JPWO2012036166A1 - Freezing method and freezing apparatus - Google Patents

Freezing method and freezing apparatus Download PDF

Info

Publication number
JPWO2012036166A1
JPWO2012036166A1 JP2012534015A JP2012534015A JPWO2012036166A1 JP WO2012036166 A1 JPWO2012036166 A1 JP WO2012036166A1 JP 2012534015 A JP2012534015 A JP 2012534015A JP 2012534015 A JP2012534015 A JP 2012534015A JP WO2012036166 A1 JPWO2012036166 A1 JP WO2012036166A1
Authority
JP
Japan
Prior art keywords
freezing
frozen
aqueous solution
ice
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012534015A
Other languages
Japanese (ja)
Inventor
木野 正人
正人 木野
昭夫 清水
昭夫 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MITSUYA CORPORATION
Soka University
Original Assignee
MITSUYA CORPORATION
Soka University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MITSUYA CORPORATION, Soka University filed Critical MITSUYA CORPORATION
Publication of JPWO2012036166A1 publication Critical patent/JPWO2012036166A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/066Cooling mixtures; De-icing compositions

Abstract

二酸化炭素の包摂水和物を含有したアイススラリー又は不凍水溶液中に被凍結物を浸漬して凍結させる。アイススラリー又は不凍水溶液はアルコールを含有することが好ましい。The object to be frozen is immersed in an ice slurry or an antifreeze aqueous solution containing carbon dioxide inclusion hydrate and frozen. The ice slurry or the antifreeze aqueous solution preferably contains alcohol.

Description

本発明は、凍結方法及び凍結装置に関する。   The present invention relates to a freezing method and a freezing apparatus.

特許文献1には、−20℃〜−50℃の温度範囲のアイススラリー状に調整した冷却媒体により被凍結物を凍結することが開示されている。   Patent Document 1 discloses that an object to be frozen is frozen by a cooling medium adjusted to an ice slurry in a temperature range of −20 ° C. to −50 ° C.

特開2011−17512号公報JP 2011-17512 A

しかしながら、特許文献1に開示された凍結方法では、アイススラリー中の氷が対流を阻害するため、氷の融解潜熱による吸熱があるにもかかわらず、解凍時に発生するドリップ量がブラインに被凍結物を浸漬させて行うブライン凍結とあまり変わらなかった。ドリップには食品のうまみ成分や栄養分が含まれており、解凍時に発生するドリップ量は、食品等の被凍結物の凍結品質に大きな影響を及ぼす。   However, in the freezing method disclosed in Patent Document 1, since ice in the ice slurry inhibits convection, the amount of drip generated at the time of thawing despite the endothermic heat due to the latent heat of melting of the ice, This was not much different from the brine freezing performed by soaking. The drip contains umami components and nutrients of food, and the amount of drip generated upon thawing has a great effect on the freezing quality of the object to be frozen such as food.

本発明は、以上の点に鑑み、被凍結物の解凍時に発生するドリップ量の更なる低下を図ることが可能な凍結方法及び凍結装置を提供することを目的とする。   An object of this invention is to provide the freezing method and freezing apparatus which can aim at the further fall of the drip amount generate | occur | produced at the time of the defrosting of the to-be-frozen thing in view of the above point.

本発明の凍結方法は、二酸化炭素の包摂水和物を含有したアイススラリー又は不凍水溶液中に被凍結物を浸漬して凍結させることを特徴とする。   The freezing method of the present invention is characterized in that an object to be frozen is immersed in an ice slurry or an antifreeze aqueous solution containing an inclusion hydrate of carbon dioxide and frozen.

本発明の凍結方法によれば、アイススラリー又は不凍水溶液中の水溶液に二酸化炭素包接水和物が含有されている。そのため、被凍結物は、アイススラリー又は不凍水溶液中に浸漬されて冷却されることに加えて、微粒子状の二酸化炭素包接水和物の融解潜熱の吸熱によっても冷却される。そのため、被凍結物の凍結速度が速くなる。   According to the freezing method of the present invention, carbon dioxide clathrate hydrate is contained in an aqueous solution in an ice slurry or an antifreeze aqueous solution. Therefore, in addition to being cooled by being immersed in an ice slurry or an antifreeze aqueous solution, the object to be frozen is cooled by the endothermic heat of the melting latent heat of the particulate carbon dioxide clathrate hydrate. Therefore, the freezing speed of the object to be frozen increases.

よって、被凍結物に発生した氷晶核は大きなサイズの氷晶に成長せず、被凍結物の損傷が軽減されるので、解凍時に発生するドリップ量が少ない良質な凍結を実現することができる。二酸化炭素の包接水和物の融解とは、水素結合による水分子のかご状構造の中に入り込んだ二酸化炭素分子が、この水分子から分離することを意味する。なお、常圧下では、−55℃以下で二酸化炭素の包接水和物が形成される。   Therefore, the ice nuclei generated in the object to be frozen do not grow into large-sized ice crystals and damage to the object to be frozen is reduced, so that high-quality freezing with a small amount of drip generated during thawing can be realized. . The melting of carbon dioxide clathrate hydrate means that carbon dioxide molecules that have entered the cage structure of water molecules by hydrogen bonding are separated from the water molecules. Under normal pressure, a clathrate hydrate of carbon dioxide is formed at −55 ° C. or lower.

氷は大きな融解潜熱を有するので、被凍結物周囲の氷の溶解によって、被凍結物の凍結速度が速くなる。しかし、アイススラリーの場合、アイススラリー中の氷によって水溶液の対流が大幅に阻害され、熱伝達が低下する。そのため、二酸化炭素の包摂水和物が生成されない温度帯では、氷の融解潜熱による吸熱があるにもかかわらず、ブライン凍結よりもドリップ量が少ない良質な凍結を実現することができない。   Since ice has a large latent heat of melting, melting of the ice around the object to be frozen increases the freezing rate of the object to be frozen. However, in the case of an ice slurry, the convection of the aqueous solution is significantly hindered by the ice in the ice slurry and heat transfer is reduced. Therefore, in a temperature zone where carbon dioxide inclusion hydrate is not generated, high-quality freezing with a smaller amount of drip than brine freezing cannot be realized despite the endotherm due to the latent heat of melting of ice.

一方、二酸化炭素の包摂水和物が生成される温度帯では、アイススラリーの場合でも、ブライン凍結よりもドリップ量が大きく低下し、良質な凍結を実現することができる。   On the other hand, in the temperature zone where the inclusion hydrate of carbon dioxide is generated, even in the case of ice slurry, the amount of drip is significantly lower than that of brine freezing, and high-quality freezing can be realized.

本発明の凍結方法においては、アイススラリー又は不凍水溶液中の水溶液の凍結温度は、該水溶液が二酸化炭素包接水和物を含有可能な温度以下である必要がある。そのため、前記アイススラリー又は不凍水溶液はアルコールを含有することが好ましい。そして、アイススラリー又は不凍水溶液は、エタノールなどのアルコール水混合溶液を冷却して調整すればよい。   In the freezing method of the present invention, the freezing temperature of the aqueous solution in the ice slurry or the antifreeze aqueous solution needs to be lower than the temperature at which the aqueous solution can contain the carbon dioxide clathrate hydrate. Therefore, the ice slurry or the antifreeze aqueous solution preferably contains alcohol. The ice slurry or antifreeze aqueous solution may be adjusted by cooling an alcohol water mixed solution such as ethanol.

なお、被凍結物は、魚介や獣肉等の肉類、生物試料などの低含水率物であることが好ましい。低含水率とは90%未満の含水率を意味する。   In addition, it is preferable that a to-be-frozen thing is low moisture content things, such as meat, such as seafood and animal meat, and a biological sample. Low moisture content means a moisture content of less than 90%.

本発明の凍結装置は、二酸化炭素の包摂水和物が生成する温度以下のアイススラリー又は不凍水溶液が収容された容器内に二酸化炭素ガスを供給する手段を設けたことを特徴とする。   The freezing apparatus of the present invention is characterized in that means for supplying carbon dioxide gas is provided in a container in which an ice slurry or an antifreeze aqueous solution at a temperature lower than the temperature at which carbon dioxide inclusion hydrate is generated is provided.

本発明の凍結装置によれば、本発明の凍結方法を具体的に実現することが容易に可能となる。   According to the freezing apparatus of the present invention, the freezing method of the present invention can be easily realized specifically.

試料凍結後解凍時のドリップ率と冷媒温度との関係を示すグラフ。The graph which shows the relationship between the drip rate at the time of defrosting after freezing a sample, and refrigerant | coolant temperature. 試料凍結後解凍時のドリップ率と冷媒温度との関係を示すグラフ。The graph which shows the relationship between the drip rate at the time of defrosting after freezing a sample, and refrigerant | coolant temperature. エタノール水溶液濃度と凝固温度との関係を示すグラフ。The graph which shows the relationship between ethanol aqueous solution density | concentration and coagulation temperature. 二酸化炭素包摂水和物の生成条件を示すグラフ。The graph which shows the production | generation conditions of a carbon dioxide inclusion hydrate. 本発明に係る凍結装置の説明図。Explanatory drawing of the freezing apparatus which concerns on this invention.

〔凍結原理〕
被凍結物の凍結時の損傷には、吸熱速度に比例して損傷が大きくなる割れやヒビによる損傷と、吸熱速度に反比例して小さくなる氷晶サイズ成長による損傷がある。被凍結物の保存及び解凍時を考慮せず、被凍結物の凍結時のみについて考察する場合には、凍結時の損傷は前記2つの損傷の和として考えることができる。
[Freezing principle]
The damage of the object to be frozen at the time of freezing includes damage due to cracks and cracks that increase in proportion to the endothermic rate, and damage due to ice crystal size growth that decreases in inverse proportion to the endothermic rate. When considering only the freezing of the object to be frozen without considering the storage and thawing of the object to be frozen, the damage at the time of freezing can be considered as the sum of the two damages.

凍結時の割れは、被凍結物の外層部にヒビ割れが発生したり変形したりする損傷である。割れは、表層から吸熱するために最初に凍結した外層部が内部の凍結時の膨張することによって生じる。氷晶サイズ成長による損傷は、被凍結物に発生した氷晶核が成長して氷晶のサイズが大きくなることによって生じる。   The crack at the time of freezing is a damage in which a crack is generated or deformed in the outer layer portion of the object to be frozen. Cracking is caused by the expansion of the outer layer portion that was first frozen due to heat absorption from the surface layer during freezing inside. Damage due to ice crystal size growth is caused by the growth of ice crystal nuclei generated in the object to be frozen and the size of the ice crystal becoming large.

被凍結物が獣肉や魚肉等、含水率が65%〜85%と低い場合、厚みが薄い場合は割れによる損傷は少なく、被凍結物における氷晶サイズ成長による損傷が凍結時の被凍結物の損傷の主要因になる。一方、被凍結物が単細胞や組織片など含水率が90%を超えて高い場合、被凍結物における割れによる損傷が凍結時の被凍結物の損傷の主要因になる。   If the object to be frozen is animal meat or fish meat and the moisture content is as low as 65% to 85%, if the thickness is thin, there is little damage due to cracking, and damage due to ice crystal size growth in the object to be frozen is The main cause of damage. On the other hand, if the object to be frozen has a high moisture content of more than 90%, such as single cells or tissue pieces, damage due to cracks in the object to be frozen becomes a main factor of damage to the object to be frozen during freezing.

氷晶サイズの成長は、被凍結物を急速に凍結させ凝固潜熱により0℃付近の凍結温度に曝される時間を短縮することによって抑制することができる。そのためには、冷却速度を速くして凍結させることが重要である。   The growth of the ice crystal size can be suppressed by rapidly freezing the object to be frozen and reducing the exposure time to a freezing temperature around 0 ° C. due to latent heat of solidification. For that purpose, it is important to freeze at a high cooling rate.

〔評価方法〕
従来、凍結や解凍による食品の質は、解凍時のドリップ量、解凍後の弾性値、凍結状態での氷晶サイズを測定する方法や官能テストによって評価していた。しかし、これらは食品部位によって測定値が大きく異なり、評価の精度や再現性に問題があった。そのため、凍結による食品の質に余程大きな差がなければ、凍結の優劣を区別できず、新たな凍結方法を開発する障害となっていた。
〔Evaluation method〕
Conventionally, the quality of food by freezing or thawing has been evaluated by a method of measuring the amount of drip at the time of thawing, the elastic value after thawing, the ice crystal size in the frozen state, or a sensory test. However, the measured values differ greatly depending on the food parts, and there are problems in the accuracy and reproducibility of the evaluation. Therefore, if there is not much difference in food quality due to freezing, the superiority or inferiority of freezing cannot be distinguished, which has been an obstacle to developing new freezing methods.

そこで、本願の発明者は、まず、魚介や獣肉等の肉類などの低含水率食品のモデルとして高野豆腐を用い、解凍時のドリップ量を測定することによって凍結の質を評価する方法を開発した。   Therefore, the inventor of the present application first developed a method for evaluating the quality of freezing by measuring the amount of drip at the time of thawing, using Takano tofu as a model for low moisture content foods such as seafood and meat such as animal meat. .

低含水率食品のモデルとして、1.5重量%の寒天水溶液に高野豆腐の粉末を混合して成形した試料を用いた。この試料の含水率は約80%であり、65%〜85%である魚介や獣肉等の肉類の含水率に近い。具体的には、高野豆腐をおろし金で摺りおろして粉末状にした。そして、沸騰した1.5重量%の寒天水溶液に水重量に対して7重量%の高野豆腐粉末を混合し,5分間撹拌後容器に容れ、氷水で容器を冷却して内容物を凝固させた。そして、容器内の結露した水滴を除去した後、内径12mmの円筒形状の型を用いて型抜き成形を行い、直径12mm、高さ10mmの円筒形状の試料を得た。さらに、この成形した試料をチャック付きビニール袋に収納して、4℃で1日間冷蔵した。   As a model for a low moisture content food, a sample formed by mixing a powder of Takano tofu with a 1.5 wt% agar aqueous solution was used. The moisture content of this sample is about 80%, which is close to the moisture content of meat such as seafood and animal meat, which is 65% to 85%. Specifically, Koya tofu was crushed with a grater and powdered. Then, 7% by weight of Takano tofu powder with respect to the weight of water was mixed with the boiled 1.5% by weight agar aqueous solution, stirred for 5 minutes, placed in the container, and cooled with ice water to solidify the contents. . And after removing the condensed water droplets in the container, die-cutting was performed using a cylindrical mold having an inner diameter of 12 mm to obtain a cylindrical sample having a diameter of 12 mm and a height of 10 mm. Further, the molded sample was stored in a plastic bag with a chuck and refrigerated at 4 ° C. for 1 day.

この試料を用いて、以下のようにドリップ率を求めた。   Using this sample, the drip rate was determined as follows.

まず、凍結前の試料の重量Wepを測定した後、 試料を容器や袋に入れず各種条件下で凍結させた。そして、試料を凍結状態のまま遠沈管(スピッツ管)に入れ、スイングローター式遠心機を用いて220Gで40分間遠心することで、自然解凍させた。そして、遠沈管から試料を取り出して重量Werを測定し、凍結前後の試料の重量差に基づき、式(1)で凍結ドリップ率Rerを求めた。   First, the weight Wep of the sample before freezing was measured, and then the sample was frozen under various conditions without being put in a container or bag. Then, the sample was placed in a centrifuge tube (Spitz tube) in a frozen state, and naturally thawed by centrifuging at 220 G for 40 minutes using a swing rotor centrifuge. Then, the sample was taken out from the centrifuge tube, the weight Wer was measured, and the freezing drip rate Rer was obtained by the formula (1) based on the weight difference between the samples before and after freezing.

Rer=100×(Wep−Wer)/Wep ・・・ (1)   Rer = 100 × (Wep−Wer) / Wep (1)

一方、凍結前の試料の重量Werを測定した後、凍結していない試料をスイングローター式の遠心機を用いて220Gで40分間遠心した。そして、遠心後の試料の重量Wcを測定し、遠心前後の試料の重量差に基づき、式(2)で遠心ドリップ率Rcを求めた。   On the other hand, after measuring the weight Wer of the sample before freezing, the unfrozen sample was centrifuged at 220 G for 40 minutes using a swing rotor centrifuge. Then, the weight Wc of the sample after centrifugation was measured, and the centrifugal drip rate Rc was determined by the formula (2) based on the difference in weight of the sample before and after centrifugation.

Rc=100×(Wc−Wep)/Wep ・・・ (2)   Rc = 100 × (Wc−Wep) / Wep (2)

最後に、凍結ドリップ率Rerと遠心ドリップ率Rcとの差から、式(3)でドリップ率Reを求め、凍結条件によるドリップ率Reの違いを比較した。   Finally, from the difference between the frozen drip rate Rer and the centrifugal drip rate Rc, the drip rate Re was determined by Equation (3), and the difference in the drip rate Re depending on the freezing conditions was compared.

Re=Rer−Rc ・・・ (3)   Re = Rer-Rc (3)

ただし、試料の製造にバラツキがあるため,ドリップ率Reの比較は同じ製造ロットの試料を用いて行った。   However, since there was variation in sample production, the drip rate Re was compared using samples of the same production lot.

成形後1日間密閉袋内で試料を冷蔵保存するので、表面の水滴が袋に付着するとともに袋内で一定量の水分が蒸発するため、誤差を小さくすることができた。さらに、遠心中に解凍させるので、解凍中に発生するドリップを寒天や高野豆腐に再吸収させることなく、分離することができた。また、スイングローター式遠心機を使用するので、試料を垂直方向に圧搾することができ、誤差を小さくすることができた。   Since the sample was refrigerated and stored in a sealed bag for 1 day after molding, water droplets on the surface adhered to the bag and a certain amount of water evaporated in the bag, so that the error could be reduced. Furthermore, since it thawed during centrifugation, the drip generated during the thawing could be separated without being reabsorbed by agar or Takano tofu. In addition, since a swing rotor centrifuge is used, the sample can be squeezed in the vertical direction, and the error can be reduced.

〔評価結果〕
図1及び図2は、試料に接触させて冷却させる媒体(以下、「接触冷媒」という)の種類によるドリップ率Reと冷媒温度との関係を示すグラフである。
〔Evaluation results〕
FIG. 1 and FIG. 2 are graphs showing the relationship between the drip rate Re and the refrigerant temperature according to the type of medium (hereinafter referred to as “contact refrigerant”) that is cooled by contacting with the sample.

図1では、凍結庫内で空気を雰囲気として樹脂板に試料を載置した状態で凍結させた場合を、菱形でプロットとし、その近似直線を短破線で示した。凍結庫内で空気を雰囲気としてアルミニウム板に試料を載置した状態で凍結させた場合を、丸でプロットし、その近似直線を一点鎖線で示した。90%エタノール水溶液(エタノールブライン)に浸漬させて試料を凍結した場合(以下、この場合を「ブライン凍結」という)を、四角形でプロットし、その近似直線を長破線で示した。さらに、ドライアイスで冷却したエタノール水溶液のアイススラリーに浸漬させて試料を凍結した場合(以下、この場合を「アイススラリー+CO凍結」という)を、三角形でプロットし、その近似直線を実線で示した。In FIG. 1, the case where the sample is frozen in a state where the sample is placed on the resin plate with air as the atmosphere in the freezer is plotted with rhombuses, and the approximate straight line is shown with a short broken line. In the freezer, the case of freezing with the sample placed on an aluminum plate with air as the atmosphere was plotted in a circle, and the approximate straight line was shown by a one-dot chain line. When the sample was frozen by immersing it in a 90% aqueous ethanol solution (ethanol brine) (hereinafter referred to as “brine freezing”), it was plotted with a square, and the approximate straight line was shown with a long broken line. Further, when the sample is frozen by immersing it in an ice slurry of an ethanol aqueous solution cooled with dry ice (hereinafter referred to as “ice slurry + CO 2 freezing”), it is plotted with a triangle, and the approximate straight line is shown with a solid line. It was.

図2では、凍結庫内で冷却したエタノール水溶液のアイススラリーに浸漬させて試料を凍結させた場合(以下、この場合を「アイススラリー凍結」という)を、中抜き三角形でプロットし、その近似直線を二点鎖線で示した。さらに、ドライアイスで冷却したエタノール水溶液のアイススラリーに浸漬させて試料を凍結させた場合を、中塗三角形でプロットし、その近似直線を実線で示した。   In FIG. 2, the case where the sample is frozen by immersing it in an ice slurry of an ethanol aqueous solution cooled in a freezer (hereinafter referred to as “ice slurry freezing”) is plotted with a hollow triangle, and its approximate straight line Is shown by a two-dot chain line. Furthermore, the case where the sample was frozen by immersing it in an ice slurry of an aqueous ethanol solution cooled with dry ice was plotted with an intermediate coating triangle, and the approximate straight line was shown by a solid line.

なお、ブライン凍結は自然対流で行った。また、アイススラリー凍結及びアイススラリー+CO凍結において、エタノール水溶液中のエタノール濃度によってアイススラリー凍結開始温度は異なる。そのため、図3のグラフ中に示した、エタノール水溶液のエタノール濃度と凝固温度との関係を示す曲線より下方となるように、エタノール水溶液のエタノール濃度を決定した。Brine freezing was performed by natural convection. Further, in ice slurry freezing and ice slurry + CO 2 freezing, the ice slurry freezing start temperature varies depending on the ethanol concentration in the ethanol aqueous solution. Therefore, the ethanol concentration of the aqueous ethanol solution was determined so as to be below the curve indicating the relationship between the ethanol concentration of the aqueous ethanol solution and the solidification temperature shown in the graph of FIG.

図1から分かるように、−20℃付近の高温度帯では、ブライン凍結のほうがアイススラリー+CO凍結よりもドリップ率Reが小さい。これは、アイススラリー中では、対流が起きないためであると考えられる。As can be seen from FIG. 1, in the high temperature zone around −20 ° C., brine freezing has a smaller drip rate Re than ice slurry + CO 2 freezing. This is thought to be because convection does not occur in the ice slurry.

一方、−50℃付近の低温帯では、アイススラリー+CO凍結のほうがブライン凍結よりもドリップ率Reが小さくなっている。これは、常圧中では−55℃で二酸化炭素の包摂水和物が形成され、この包摂水溶物の溶解潜熱が寄与していると考えられる。このことは、図4のグラフ中に示した曲線より下方では、二酸化炭素の包摂水和物が生成されることから理解される。On the other hand, in the low temperature zone around −50 ° C., the ice slurry + CO 2 freezing has a smaller drip rate Re than the brine freezing. This is considered that the inclusion hydrate of carbon dioxide is formed at −55 ° C. under normal pressure, and the latent heat of dissolution of the inclusion aqueous solution contributes. This is understood from the fact that an inclusion hydrate of carbon dioxide is produced below the curve shown in the graph of FIG.

ただし、エタノール水溶液にドライアイスを浸漬して冷却した場合、エタノール水溶液温度の平均が−40℃付近でもドライアイスの周囲は局所的に−55℃以下となるため、二酸化炭素の包摂水和物が形成されていると考えられる。   However, when dry ice is immersed and cooled in an ethanol aqueous solution, even if the average temperature of the ethanol aqueous solution is around −40 ° C., the area around the dry ice is locally −55 ° C. or lower. It is thought that it is formed.

そして、このことは、図2から分かるように、−20℃付近の高温度帯では、アイススラリー凍結とアイススラリー+CO凍結とのドリップ率Reは同等であるが、−50℃付近の低温帯では、アイススラリー+CO凍結のほうがブライン凍結よりもドリップ率Reが小さいことから伺える。As can be seen from FIG. 2, in the high temperature zone around −20 ° C., the drip rate Re between ice slurry freezing and ice slurry + CO 2 freezing is the same, but the low temperature zone around −50 ° C. Then, it can be said that ice slurry + CO 2 freezing has a smaller drip rate Re than brine freezing.

上記特許文献1に開示されたアイススラリー中に被凍結物を浸漬させる方法では、水溶液の対流が氷で阻害され、氷の潜熱を充分に冷却に生かすことができない。よって、被凍結物は、アイススラリー中に浸漬されたこと自体による冷却と、その周囲の氷の潜熱による冷却とだけでしか冷却されないので、凍結速度の速さは十分なものにならない。そのため、被凍結物に発生した氷晶が大きなサイズに成長することによる損傷で解凍時に比較的多量のドリップが発生し、充分に良質な凍結を実現することができない。   In the method of immersing an object to be frozen in the ice slurry disclosed in Patent Document 1, the convection of the aqueous solution is inhibited by ice, and the latent heat of ice cannot be fully utilized for cooling. Therefore, the object to be frozen is cooled only by the cooling itself by being immersed in the ice slurry and the cooling by the latent heat of the surrounding ice, so that the freezing speed is not sufficient. Therefore, a relatively large amount of drip is generated at the time of thawing due to the damage caused by the ice crystals generated in the object to be frozen growing to a large size, and it is not possible to realize a sufficiently high quality freezing.

一方、本発明では、被凍結物は、アイススラリー又は不凍水溶液中に浸漬されて冷却されることに加えて、微粒子状の二酸化炭素包接水和物の融解潜熱の吸熱によっても冷却される。そのため、被凍結物の凍結速度が速くなる。よって、被凍結物に発生した氷晶は大きなサイズに成長しないので、被凍結物の損傷が軽減され、解凍時に発生するドリップ量が少ない、良質な凍結を実現することができる。   On the other hand, in the present invention, the object to be frozen is cooled not only by being immersed in an ice slurry or an antifreeze aqueous solution but also by the endothermic endothermic heat of the particulate carbon dioxide clathrate hydrate. . Therefore, the freezing speed of the object to be frozen increases. Therefore, since ice crystals generated in the object to be frozen do not grow to a large size, damage to the object to be frozen is reduced, and high-quality freezing with a small amount of drip generated during thawing can be realized.

〔凍結装置〕
本発明に係る凍結装置1は、図5に示すように、二酸化炭素の包摂水和物が生成する温度以下のアイススラリー又は不凍水溶液からなる冷媒を収容する凍結槽2に、二酸化炭素を供給する二酸化炭素供給手段3を設けている。
[Freezing device]
As shown in FIG. 5, the freezing apparatus 1 according to the present invention supplies carbon dioxide to a freezing tank 2 that contains a refrigerant composed of an ice slurry or an antifreeze aqueous solution at a temperature lower than the temperature at which carbon dioxide inclusion hydrate is generated. Carbon dioxide supply means 3 is provided.

アイススラリー又は不凍水溶液はアルコール水溶液から調整されている。なお、アルコールとして、被凍結物が食品である場合、毒性がないので、エタノールであることが好ましい。なお、アルコールは、エタノールに限定されず、エチレングリコールやプロピレングリコールなどであってもよい。   The ice slurry or antifreeze aqueous solution is prepared from an alcohol aqueous solution. In addition, as alcohol, when a to-be-frozen thing is a foodstuff, since there is no toxicity, it is preferable that it is ethanol. In addition, alcohol is not limited to ethanol, Ethylene glycol, propylene glycol, etc. may be sufficient.

そして、常圧下では、−55℃以下で二酸化炭素の包接水和物が形成されるので、図3を参照して、アイススラリー又は不凍水溶液中のエタノール濃度は60重量%であることが好ましい。ただし、常圧下では、平均−40℃以下でも局所的に−55℃以下となっていれば二酸化炭素の包接水和物が形成されるので、図3を参照して、アイススラリー又は不凍水溶液中のエタノール濃度は40重量%であってもよい。   And, under atmospheric pressure, carbon dioxide clathrate hydrate is formed at −55 ° C. or lower. Therefore, referring to FIG. 3, the ethanol concentration in the ice slurry or antifreeze aqueous solution may be 60% by weight. preferable. However, under normal pressure, carbon dioxide clathrate hydrate is formed if it is locally −55 ° C. or lower even at an average of −40 ° C. or lower. Therefore, referring to FIG. The ethanol concentration in the aqueous solution may be 40% by weight.

また、アイススラリー又は不凍水溶液中の水溶液の凍結温度が、水溶液が二酸化炭素の包接水和物を含有可能な温度以下であれば、アイススラリー又は不凍水溶液はアルコール水溶液以外の水溶液からなるものであってもよい。   Further, if the freezing temperature of the aqueous solution in the ice slurry or the antifreeze aqueous solution is equal to or lower than the temperature at which the aqueous solution can contain the clathrate hydrate of carbon dioxide, the ice slurry or the antifreeze aqueous solution is composed of an aqueous solution other than the alcohol aqueous solution. It may be a thing.

二酸化炭素供給手段3は、ここでは、凍結槽2内に配置された散気管4と、凍結槽2外に設けられた液化炭酸ガスが充填されたガスボンベ5と、散気管4とガスボンベ5とを接続するガス管6に介設されたレギュレータ7から構成されている。レギュレータ7を調整することによって、適宜な圧力の炭酸ガスを散気管4から凍結槽2内に収容された冷媒中に放出させる。   Here, the carbon dioxide supply means 3 includes an aeration pipe 4 disposed in the freezing tank 2, a gas cylinder 5 filled with liquefied carbon dioxide gas provided outside the freezing tank 2, and the aeration pipe 4 and the gas cylinder 5. It is composed of a regulator 7 interposed in the gas pipe 6 to be connected. By adjusting the regulator 7, carbon dioxide having an appropriate pressure is released from the diffuser 4 into the refrigerant accommodated in the freezing tank 2.

また、凍結槽2には、−60℃付近に冷媒を冷却させる冷却器8が設けられている。冷却器8は、蒸発器9、凝縮機10、圧縮機11及び膨張弁12から構成されている。   The freezing tank 2 is provided with a cooler 8 that cools the refrigerant at around −60 ° C. The cooler 8 includes an evaporator 9, a condenser 10, a compressor 11 and an expansion valve 12.

冷却器8で−60℃付近に冷却された冷媒中に、二酸化炭素供給手段3で二酸化炭素ガスを供給さることにより、冷媒中の二酸化炭素の包摂水和物が形成される。この包摂水和物中に被凍結物を浸漬することで、良質な凍結を実現することができる。   When carbon dioxide gas is supplied by the carbon dioxide supply means 3 into the refrigerant cooled to around −60 ° C. by the cooler 8, an inclusion hydrate of carbon dioxide in the refrigerant is formed. By immersing the object to be frozen in this inclusion hydrate, high-quality freezing can be realized.

また、アイススラリーの場合、対流が発生する領域まで氷の生成量を少なくして、代わりに結晶粒サイズがアイススラリーの氷よりも遙かに小さい二酸化炭素の包摂水和物の生成量を多くすることによって、アイススラリー中の対流を維持しながら、被凍結物の凍結速度を速くすることも可能である。   Also, in the case of ice slurry, the amount of ice produced is reduced to the area where convection occurs, and instead the amount of carbon dioxide inclusion hydrate produced is much smaller than the ice slurry ice. By doing so, it is possible to increase the freezing speed of the object to be frozen while maintaining the convection in the ice slurry.

なお、二酸化炭素供給手段3として、ドライアイスを凍結槽2内に供給するものであってもよい。
また、接触冷媒がエタノール水溶液の場合、被凍結物を水や塩水に浸漬して表層に水の層を形成し、包装せずに直接冷却したエタノール水溶液に浸漬して凍結させればよい。また、糊状にしたデンプンやタンパク質を被凍結物表面に付着させてから凍結させ、解凍後に糊を洗い流してもよい。
The carbon dioxide supply means 3 may supply dry ice into the freezing tank 2.
Further, when the contact refrigerant is an ethanol aqueous solution, the object to be frozen may be immersed in water or salt water to form a water layer on the surface layer, and then immersed in a cooled ethanol aqueous solution directly without packaging and frozen. Alternatively, paste-like starch or protein may be attached to the surface of the object to be frozen and then frozen, and the paste may be washed away after thawing.

さらには、被凍結物の表層に水の層や糊の層を設けて、空気が入らないようにして、厚みが10μm程度の食品包装用樹脂フィルムで被凍結物を包装してからブラインやアイススラリーに浸漬して凍結させてもよい。これにより、熱抵抗を低減させ、より冷却速度が速い凍結が可能になる。また、これらの表層の水や糊が最初に凍結して氷結カプセルを形成するので、エタノールが食品等の被冷凍物を汚染することを防止することができる。   Furthermore, a layer of water or a paste is provided on the surface of the object to be frozen so that air does not enter and the object to be frozen is wrapped with a resin film for food packaging having a thickness of about 10 μm, and then brine or ice It may be frozen by dipping in a slurry. As a result, the thermal resistance is reduced, and freezing with a higher cooling rate is possible. In addition, since water and glue on the surface layer are first frozen to form a frozen capsule, it is possible to prevent ethanol from contaminating a frozen object such as food.

Claims (3)

二酸化炭素の包摂水和物を含有したアイススラリー又は不凍水溶液中に被凍結物を浸漬して凍結させることを特徴とする凍結方法。   A freezing method characterized by immersing an object to be frozen in an ice slurry or an antifreeze aqueous solution containing carbon dioxide inclusion hydrate. 前記アイススラリー又は不凍水溶液はアルコールを含有することを請求項1に記載の凍結方法。   The freezing method according to claim 1, wherein the ice slurry or the antifreeze aqueous solution contains alcohol. 二酸化炭素の包摂水和物が生成する温度以下のアイススラリー又は不凍水溶液が収容された容器内に二酸化炭素ガスを供給する手段を設けたことを特徴とする凍結装置。   A freezing apparatus comprising means for supplying carbon dioxide gas into a container containing an ice slurry or an antifreeze aqueous solution at a temperature lower than a temperature at which an inclusion hydrate of carbon dioxide is generated.
JP2012534015A 2010-09-14 2011-09-13 Freezing method and freezing apparatus Pending JPWO2012036166A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010205724 2010-09-14
JP2010205724 2010-09-14
PCT/JP2011/070888 WO2012036166A1 (en) 2010-09-14 2011-09-13 Freezing method and freezing device

Publications (1)

Publication Number Publication Date
JPWO2012036166A1 true JPWO2012036166A1 (en) 2014-02-03

Family

ID=45831625

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012534015A Pending JPWO2012036166A1 (en) 2010-09-14 2011-09-13 Freezing method and freezing apparatus
JP2012534016A Expired - Fee Related JP5867893B2 (en) 2010-09-14 2011-09-13 Freezing method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2012534016A Expired - Fee Related JP5867893B2 (en) 2010-09-14 2011-09-13 Freezing method

Country Status (3)

Country Link
JP (2) JPWO2012036166A1 (en)
CN (2) CN103189692A (en)
WO (2) WO2012036167A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9310140B2 (en) 2012-02-07 2016-04-12 Rebound Technologies, Inc. Methods, systems, and devices for thermal enhancement
JP2014066451A (en) * 2012-09-26 2014-04-17 Honda Munetaka Ocean deep water sherbet ice
US10995993B2 (en) 2014-09-27 2021-05-04 Rebound Technologies, Inc. Thermal recuperation methods, systems, and devices
US10989458B2 (en) * 2015-11-19 2021-04-27 Blanctec Co., Ltd. Cold storage unit, moving body, ice slurry supply system, cold storage article transport system, cold storage method for cold storage article, and transport method for cold storage article
WO2017165378A1 (en) * 2016-03-21 2017-09-28 Rebound Technologies, Inc. Thermal recuperation methods, systems, and devices
US10584904B2 (en) 2017-03-27 2020-03-10 Rebound Technologies, Inc. Cycle enhancement methods, systems, and devices
CN112055738B (en) 2018-02-23 2021-07-13 再合科技有限公司 Freezing point depression cycle control system, method and device
WO2020132467A1 (en) 2018-12-20 2020-06-25 Rebound Technologies, Inc. Thermo-chemical recuperation systems, devices, and methods

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58141174U (en) * 1982-03-17 1983-09-22 野崎蒲鉾株式会社 Liquid immersion freezing equipment for fish paste products
JPH0517120A (en) * 1991-07-08 1993-01-26 Ishikawajima Harima Heavy Ind Co Ltd Device for producing clathrate compound enclosing co2
JPH0994082A (en) * 1995-09-29 1997-04-08 Seitai Kagaku Kenkyusho:Kk Preservation of food or beverage and container used therefor
JPH10309162A (en) * 1997-05-12 1998-11-24 Toru Sueyoshi Storage of perishable food
JP2002273205A (en) * 2001-03-21 2002-09-24 Mitsubishi Materials Natural Resources Development Corp Apparatus for producing gas hydrate
JP2004353991A (en) * 2003-05-30 2004-12-16 Mitsubishi Materials Natural Resources Development Corp Cold device and cold method using carbon dioxide hydrate
JP2005255894A (en) * 2004-03-12 2005-09-22 Mitsui Eng & Shipbuild Co Ltd Cold retainer and cold retaining method using the same

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4885749A (en) * 1972-02-18 1973-11-13
JPS5150444U (en) * 1974-10-16 1976-04-16
JPS5680678A (en) * 1979-12-06 1981-07-02 Kiyuushiyuu Giyuuniyuu Yusou K Cooling device for refrigerator car
JPS63254945A (en) * 1987-04-10 1988-10-21 Showa Denko Kk Freezing of food
US4821794A (en) * 1988-04-04 1989-04-18 Thermal Energy Storage, Inc. Clathrate thermal storage system
JPH01310282A (en) * 1988-06-07 1989-12-14 Toshiba Corp Freezer
JPH0875195A (en) * 1994-09-06 1996-03-19 Hitachi Ltd District cooling system
US5689961A (en) * 1996-01-30 1997-11-25 Organogenesis Inc. Ice seeding apparatus for cryopreservation systems
US6497106B2 (en) * 2001-01-17 2002-12-24 Praxair Technology, Inc. Method and apparatus for chilling a food product
CA2355173C (en) * 2001-08-15 2009-10-06 Maple Leaf Foods Inc. Carcass chilling process and apparatus
JP3646993B2 (en) * 2003-07-25 2005-05-11 有限会社春海水産 Processing methods for red fish
CN1677030A (en) * 2004-04-02 2005-10-05 中田泰尊 Cold-store storehouse, refrigerating storehouse, storage container and refrigerating storehouse
JP2006064314A (en) * 2004-08-27 2006-03-09 Daiwa Industries Ltd Cold storage type cold insulation storage
JP4827788B2 (en) * 2007-04-17 2011-11-30 三菱電機株式会社 refrigerator
AU2007351997B2 (en) * 2007-04-17 2010-05-20 Mitsubishi Electric Corporation Refrigerator and frozen food preservation method
JP4988617B2 (en) * 2008-02-01 2012-08-01 杉野 哲也 Brine composition for frozen food and method for producing frozen food
JP5136121B2 (en) * 2008-02-29 2013-02-06 Jfeエンジニアリング株式会社 Inclusion hydrate having latent heat storage performance, method and apparatus for manufacturing the same, latent heat storage medium, method for increasing latent heat storage amount of clathrate hydrate, and processing apparatus for increasing the amount
EP2246406A4 (en) * 2008-02-29 2013-11-27 Jfe Eng Corp Clathrate hydrate with latent heat storing capability, process for producing the same, apparatus therefor, latent heat storing medium, method of increasing amount of latent heat stored by clathrate hydrate and treating apparatus for increasing amount of latent heat stored by clathrate hydrate
JP4253775B2 (en) * 2008-03-10 2009-04-15 三菱電機株式会社 refrigerator
JP5733888B2 (en) * 2009-07-10 2015-06-10 日新興業株式会社 Method and apparatus for freezing object to be frozen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58141174U (en) * 1982-03-17 1983-09-22 野崎蒲鉾株式会社 Liquid immersion freezing equipment for fish paste products
JPH0517120A (en) * 1991-07-08 1993-01-26 Ishikawajima Harima Heavy Ind Co Ltd Device for producing clathrate compound enclosing co2
JPH0994082A (en) * 1995-09-29 1997-04-08 Seitai Kagaku Kenkyusho:Kk Preservation of food or beverage and container used therefor
JPH10309162A (en) * 1997-05-12 1998-11-24 Toru Sueyoshi Storage of perishable food
JP2002273205A (en) * 2001-03-21 2002-09-24 Mitsubishi Materials Natural Resources Development Corp Apparatus for producing gas hydrate
JP2004353991A (en) * 2003-05-30 2004-12-16 Mitsubishi Materials Natural Resources Development Corp Cold device and cold method using carbon dioxide hydrate
JP2005255894A (en) * 2004-03-12 2005-09-22 Mitsui Eng & Shipbuild Co Ltd Cold retainer and cold retaining method using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015038569; Ind. Eng. Chem. Res. Vol.43, 2004, p.6521-6526 *

Also Published As

Publication number Publication date
JPWO2012036167A1 (en) 2014-02-03
CN103189692A (en) 2013-07-03
CN103097838B (en) 2016-01-20
JP5867893B2 (en) 2016-02-24
CN103097838A (en) 2013-05-08
WO2012036167A1 (en) 2012-03-22
WO2012036166A1 (en) 2012-03-22

Similar Documents

Publication Publication Date Title
WO2012036166A1 (en) Freezing method and freezing device
WO2009049448A1 (en) A method for improvement of defrosting quality of fast frozen fruit and vegetable using low frequency ultrasonic wave
JP5406129B2 (en) Specimen holder for high-pressure freezing equipment
JP5958913B2 (en) Cryogenic storage method and cryogenic storage container
JP2011101610A (en) Method for cooling and freezing food and apparatus for cooling and freezing food
WO2019218997A1 (en) Method and device for filling dry dewar tank
CN101385480A (en) Fresh fish fresh-keeping method
JP2011078333A (en) Method and apparatus for cooling/freezing food
JP6311191B2 (en) Method and system for producing a solid-liquid mixture with a constant melting point temperature
CN110637203A (en) State change control device and state change control method
JP6168644B2 (en) Ice slurry manufacturing apparatus and ice slurry manufacturing method
JP5733888B2 (en) Method and apparatus for freezing object to be frozen
Liu et al. Preparation and stability analysis of glycine water-based phase change materials modified with potassium sorbate for cold chain logistics
JP2017009272A (en) Freezing method and freezing device of food product
JP2013100965A (en) Cooling and cryopreservation method and cooling and refrigerating device for food
JPS62201565A (en) Method for putting large-sized food in cold storage
Miyawaki et al. Analysis of ice structure formed in frozen agar gel
JPS6360989B2 (en)
CN112629095B (en) Stimulated self-refrigerating low-temperature ice salt bag
JP2014219194A (en) Method of manufacturing carbonic acid containing ice
Matsumoto et al. Experiment on the hydrate nucleation of liquid CO2 droplet
JP2023138002A (en) Coolant and method for manufacturing frozen product
CN116076557A (en) Constant-temperature immersion green ultralow-temperature freezing method for non-freezing liquid secondary refrigerant coupled with dry ice
CN115176836A (en) Refrigerating fluid for quick freezing and fresh keeping of food and preparation method thereof
JP2019066100A (en) Ice brick and method for manufacturing ice brick

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160315