社製)
移動相A液:0.1%ギ酸:アセトン=40:60(容量比)
移動相B液:メタノール:アセトン=20:80(容量比)
カラム:Atlantis dC18(3μm)
カラム径×長:2.1×150mm(Waters社製)
グラジエント:0〜35分にかけてB液0容量%からB液100容量%へのリニアグラジエント
流速:0.2mL/min
検出器:UV/VIS検出器(Wters2487;Waters社製)
カラム温度:40℃
注入量:5μL
検出波長:450nm(β−クリプトキサンチン)
:480nm(カプサンチン)
パプリカ色素を精製し、β−クリプトキサンチン及びカプサンチンの含有量を高める方法に特に制限はなく、パプリカ色素の精製方法として自体公知のものを実施することができるが、好ましくは下記の超臨界抽出処理および/又はカラム処理を実施できる。
[超臨界抽出処理]
超臨界抽出処理は、パプリカ色素をそのまま或いは希釈剤として食用油脂(例えば、菜種油、中鎖飽和脂肪酸トリグリセライドなど)を加えて抽出槽に仕込み、該抽出槽に溶媒として超臨界流体(例えば、超臨界状態の二酸化炭素、エタン、エチレン、プロパン、トルエン、亜酸化窒素等)を供給し、該流体の圧力及び温度を調整することによりβ−クリプトキサンチンやカプサンチンの含有量を高めた組成物を選択的に抽出する方法である。超臨界流体により抽出された成分は、分離槽で降圧され、該流体を気化することにより、β−クリプトキサンチンの含有量が1.0%以上のパプリカ色素組成物を得る。
超臨界抽出の処理方法に特に制限はないが、二酸化炭素を供給し、圧力100〜200Kg/cm、好ましくは120〜180Kg/cm、臨界温度80℃以下、好ましくは40〜60℃で抽出した後、圧力50〜60Kg/cm、温度40〜60℃で二酸化炭素を気化することが好ましい。
なお、超臨界抽出処理の終点は、パプリカ色素組成物中のβ−クリプトキサンチンの含有量が1.0%以上となるように適宜設定することができる。
[カラム処理]
カラム処理は、パプリカオレオレジンを出発原料とし、吸着剤が充填されたカラム及び溶媒を用いてβ−クリプトキサンチンやカプサンチンを分離する方法である。吸着剤(充填剤)としては、シリカゲル、酸化マグネシウム、ケイ酸マグネシウム、活性白土、酸性白土などの無機塩類やスチレン−ジビニルベンゼン系、芳香族系やメタクリル酸エステル系などの合成吸着樹脂、オクタデシル化シリカゲルなどの逆相系のシリカゲル等が挙げられ、好ましくはシリカゲルが用いられる。
溶媒の種類は、β−クリプトキサンチン及びカプサンチンを分離可能であればよく、常法に従い、ヘキサンなどの非極性溶媒やジエチルエーテル、アセトンやメタノールなどの極性の高い溶媒などから適宜選択することができる。例えば、充填剤にシリカゲルが用いられる場合には、β−クリプトキサンチンをカラムから溶出するための溶媒として、n−ヘキサンが好ましく用いられ、その後カプサンチンをカラムから溶出するための溶媒としてアセトンが好ましく用いられる。
より具体的には、初めに、パプリカオレオレジンに適量のn−ヘキサンを加えて溶解した後、得られた溶解液を、シリカゲルが充填されたカラムに供給して色素成分を吸着させる。次に、n−ヘキサンを該カラムに供給し、カラムからの溶出液を回収する。溶出液の回収は、複数の画分(例えば、3〜10の画分)に分けて行い、これらのうちβ−クリプトキサンチンを多く含む画分を適宜選択する。続いて、アセトンを該カラムに供給し、カプサンチンを含む溶出液を回収する。その後、β−クリプトキサンチンを多く含む画分の溶出液とカプサンチンを含む溶出液とを適宜混合し、得られた混合液から溶媒を留去し、β−クリプトキサンチンの含有量が1.0%以上のパプリカ色素組成物を得る。
上述した超臨界抽出処理及び/またはカラム処理により得られたパプリカ色素組成物は、濃度や粘度の調整等の目的のため、食用油脂を添加して希釈することができる。該食用油脂としては、例えば菜種油、とうもろこし油、大豆油、綿実油、ひまわり油、紅花油、パーム油、椰子油等の植物油脂、魚油等の動物油脂及び中鎖飽和脂肪酸トリグリセライド(MCT)等を用いることができる。また、食用油脂に替えて、または食用油脂と共に、例えばエタノール、ヘキサン、アセトン、グリセリン及びプロピレングリコール等を用いることもできる。
本発明のパプリカ色素組成物は、多芯型マイクロカプセルに包含させて使用することが好ましく、該マイクロカプセルの好ましい形態は、本発明のパプリカ色素組成物を芯物質として含有し、膜形成物質が親水性高分子ゲル化剤のものである。このような多芯型マイクロカプセルも本発明に含まれる。
本発明の多芯型マイクロカプセルは、膜形成物質1中に芯物質2が均一に分散した構造を有する(図1)。芯物質の粒子径は、50μm以下、好ましくは20μm以下、さらに好ましくは10μm以下である。
上記親水性高分子ゲル化剤としては、例えば、ゼラチン、寒天、カラギーナン、ジェランガムなどが挙げられ、好ましくはゼラチンである。
本発明の多芯型マイクロカプセルの製造方法は特に制限されないが、例えば以下の工程(1)〜(4)を実施することにより製造することができる。
工程(1):親水性高分子ゲル化剤及び乳化剤を水に加え、これを約40〜90℃に加温して溶解する。
工程(2):(1)で作成した溶解液にパプリカ色素組成物を加えて撹拌し、均一に分散させる。
工程(3):(2)で作成した分散液を液体窒素の充填された塔内に噴霧する。噴霧された分散液は冷却されて落下し、塔下部で凍結状態の微細粒子となる。
工程(4):(3)で作成した微細粒子を捕集し、例えば棚段式通風乾燥機、流動層乾燥機、真空凍結乾燥機などにより目的とする水分量まで乾燥し、本発明の多芯型マイクロカプセルを得る。
上記工程(1)の乳化剤としては、例えばグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ショ糖脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステルなどが挙げられる。本発明においては、これらの乳化剤を一種類で用いても良いし、二種類以上を任意に組み合わせて用いても良い。上記グリセリン脂肪酸エステルには、グリセリンと脂肪酸のエステルの他、グリセリン酢酸エステル、グリセリン酢酸脂肪酸エステル、グリセリン乳酸脂肪酸エステル、グリセリンクエン酸脂肪酸エステル、グリセリンコハク酸脂肪酸エステル、グリセリンジアセチル酒石酸脂肪酸エステルおよびポリグリセリン脂肪酸エステルなどが含まれる。
上記工程(2)の攪拌には、TKホモミクサー(プライミクス社製)、クレアミックス(エムテクニック社製)などの高速回転式分散・乳化機が用いられる。攪拌条件としては、回転数を約3000〜10000rpm、攪拌時間を約5〜60分間とするのが好ましい。
上記工程(2)で作成される分散液100質量%中の親水性高分子ゲル化剤、乳化剤、水およびパプリカ色素組成物の含有量に特に制限はないが、例えば、親水性高分子ゲル化剤が通常約5〜25質量%、乳化剤が通常約0.01〜2質量%、水が通常約50〜75質量%、パプリカ色素組成物が通常約1〜30質量%となるように調製するのが好ましい。
上記工程(3)の噴霧には、例えば加圧式噴霧ノズル、回転式噴霧ノズル、回転円盤などが用いられ、好ましくは回転円盤である。回転円盤を噴霧に用いる場合、該回転円盤の好ましい回転数として約400〜2500rpmを例示できる。
上記工程(4)の乾燥に流動層乾燥機を用いる場合、乾燥前に予め微細粒子100質量%にグリセリン脂肪酸エステル約0.1〜4質量%およびグリセリン脂肪酸エステル約0.1〜4質量%を加えて混合することが好ましく行われる。
本発明の多芯型マイクロカプセル100質量%中には、パプリカ色素組成物の含有量が約0.1〜20質量%、好ましくは約1〜10質量%、β−クリプトキサンチンの含有量が約0.02〜10質量%、好ましくは約0.1〜5.0質量%、カプサンチンの含有量が約0.1〜10質量%、好ましくは約1.0〜5.0質量%となるように調製するのが好ましい。本発明の多芯型マイクロカプセルの特性値は、乾燥減量が10.0質量%以下、好ましくは7.0質量%以下(1g,105℃,2時間)である。尚、乾燥減量は「日局方 一般試験法10.乾燥減量試験法」に準じて測定される。
本発明の多芯型マイクロカプセルに内包されるパプリカ色素組成物中のカプサンチンには優れた保存安定性が付与されている。このため、本発明の多芯型マイクロカプセルは、カプサンチンによる疾患の予防または治療効果を目的とする健康食品や医薬品などに配合して好ましく使用することができる。
以下に本発明を実施例に基づいてより具体的に説明するが、本発明はこれらに限定されるものではない。
[実施例1]
(1)パプリカ色素組成物の製造
パプリカオレオレジン375g(色価20万CV)にn−ヘキサン1250mLを加えて50℃で攪拌して溶解し、得られた溶解液を氷水中に静置し10℃に冷却した。冷却後、脱脂綿を用いて該溶解液をろ過して不溶物を除去し、パプリカオレオレジンのn−ヘキサン溶液1200gを得た。
次に、ガラス製カラム(内径92mm;カラム長1000mm)にn−ヘキサンを入れ、空気を抱き込まないようにシリカゲル(製品名:ワコーゲルC−300;和光純薬工業社製)625gを該カラムに充填し、これに上記パプリカオレオレジンのn−ヘキサン溶液1200gを流速SV=6/時間で供給した。
次いで、n−ヘキサン2250mLを該カラムに供給して色素成分を溶出し、溶出液を375mLごとに6つのフラクションに分画し、溶出した順にn−ヘキサン溶出画分1〜6とした。その後、アセトン7500mLを該カラムに供給して色素成分を溶出し、アセトン溶出画分7500mLを得た。
375mLのn−ヘキサン溶出画分3とアセトン溶出画分2650mLを混合し、n−ヘキサン及びアセトンを留去した後、MCT(製品名:アクターM1;理研ビタミン社製)35gを添加し混合することにより、パプリカ色素組成物(実施例品1;カプサンチン含有量7.5%;β−クリプトキサンチン含有量1.0%)153gを得た。
(2)多芯型マイクロカプセルの製造
ゼラチン(製品名:ゼラチンRGB;新田ゼラチン社製)200g、グリセリン脂肪酸エステル(製品名:ポエムB−10;理研ビタミン社製)12gを精製水600gに加え、60℃に加熱して溶解した。得られた溶解液を60℃に保ち、パプリカ色素組成物(実施例品1)80gとミックストコフェロール(製品名:理研Eオイルスーパー80;理研ビタミン社製)4gとD−ソルビトール(製品名:ソルビトールFP;物産フードサイエンス社製)100gを加え、TKホモミクサー(プライミクス社製)で10000rpmにて均一に分散するまで撹拌した。得られた分散液を−60kPa(ゲージ圧)の減圧下で脱気し、パプリカ色素含有分散液を得た。
次にパプリカ色素含有分散液を塔下部が液体窒素で冷却された噴霧冷却装置(試験機)に送液し、回転式噴霧ノズルを回転数1100rpmで回転させて霧状に噴霧した。噴霧された溶液は冷却されて微細粒子となって塔下部に落下し、凍結状態の粒子として捕集した。集められた該微細粒子500gに、グリセリン脂肪酸エステル(製品名:ポエムHB;理研ビタミン社製)4.0gを加えて混合した後、流動層乾燥機(型式:LAB−1;パウレック社製)を用いて20℃で1時間、30℃で30分間、50℃で30分間の順に乾燥し、多芯型マイクロカプセル(試作品1)350gを得た。
[実施例2]
実施例1の(1)において、375mLのn−ヘキサン溶出画分3とアセトン溶出画分2650mLを混合したこと及びMCTを35g添加したことに替えて、375mLのn−ヘキサン溶出画分3とアセトン溶出画分1985mLを混合したこと及びMCTを12g添加したこと以外は、実施例1の(1)と同様に実施し、パプリカ色素組成物(実施例品2;カプサンチン含有量7.5%;β−クリプトキサンチン含有量1.3%)115gを得た。
次に、実施例1の(2)において、パプリカ色素組成物(実施例品1)80gの替わりに上記パプリカ色素組成物(実施例品2)80gを使用したこと以外は、実施例1の(2)と同様に実施し、多芯型マイクロカプセル(試作品2)350gを得た。
[実施例3]
実施例1の(1)において、375mLのn−ヘキサン溶出画分3とアセトン溶出画分2650mLを混合したこと及びMCTを35g添加したことに替えて、375mLのn−ヘキサン溶出画分3とアセトン溶出画分1655mLを混合したこと以外は、実施例1の(1)と同様に実施し、パプリカ色素組成物(実施例品3;カプサンチン含有量7.5%;β−クリプトキサンチン含有量1.6%)95gを得た。
次に、実施例1の(2)において、パプリカ色素組成物(実施例品1)80gの替わりに上記パプリカ色素組成物(実施例品3)80gを使用したこと以外は、実施例1の(2)と同様に実施し、多芯型マイクロカプセル(試作品3)350gを得た。
[比較例1]
実施例1の(1)において、375mLのn−ヘキサン溶出画分3とアセトン溶出画分2650mLを混合したこと及びMCTを35g添加したことに替えて、276mLのn−ヘキサン溶出画分3とアセトン溶出画分2426mLを混合したこと及びMCTを45g添加したこと以外は、実施例1の(1)と同様に実施し、パプリカ色素組成物(比較例品1;カプサンチン含有量7.5%;β−クリプトキサンチン含有量0.8%)140gを得た。
また、実施例1の(2)において、パプリカ色素組成物(実施例品1)80gの替わりに上記パプリカ色素組成物(比較例品1)80gを使用したこと以外は、実施例1の(2)と同様に実施し、多芯型マイクロカプセル(試作品4)350gを得た。
[比較例2]
実施例1の(1)を実施しないこと、および実施例1の(2)においてパプリカ色素組成物(実施例品1)80gの替わりにパプリカオレオレジンとして市販されているパプリカ色素組成物(市販品A;カプサンチン含有量6%;β−クリプトキサンチン含有量0.3%;輸入元:栄研商事社)80gを使用したこと以外は、実施例1の(2)と同様に実施し、多芯型マイクロカプセル(試作品5)350gを得た。
[比較例3]
実施例1の(1)を実施しないこと、および実施例1の(2)においてパプリカ色素組成物(実施例品1)80gの替わりにパプリカオレオレジンとして市販されているパプリカ色素組成物(市販品B;カプサンチン含有量6.2%;β−クリプトキサンチン含有量0.4%;輸入元:栄研商事社)80gを使用したこと以外は、実施例1の(2)と同様に実施し、多芯型マイクロカプセル(試作品6)350gを得た。
[比較例4]
実施例1の(1)を実施しないこと、および実施例1の(2)においてパプリカ色素組成物(実施例品1)80gの替わりにパプリカオレオレジンとして市販されているパプリカ色素組成物(市販品C;カプサンチン含有量5.8%;β−クリプトキサンチン含有量0.7%;輸入元:栄研商事)80gを使用したこと以外は、実施例1の(2)と同様に実施し、多芯型マイクロカプセル(試作品7)350gを得た。
[参考例1]
実施例1の(1)において、375mLのn−ヘキサン溶出画分3とアセトン溶出画分2650mLを混合したこと及びMCTを35g添加したことに替えて、193mLのn−ヘキサン溶出画分3とアセトン溶出画分3088mLを混合したこと及びMCT70g、α−トコフェロール(製品名:リケンEオイル710;理研ビタミン社製;α−トコフェロール含量67%)8gを添加したこと以外は、実施例1の(1)と同様に実施し、パプリカ色素組成物(参考例品1;カプサンチン含有量7.5%;β−クリプトキサンチン含有量0.5%;α−トコフェロール含有量3.0%)178gを得た。
次に、実施例1の(2)において、パプリカ色素組成物(実施例品1)80gの替わりに上記パプリカ色素組成物(参考例品1)80gを使用したこと以外は、実施例1の(2)と同様に実施し、多芯型マイクロカプセル(試作品8)350gを得た。
[参考例2]
実施例1の(1)において、375mLのn−ヘキサン溶出画分3とアセトン溶出画分2650mLを混合したこと及びMCTを35g添加したことに替えて、193mLのn−ヘキサン溶出画分3とアセトン溶出画分3088mLを混合したこと及びMCT48g、β−カロテン(製品名:バイオカロチン30MCT;協和発酵バイオ社製;β−カロテン含量30%)30gを添加したこと以外は、実施例1の(1)と同様に実施し、パプリカ色素組成物(参考例品2;カプサンチン含有量7.5%;β−クリプトキサンチン含有量0.5%;β−カロテン含有量5.0%)178gを得た。
次に、実施例1の(2)において、パプリカ色素組成物(実施例品1)80gの替わりに上記パプリカ色素組成物(参考例品2)80gを使用したこと以外は、実施例1の(2)と同様に実施し、多芯型マイクロカプセル(試作品9)350gを得た。
[参考例3]
実施例1の(1)において、375mLのn−ヘキサン溶出画分3とアセトン溶出画分2650mLを混合したこと及びMCTを35g添加したことに替えて、193mLのn−ヘキサン溶出画分3とアセトン溶出画分3088mLを混合したこと及びMCT18g、リコピン(製品名:Lyco−Mato15%;ライコレッド社製;リコピン含量15%)60gを添加したこと以外は、実施例1の(1)と同様に実施し、パプリカ色素組成物(参考例品3;カプサンチン含有量7.5%;β−クリプトキサンチン含有量0.5%;リコピン含有量5.0%)178gを得た。
次に、実施例1の(2)において、パプリカ色素組成物(実施例品1)80gの替わりに上記パプリカ色素組成物(参考例品3)80gを使用したこと以外は、実施例1の(2)と同様に実施し、多芯型マイクロカプセル(試作品10)350gを得た。
ここで、上述した実施例、比較例および参考例で得たパプリカ色素組成物(実施例品1〜3、比較例品1〜4および参考例品1〜3)について、β−クリプトキサンチン含有量およびその他成分の含有量を表1に示す。
Figure 0005868631
[カプサンチンの安定性評価試験]
上述した実施例、比較例および参考例で製造した多芯型マイクロカプセル(試作品1〜10)各20gを100g容のアルミラミネート袋に入れてヒートシールをし、40℃に保温した恒温器(型式:FC−42D;アドバンテック社製)中で60日間保存した。保存後、上記袋の内容物についてカプサンチンの残存率を下記方法により測定した。結果を表2に示す。
<カプサンチンの残存率の測定方法>
試料200mgを100mLメスフラスコに秤量する。これに純水60〜70mLを加え、45℃で超音波処理して完全に溶解させた後、純水でメスアップする。得られた溶液2mLを50mLの遠沈管に分取し、ビオプラーゼ/純水溶液(1mg/mL)0.5mLを加え、45℃で時間超音波処理する。更にジエチルエーテル20mL、飽和食塩水20mLおよび内部標準としてβ−apo−8’−carotenal/n−ヘキサン溶液(0.016mg/mL)1mLを加えてよく混合する。得られた混合液を3000rpmで5分間、室温にて遠心分離し、上清10mLを50mL遠沈管に分取する。そこに10%水酸化カリウム含有メタノール溶液5mLを加え、室温にて30分間静置する。これに飽和食塩水10mlを加えてよく混合した後、3000rpmで5分間、室温にて遠心分離し、上清5mlを100mlナス型フラスコに分取し、エバポレーターで溶媒を留去した後、エタノール2mLを加えて溶解する。得られた溶解液を0.5μmのシリンジフィルター(PTFE)でろ過し、高速液体クロマトグラフィー(HPLC)分析を下記条件で行う。
得られたHPLCチャートからカプサンチンと内部標準のピーク面積をそれぞれ求め、これら面積に基づき試料中のカプサンチン含有量を算出する。
続いて、製造直後の多芯型マイクロカプセル(試作品1〜10)の各々について同様に求められた含有量を100%として、60日保存後の多芯型マイクロカプセル中のカプサンチンの残存率(%)を求める。
<HPLC分析条件>
機器:Alliance 2695(Waters社製)
データ処理装置:Empower(Waters社製)
移動相A液:0.1%ギ酸:アセトン=40:60(容量比)
移動相B液:メタノール:アセトン=20:80(容量比)
カラム:Atlantis dC18(3μm)
カラム径×長:2.1×150mm(Waters社製)
グラジエント:0〜35分にかけてB液0容量%からB液100容量%へのリニアグラジエント
流速:0.2mL/min
検出器:UV/VIS検出器(Wters2487;Waters社製)
カラム温度:40℃
注入量:5μL
検出波長:480nm(カプサンチン)
Figure 0005868631
表2の結果より、本発明のパプリカ色素組成物(実施例品1〜3)を使用して多芯型マイクロカプセル(試作品1〜3)を調製すると、カプサンチンの保存安定性が顕著に改善されることが明らかである。特に、本発明のパプリカ色素組成物を調製した多芯型マイクロカプセルは、カプサンチンに保存安定性を付与し得る物質として公知のα−トコフェロール、β−カロテンおよびリコピンを添加して調製した多芯型マイクロカプセル(試作品8〜10)と比較してもカプサンチンの保存安定性に優れている。
1 膜形成物質
2 芯物質

Claims (2)

  1. カプサンチン及びβ−クリプトキサンチンを含有し、且つ該β−クリプトキサンチンの含有量が1.3%以上であるパプリカ色素組成物。
  2. 膜形成物質が親水性高分子ゲル化剤の多芯型マイクロカプセルに包含させて使用するための請求項1に記載のパプリカ色素組成物。
JP2011174655A 2011-08-10 2011-08-10 パプリカ色素組成物 Active JP5868631B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011174655A JP5868631B2 (ja) 2011-08-10 2011-08-10 パプリカ色素組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011174655A JP5868631B2 (ja) 2011-08-10 2011-08-10 パプリカ色素組成物

Publications (2)

Publication Number Publication Date
JP2013034446A JP2013034446A (ja) 2013-02-21
JP5868631B2 true JP5868631B2 (ja) 2016-02-24

Family

ID=47884696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011174655A Active JP5868631B2 (ja) 2011-08-10 2011-08-10 パプリカ色素組成物

Country Status (1)

Country Link
JP (1) JP5868631B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015174858A (ja) * 2014-03-18 2015-10-05 理研ビタミン株式会社 トウガラシ色素抽出物
JP2016141708A (ja) * 2015-01-30 2016-08-08 理研ビタミン株式会社 パプリカ色素及びその製造方法
EP3437488B8 (en) * 2016-03-30 2021-03-17 Riken Vitamin Co., Ltd. Carotenoid-containing particles
KR20190089150A (ko) 2016-11-30 2019-07-30 라이온 가부시키가이샤 내복제
CN111359553B (zh) * 2020-03-12 2022-04-01 蚌埠学院 一种生物降解食用色素微胶囊的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3555640B2 (ja) * 1996-05-10 2004-08-18 ライオン株式会社 天然カロチノイドを包含した多芯型構造のマイクロカプセル並びに錠剤、食品用及び医薬品用配合剤
JP2002129057A (ja) * 2000-10-27 2002-05-09 Riken Vitamin Co Ltd 多芯型カロテノイドビーズ
JP2009132628A (ja) * 2007-11-28 2009-06-18 Fujifilm Corp 入浴剤組成物及びその製造方法

Also Published As

Publication number Publication date
JP2013034446A (ja) 2013-02-21

Similar Documents

Publication Publication Date Title
JP5868631B2 (ja) パプリカ色素組成物
Xu et al. Optimization of supercritical carbon dioxide extraction of sea buckthorn (Hippophae thamnoides L.) oil using response surface methodology
Xu et al. Supercritical CO2 extraction of oil, carotenoids, squalene and sterols from lotus (Nelumbo nucifera Gaertn) bee pollen
CN104800119B (zh) 一种薰衣草精油脂质体及其制备方法
TWI311045B (en) Active compound-comprising adsorbates
JP4970546B2 (ja) 顆粒、錠剤およびそれらの製造方法
Andrade et al. Sustainable extraction and encapsulation of pink pepper oil
JP2009519980A (ja) カプセル化リン脂質−安定化被酸化性材料
Baldino et al. An optimized process for SC-CO2 extraction of antimalarial compounds from Artemisia annua L.
BRPI0706288A2 (pt) processo para a produção de frações altamente enriquecidas de compostos naturais de óleo de palma com fluidos supercrìticos e quase crìticos
JP6384764B2 (ja) 離散個体押出粒子を製造する方法
US20030228369A1 (en) Process for conversion of high viscosity fluids and compositions thereof
Gu et al. Process optimization and characterization of fragrant oil from red pepper (Capsicum annuum L.) seed extracted by subcritical butane extraction
JP5324755B2 (ja) 粒子状組成物およびその製造方法
Yeddes et al. Supercritical SC-CO2 and soxhlet n-hexane extract of Tunisian Opuntia ficus indica seeds and fatty acids analysis
WO2016083874A1 (en) Stable oil suspensions comprising lipophilic nutrient with enhanced bioavailability and process of preparation
Guo et al. Optimization of technological parameters for preparation of lycopene microcapsules
Mustapa et al. Effects of parameters on yield for sub-critical R134a extraction of palm oil
JP7042764B2 (ja) トマトエキストラクト及びその製造方法、並びにトマトエキストラクトを含んだ飲食品及び化粧品
Chañi-Paucar et al. Supercritical fluid extraction of bioactive compounds from quinilla (Manilkara bidentata) seed
Anand et al. Encapsulation efficiency and fatty acid analysis of chia seed oil microencapsulated by freeze-drying using combinations of wall material
JP6529073B2 (ja) トマトエキストラクト及びその製造方法、並びにトマトエキストラクトを含んだ飲食品及び化粧品
Haque et al. Fatty acid composition and stability of extracted mackerel muscle oil and oil-polyethylene glycol particles formed by gas saturated solution process
JP2016088912A (ja) W/o/w型エマルション
JP7032260B2 (ja) 油性組成物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160106

R150 Certificate of patent or registration of utility model

Ref document number: 5868631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250