JP2002273205A - Apparatus for producing gas hydrate - Google Patents

Apparatus for producing gas hydrate

Info

Publication number
JP2002273205A
JP2002273205A JP2001081142A JP2001081142A JP2002273205A JP 2002273205 A JP2002273205 A JP 2002273205A JP 2001081142 A JP2001081142 A JP 2001081142A JP 2001081142 A JP2001081142 A JP 2001081142A JP 2002273205 A JP2002273205 A JP 2002273205A
Authority
JP
Japan
Prior art keywords
gas
aqueous solution
carbon dioxide
hydrate
circulation path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001081142A
Other languages
Japanese (ja)
Inventor
Tetsuo Gonda
哲夫 権田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Natural Resources Development Corp
Original Assignee
Mitsubishi Materials Natural Resources Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Natural Resources Development Corp filed Critical Mitsubishi Materials Natural Resources Development Corp
Priority to JP2001081142A priority Critical patent/JP2002273205A/en
Publication of JP2002273205A publication Critical patent/JP2002273205A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus for stably and efficiently producing gas hydrate. SOLUTION: This apparatus for producing the gas hydrate is provided with an accumulation chamber for accumulating the gas-dissolved aqueous solution, a gas guiding route for sending the gas to be dissolved into the accumulation chamber, a circulation route of the gas-dissolved aqueous solution communicating with the accumulation chamber, a cooling means of the gas-dissolved aqueous solution and a circulating means of the gas-dissolved aqueous solution. A mixing chamber whose inside is made porous is preferably arranged on the gas guiding route to the accumulation chamber for promoting the production of the gas hydrate while circulating the gas-dissolved solution.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は炭酸ガスなどのガス
ハイドレートを効率よく生成する装置に関する。より詳
しくは、有機高分子化合物やアルコール環状化合物など
の促進剤を用いることなく、ガスハイドレートを安定に
効率よく生成する装置に関する。
The present invention relates to an apparatus for efficiently producing gas hydrate such as carbon dioxide. More specifically, the present invention relates to an apparatus for stably and efficiently producing gas hydrate without using an accelerator such as an organic polymer compound or an alcohol cyclic compound.

【0002】[0002]

【従来の技術】炭酸ガス等が溶解した水溶液は、特定の
温度と圧力下において、溶解しているガス分子を水分子
が取り囲んだ状態の包接水和物(ガスハイドレート、別
称クラスレート)を生成することが知られている。近
年、地球温暖化対策の一つとしてガスハイドレートを利
用する試みがなされている。具体的には、炭酸ガスをハ
イドレートにし、これを海底下や地下の帯水層に圧入し
て炭酸ガスを固定化する技術が提案さている(特開平1
1−265210号公報)。
2. Description of the Related Art An aqueous solution in which carbon dioxide or the like is dissolved is a clathrate hydrate (gas hydrate, also known as clathrate) in which water molecules surround dissolved gas molecules at a specific temperature and pressure. It is known to generate In recent years, attempts have been made to use gas hydrate as one of the measures against global warming. Specifically, a technique has been proposed in which carbon dioxide gas is hydrated, and the hydrate is injected into the aquifer under the seabed or underground to fix the carbon dioxide gas (Japanese Patent Laid-Open No. Hei 1 (1994)).
1-265210).

【0003】[0003]

【発明が解決しようとする課題】しかし、現在、提示さ
れている生成手段は、炭酸ガスハイドレートが生成する
深さの海水に液化炭酸ガスを噴射するという単純なもの
であり、炭酸ガスハイドレートの生成効率が低いと云う
問題がある。一方、添加剤を用いることによってガスハ
イドレートの生成を促進する試みもなされており、例え
ば、アルコール基を有する有機環状化合物を用いる方法
(特開平6−17069号公報)、特定構造の水溶性ポ
リマーを用いる方法(特開2000−273475号公報)
などが知られている。しかし、このような有機化合物を
用いる方法はその安定性について予想外の問題を生じる
場合があり、環境保全の観点から懸念が残る。
However, the presently proposed generating means is a simple one in which liquefied carbon dioxide is injected into seawater at a depth at which carbon dioxide hydrate is generated. There is a problem that the production efficiency is low. On the other hand, attempts have been made to promote the formation of gas hydrate by using an additive. For example, a method using an organic cyclic compound having an alcohol group (JP-A-6-17069), a water-soluble polymer having a specific structure, (JP-A-2000-273475)
Etc. are known. However, the method using such an organic compound may cause an unexpected problem in stability, and there is a concern from the viewpoint of environmental protection.

【0004】本発明は、従来の上記問題を解決したもの
であって、特定構造の有機高分子化合物やアルコール環
状化合物などの促進剤を用いることなく、ガスハイドレ
ートを安定に効率よく生成する装置を提供することを目
的とする。
The present invention solves the above-mentioned conventional problems, and provides an apparatus for stably and efficiently producing gas hydrate without using an accelerator such as an organic polymer compound having a specific structure or an alcohol cyclic compound. The purpose is to provide.

【0005】[0005]

【課題を解決するための手段】すなわち、本発明によれ
ば以下の構成からなるガスハイドレート生成装置が提供
される。 (1)ガスが溶解した水溶液が溜まる滞留室、溶解させ
るガスを滞留室に送り込むガス導入路、上記滞留室に通
じるガス水溶液の循環路、ガス水溶液の冷却手段および
循環手段とを有し、ガス水溶液を循環しながら冷却して
ガスハイドレートの生成を促すことを特徴とするガスハ
イドレート生成装置。 (2)ガス導入路から滞留室に至る間に、内部が多孔質
に形成された混合室が設けられている上記(1)の生成装
置。 (3)滞留室を囲む内側の循環路と、滞留室から出て内
側の循環路に通じる外側循環路とが形成されており、外
側循環路に水溶液の供給口と取出口が設けられている上
記(1)〜(2)の何れかに記載する生成装置。 (4)系内を流れるガス水溶液の導電率、流圧および温
度を測定する手段が装着されている上記(1)〜(3)の何れ
かに記載する生成装置。 (5)系内を流れるガス水溶液を採取するサンプリング
ラインと、液中のガス濃度を測定する手段が設けられて
いる上記(1)〜(4)の何れかに記載する生成装置。 (6)循環路の一部に管内が見える窓部分が形成されて
いる上記(1)〜(5)の何れかに記載する生成装置。 (7)炭酸ガスを導入した炭酸ガス水溶液を循環して炭
酸ガスハイドレートを生成する上記(1)〜(6)の何れかに
記載する生成装置。 (8)系内を温度−5〜4℃、絶対圧1.8〜2.5MPa
に制御して炭酸ガスハイドレートを生成する上記(1)〜
(7)の何れかに記載する生成装置。
That is, according to the present invention, there is provided a gas hydrate generator having the following constitution. (1) a gas chamber having a staying chamber for storing an aqueous solution in which a gas is dissolved, a gas introduction path for feeding a gas to be dissolved into the staying chamber, a circulation path for the gaseous aqueous solution leading to the staying chamber, a cooling means and a circulation means for the gaseous aqueous solution; A gas hydrate generation device, wherein cooling is performed while circulating an aqueous solution to promote generation of gas hydrate. (2) The generator according to (1), wherein a mixing chamber having a porous interior is provided between the gas introduction path and the retention chamber. (3) An inner circulation path surrounding the retention chamber and an outer circulation path coming out of the retention chamber and leading to the inner circulation path are formed, and the outer circulation path is provided with a supply port and an outlet for the aqueous solution. The generator according to any one of the above (1) and (2). (4) The generator according to any one of (1) to (3), further comprising means for measuring the conductivity, the flow pressure, and the temperature of the gas aqueous solution flowing in the system. (5) The generator according to any one of (1) to (4), further including a sampling line for collecting a gas aqueous solution flowing in the system, and a means for measuring a gas concentration in the liquid. (6) The generator according to any one of (1) to (5) above, wherein a window portion in which the inside of the pipe is visible is formed in a part of the circulation path. (7) The generator according to any one of (1) to (6), wherein the aqueous carbon dioxide gas solution into which the carbon dioxide gas is introduced is circulated to generate carbon dioxide hydrate. (8) The temperature inside the system is -5 to 4 ° C, and the absolute pressure is 1.8 to 2.5 MPa.
To generate carbon dioxide hydrate by controlling the above (1) ~
The generator according to any one of (7).

【0006】本発明の生成装置は、生成したガスハイド
レートを含む水溶液が適度な流動性を有するようにし、
この水溶液を循環して冷却し、好ましくはガスを導入す
る際に多孔質の混合室を通過させることにより、ガスハ
イドレートを安定に効率よく生成する。なお、タンク内
のガス水溶液に炭酸ガス等を吹き込んで炭酸ガスハイド
レートを生成させる従来の方法では、タンク内を攪拌し
ても乱流拡散現象が生じるのでガスハイドレートが房状
に成長し難く、生成効率が大幅に低下する。一方、本発
明の生成装置はガス水溶液を循環して冷却するので、液
温が均一に保たれ、また生成したガスハイドレートが液
中に細かく分散し、生成効率が格段に向上すると共に、
水溶液の流動性を保った状態でガスハイドレートが液中
に存在するので、取扱い易く、工業的に利用するのに格
段に都合が良い。このように本発明の装置は、特定構造
の有機高分子化合物やアルコール環状化合物などの促進
剤を用いることなく、ガスハイドレートを安定に効率よ
く生成することができるので、炭酸ガスを導入した炭酸
ガスハイドレートの生成装置として好適である。
[0006] The production apparatus of the present invention allows an aqueous solution containing the produced gas hydrate to have an appropriate fluidity,
The aqueous solution is circulated and cooled, preferably by passing through a porous mixing chamber when introducing the gas, so that gas hydrate is generated stably and efficiently. In the conventional method of generating carbon dioxide hydrate by blowing carbon dioxide or the like into the gas aqueous solution in the tank, even if the tank is agitated, a turbulent diffusion phenomenon occurs. , The production efficiency is greatly reduced. On the other hand, since the gas generator of the present invention circulates and cools the gas aqueous solution, the liquid temperature is kept uniform, the generated gas hydrate is finely dispersed in the liquid, and the generation efficiency is significantly improved,
Since the gas hydrate exists in the liquid while maintaining the fluidity of the aqueous solution, the gas hydrate is easy to handle and is extremely convenient for industrial use. As described above, the apparatus of the present invention can stably and efficiently generate gas hydrate without using an accelerator such as an organic polymer compound having a specific structure or an alcohol cyclic compound. It is suitable as a gas hydrate generator.

【0007】[0007]

【発明の実施の形態】以下、本発明を図面に示す実施形
態に基づいて具体的に説明する。図1は本発明に係る生
成装置の概念図であり、ガスが溶解した水溶液(ガス水
溶液とも云う)、例えば、炭酸ガス水溶液などが溜まる
滞留室10、溶解させるガスを滞留室に送り込むガス導
入路11、滞留室10を囲む内側の循環路12、滞留室
10から出て内側の循環路12に通じる外側循環路13
とを有しており、外側循環路13に水溶液の供給口19
と取出口14が設けられている。内側循環路12にはガ
ス水溶液を冷却する手段15が設けられている。図示す
る冷却手段15は内部を冷却媒体が流れる熱交換器によ
って形成されている。また、外側循環路13にはガス水
溶液を循環する送液ポンプ16が設置されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments shown in the drawings. FIG. 1 is a conceptual diagram of a generating apparatus according to the present invention, and a retaining chamber 10 for storing an aqueous solution (also referred to as a gas aqueous solution) in which a gas is dissolved, for example, a carbon dioxide gas aqueous solution, etc. 11, an inner circulation path 12 surrounding the retention chamber 10, an outer circulation path 13 exiting from the retention chamber 10 and communicating with the inner circulation path 12
And a supply port 19 for the aqueous solution in the outer circulation path 13.
And an outlet 14 are provided. Means 15 for cooling the aqueous gas solution is provided in the inner circulation path 12. The illustrated cooling means 15 is formed by a heat exchanger through which a cooling medium flows. The outer circulation path 13 is provided with a liquid feed pump 16 for circulating the gas aqueous solution.

【0008】本発明の生成装置は、好ましくは、ガス導
入路11から滞留室10に至る間に混合室17が設けら
れている。混合室17は、例えばガラスビーズ20を充
填して内部を多孔質に形成した部分であり、ガス水溶液
が満たされた室内にガスが導入され、ビーズ20によっ
て形成された微細な間隙を通過することによって、ガス
とガス水溶液との接触面積が増大し、両者の混合が均一
に行われると共に水溶液に対するガスの溶解が促進され
る。なお、ガス導入路11は混合室17に至る直前の部
分で内側循環路12と連通しており、この連通部分には
ガラスビーズ20が漏出しないようにスクリーン21が
設けられている。内側循環路12を流れるガス水溶液は
上記連通部分を通じて再び混合室17に流入できるよう
に形成されている。
In the generator of the present invention, a mixing chamber 17 is preferably provided between the gas introduction path 11 and the retention chamber 10. The mixing chamber 17 is, for example, a portion formed by filling the glass beads 20 with the inside thereof being porous. A gas is introduced into a chamber filled with a gaseous aqueous solution, and passes through a fine gap formed by the beads 20. As a result, the contact area between the gas and the aqueous solution of the gas is increased, the two are uniformly mixed, and the dissolution of the gas in the aqueous solution is promoted. The gas introduction path 11 communicates with the inner circulation path 12 immediately before reaching the mixing chamber 17, and a screen 21 is provided in this communication part so that the glass beads 20 do not leak. The gas aqueous solution flowing through the inner circulation path 12 is formed so as to be able to flow again into the mixing chamber 17 through the communication part.

【0009】また、本発明の生成装置は、好ましくは、
循環路の一部に管内が見える窓部分(図示省略)を有
し、また、系内を流れるガス水溶液の導電率、流圧およ
び温度を測定する手段(図示省略)が装着されている。
これらの測定手段は既知の機器を用いることができる。
窓部分は管内が見やすいように外側循環路13に設けれ
ば良く、例えば、管路の一部を透明なアクリルチューブ
等によって形成しても良い。循環路に窓部分を設け、ま
たは管路の一部を透明に形成することにより、管内を流
れるガスハイドレートの生成状態を直接に観察すること
ができ、生成条件をリアルタイムで制御することができ
る。
[0009] The generating apparatus of the present invention preferably comprises:
A part of the circulation path has a window part (not shown) through which the inside of the pipe can be seen, and a means (not shown) for measuring the conductivity, flow pressure and temperature of the gas aqueous solution flowing in the system is mounted.
Known measuring devices can be used for these measuring means.
The window portion may be provided in the outer circulation path 13 so that the inside of the pipe can be easily seen. For example, a part of the pipe path may be formed by a transparent acrylic tube or the like. By providing a window portion in the circulation path or forming a part of the pipe line transparent, it is possible to directly observe the generation state of gas hydrate flowing in the pipe and control the generation conditions in real time. .

【0010】さらに、本発明の生成装置は、好ましく
は、系内を流れるガス水溶液を採取するサンプリングラ
イン18と液中のガス濃度を測定する手段(図示省略)
を有する。サンプリングライン18は例えば取出口14
から分岐して形成すれば良い。また、ガス濃度測定手段
はサンプリングライン18に接続して設ければ良い。
Further, the generating apparatus of the present invention preferably has a sampling line 18 for collecting a gas aqueous solution flowing in the system and means for measuring gas concentration in the liquid (not shown).
Having. The sampling line 18 is, for example, the outlet 14.
It may be formed by branching from. The gas concentration measuring means may be connected to the sampling line 18.

【0011】炭酸ガスハイドレートの生成を例として、
上記生成装置の作用を以下に説明する。炭酸ガス水溶液
が供給口19を通じて系内に供給され、これにクラスレ
ート生成平衡温度以下の条件下で炭酸ガスを吹込むと、
炭酸ガスが液中に溶解して飽和炭酸ガス水溶液となり、
炭酸ガスハイドレートが形成される。この状態を図2
(A)〜(D)に模式的に示すと、最初、水溶液中40に吹
き込まれた炭酸ガスは、その気泡表面が微細なクラスレ
ートによって覆われた炭酸ガスハイドレート30になる
が〔図2(A)〕、次第に気泡表面のクラスレートが部分
的に崩れて内部の炭酸ガスが液中に溶解し、気泡状の炭
酸ガスハイドレート30が小さくなり〔図2(B)〕、最
終的に薄い綿状31になり〔図2(C)〕、流動状態を維
持して流れる。これを滞留室内に堆積させるとブドウの
房状32に成長する〔図2(D)〕。これらの状態は循環
路の一部を透明に形成した窓部分を通じて直接に観察す
ることができる。
As an example, the generation of carbon dioxide hydrate
The operation of the generating device will be described below. When an aqueous solution of carbon dioxide gas is supplied into the system through the supply port 19, and blows carbon dioxide gas into the system under the conditions of the clathrate generation equilibrium temperature or less,
Carbon dioxide gas dissolves in the liquid to become a saturated carbon dioxide aqueous solution,
Carbon dioxide hydrate is formed. This state is shown in FIG.
Schematically shown in (A) to (D), the carbon dioxide gas initially blown into the aqueous solution 40 becomes a carbon dioxide hydrate 30 whose bubble surface is covered with a fine clathrate [FIG. (A)], the clathrate on the surface of the bubbles gradually breaks down, and the carbon dioxide inside dissolves in the liquid, and the carbon dioxide hydrate 30 in the form of bubbles becomes smaller (FIG. 2 (B)). It becomes a thin floc 31 (FIG. 2 (C)) and flows while maintaining the flowing state. When this is deposited in the retaining chamber, it grows into a bunch 32 of grapes [FIG. 2 (D)]. These states can be directly observed through a window part in which a part of the circulation path is made transparent.

【0012】ここで、炭酸ガスを系内の炭酸ガス水溶液
に吹き込む際に、混合室17を通じて導入すると、炭酸
ガスが混合室内のガラスビーズ20によって形成された
微細な空隙を通過する間に炭酸ガス水溶液と均一に混合
され、炭酸ガスの溶解が大幅に促進する。また、液温が
均一化されると共に生成した炭酸ガスハイドレートが液
中に細かく分散するので良好な流動性を維持することが
できる。
Here, when the carbon dioxide gas is blown into the aqueous solution of carbon dioxide in the system, it is introduced through the mixing chamber 17 so that the carbon dioxide gas passes through the fine voids formed by the glass beads 20 in the mixing chamber. It is uniformly mixed with the aqueous solution, and greatly promotes the dissolution of carbon dioxide gas. Further, since the liquid temperature is made uniform and the generated carbon dioxide hydrate is finely dispersed in the liquid, good fluidity can be maintained.

【0013】炭酸ガスハイドレートの生成状態は炭酸ガ
ス水溶液の供給量、液温、液圧、および炭酸ガス導入量
などを調整することによって制御することができる。具
体的には、例えば、液温1〜3℃の温度下で、炭酸ガス
水溶液に対する炭酸ガス溶解度が飽和するまで炭酸ガス
を供給すれば良い。このとき、循環路の一部をアクリル
チューブによって形成している場合には、その耐圧性を
考慮して絶対圧は1.8〜2.5MPa程度が好ましい。な
お、液圧に対する炭酸ガス溶解度の変化を図3に示す。
この溶解度曲線に従って液圧を制御すれば良い。図中、
「上昇」は系内に純水を導入して圧力を上昇したもの、
「下降」は系内に純水を導入した後に圧力を上昇し、そ
の後に減圧したもの、「再圧入」は圧力を上昇した後に
下降し、再び加圧したものである。ビーズは混合室にビ
ーズを充填したものである。
The state of generation of the carbon dioxide hydrate can be controlled by adjusting the supply amount, the liquid temperature, the liquid pressure, the carbon dioxide gas introduction amount, and the like of the aqueous carbon dioxide solution. Specifically, for example, the carbon dioxide gas may be supplied at a liquid temperature of 1 to 3 ° C. until the solubility of the carbon dioxide gas in the aqueous carbon dioxide solution is saturated. At this time, when a part of the circulation path is formed of an acrylic tube, the absolute pressure is preferably about 1.8 to 2.5 MPa in consideration of the pressure resistance. FIG. 3 shows the change in the solubility of carbon dioxide with respect to the liquid pressure.
The liquid pressure may be controlled according to the solubility curve. In the figure,
"Rise" means that the pressure is increased by introducing pure water into the system,
"Down" means that the pressure is increased after introducing pure water into the system, and then the pressure is reduced. "Re-injection" means that the pressure is increased, then lowered and then pressurized again. The beads are a mixture chamber filled with beads.

【0014】また、炭酸ガスハイドレートの生成は水溶
液の導電率を測定することによって把握することができ
る。具体的には、炭酸ガスハイドレートの生成領域では
水溶液における導電率の増加量は150〜200μS/c
m程度であり、従って、水溶液の導電率の増加量がこの
範囲を示せば炭酸ガスハイドレートが生成していると考
えられる。
The generation of carbon dioxide hydrate can be determined by measuring the conductivity of the aqueous solution. Specifically, in the generation region of carbon dioxide hydrate, the amount of increase in conductivity in the aqueous solution is 150 to 200 μS / c.
m, and therefore, it is considered that carbon dioxide hydrate is generated if the amount of increase in the conductivity of the aqueous solution shows this range.

【0015】炭酸ガスハイドレートの具体的な生成量は
導入した炭酸ガスの消費量によって把握することができ
る。サンプリングライン18に接続した炭酸ガス濃度の
測定手段によって液中の炭酸ガス溶解量を測定し、その
飽和量を差し引いた消費量によって炭酸ガスハイドレー
トの生成量が測定される。なお、この方法は濃度測定に
おけるタイムラグがあるので、リアルタイムで生成状態
を把握するには前述の導電率を利用すると良い。
The specific amount of carbon dioxide hydrate can be determined from the consumption of the introduced carbon dioxide. The dissolved amount of carbon dioxide in the liquid is measured by a carbon dioxide concentration measuring means connected to the sampling line 18, and the amount of carbon dioxide hydrate generated is measured by the consumption amount after subtracting the saturation amount. Since this method has a time lag in the concentration measurement, it is preferable to use the above-described conductivity to grasp the generation state in real time.

【0016】[0016]

【実施例】以下、本発明の実施例を示す。図1に示す生
成装置を用い、系内に14リットルの水を循環させながら、
炭酸ガス350リットルを導入した。この液温を−5℃ない
し常温に保ち、系の絶対圧を2.0Mpaに制御し、0.1
〜1.0m3/hの流量で1月間循環を継続したところ、炭
酸ガス導入量に等しい量の炭酸ガスハイドレートが生成
した。
Embodiments of the present invention will be described below. Using the generator shown in FIG. 1, while circulating 14 liters of water in the system,
350 liters of carbon dioxide gas was introduced. The temperature of the solution was kept at -5 ° C. to room temperature, the absolute pressure of the system was controlled at 2.0 MPa, and
When the circulation was continued at a flow rate of about 1.0 m 3 / h for one month, an amount of carbon dioxide hydrate equivalent to the amount of introduced carbon dioxide was generated.

【0017】[0017]

【発明の効果】本発明の生成装置は、生成したガスハイ
ドレートを含む水溶液が適度な流動性を有する条件を整
え、この水溶液を循環して冷却することにより、ガスハ
イドレートを安定に効率よく生成する。このように、ガ
ス水溶液を循環して冷却するので、液温が均一に保た
れ、また生成したガスハイドレートが液中に細かく分散
するので水溶液が流動状態を維持し、ガスハイドレート
が均一に生成すると共に生成効率が向上する。
According to the production apparatus of the present invention, the aqueous solution containing the produced gas hydrate is adjusted to conditions having an appropriate fluidity, and the aqueous solution is circulated and cooled, whereby the gas hydrate is stably and efficiently produced. Generate. In this way, since the gas aqueous solution is circulated and cooled, the liquid temperature is kept uniform, and the generated gas hydrate is finely dispersed in the liquid, so that the aqueous solution maintains a fluid state, and the gas hydrate is uniformly distributed. Generation and generation efficiency are improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の装置構成を示す概念図FIG. 1 is a conceptual diagram showing an apparatus configuration of the present invention.

【図2】(A)(B)(C)(D) ガスハイドレートの生成状
態を示す模式図
FIGS. 2A, 2B, 2C, 2D, and 2D are schematic diagrams showing gas hydrate generation states.

【図3】 液圧に対する炭酸ガス溶解度のグラフFIG. 3 is a graph of carbon dioxide solubility with respect to liquid pressure.

【符号の説明】[Explanation of symbols]

10−滞留室、11−ガス導入路、12、13−循環
路、14−取出口、15−冷却手段、16−送液ポン
プ、17−混合室、18−サンプルライン、19−供給
口、20−ガラスビーズ、21−スクリーン、30−気
泡状の炭酸ガスハイドレート、31−綿状の炭酸ガスハ
イドレート、32−房状の炭酸ガスハイドレート、40
−水溶液
Reference Signs List 10-retention chamber, 11-gas introduction path, 12, 13-circulation path, 14-outlet, 15-cooling means, 16-liquid pump, 17-mixing chamber, 18-sample line, 19-supply port, 20 -Glass beads, 21-screen, 30-bubble-like carbon dioxide hydrate, 31-cotton-like carbon dioxide hydrate, 32-tuft-like carbon dioxide hydrate, 40
-Aqueous solution

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 ガスが溶解した水溶液が溜まる滞留室、
溶解させるガスを滞留室に送り込むガス導入路、上記滞
留室に通じるガス水溶液の循環路、ガス水溶液の冷却手
段および循環手段とを有し、ガス水溶液を循環しながら
冷却してガスハイドレートの生成を促すことを特徴とす
るガスハイドレート生成装置。
A retention chamber for storing an aqueous solution in which a gas is dissolved,
It has a gas introduction path for feeding the gas to be dissolved into the retention chamber, a circulation path of the gas aqueous solution leading to the retention chamber, a cooling means and a circulation means for the gas aqueous solution, and cooling while circulating the gas aqueous solution to produce gas hydrate. A gas hydrate generator characterized by promoting the following.
【請求項2】 ガス導入路から滞留室に至る間に、内部
が多孔質に形成された混合室が設けられている請求項1
の生成装置。
2. A mixing chamber having a porous interior is provided between the gas introduction path and the retention chamber.
Generator.
【請求項3】 滞留室を囲む内側の循環路と、滞留室か
ら出て内側の循環路に通じる外側循環路とが形成されて
おり、外側循環路に水溶液の供給口と取出口が設けられ
ている請求項1または2の何れかに記載する生成装置。
3. An inner circulation path surrounding the retention chamber and an outer circulation path coming out of the retention chamber and leading to the inner circulation path, and the outer circulation path is provided with a supply port and an outlet for an aqueous solution. The generating device according to claim 1 or 2, wherein
【請求項4】 系内を流れるガス水溶液の導電率、流圧
および温度を測定する手段が装着されている請求項1〜
3の何れかに記載する生成装置。
4. A system according to claim 1, further comprising means for measuring the electric conductivity, flow pressure and temperature of the gas aqueous solution flowing in the system.
3. The generation device according to any one of 3.
【請求項5】 系内を流れるガス水溶液を採取するサン
プリングラインと、液中のガス濃度を測定する手段が設
けられている請求項1〜4の何れかに記載する生成装
置。
5. The generator according to claim 1, further comprising a sampling line for collecting a gas aqueous solution flowing through the system, and a means for measuring a gas concentration in the liquid.
【請求項6】 循環路の一部に管内が見える窓部分が形
成されている請求項1〜5の何れかに記載する生成装
置。
6. The generating device according to claim 1, wherein a window portion through which the inside of the pipe can be seen is formed in a part of the circulation path.
【請求項7】 炭酸ガスを導入した炭酸ガス水溶液を循
環して炭酸ガスハイドレートを生成する請求項1〜6の
何れかに記載する生成装置。
7. The production apparatus according to claim 1, wherein an aqueous solution of carbon dioxide gas into which carbon dioxide gas is introduced is circulated to produce carbon dioxide hydrate.
【請求項8】 系内を温度−5〜4℃、絶対圧1.8〜
2.5MPaに制御して炭酸ガスハイドレートを生成する請
求項1〜7の何れかに記載する生成装置。
8. The temperature in the system is -5 to 4 ° C., and the absolute pressure is 1.8 to
The generator according to any one of claims 1 to 7, wherein carbon dioxide hydrate is generated by controlling the pressure to 2.5 MPa.
JP2001081142A 2001-03-21 2001-03-21 Apparatus for producing gas hydrate Pending JP2002273205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001081142A JP2002273205A (en) 2001-03-21 2001-03-21 Apparatus for producing gas hydrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001081142A JP2002273205A (en) 2001-03-21 2001-03-21 Apparatus for producing gas hydrate

Publications (1)

Publication Number Publication Date
JP2002273205A true JP2002273205A (en) 2002-09-24

Family

ID=18937296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001081142A Pending JP2002273205A (en) 2001-03-21 2001-03-21 Apparatus for producing gas hydrate

Country Status (1)

Country Link
JP (1) JP2002273205A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008246333A (en) * 2007-03-29 2008-10-16 Mitsui Eng & Shipbuild Co Ltd Measuring method for gas hydrate concentration and measuring device used for the same, and control method for gas hydrate generation device using measuring method and control device using the same
WO2009060858A1 (en) * 2007-11-09 2009-05-14 The Tokyo Electric Power Company, Incorporated High-pressure apparatus for forming fine bubbles of carbon dioxide and system for geological storage of carbon dioxide employing the same
JPWO2012036166A1 (en) * 2010-09-14 2014-02-03 株式会社ミツヤコーポレーション Freezing method and freezing apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05306110A (en) * 1992-05-06 1993-11-19 Ishikawajima Harima Heavy Ind Co Ltd Co2 clathrate producing device
JPH0658896A (en) * 1992-08-10 1994-03-04 Chubu Electric Power Co Inc Carbon dioxide clathrate production measuring apparatus
JPH06256010A (en) * 1993-03-03 1994-09-13 Chubu Electric Power Co Inc Method of forming carbon dioxide gas clathrate and device therefor
JPH07185281A (en) * 1993-12-28 1995-07-25 Masayuki Sato Gas dissolving apparatus
JPH0910781A (en) * 1995-06-30 1997-01-14 Mitsubishi Heavy Ind Ltd Electrolytic type ozone water washing machine
JP2000273475A (en) * 1999-03-19 2000-10-03 Mitsubishi Rayon Co Ltd Gas hydrate stabilizer and gas hydrate stabilization method using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05306110A (en) * 1992-05-06 1993-11-19 Ishikawajima Harima Heavy Ind Co Ltd Co2 clathrate producing device
JPH0658896A (en) * 1992-08-10 1994-03-04 Chubu Electric Power Co Inc Carbon dioxide clathrate production measuring apparatus
JPH06256010A (en) * 1993-03-03 1994-09-13 Chubu Electric Power Co Inc Method of forming carbon dioxide gas clathrate and device therefor
JPH07185281A (en) * 1993-12-28 1995-07-25 Masayuki Sato Gas dissolving apparatus
JPH0910781A (en) * 1995-06-30 1997-01-14 Mitsubishi Heavy Ind Ltd Electrolytic type ozone water washing machine
JP2000273475A (en) * 1999-03-19 2000-10-03 Mitsubishi Rayon Co Ltd Gas hydrate stabilizer and gas hydrate stabilization method using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008246333A (en) * 2007-03-29 2008-10-16 Mitsui Eng & Shipbuild Co Ltd Measuring method for gas hydrate concentration and measuring device used for the same, and control method for gas hydrate generation device using measuring method and control device using the same
WO2009060858A1 (en) * 2007-11-09 2009-05-14 The Tokyo Electric Power Company, Incorporated High-pressure apparatus for forming fine bubbles of carbon dioxide and system for geological storage of carbon dioxide employing the same
JP2009112995A (en) * 2007-11-09 2009-05-28 Tokyo Electric Power Co Inc:The Apparatus for forming fine bubbles of carbon dioxide in high pressure and underground storage system of carbon dioxide using the same
JPWO2012036166A1 (en) * 2010-09-14 2014-02-03 株式会社ミツヤコーポレーション Freezing method and freezing apparatus

Similar Documents

Publication Publication Date Title
KR102442879B1 (en) Composition containing nano-bubbles in a liquid carrier
JP5466817B2 (en) Ozone water production equipment
US6955341B2 (en) Apparatus for dissolving gas into liquid
CN103747859A (en) System and method for generating nanobubbles
CN106693734A (en) Preparation device of supersaturated nanobubble hydrogen solution and preparation method of supersaturated nanobubble hydrogen solution
JP6342685B2 (en) Method and apparatus for producing hydrogen-containing water
JP5163738B2 (en) Cladding hydrate having latent heat storage performance, manufacturing method and manufacturing apparatus thereof, latent heat storage medium, method of increasing latent heat storage amount of clathrate hydrate, and processing device for increasing latent heat storage amount of clathrate hydrate
KR101161257B1 (en) H2C03 saturated aqueous solution Manufacturing Method and System
CN102639014A (en) Method for producing carbonated beverage
JP2023031231A (en) Device and method for leaching sandstone uranium ore through micro-nano bubble oxidation
JP4358779B2 (en) High concentration oxygen bubble water supply device and plant cultivation device using the same
JP2002273205A (en) Apparatus for producing gas hydrate
JP4798887B2 (en) Gas-liquid counter-flow type gas hydrate manufacturing apparatus and manufacturing method
WO2010023977A1 (en) Gas dissolver
JP2009018296A (en) Oxygen-enriched water generator using spg (shirasu porous glass)
JP2018140356A (en) Manufacturing apparatus of mixed aqueous solution and manufacturing method thereof
US20180154279A1 (en) Method for assisting thermally-induced changes
CN108763623A (en) Bubble rapid transfer mass model building method is purified under ultrasound and eddy flow field in melt
CN108786507A (en) Protective gas nano-bubble generating apparatus
CN210764721U (en) Hydrogen-rich water's preparation facilities
JPWO2010134551A1 (en) Gas-liquid mixture
WO2024048796A1 (en) Culture device and method for controlling culture device
JP2008119611A (en) Apparatus and method for manufacture of gas-dissolved cleaning water
JP2009195812A (en) Carbonated water manufacturing device
CN203941106U (en) The harmless foam system recording geometry of flowable state for a kind of oil gas field

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100804