JP5867893B2 - Freezing method - Google Patents

Freezing method Download PDF

Info

Publication number
JP5867893B2
JP5867893B2 JP2012534016A JP2012534016A JP5867893B2 JP 5867893 B2 JP5867893 B2 JP 5867893B2 JP 2012534016 A JP2012534016 A JP 2012534016A JP 2012534016 A JP2012534016 A JP 2012534016A JP 5867893 B2 JP5867893 B2 JP 5867893B2
Authority
JP
Japan
Prior art keywords
gas
frozen
space
freezing
polyatomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012534016A
Other languages
Japanese (ja)
Other versions
JPWO2012036167A1 (en
Inventor
木野 正人
正人 木野
昭夫 清水
昭夫 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MITSUYA CORPORATION
Soka University
Original Assignee
MITSUYA CORPORATION
Soka University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MITSUYA CORPORATION, Soka University filed Critical MITSUYA CORPORATION
Priority to JP2012534016A priority Critical patent/JP5867893B2/en
Publication of JPWO2012036167A1 publication Critical patent/JPWO2012036167A1/en
Application granted granted Critical
Publication of JP5867893B2 publication Critical patent/JP5867893B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/066Cooling mixtures; De-icing compositions

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Freezing, Cooling And Drying Of Foods (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

本発明は、食品、臓器、組織片、動物細胞、微生物等の凍結方法に関する。   The present invention relates to a method for freezing foods, organs, tissue pieces, animal cells, microorganisms and the like.

動物細胞など低含水率物の被凍結物を凍結したとき、被凍結物の内部に発生した氷晶核(アイスシーズ)が大きなサイズの氷晶に成長し、被凍結物の細胞膜が損傷することによって、解凍時に損傷した細胞から水分が流出する。この流出水分(ドリップ)には細胞内液が含まれており、解凍時に発生するドリップ量は被凍結物の凍結品質に大きな影響を及ぼす。   When frozen objects with low water content such as animal cells are frozen, ice crystal nuclei (ice seeds) generated inside the frozen object grow into large size ice crystals and damage the cell membrane of the frozen object. Causes water to flow out of the damaged cells upon thawing. This outflow moisture (drip) contains intracellular fluid, and the amount of drip generated at the time of thawing greatly affects the freezing quality of the object to be frozen.

被凍結物の凍結速度が速いほど、氷晶サイズの成長を抑制することができる。そのため、環境温度との温度差が大きい、−50℃以下の低温帯で急速に被凍結物を冷却することが行われている。しかしながら、低温帯に冷却するために多量の電力を必要とするので、省エネルギーの観点から好ましくない。   The faster the freezing rate of the object to be frozen, the more the growth of ice crystal size can be suppressed. For this reason, the object to be frozen is rapidly cooled in a low temperature zone of −50 ° C. or less, which has a large temperature difference from the environmental temperature. However, since a large amount of electric power is required for cooling to a low temperature zone, it is not preferable from the viewpoint of energy saving.

そこで、特許文献1には、食品を収納庫内で−7℃で予冷して過冷却状態とした後、この収納庫内に冷気を流入させて急速冷却することにより、この食品を過冷却から凍結に遷移させる技術が開示されている。   Therefore, in Patent Document 1, after the food is pre-cooled in a storage at −7 ° C. to be in a supercooled state, cold air is allowed to flow into the storage to rapidly cool the food. A technique for transitioning to freezing is disclosed.

特許文献2には、冷凍庫等の庫内に液化炭酸ガスを噴出させて、その気化潜熱によって庫内を温度変化なく急速に冷却させることにより、庫内に収容されている食品等を凍結する技術が開示されている。   Patent Document 2 discloses a technique for freezing food stored in a warehouse by ejecting liquefied carbon dioxide into a warehouse such as a freezer and rapidly cooling the interior of the warehouse without temperature change by the latent heat of vaporization. Is disclosed.

特許第4253775号公報Japanese Patent No. 4253775 実開昭51−50444号公報Japanese Utility Model Publication No. 51-50444

しかしながら、特許文献1に開示された凍結方法では、食品の表層だけが凍結する部分凍結になり、長期間鮮度を保って保存することが困難であった。   However, in the freezing method disclosed in Patent Document 1, only the surface layer of the food is partially frozen, and it has been difficult to preserve the freshness for a long time.

本発明は、以上の点に鑑み、確実に凍結させた上で、被凍結物の解凍時に発生するドリップ量の低下を図ることが可能な凍結方法を提供することを目的とする。   In view of the above, an object of the present invention is to provide a freezing method capable of reducing the amount of drip generated when the object to be frozen is thawed after being frozen.

本発明の密閉容器は、内部空間に被凍結物を収容する密閉容器であって、内部空間を第1空間と第2空間とに分割し隔離する隔膜と、構成分子が3原子以上からなる多原子分子気体、又は、該多原子分子気体を第1空間の気体の熱容量が同分子数の乾燥空気の熱容量よりも大きくなるように含有する気体を、第1空間に供給可能な第1ガス供給機構と、構成分子が3原子以上からなる多原子分子気体、又は、該多原子分子気体を第2空間の気体の熱容量が同分子数の乾燥空気の熱容量よりも大きくなるように含有する気体を、第2空間に供給可能な第2ガス供給機構と、第1空間の排気を行う第1排気機構と、第2空間の排気を行う第2排気機構と、第1空間の内部で、被凍結物を壁面から離間させて保持する被凍結物設置機構とを備えていることを特徴とする。The sealed container of the present invention is a sealed container for storing an object to be frozen in an internal space, a diaphragm that divides and isolates the internal space into a first space and a second space, and a multicomponent composed of three or more atoms. A first gas supply capable of supplying the first space with an atomic molecular gas or a gas containing the polyatomic molecular gas so that the heat capacity of the gas in the first space is larger than the heat capacity of the dry air having the same number of molecules. A mechanism and a polyatomic molecular gas having 3 or more constituent molecules, or a gas containing the polyatomic molecular gas so that the heat capacity of the gas in the second space is larger than the heat capacity of dry air of the same number of molecules. A second gas supply mechanism capable of supplying to the second space, a first exhaust mechanism for exhausting the first space, a second exhaust mechanism for exhausting the second space, and an object to be frozen inside the first space. And an object-to-be-frozen installation mechanism that holds the object away from the wall surface. It is characterized in.
また、本発明の凍結方法は、上記の密閉容器を用いた凍結方法であって、被凍結物設置機構に被凍結物を配置した後、密閉容器を密閉する被凍結物配置工程と、第1排気機構で第1空間の内部に存在していた気体を排気するとともに、第2ガス供給機構で第2空間の内部に多原子分子気体又は多原子分子気体を含有する気体を充填する第1ガス供給工程と、第2排気機構で隔膜が壁面に密着するまで第2空間の内部に充填された多原子分子気体又は多原子分子気体を含有する気体を排気するとともに、第1ガス供給機構で第1空間に多原子分子気体又は多原子分子気体を含有する気体を充填する第2ガス供給工程と、密閉容器を冷却することによって、第1空間内の温度を低下させ、被凍結物を、−16℃以下の自然対流中で冷却し、過冷却を経由させた後、凍結させる凍結工程とを備えていることを特徴とする。Moreover, the freezing method of the present invention is a freezing method using the above-described sealed container, wherein the frozen object placement step of sealing the sealed container after placing the frozen object in the frozen object installation mechanism, The first gas that exhausts the gas existing in the first space by the exhaust mechanism and fills the second space with the gas containing the polyatomic molecule gas or the polyatomic molecule gas by the second gas supply mechanism. The supply step and the gas containing the polyatomic molecule gas or the polyatomic molecule gas filled in the second space are exhausted until the diaphragm comes into close contact with the wall surface by the second exhaust mechanism, and the first gas supply mechanism A second gas supply step of filling a space containing a polyatomic molecular gas or a gas containing a polyatomic molecular gas, and cooling the sealed container to lower the temperature in the first space, Cool in natural convection at 16 ° C or less, and supercool After over, characterized in that it comprises a freezing step of freezing.

この場合、被凍結物の周囲を覆う気体が、構成分子が3原子以上からなる多原子分子気体又は該多原子分子気体を容器内の気体の熱容量が同分子数の乾燥空気の熱容量よりも大きくなるように含有する気体であり、これらの気体は空気の主成分である2原子から構成される窒素分子や酸素分子よりも1モルあたりの熱容量(モル比熱)が大きい。   In this case, the gas covering the object to be frozen is a polyatomic molecule gas having 3 or more constituent molecules or the heat capacity of the gas in the container is larger than the heat capacity of dry air having the same number of molecules. These gases have a larger heat capacity (molar specific heat) per mole than nitrogen molecules and oxygen molecules composed of two atoms, which are the main components of air.

温度差や初期圧力が同じであれば、熱伝達率は自然対流中では被凍結物に接触している流体の比熱容量によって決まり、前記多原子分子気体は空気より熱伝達率が大きい。よって、過冷却状態を解除した後は、雰囲気ガスを空気とした場合に比べて、熱伝達率が大きくなり被凍結物の凍結速度を速くすることが可能となる。   If the temperature difference and the initial pressure are the same, the heat transfer coefficient is determined by the specific heat capacity of the fluid in contact with the object to be frozen in natural convection, and the polyatomic gas has a higher heat transfer coefficient than air. Therefore, after canceling the supercooled state, the heat transfer coefficient is increased and the freezing speed of the object to be frozen can be increased compared to the case where the atmospheric gas is air.

そして、凍結速度が速くなることで潜熱放出時間が短くなり、凝固潜熱により0℃付近の凍結温度に曝される時間が短縮される。よって、被凍結物の内部に発生した氷晶核が大きなサイズの氷晶に成長して被凍結物の細胞膜を損傷させる程度を軽減することができる。よって、解凍時に発生するドリップ量を低下させることが可能となる。   And the latent heat release time is shortened by increasing the freezing speed, and the time for exposure to a freezing temperature near 0 ° C. due to solidification latent heat is shortened. Therefore, it is possible to reduce the degree to which ice crystal nuclei generated inside the object to be frozen grow into large-sized ice crystals and damage the cell membrane of the object to be frozen. Therefore, it is possible to reduce the amount of drip generated during thawing.

なお、被凍結物の容積と比較して、密閉容器内の容積を十分に大きなものとする必要がある。よって、被凍結物は、容積の小さな組織片、動物細胞、微生物などの研究用試料などであることが好ましいが、充分冷凍室内の容積が確保できる冷凍倉庫内等では食品等の容積の大きなものを凍結させることもできる。   In addition, it is necessary to make the volume in an airtight container large enough compared with the volume of to-be-frozen material. Therefore, the object to be frozen is preferably a small-volume tissue sample, animal cell, microorganism or other research sample. However, in a freezer warehouse or the like that can secure a sufficient volume in the freezer compartment, a large volume of food etc. Can also be frozen.

なお、被冷凍物を中心部まで深度の深い過冷却状態にするためには、初期冷却速度は緩慢な速度が好ましいが、過冷却解除後はできるだけ速い速度で冷却し、凝固潜熱を短時間で吸熱することで良質な冷凍が可能となる。   In order to bring the object to be frozen into a supercooled state with a deep depth to the center, the initial cooling rate is preferably a slow rate, but after the supercooling is released, it is cooled as quickly as possible to reduce the latent heat of solidification in a short time. Good-quality freezing becomes possible by absorbing heat.

試料を凍結後解凍した時のドリップ率を示すグラフ。The graph which shows the drip rate when the sample is thawed after freezing. 試料を凍結後解凍した時のドリップ率と雰囲気ガスの定圧モル比熱との関係を示すグラフ。The graph which shows the relationship between the drip rate when the sample is thawed after freezing and the constant pressure molar specific heat of the atmospheric gas. 試料を凍結後解凍した時のドリップ率を示すグラフ。The graph which shows the drip rate when the sample is thawed after freezing. 試料を凍結後解凍した時のドリップ率を示すグラフ。The graph which shows the drip rate when the sample is thawed after freezing. 試料を凍結後解凍した時のドリップ率を示すグラフ。The graph which shows the drip rate when the sample is thawed after freezing. 本発明に係る凍結器具の説明図。Explanatory drawing of the freezing instrument which concerns on this invention. 本発明に係る別の凍結器具の説明図。Explanatory drawing of another freezing instrument which concerns on this invention.

〔凍結原理〕
凍結時の被凍結物の損傷には、吸熱速度に比例して損傷が大きくなる割れによる損傷と、吸熱速度に反比例して小さくなる氷晶サイズ成長による損傷がある。被凍結物の保存及び解凍時を考慮せず、凍結時のみについて考察する場合には、凍結時の損傷は前記2つの損傷の和として考えることができる。
[Freezing principle]
Damage to the object to be frozen at the time of freezing includes damage due to cracks that increase in proportion to the endothermic rate and damage due to ice crystal size growth that decreases in inverse proportion to the endothermic rate. When considering only the freezing without considering the storage and thawing of the object to be frozen, the damage during freezing can be considered as the sum of the two damages.

被凍結物における凍結時の割れは、被凍結物の外層部にヒビ割れが発生したり変形したりする損傷である。割れは、表層から吸熱するために最初に凍結した外層部が内部の凍結時に膨張することによって生じる。被凍結物における氷晶サイズ成長による損傷は、被凍結物の内部に発生した氷晶核が成長し、被凍結物に発生する氷晶のサイズが大きくなることによって生じる。   The crack at the time of freezing in a to-be-frozen thing is damage to which the crack crack generate | occur | produces or deform | transforms in the outer layer part of a to-be-frozen object. The crack is caused by the outer layer portion that has been first frozen due to heat absorption from the surface layer expanding during freezing inside. The damage due to the ice crystal size growth in the object to be frozen is caused by the growth of ice crystal nuclei generated inside the object to be frozen, and the size of the ice crystal generated in the object to be frozen increases.

被凍結物が、動物細胞など含水率が65%〜85%と低く厚みが薄い場合、割れによる損傷が少なく、被凍結物における氷晶サイズ成長による損傷が被凍結物の損傷の主要因になる。一方、被凍結物が、単細胞微生物など含水率が90%を超えて高い場合、割れによる損傷が被凍結物の損傷の主要因になる。   If the object to be frozen has a low moisture content of 65% to 85%, such as animal cells, the damage due to cracking is small, and damage due to ice crystal size growth in the object to be frozen is the main cause of damage to the object to be frozen. . On the other hand, when the object to be frozen has a high water content of more than 90% such as single-cell microorganisms, damage due to cracking becomes a main factor of damage to the object to be frozen.

氷晶サイズの成長は、被凍結物を急速に冷却して、凝固潜熱により0℃付近の凍結温度に曝される時間を短縮することによって抑制することができる。そのためには、凍結速度を速くして凍結させることが重要である。しかし、低温帯で冷却すると、多量の電力を必要とするので省エネルギーの観点から好ましくない。   The growth of ice crystal size can be suppressed by rapidly cooling the object to be frozen and reducing the time of exposure to a freezing temperature near 0 ° C. due to latent heat of solidification. For that purpose, it is important to freeze at a high freezing rate. However, cooling in a low temperature zone is not preferable from the viewpoint of energy saving because a large amount of electric power is required.

また、過冷却経由で凍結させる場合は、被冷凍物の深部まで過冷度を大きくすることで過冷却解除後の凝固潜熱放出時間を短縮することができ、良質な冷凍が可能となる。凝固潜熱放出時間の短縮には、接触冷媒の熱容量は大きいほうが熱伝達率が大きいので好ましい。   In addition, when freezing via supercooling, increasing the degree of supercooling to the deep part of the object to be frozen can shorten the solidification latent heat release time after canceling the supercooling, and high-quality freezing becomes possible. In order to shorten the solidification latent heat release time, it is preferable that the heat capacity of the contact refrigerant is large because the heat transfer coefficient is large.

特に、少量の被凍結物を過冷却経由で凍結する場合、雰囲気ガスの熱容量を大きくすることにより、凝固潜熱の吸熱速度を速くすることができる。その理由は、温度差や初期圧力が同じであれば、熱伝達率は自然対流中では被凍結物に接触している流体の比熱容量によって決まるため、接触冷媒の熱容量を大きくすることで被凍結物の凍結速度を速くすることができるからである。   In particular, when a small amount of an object to be frozen is frozen via supercooling, the heat absorption rate of the solidification latent heat can be increased by increasing the heat capacity of the atmospheric gas. The reason is that if the temperature difference and initial pressure are the same, the heat transfer coefficient is determined by the specific heat capacity of the fluid in contact with the object to be frozen in natural convection. This is because the freezing speed of the object can be increased.

具体的には、例えば、被凍結物を吊り下げる、網状の棚に載せることによって、被凍結物のほぼ周囲全体をこのような気体で覆うことにより、このような雰囲気を形成することができる。   Specifically, for example, such an atmosphere can be formed by suspending an object to be frozen and placing it on a net-like shelf, and covering almost the entire periphery of the object to be frozen with such a gas.

そして、構成分子が3原子以上からなる多原子分子気体であれば、空気よりモル比熱が大きい。このような気体として、例えば、炭酸ガス、水蒸気、フロン、メタン、エタン、プロパン、ブタンなどが挙げられる。   If the constituent molecule is a polyatomic gas composed of 3 atoms or more, the molar specific heat is larger than that of air. Examples of such a gas include carbon dioxide, water vapor, chlorofluorocarbon, methane, ethane, propane, and butane.

このように、被凍結物の周囲を空気よりモル比熱が大きい気体を混合して覆い、自然対流させながら過冷却温度領域で被凍結物を凍結させる。なお、過冷却経由での凍結が可能な温度領域は、約−10℃〜−40℃である。そこで、被凍結物を密閉容器内に壁面に接触しないように吊して、炭酸ガスなどの比熱容量の大きいガスを混合して密閉し、前記温度帯の冷凍室に入れて冷却する。また、密閉容器内の雰囲気ガスの熱容量は、被凍結物と雰囲気ガスの温度差と雰囲気ガスのモル比熱とモル数の積であることから、同じガスであれば、温度差が大きいほど熱容量が大きくなる。しかし温度差が大きくなり過ぎると当初の冷却速度が上がり過冷度が低下する。そこで、適度な温度範囲が存在する。冷凍庫内温度が−10℃以上では温度差が小さく、熱容量が不足してドリップが多くなる。また、−30℃以下では初期冷却速度が速すぎて過冷度が下がりドリップが増加する。庫内温度が、約−15℃〜−25℃が最適温度帯である。   In this way, the object to be frozen is mixed and covered with a gas having a molar specific heat larger than that of air, and the object to be frozen is frozen in the supercooling temperature region while allowing natural convection. In addition, the temperature range in which freezing via supercooling is possible is about −10 ° C. to −40 ° C. Therefore, the object to be frozen is suspended in the sealed container so as not to contact the wall surface, and a gas having a large specific heat capacity such as carbon dioxide gas is mixed and sealed, and then cooled in the freezer compartment in the temperature zone. In addition, the heat capacity of the atmosphere gas in the sealed container is the product of the temperature difference between the object to be frozen and the atmosphere gas and the molar specific heat and the number of moles of the atmosphere gas. growing. However, if the temperature difference becomes too large, the initial cooling rate increases and the degree of supercooling decreases. Therefore, an appropriate temperature range exists. If the temperature in the freezer is −10 ° C. or higher, the temperature difference is small, the heat capacity is insufficient, and drip increases. On the other hand, at -30 ° C. or lower, the initial cooling rate is too high, the degree of supercooling decreases, and the drip increases. The optimal temperature range is about -15 ° C to -25 ° C.

そこで、−15℃〜−25℃の低温条件で、自然対流下で過冷却を自然解除すれば、被凍結物に割れが生じず、しかも凝固潜熱放出時間を短縮することができ、好ましい。   Therefore, it is preferable to naturally release the supercooling under natural convection under a low temperature condition of −15 ° C. to −25 ° C., so that the object to be frozen does not crack and the solidification latent heat release time can be shortened.

〔評価方法〕
従来、凍結や解凍による被凍結物の質は、凍結解除時のドリップ量、凍結解除後の弾性値、凍結時の氷結晶サイズを測定する方法や官能テストによって評価していた。しかし、これらは被凍結物の部位などによって評価値が大きく異なり、評価の精度や再現性に問題があった。そのため、凍結による被凍結物の質に余程大きな差がなければ、凍結の優劣を区別できず、新たな凍結方法を開発する障害となっていた。
〔Evaluation method〕
Conventionally, the quality of an object to be frozen by freezing or thawing has been evaluated by a method of measuring the drip amount at the time of freezing, the elastic value after freezing, the ice crystal size at the time of freezing, or a sensory test. However, these have different evaluation values depending on the part of the object to be frozen, and there are problems in the accuracy and reproducibility of the evaluation. Therefore, if there is not much difference in the quality of the object to be frozen due to freezing, the superiority or inferiority of freezing cannot be distinguished, which has been an obstacle for developing a new freezing method.

そこで、本願の発明者は、まず、動物細胞などの低含水率物のモデルとして高野豆腐を用い、解凍時のドリップ量を測定することによって凍結の質を評価する方法を開発した。   Therefore, the inventors of the present application first developed a method for evaluating the quality of freezing by using Takano tofu as a model for low moisture content such as animal cells and measuring the amount of drip at the time of thawing.

低含水率被凍結物のモデルとして、1.5重量%の寒天水溶液に高野豆腐の粉末を混合して成形した試料を用いた。高野豆腐は凍り豆腐とも呼ばれ、豆腐を凍結乾燥させた保存食である。この試料の含水率は約80%であり、65%〜85%である魚介や獣肉等の肉類の含水率に近い。   As a model for a low moisture content frozen object, a sample formed by mixing a powder of Takano tofu with a 1.5 wt% agar aqueous solution was used. Takano tofu is also called frozen tofu and is a preserved food that is freeze-dried tofu. The moisture content of this sample is about 80%, which is close to the moisture content of meat such as seafood and animal meat, which is 65% to 85%.

具体的には、高野豆腐をおろし金で摺りおろして粉末状にした。そして、沸騰した1.5重量%の寒天水溶液に水重量に対して7重量%の高野豆腐粉末を混合し,5分間撹拌後容器に容れ、氷水で容器を冷却して内容物を凝固させた。そして、容器内の結露した水滴を除去した後、内径12mmの円筒形状の型を用いて型抜き成形を行い、直径12mm、高さ10mmの円筒形状の試料を得た。さらに、この成形した試料をチャック付きビニール袋に収納して、4℃で1日間冷蔵した。   Specifically, Koya tofu was crushed with a grater and powdered. Then, 7% by weight of Takano tofu powder with respect to the weight of water was mixed with the boiled 1.5% by weight agar aqueous solution, stirred for 5 minutes, placed in the container, and cooled with ice water to solidify the contents. . And after removing the condensed water droplets in the container, die-cutting was performed using a cylindrical mold having an inner diameter of 12 mm to obtain a cylindrical sample having a diameter of 12 mm and a height of 10 mm. Further, the molded sample was stored in a plastic bag with a chuck and refrigerated at 4 ° C. for 1 day.

この試料を用いて、以下のようにドリップ率を求めた。   Using this sample, the drip rate was determined as follows.

まず、凍結前の試料の重量Wepを測定した後、試料を容器や袋に入れず各種条件下で凍結させた。そして、試料を凍結状態のままフィルターとドリップ容器を設けた遠沈管(スピッツ管)に入れ、スイングローター式遠心機を用いて220Gで40分間遠心することで、自然解凍させた。そして、遠沈管から試料を取り出して重量Werを測定し、凍結前後の試料の重量差に基づき、式(1)で凍結ドリップ率Rerを求めた。   First, after measuring the weight Wep of the sample before freezing, the sample was frozen under various conditions without being put in a container or bag. Then, the sample was put in a centrifuge tube (Spitz tube) provided with a filter and a drip container in a frozen state, and naturally thawed by centrifuging at 220 G for 40 minutes using a swing rotor centrifuge. Then, the sample was taken out from the centrifuge tube, the weight Wer was measured, and the freezing drip rate Rer was obtained by the formula (1) based on the weight difference between the samples before and after freezing.

Rer=100×(Wep−Wer)/Wep ・・・ (1)   Rer = 100 × (Wep−Wer) / Wep (1)

一方、凍結前の試料の重量Werを測定した後、凍結していない試料をスイングローター式の遠心機を用いて220Gで40分間遠心した。そして、遠心後の試料の重量Wcを測定し、遠心前後の試料の重量差に基づき、式(2)で遠心ドリップ率Rcを求めた。   On the other hand, after measuring the weight Wer of the sample before freezing, the unfrozen sample was centrifuged at 220 G for 40 minutes using a swing rotor centrifuge. Then, the weight Wc of the sample after centrifugation was measured, and the centrifugal drip rate Rc was determined by the formula (2) based on the difference in weight of the sample before and after centrifugation.

Rc=100×(Wc−Wep)/Wep ・・・ (2)   Rc = 100 × (Wc−Wep) / Wep (2)

最後に、凍結ドリップ率Rerと遠心ドリップ率Rcとの差から、式(3)でドリップ率Reを求め、凍結条件によるドリップ率Reの違いを比較した。   Finally, from the difference between the frozen drip rate Rer and the centrifugal drip rate Rc, the drip rate Re was determined by Equation (3), and the difference in the drip rate Re depending on the freezing conditions was compared.

Re=Rer−Rc ・・・ (3)   Re = Rer-Rc (3)

ただし、試料の製造にバラツキがあるため,ドリップ率Reの比較は同じ製造ロットの試料を用いて行った。   However, since there was variation in sample production, the drip rate Re was compared using samples of the same production lot.

成形後1日間密閉袋内で試料を冷蔵保存するので、表面の水滴が袋に付着するとともに袋内で一定量の水分が蒸発するため、誤差を小さくすることができた。さらに、遠心中に解凍させるので、解凍中に発生するドリップを寒天や高野豆腐に再吸収させることなく、分離することができた。また、スイングローター式遠心機を使用するので、試料を垂直方向に圧搾することができ、誤差を小さくすることができた。   Since the sample was refrigerated and stored in a sealed bag for 1 day after molding, water droplets on the surface adhered to the bag and a certain amount of water evaporated in the bag, so that the error could be reduced. Furthermore, since it thawed during centrifugation, the drip generated during the thawing could be separated without being reabsorbed by agar or Takano tofu. In addition, since a swing rotor centrifuge is used, the sample can be squeezed in the vertical direction, and the error can be reduced.

〔評価結果〕
試料を壁に接触しないよう密閉容器内に吊り下げて、試料の容積の500倍の大容積を有する密閉容器内の雰囲気ガスを、それぞれ炭酸ガスを20体積%混合した空気(Air+CO)、水蒸気を飽和させた空気(Air+HO)、乾燥剤を入れて乾燥させた空気(Air)、アルゴンガスを20体積%混合した空気(Air+Ar)として、密閉容器を−16℃の冷凍庫内に入れ、自然対流で試料を凍結させた。このときのそれぞれのドリップ率Reを図1に示す。
〔Evaluation results〕
The sample is suspended in a sealed container so as not to contact the wall, and atmospheric gas in the sealed container having a volume 500 times larger than the volume of the sample is mixed with 20% by volume of carbon dioxide gas (Air + CO 2 ) and water vapor. Saturated air (Air + H 2 O), air dried with a desiccant (Air), air mixed with 20% by volume of argon gas (Air + Ar), and put the sealed container in a freezer at −16 ° C. Samples were frozen by natural convection. The respective drip rates Re at this time are shown in FIG.

図2にこれら雰囲気ガスの定圧モル比熱(定圧モル熱容量)とドリップ率との関係を示した。図2から、Air+CO、Air+HO、Air、Air+Arの順に、すなわち、定圧モル比熱が大きいほど、ドリップ率Reが大きいことが分かる。これは、雰囲気ガスの比熱容量が大きいほど、被凍結物の凍結速度が速くなり、氷晶の成長が抑制され、氷晶サイズ成長による被凍結物の損傷が軽減されたためであると考えられる。FIG. 2 shows the relationship between the constant pressure molar specific heat (constant pressure molar heat capacity) of these atmospheric gases and the drip rate. From FIG. 2, it can be seen that the drip rate Re increases as the specific pressure molar specific heat increases in the order of Air + CO 2 , Air + H 2 O, Air, Air + Ar. This is considered to be because the freezing rate of the object to be frozen increases as the specific heat capacity of the atmospheric gas increases, the growth of ice crystals is suppressed, and damage to the object to be frozen due to the ice crystal size growth is reduced.

さらに、図3は同容積の密閉容器内に試料を2個収納した場合と4個収納した場合のドリップ率を示すグラフである。図3から、収納数が少ないほうがドリップ量が少ないことが分かる。これは、被凍結物1個あたりの雰囲気ガスの熱容量が大きいほど、ドリップ量が少ないことを示している。   Furthermore, FIG. 3 is a graph showing the drip rate when two samples are stored and four samples are stored in a closed container of the same volume. From FIG. 3, it can be seen that the smaller the number of storages, the smaller the drip amount. This indicates that the drip amount is smaller as the heat capacity of the atmospheric gas per object to be frozen is larger.

なお、図1及び図2の各雰囲気ガスにおけるドリップ率の差が小さかった理由は、密閉容器内へのガスの混合比率が低かったためであると考えられる。しかし、ドリップ率の測定バラツキは小さく、上記の傾向を強く示唆している。   The reason why the difference in drip rate between the atmospheric gases in FIGS. 1 and 2 is small is considered to be because the mixing ratio of the gas into the sealed container was low. However, the measurement variation of the drip rate is small and strongly suggests the above tendency.

従って、大容積の密閉容器内で少量の被凍結物を過冷却経由で凍結させる場合、空気より比熱容量の大きい気体を雰囲気ガスとすれば、空気を雰囲気ガスとした場合よりも、被凍結物の解凍時に発生するドリップ量が低下し、凍結品質が良好になることが分かる。   Therefore, when freezing a small amount of an object to be frozen in a large-capacity sealed container via supercooling, if the gas having a larger specific heat capacity than air is used as the atmosphere gas, the object to be frozen is more effective than the case where air is used as the atmosphere gas. It can be seen that the amount of drip generated at the time of thawing is reduced and the freezing quality is improved.

次に、試料を壁に接触しないよう前記密閉容器内に吊り下げて、密閉容器内の雰囲気をそれぞれ空気として、密閉容器を−20℃の冷凍庫内に入れ、自然対流で試料を凍結させた。このとき、密閉容器及びその内部の空気を予め−20℃とした予冷空気と、常温のままの常温空気とした。これらのドリップ率Reを図3に示す。   Next, the sample was suspended in the sealed container so as not to contact the wall, the atmosphere in the sealed container was set to air, and the sealed container was placed in a freezer at −20 ° C. to freeze the sample by natural convection. At this time, the airtight container and the air inside thereof were pre-cooled air set to -20 ° C. and room temperature air kept at room temperature. These drip rates Re are shown in FIG.

図4から、−20℃に予冷した空気のほうが室温(+20℃)から冷却した場合よりもドリップ率Reが大きいことが分かる。従って、大容積の密閉容器内で少量の被凍結物を凍結する場合、雰囲気ガスを室温にしておくことが好ましいことが分かる。このことは試料温度と雰囲気温度の差が小さいとドリップ量が少ないことを示している。室温は、+10℃以上であることが望ましい。   FIG. 4 shows that the drip rate Re is greater in the air precooled to −20 ° C. than in the case of cooling from room temperature (+ 20 ° C.). Therefore, it can be seen that it is preferable to keep the atmospheric gas at room temperature when a small amount of the object to be frozen is frozen in a large-capacity sealed container. This indicates that the drip amount is small when the difference between the sample temperature and the ambient temperature is small. The room temperature is preferably + 10 ° C. or higher.

図5は密閉容器内に密閉容器の壁面から離して試料を吊り下げて凍結させた場合のドリップ率と、密閉容器の床面に試料を接触させて凍結させた場合のドリップ率を示したグラフである。図5から、密閉容器の壁面から離して試料を冷却するほうがドリップ量は少ないことが分かる。このことは試料周囲を雰囲気ガスで囲むとドリップが少ないことを示しており、気体は固体に比べて非常に断熱性が高く、初期冷却速度が緩慢なほうが良質な冷凍ができることを示している。   FIG. 5 is a graph showing the drip rate when the sample is suspended from the wall surface of the sealed container and frozen in the sealed container, and the drip rate when the sample is brought into contact with the floor surface of the sealed container and frozen. It is. FIG. 5 shows that the amount of drip is smaller when the sample is cooled away from the wall surface of the sealed container. This indicates that there is less drip when the sample is surrounded by ambient gas, and the gas has much higher heat insulation than the solid, and a better initial refrigeration can be achieved with a slower initial cooling rate.

図4及び図5から、当初の冷却速度が緩慢で、過冷却解除後は速い冷却速度が好ましいことが分かる。   4 and 5, it can be seen that the initial cooling rate is slow and a high cooling rate is preferable after the supercooling is released.

〔凍結器具〕
本発明に係る凍結器具1は、図6に示すように、密閉容器2内に、内部に被凍結物を収容する吊下体3を吊り下げる吊棒4が設けられている。吊下体3は、ここでは、樹脂製の網状の袋やネットである。密閉容器2は、−10℃〜−20℃の冷凍庫内(図示せず)に設置して冷却される。
[Freezing equipment]
As shown in FIG. 6, the freezing instrument 1 according to the present invention is provided with a hanging rod 4 for hanging a suspended body 3 that accommodates an object to be frozen inside a sealed container 2. Here, the suspended body 3 is a net-like bag or net made of resin. The hermetic container 2 is installed and cooled in a freezer (not shown) at −10 ° C. to −20 ° C.

そして、密閉容器2は、隔膜5によって内部空間が上下に二分割されており、これら空間は隔離されている。上部空間に吊下体3は配置されている。   And the airtight container 2 has an internal space divided into two vertically by a diaphragm 5, and these spaces are isolated. The suspended body 3 is disposed in the upper space.

上部空間には上部給気管6が、下部空間には下部給気管7がそれぞれ接続されている。そして、上部給気管6及び下部給気管7には、液化炭酸ガスが充填されたガスボンベ8がそれぞれレギュレータ9,10を介して接続されている。また、上部給気管6及び下部給気管7には、それぞれ給気弁11,12が介設されている。   An upper air supply pipe 6 is connected to the upper space, and a lower air supply pipe 7 is connected to the lower space. A gas cylinder 8 filled with liquefied carbon dioxide gas is connected to the upper air supply pipe 6 and the lower air supply pipe 7 via regulators 9 and 10, respectively. The upper air supply pipe 6 and the lower air supply pipe 7 are provided with air supply valves 11 and 12, respectively.

さらに、上部空間には上部排気管13が、下部空間には下部排気管14がそれぞれ接続されている。上部排気管13及び下部排気管14には、それぞれ排気弁15,16が介設されている。   Further, an upper exhaust pipe 13 is connected to the upper space, and a lower exhaust pipe 14 is connected to the lower space. Exhaust valves 15 and 16 are interposed in the upper exhaust pipe 13 and the lower exhaust pipe 14, respectively.

以下、凍結器具1を用いた凍結方法について説明する。   Hereinafter, a freezing method using the freezing instrument 1 will be described.

まず、細胞や微生物などの被凍結物を内部に収容した吊下体3を、蓋(不図示)を介して密閉容器2内の吊棒4に吊り下げる。そして、前記蓋を閉めて、密閉容器2を密閉する。この段階では、全ての弁11,12,15,16は閉じている。   First, the suspended body 3 that accommodates an object to be frozen such as cells and microorganisms is suspended from the suspension rod 4 in the sealed container 2 through a lid (not shown). And the said lid | cover is closed and the airtight container 2 is sealed. At this stage, all valves 11, 12, 15, 16 are closed.

そして、上部排気弁15を開けて上部空間内の空気を上部排気管13を介して排気するとともに、下部給気弁12を開けて下部空間内に下部給気管7を介して炭酸ガスを供給する。上部空間が充分に排気され、且つ下部空間に炭酸ガスが充満した後、上部排気弁15及び下部給気弁12を閉じる。   Then, the upper exhaust valve 15 is opened to exhaust the air in the upper space through the upper exhaust pipe 13, and the lower air supply valve 12 is opened to supply carbon dioxide gas into the lower space through the lower air supply pipe 7. . After the upper space is sufficiently exhausted and the lower space is filled with carbon dioxide, the upper exhaust valve 15 and the lower air supply valve 12 are closed.

次に、下部排気弁16を開けて上部空間内の炭酸ガスを下部排気管14を介して排気するとともに、上部給気弁11を開けて上部空間内に上部給気管6を介して炭酸ガスを供給する。下部空間が充分に排気され、且つ上部空間に炭酸ガスが充満して、隔膜5が容器下面に密着した後、下部排気弁16及び上部給気弁11を閉じる。そして、この状態で、密閉容器2を−10℃〜−20℃の前記冷凍庫室内に設置して冷却する。   Next, the lower exhaust valve 16 is opened to exhaust carbon dioxide in the upper space through the lower exhaust pipe 14, and the upper air supply valve 11 is opened to supply carbon dioxide into the upper space through the upper air supply pipe 6. Supply. After the lower space is sufficiently exhausted and the upper space is filled with carbon dioxide, and the diaphragm 5 is in close contact with the lower surface of the container, the lower exhaust valve 16 and the upper air supply valve 11 are closed. And in this state, the airtight container 2 is installed in the said freezer compartment of -10 degreeC--20 degreeC, and is cooled.

このような凍結器具1を用いることにより、内部空間の炭酸ガス濃度を非常に高めることができる。よって、密封容器2内の雰囲気ガスの熱容量を大きくすることができ、熱伝達率を上げて凍結することができ、解凍時に発生するドリップ量を低下させることができる。なお、炭酸ガスの代わりに、室温の空気に水蒸気を飽和させて用いてもよい。   By using such a freezing instrument 1, the carbon dioxide concentration in the internal space can be greatly increased. Therefore, the heat capacity of the atmospheric gas in the sealed container 2 can be increased, the heat transfer rate can be increased, and the amount of drip generated during thawing can be reduced. Note that instead of carbon dioxide, water at room temperature may be saturated with water vapor.

また、本発明に係る凍結器具として、図7に示すように、気密袋21を用いてもよい。この気密袋21には、気密チャック22が設けられており、気密チャック22を閉じることにより、気密袋21内が気密状態に保たれる。   Moreover, as shown in FIG. 7, an airtight bag 21 may be used as a freezing instrument according to the present invention. The airtight bag 21 is provided with an airtight chuck 22, and the inside of the airtight bag 21 is kept airtight by closing the airtight chuck 22.

さらに、気密袋21の内部には、被凍結物を収容する吊下体23が設けられている。吊下体23は、樹脂製の網状の袋やネットである。また、気密袋21には、内部の気体を排気するために、また、内部に炭酸ガスを充満させるために、弁付き口24が設けられている。   Furthermore, a suspended body 23 that accommodates an object to be frozen is provided inside the airtight bag 21. The suspended body 23 is a net-like bag or net made of resin. In addition, the airtight bag 21 is provided with a valved opening 24 for exhausting the gas inside and for filling the inside with carbon dioxide gas.

このような気密袋21を用いれば、内部に当初残存する空気量が少ないので、その内部を炭酸ガスを充満させることにより、炭酸ガス濃度を高くすることができる。保つことができる。よって、気密袋21内の雰囲気ガスの熱容量を大きくすることができ、被凍結物を過冷却を経由して凍結することができ、解凍時に発生するドリップ量を低下させることができる。   If such an airtight bag 21 is used, since the amount of air initially remaining in the interior is small, the carbon dioxide concentration can be increased by filling the interior with carbon dioxide. Can keep. Therefore, the heat capacity of the atmospheric gas in the airtight bag 21 can be increased, the object to be frozen can be frozen via supercooling, and the amount of drip generated during thawing can be reduced.

Claims (2)

壁面で囲まれた内部空間に被凍結物を収容する密閉容器であって、An airtight container for storing an object to be frozen in an internal space surrounded by wall surfaces,
前記内部空間を第1空間と第2空間とに分割し隔離し、前記壁面に密着するように変形可能な隔膜と、A diaphragm that is divided into a first space and a second space and is isolated, and is deformable so as to be in close contact with the wall surface;
構成分子が3原子以上からなる多原子分子気体、又は、該多原子分子気体を前記第1空間の気体の熱容量が同分子数の乾燥空気の熱容量よりも大きくなるように含有する気体を、前記第1空間に供給可能な第1ガス供給機構と、A polyatomic molecular gas comprising three or more constituent molecules, or a gas containing the polyatomic molecular gas so that the heat capacity of the gas in the first space is larger than the heat capacity of dry air having the same number of molecules, A first gas supply mechanism capable of supplying the first space;
構成分子が3原子以上からなる多原子分子気体、又は、該多原子分子気体を前記第2空間の気体の熱容量が同分子数の乾燥空気の熱容量よりも大きくなるように含有する気体を、前記第2空間に供給可能な第2ガス供給機構と、A polyatomic molecular gas comprising three or more constituent molecules, or a gas containing the polyatomic molecular gas so that the heat capacity of the gas in the second space is larger than the heat capacity of dry air having the same number of molecules, A second gas supply mechanism capable of supplying the second space;
前記第1空間の排気を行う第1排気機構と、A first exhaust mechanism for exhausting the first space;
前記第2空間の排気を行う第2排気機構と、A second exhaust mechanism for exhausting the second space;
前記第1空間の内部で、前記被凍結物を壁面から離間させて保持する被凍結物設置機構とを備えていることを特徴とする密閉容器。An airtight container comprising: an object to be frozen installation mechanism for holding the object to be frozen apart from the wall surface inside the first space.
請求項1に記載の密閉容器を用いた凍結方法であって、A freezing method using the sealed container according to claim 1,
前記被凍結物設置機構に前記被凍結物を配置した後、前記密閉容器を密閉する被凍結物配置工程と、After placing the object to be frozen in the object to be frozen installation mechanism, the object to be frozen placing step for sealing the sealed container;
前記第1排気機構で前記第1空間の内部に存在していた気体を排気するとともに、前記第2ガス供給機構で前記第2空間の内部に前記多原子分子気体又は前記多原子分子気体を含有する気体を充填する第1ガス供給工程と、The first exhaust mechanism exhausts the gas existing in the first space, and the second gas supply mechanism contains the polyatomic molecular gas or the polyatomic molecular gas in the second space. A first gas supply step for filling the gas to be
前記第2排気機構で前記隔膜が前記壁面に密着するまで前記第2空間の内部に充填された前記多原子分子気体又は前記多原子分子気体を含有する気体を排気するとともに、前記第1ガス供給機構で前記第1空間に前記多原子分子気体又は前記多原子分子気体を含有する気体を充填する第2ガス供給工程と、The polyatomic gas filled in the second space or the gas containing the polyatomic molecular gas is evacuated until the diaphragm is in close contact with the wall surface by the second exhaust mechanism, and the first gas supply A second gas supply step of filling the first space with a gas containing the polyatomic molecular gas or the polyatomic molecular gas by a mechanism;
前記密閉容器を冷却することによって、前記第1空間内の温度を低下させ、前記被凍結物を、−16℃以下の自然対流中で冷却し、過冷却を経由させた後、凍結させる凍結工程とを備えていることを特徴とする凍結方法。A freezing step in which the temperature in the first space is lowered by cooling the sealed container, the object to be frozen is cooled in natural convection of -16 ° C. or lower, and after passing through supercooling, is frozen. And a freezing method characterized by comprising:
JP2012534016A 2010-09-14 2011-09-13 Freezing method Expired - Fee Related JP5867893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012534016A JP5867893B2 (en) 2010-09-14 2011-09-13 Freezing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010205724 2010-09-14
JP2010205724 2010-09-14
PCT/JP2011/070889 WO2012036167A1 (en) 2010-09-14 2011-09-13 Freezing method
JP2012534016A JP5867893B2 (en) 2010-09-14 2011-09-13 Freezing method

Publications (2)

Publication Number Publication Date
JPWO2012036167A1 JPWO2012036167A1 (en) 2014-02-03
JP5867893B2 true JP5867893B2 (en) 2016-02-24

Family

ID=45831625

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012534016A Expired - Fee Related JP5867893B2 (en) 2010-09-14 2011-09-13 Freezing method
JP2012534015A Pending JPWO2012036166A1 (en) 2010-09-14 2011-09-13 Freezing method and freezing apparatus

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2012534015A Pending JPWO2012036166A1 (en) 2010-09-14 2011-09-13 Freezing method and freezing apparatus

Country Status (3)

Country Link
JP (2) JP5867893B2 (en)
CN (2) CN103097838B (en)
WO (2) WO2012036167A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9310140B2 (en) 2012-02-07 2016-04-12 Rebound Technologies, Inc. Methods, systems, and devices for thermal enhancement
JP2014066451A (en) * 2012-09-26 2014-04-17 Honda Munetaka Ocean deep water sherbet ice
US10995993B2 (en) 2014-09-27 2021-05-04 Rebound Technologies, Inc. Thermal recuperation methods, systems, and devices
MX2018006082A (en) * 2015-11-19 2018-09-28 Blanctec Co Ltd Flake ice production device, flake ice production system, flake ice production method, and moving body.
EP3433334A4 (en) * 2016-03-21 2019-11-27 Rebound Technologies, Inc. Thermal recuperation methods, systems, and devices
US10584904B2 (en) 2017-03-27 2020-03-10 Rebound Technologies, Inc. Cycle enhancement methods, systems, and devices
EP3755758A4 (en) 2018-02-23 2021-12-08 Rebound Technologies, Inc. Freeze point suppression cycle control systems, methods, and devices
WO2020132467A1 (en) 2018-12-20 2020-06-25 Rebound Technologies, Inc. Thermo-chemical recuperation systems, devices, and methods

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4885749A (en) * 1972-02-18 1973-11-13
JPS5150444U (en) * 1974-10-16 1976-04-16
JPS5680678A (en) * 1979-12-06 1981-07-02 Kiyuushiyuu Giyuuniyuu Yusou K Cooling device for refrigerator car
JPS63254945A (en) * 1987-04-10 1988-10-21 Showa Denko Kk Freezing of food
JPH01310282A (en) * 1988-06-07 1989-12-14 Toshiba Corp Freezer
JP2000505872A (en) * 1996-01-30 2000-05-16 オーガノジェネシス・インコーポレイテッド Ice seeding equipment for cryopreservation systems
JP2006064314A (en) * 2004-08-27 2006-03-09 Daiwa Industries Ltd Cold storage type cold insulation storage
WO2008129718A1 (en) * 2007-04-17 2008-10-30 Mitsubishi Electric Corporation Refrigerator and method of refrigeration
JP4253775B2 (en) * 2008-03-10 2009-04-15 三菱電機株式会社 refrigerator

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58141174U (en) * 1982-03-17 1983-09-22 野崎蒲鉾株式会社 Liquid immersion freezing equipment for fish paste products
US4821794A (en) * 1988-04-04 1989-04-18 Thermal Energy Storage, Inc. Clathrate thermal storage system
JPH0517120A (en) * 1991-07-08 1993-01-26 Ishikawajima Harima Heavy Ind Co Ltd Device for producing clathrate compound enclosing co2
JPH0875195A (en) * 1994-09-06 1996-03-19 Hitachi Ltd District cooling system
JPH0994082A (en) * 1995-09-29 1997-04-08 Seitai Kagaku Kenkyusho:Kk Preservation of food or beverage and container used therefor
JPH10309162A (en) * 1997-05-12 1998-11-24 Toru Sueyoshi Storage of perishable food
US6497106B2 (en) * 2001-01-17 2002-12-24 Praxair Technology, Inc. Method and apparatus for chilling a food product
JP2002273205A (en) * 2001-03-21 2002-09-24 Mitsubishi Materials Natural Resources Development Corp Apparatus for producing gas hydrate
CA2355173C (en) * 2001-08-15 2009-10-06 Maple Leaf Foods Inc. Carcass chilling process and apparatus
JP2004353991A (en) * 2003-05-30 2004-12-16 Mitsubishi Materials Natural Resources Development Corp Cold device and cold method using carbon dioxide hydrate
JP3646993B2 (en) * 2003-07-25 2005-05-11 有限会社春海水産 Processing methods for red fish
JP4500566B2 (en) * 2004-03-12 2010-07-14 三井造船株式会社 Cooling method using a cooling agent
CN1677030A (en) * 2004-04-02 2005-10-05 中田泰尊 Cold-store storehouse, refrigerating storehouse, storage container and refrigerating storehouse
JP4827788B2 (en) * 2007-04-17 2011-11-30 三菱電機株式会社 refrigerator
JP4988617B2 (en) * 2008-02-01 2012-08-01 杉野 哲也 Brine composition for frozen food and method for producing frozen food
JP5136121B2 (en) * 2008-02-29 2013-02-06 Jfeエンジニアリング株式会社 Inclusion hydrate having latent heat storage performance, method and apparatus for manufacturing the same, latent heat storage medium, method for increasing latent heat storage amount of clathrate hydrate, and processing apparatus for increasing the amount
WO2009107240A1 (en) * 2008-02-29 2009-09-03 Jfeエンジニアリング株式会社 Clathrate hydrate with latent heat storing capability, process for producing the same, apparatus therefor, latent heat storing medium, method of increasing amount of latent heat stored by clathrate hydrate and treating apparatus for increasing amount of latent heat stored by clathrate hydrate
JP5733888B2 (en) * 2009-07-10 2015-06-10 日新興業株式会社 Method and apparatus for freezing object to be frozen

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4885749A (en) * 1972-02-18 1973-11-13
JPS5150444U (en) * 1974-10-16 1976-04-16
JPS5680678A (en) * 1979-12-06 1981-07-02 Kiyuushiyuu Giyuuniyuu Yusou K Cooling device for refrigerator car
JPS63254945A (en) * 1987-04-10 1988-10-21 Showa Denko Kk Freezing of food
JPH01310282A (en) * 1988-06-07 1989-12-14 Toshiba Corp Freezer
JP2000505872A (en) * 1996-01-30 2000-05-16 オーガノジェネシス・インコーポレイテッド Ice seeding equipment for cryopreservation systems
JP2006064314A (en) * 2004-08-27 2006-03-09 Daiwa Industries Ltd Cold storage type cold insulation storage
WO2008129718A1 (en) * 2007-04-17 2008-10-30 Mitsubishi Electric Corporation Refrigerator and method of refrigeration
JP4253775B2 (en) * 2008-03-10 2009-04-15 三菱電機株式会社 refrigerator

Also Published As

Publication number Publication date
CN103097838A (en) 2013-05-08
CN103097838B (en) 2016-01-20
WO2012036166A1 (en) 2012-03-22
CN103189692A (en) 2013-07-03
JPWO2012036167A1 (en) 2014-02-03
WO2012036167A1 (en) 2012-03-22
JPWO2012036166A1 (en) 2014-02-03

Similar Documents

Publication Publication Date Title
JP5867893B2 (en) Freezing method
CN103851863B (en) Refrigerator and the method for refrigerator food fresh-keeping
CN112105863B (en) Method and device for filling dry type dewar tank
JPS622227B2 (en)
JP5958913B2 (en) Cryogenic storage method and cryogenic storage container
WO2017138177A1 (en) Cold-storage agent, refrigerated container, and method for refrigerated transportation
CN105600156A (en) Fruit and vegetable fresh-keeping box
CN201027053Y (en) Freshness retaining packaging device for waxberry
CN109704297A (en) A kind of method and device for producing solid argon by liquid nitrogen
CN207360972U (en) A kind of shock absorbing foam case for being used for medical Refrigerated Transport
CN213678096U (en) Portable low-temperature box
CN203767295U (en) Medicine transportation refrigerating box
TW201504439A (en) Cryopreservation storage device for blood bag and using method thereof
CN208211346U (en) Gradient cooling box
CN208783670U (en) A kind of pressure differential vacuum pre-cooling all-in-one machine
CN204624259U (en) The fresh tank of a kind of refrigeration storage
CN216710031U (en) Multifunctional heat-preservation sampling box
KR200489686Y1 (en) Food waste bin
KR200489107Y1 (en) Food waste bin
CN207607854U (en) A kind of fruit low-temperature transport packing case
JPH0352938B2 (en)
CN104843340A (en) Cold storage and freshness keeping tank
JPH05296635A (en) Freezing method and freezer
KR200319498Y1 (en) Refrigerator for separating the body of a icebox possible
RU2440766C1 (en) Method for freezing hydrobionts spawn

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151226

R150 Certificate of patent or registration of utility model

Ref document number: 5867893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees