JP5865799B2 - 加圧水型原子力プラント及びその蒸気供給方法 - Google Patents

加圧水型原子力プラント及びその蒸気供給方法 Download PDF

Info

Publication number
JP5865799B2
JP5865799B2 JP2012166239A JP2012166239A JP5865799B2 JP 5865799 B2 JP5865799 B2 JP 5865799B2 JP 2012166239 A JP2012166239 A JP 2012166239A JP 2012166239 A JP2012166239 A JP 2012166239A JP 5865799 B2 JP5865799 B2 JP 5865799B2
Authority
JP
Japan
Prior art keywords
pressure turbine
steam
turbine exhaust
pressurized water
water nuclear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012166239A
Other languages
English (en)
Other versions
JP2014025801A (ja
Inventor
進藤 蔵
蔵 進藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012166239A priority Critical patent/JP5865799B2/ja
Publication of JP2014025801A publication Critical patent/JP2014025801A/ja
Application granted granted Critical
Publication of JP5865799B2 publication Critical patent/JP5865799B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Control Of Turbines (AREA)

Description

本発明の実施形態は、外部蒸気消費設備へ蒸気供給を行う加圧水型原子力プラント技術に関する。
蒸気タービンを用いた発電プラントにおいて、発生する蒸気の一部を抽気することが可能である。この抽気した蒸気を外部蒸気消費設備へ供給(外部出力とも言う)することで、当該設備で熱源としての利用が可能である。ここで外部蒸気消費設備とは、海水の淡水化を行う造水設備、寒冷地における地域暖房、化学プラント、または製紙プラント等の抽気された蒸気を活用する様々な設備をいう。
従来、火力発電プラントにおいて、発電過程で発生する蒸気の一部を抽気して外部蒸気消費設備への蒸気供給は行われており、その抽気蒸気の有効利用が図られている。(例えば、特許文献1)
一方で原子力発電プラントは、火力発電プラントと比較して、単基当たりの出力容量が非常に大きい。それゆえ発生する蒸気量が大きく、抽気として外部蒸気消費設備への安定的な蒸気供給が可能となる。このため原子力発電プラントは、他の発電プラントよりも高出力で抽気された蒸気を外部蒸気消費設備で利用することが可能である。
特表2011−525587号公報
ところで、外部蒸気消費設備へ蒸気を送る際に、蒸気タービンへ入力する蒸気量を絞る必要がある。このため蒸気タービンへの蒸気供給が低下し、発電出力が大きく低下してしまう、いわゆる絞り損失が課題となる。
本発明はこのような事情を考慮してなされたもので、外部蒸気消費設備へ蒸気供給を行う際に、蒸気タービンに入力する蒸気の絞り損失を最小化させ又は発生させること無く、効率的な発電を実現する加圧水型原子力プラント技術を提供することを目的とする。
本実施形態に係る加圧水型原子力プラントは、核分裂反応により発生した熱エネルギーによって加熱された一次冷却材との熱交換により二次冷却材を気化させて主蒸気を発生させる蒸気発生器と、前記主蒸気を入力しその熱エネルギーを運動エネルギーに変換して高圧タービン排気を出力する高圧タービンと、前記高圧タービン排気を入力しその熱エネルギーを運動エネルギーに変換した後の低圧タービン排気を復水させる低圧タービンと、前記高圧タービン排気を入力しその熱エネルギーを運動エネルギーに変換した後の背圧タービン排気を抽気として外部出力させる背圧タービンと、前記高圧タービン排気を入力して含まれる湿分を除去し加熱して出力する湿分分離加熱器と、前記背圧タービン排気の一部を分岐して、前記低圧タービン排気と合流し復水させる分岐配管と、を備えて、前記低圧タービン及び前記背圧タービンは、互いに並列に接続し、前記湿分分離加熱器から出力された前記高圧タービン排気を入力することを特徴とするものである。
本発明の第一実施形態に係る加圧水型原子力プラントの構成図。 各実施形態に係る制御手段の構成図。 各実施形態に係る制御手段の変形例を示す構成図。 本発明の第二実施形態に係る加圧水型原子力プラントの構成図。 本発明の第三実施形態に係る加圧水型原子力プラントの構成図。 本発明の第四実施形態に係る加圧水型原子力プラントの構成図。 本発明の第五実施形態に係る加圧水型原子力プラントの構成図。
(第一実施形態)
以下、本発明の実施形態を添付図面に基づいて説明する。図1に示されるように第一実施形態に係る加圧水型原子力プラント10(以下、単に「プラント10」という)は、原子炉7と、冷却材ポンプ8と、蒸気発生器1と、高圧タービン4と、湿分分離加熱器5と、低圧タービン65と、背圧タービン64と、復水器67と、発電機13と、外部蒸気消費設備100と、復水ポンプ12と、から構成される。高圧タービン4と、背圧タービン64と、低圧タービン65と、発電機13は同軸上に配置される。
原子炉7において核分裂反応を起こし、発生した熱エネルギーによって一次冷却材Aを加熱する。そして一次冷却材Aは、図示しない加圧器により加圧され、蒸気発生器1に入力される。蒸気発生器1は、この一次冷却材Aと二次冷却材Bとの熱交換を行うことで二次冷却材Bを気化させ主蒸気を発生させる。
高圧タービン4は、発生した主蒸気を入力し、蒸気の持つ熱エネルギーを運動エネルギーに変換して、高圧タービン排気を出力する。高圧タービン4の入力側には、主蒸気止め弁2と蒸気加減弁3を備え、高圧タービン4に入力する主蒸気の流入量制御を行う。
湿分分離加熱器5は、高圧タービン4から排気される高圧タービン排気を、含まれる蒸気の湿分を除去し加熱して、互いに並列接続する背圧タービン64及び低圧タービン65に入力する。
低圧タービン65は、高圧タービン排気を入力し、その熱エネルギーを運動エネルギーに変換して、低圧タービン排気を出力する。出力された低圧タービン排気は、復水器67で復水される。低圧タービン65の入力側には、再熱蒸気止め弁62とインターセプト弁63を備え、湿分分離加熱器5から低圧タービン65に入力される高圧タービン排気の蒸気流入量の制御を行う。
なお、復水された低圧タービン排気は二次冷却材Bとして、復水ポンプ12を介して再循環する。一次冷却材Aについても、冷却材ポンプ8により再循環する。一次系と二次系が分離されているため、核反応による一次系で発生する汚染水により、二次系が汚染されることは無い。
背圧タービン64は、湿分分離加熱器5を介した高圧タービン排気を入力し、その熱エネルギーを運動エネルギーに変換した後、背圧タービン排気を出力する。出力された背圧タービン排気が、抽気として外部蒸気消費設備100へ出力される。
背圧タービン64の入力側には、高圧タービン排気を入力させる第一配管68を備える。この第一配管68は、背圧加減弁61と背圧止め弁60を備え、湿分分離加熱器5から背圧タービン64に入力する高圧タービン排気の蒸気流入量の制御を行う。つまり背圧タービン排気を抽気として外部蒸気消費設備100に供給する場合は、背圧加減弁61の調整により抽気する蒸気圧力を制御することができる。
さらにこの背圧タービン64の出力側は、一方は外部蒸気消費設備100と接続し、他方は、低圧タービン排気を復水する復水器67と接続する分岐配管23を有する。この分岐配管23は、復水器67との接続側に第一調整弁20を有し、外部蒸気消費設備100との接続側には蒸気流の逆流を防止する逆止弁22と第一蒸気圧検出器21を有する。
背圧タービン64及び低圧タービン65は、互いに並列接続され湿分分離加熱器5から高圧タービン排気を入力するため、背圧加減弁61のみの調整により抽気する蒸気圧力の制御が可能である。この時、低圧タービン65の入力側にあるインターセプト弁63を絞る必要はない。したがって、抽気として外部蒸気消費設備100へ蒸気供給する場合に、低圧タービン65での絞り損失は発生しない。
背圧タービン64が負荷運転を実施し、抽気として外部蒸気消費設備100へ外部出力を行う時は、第一調整弁20を閉弁するとともに背圧加減弁61を開弁する。逆に背圧タービン64が負荷運転を停止し、抽気として外部蒸気消費設備100へ外部出力を行わない時は、第一調整弁20を開弁するとともに背圧加減弁61を閉弁する。
このように第一調整弁20を開くことで、背圧タービン64と復水器67が連通する。復水器67は真空状態であるため、背圧タービン64も真空状態となる。つまり外部蒸気消費設備100側へ蒸気を供給しない時、常に背圧タービン64は真空状態の車室内で回転することになる。したがって、車室内を流れる蒸気の無い状態すなわち車室が密閉した状態で回転させた場合に生ずる風損による発熱は生じない。
ここでプラント10の制御手段について、図2を用いて説明する。なお、図2は説明のために図1に示された各種蒸気弁や機器の一部を省略しているが、機器構成は図1に同じである。高圧タービン4のタービン回転速度は、速度検出歯車200及び速度検出器201によって検出され、速度信号として加算器202へ入力される。
加算器202は、この速度信号と速度設定器203の設定信号との差である速度偏差信号を、蒸気加減弁速度調定回路204及びインターセプト弁速度調定回路250へ入力する。加算器205は、蒸気加減弁速度調定回路204からの信号と負荷設定器206からの信号を加算し、低値優先回路207へ入力する。
低値優先回路207は、加算器205からの信号と負荷制限器208からの信号の低値を選択する。選択された信号は、分岐され、一方は蒸気加減弁・弁位置制御回路209に入力され、他方は、定数回路210を介して低値優先回路303へ入力される。
加算器251は、インターセプト弁速度調定回路250からの信号と負荷設定器206からの信号を加算し、インターセプト弁・弁位置制御回路252及び253へ入力する。
背圧タービン64の排気口の蒸気圧力は、第一蒸気圧検出器21によって検出され、蒸気圧力信号として加算器300に入力される。
加算器300は、この蒸気圧力信号と背圧設定器301からの設定信号との差である圧力偏差信号を、定数回路302を介して前記の低値優先回路303へ入力する。なお、背圧設定器301からの設定信号は、当該蒸気タービンに負荷遮断やタービントリップが発生した場合にゼロ位置に戻る機能を有する。
低値優先回路303は、定数回路210からの信号と定数回路302から信号の低値を選択する。選択された信号は、分岐され、一方は背圧加減弁・弁位置制御回路305に入力され、他方は、論理回路306を介して第一調整弁・弁位置制御回路307に入力される。なお、定数回路210と定数回路302は、低値優先回路303における信号レベルを合わせるために設置している。
ここで、接点304と論理回路306の動作について説明する。接点304は、通常背圧タービン64が負荷運転中は閉じており、当該蒸気タービンに負荷遮断やタービントリップが発生した場合に開くように動作する。
論理回路306は、接点304が閉じ、低値優先回路303からの信号が入力している場合は、第一調整弁・弁位置制御回路307へ閉弁動作信号を与える。逆に接点304が開き、低値優先回路303からの信号が入力していない場合は、第一調整弁・弁位置制御回路307へ開弁動作信号を与える。
高圧タービン4と低圧タービン65が負荷運転中で、背圧設定器301の設定をまだ設定しない(ゼロ位置)状態について検討する。このとき、外部蒸気消費設備100側へ蒸気を供給する前では、低値優先回路303からの出力信号は背圧制御側が低値となる。このため、背圧加減弁61は全閉状態を保持され、背圧タービン64には蒸気が流れない。
したがって、背圧タービン64が負荷運転しないため、接点304が開き、論理回路306によって第一調整弁20を全開となる。逆止弁22は閉弁するため、外部蒸気消費設備100への蒸気供給はされない。この時、背圧タービン64の内部は復水器67と連通するので真空状態となる。
その後、背圧設定器301の設定値を外部蒸気消費設備100の要求流量に基づき徐々に増加させることにより、背圧加減弁61が開弁し、背圧タービン64内部に蒸気が流入する。背圧タービン64が負荷運転を開始するため、接点304が閉じ、論理回路306によって、第一調整弁20を閉弁するように動作する。この時、逆止弁22を押し開くとともに、外部蒸気消費設備100への蒸気供給が開始される。
したがって、主蒸気加減弁3とインターセプト弁63により、蒸気タービンの回転数制御(速度制御ともいう)が可能である。そして背圧加減弁61は、蒸気タービンの回転数制御または背圧タービン64の排気口の圧力制御を行なうことが可能である。この圧力制御により、外部蒸気消費設備100へ抽気する蒸気圧力を制御することが可能となる。
なお、第一調整弁20の開閉動作のタイミングは背圧加減弁61と逆動作となるが、開閉時間や開閉スケジュールする弁の動きについては任意に設定できる。また、主蒸気止め弁2と背圧止め弁60と再熱蒸気止め弁62は、蒸気タービンの起動時におけるリセット操作以降の適切な時期に全開するように動作する。
図3は、図2の構成を変形した構成図を示す。この図3と図2との相違点は、低値優先回路303に入力される信号が、蒸気加減弁速度調定回路204を介した入力から、インターセプト弁速度調定回路250から定数回路254を介した入力に変更した点にある。定数回路254は、低値優先回路303における信号レベルを合わせるために設置している。図3のように、速度制御を行う場合について、低値優先回路303に入力される信号源が、主蒸気加減弁3からインターセプト弁63に変更しても、図2における制御動作と効果は同じとなる。
(第二実施形態)
図4は、本発明の第二実施形態に係る加圧水型原子力プラントを示す構成図である。第二実施形態における第一実施形態との相違点は、複数又は単数の背圧加減用バイパス弁25が、第一配管68に並列に設けられている点にある。なお、図4は説明のために図1に示された原子炉等の一部を省略して表している。
蒸気タービンが負荷運転中は流入する蒸気が背圧タービン64の回転数の変動に与える影響は少なく、むしろ背圧タービン64の排気口における圧力の変動に与える影響の方が多い。このため、弁口径の異なる背圧加減用バイパス弁25を設置して、その開度を調整することにより、微小な圧力制御をすることが可能となる。
(第三実施形態)
図5は、本発明の第三実施形態に係る加圧水型原子力プラントを示す構成図である。第三実施形態における第一実施形態との相違点は、湿分分離加熱器5を経由した高圧タービン排気を、背圧タービン排気と合流させて、外部出力させる第二配管33を有する点にある。
第二配管33は、第二バイパス止め弁30と、第二バイパス弁31と、第二蒸気圧検出器32を備える。これにより湿分分離加熱器5を介した高圧タービン排気を直接第二バイパス止め弁30及び第二バイパス弁31を介して、外部蒸気消費設備100へ供給が可能となる。なお、本発明による第三実施形態における制御構成は、第二バイパス弁31による圧力制御機能を除いて、図2または図3に示された構成図がそのまま適用される。さらに、図示しないが、図5に示された他方の湿分分離加熱器5から外部蒸気消費設備100へ供給することも可能である。
第二バイパス弁31は、逆止弁22に対して下流となる外部蒸気消費設備100側に接続されている第二蒸気圧検出器32の検出値が、外部蒸気消費設備100に供給するに適するように、圧力制御を実行する。
また、蒸気タービンが負荷運転中であるにもかかわらず、背圧タービン64を介して外部蒸気消費設備100への蒸気供給を行なわないとき、または背圧タービン64の何らかの事情により蒸気供給が出来ないときについて検討する。これらのときは、第二バイパス弁31を介して直接外部蒸気消費設備100へ供給することが可能である。そしてこのとき、第一調整弁20を開弁するとともに背圧加減弁61を閉弁する。これにより、背圧タービン64の内部は復水器67と連通し真空状態となる。
全閉した第二バイパス弁31は、常に第二蒸気圧検出器32の検出圧力による圧力制御の待機状態を維持している。このため、背圧加減弁61および背圧タービン64からの蒸気流れが外部蒸気消費設備100の要求流量に対して不足し、第二蒸気圧検出器32の検出圧力が低下した場合には、第二バイパス弁31を開弁して、第二バイパス弁31を介して蒸気の供給をすることができる。
第二バイパス止め弁30は、主蒸気止め弁2等と同一タイミングにて、蒸気タービンの起動時におけるリセット操作以降の適切な時期に全開するように動作する。
なお、第二バイパス弁31の出力側に、出力された高温の蒸気を冷却するための図示しない減温器が設置される。
(第四実施形態)
図6は、本発明の第四実施形態に係る加圧水型原子力プラントを示す構成図である。第四実施形態における第一実施形態との相違点は、蒸気発生器1で発生した主蒸気を、背圧タービン排気と合流させて、外部出力させる第三配管43を有する点にある。第三配管43は、第三バイパス止め弁40と、第三バイパス弁41と、第三蒸気圧検出器42を備える。
これにより蒸気発生器1より発生した主蒸気を直接第三バイパス止め弁40及び第三バイパス弁41を介して、外部蒸気消費設備100へ供給が可能となる。本発明による第四実施形態における制御構成は、第三バイパス弁41による圧力制御機能を除いて、図2または図3に示された構成図がそのまま適用される。
背圧タービン64を介して外部蒸気消費設備100への蒸気供給を行なわないとき、または背圧タービン64の保守点検等の何らかの事情により蒸気供給が出来ないときについて検討する。これらのとき、第三バイパス弁41を開弁し、蒸気発生器1からの主蒸気を外部蒸気消費設備100へ供給する事により、直接外部蒸気消費設備100への蒸気供給が可能となる。運転動作については、第三実施形態と同じとなるため、詳細な記述を省略する。
なお、第三バイパス弁41の出力側に、出力された高温の蒸気を冷却するための図示しない減温器が設置される。
(第五実施形態)
図7は、本発明の第五実施形態に係る加圧水型原子力プラントを示す構成図である。第五実施形態における第一実施形態との相違点は、背圧タービン64と低圧タービン65を直列に接続する点にある。
つまり背圧タービン64は、湿分分離加熱器5を経由した高圧タービン排気を入力し負荷運転を行い、その背圧タービン排気を抽気して外部蒸気消費設備100へ入力する。低圧タービン65は、背圧タービン64を経由した高圧タービン排気を入力し、その排気を復水器67で復水する。
なお、この実施形態では、背圧タービン64と低圧タービン65が直列に接続しているため、第一実施形態で示された背圧タービン排気を分岐して、復水器67と合流させる分岐配管23(図1)は有しない。また、外部蒸気消費設備100に供給される蒸気は、インターセプト弁63の調整により抽気する蒸気圧力を制御することができる。
以上述べた少なくともひとつの実施形態の加圧水型原子力プラントによれば、背圧タービンの入力側に背圧加減弁を備えた第一配管を持つことにより、外部出力する蒸気圧力の制御が背圧加減弁を介して実施可能となるため、蒸気タービンに入力する蒸気の絞り損失を最小化させ又は発生させること無く、効率的な発電が可能となる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、組み合わせを行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
例えば本発明の第四実施形態において、蒸気タービンを運転しながら蒸気発生器1から発生した主蒸気について第三バイパス弁41を介して、外部蒸気消費設備100へ導いた。しかし蒸気タービンを全く運転させることなく、すなわち発電を実施することなく、蒸気発生器1で発生した主蒸気の全てを外部蒸気消費設備100に供給することも可能である。
この状態は、主蒸気止め弁2を閉止状態にして、蒸気タービンを停止し、第三蒸気圧検出器42と第三バイパス弁41の制御のみで実現できる。なお、この状態でも逆止弁22は全閉状態となるため、蒸気タービン側への悪影響は無い。更に、図6に示す第三バイパス弁41の出口を復水器67に接続して蒸気タービンバイパス系統を構成することや、図4〜図6に示すバイパス弁類を全て組み合わせて運用する事も出来る。
1…蒸気発生器、2…主蒸気止め弁、3…主蒸気加減弁、4…高圧タービン、5…湿分分離加熱器、7…原子炉、8…冷却材ポンプ、10…加圧水型原子力プラント、12…復水ポンプ、13…発電機、20…第一調整弁、21…第一蒸気圧検出器、22…逆止弁、23…分岐配管、25…背圧加減用バイパス弁、30…第二バイパス止め弁、31…第二バイパス弁、32…第二蒸気圧検出器、33…第二配管、40…第三バイパス止め弁、41…第三バイパス弁、42…第三蒸気圧検出器、43…第三配管、60…背圧止め弁、61…背圧加減弁、62…再熱蒸気止め弁、63…インターセプト弁、64…背圧タービン、65…低圧タービン、67…復水器、68…第一配管、100…外部蒸気消費設備、200…速度検出歯車、201…速度検出器、202…加算器、203…速度設定器、204…蒸気加減弁速度調定回路、205…加算器、206…負荷設定器、207…低値優先回路、208…負荷制限器、209…蒸気加減弁・弁位置制御回路、210…定数回路、250…インターセプト弁速度調定回路、251…加算器、252、253…インターセプト弁・弁位置制御回路、254…定数回路、300…加算器、301…背圧設定器、302…定数回路、303…低値優先回路、304…接点、305…背圧加減弁・弁位置制御回路、306…論理回路、307…第一調整弁・弁位置制御回路、A…一次冷却材、B…二次冷却材。

Claims (7)

  1. 核分裂反応により発生した熱エネルギーによって加熱された一次冷却材との熱交換により二次冷却材を気化させて主蒸気を発生させる蒸気発生器と、
    前記主蒸気を入力しその熱エネルギーを運動エネルギーに変換して高圧タービン排気を出力する高圧タービンと、
    前記高圧タービン排気を入力しその熱エネルギーを運動エネルギーに変換した後の低圧タービン排気を復水させる低圧タービンと、
    前記高圧タービン排気を入力しその熱エネルギーを運動エネルギーに変換した後の背圧タービン排気を抽気として外部出力させる背圧タービンと、
    前記高圧タービン排気を入力して含まれる湿分を除去し加熱して出力する湿分分離加熱器と、
    前記背圧タービン排気の一部を分岐して、前記低圧タービン排気と合流し復水させる分岐配管と、を備えて、
    前記低圧タービン及び前記背圧タービンは、互いに並列に接続し、前記湿分分離加熱器から出力された前記高圧タービン排気を入力することを特徴とする加圧水型原子力プラント。
  2. 請求項に記載の加圧水型原子力プラントにおいて、
    前記湿分分離加熱器から前記背圧タービンに前記高圧タービン排気を入力させる第一配管に背圧加減弁をさらに備え、
    前記背圧加減弁を調整して前記抽気の蒸気圧力を調整することを特徴とする加圧水型原子力プラント。
  3. 請求項に記載の加圧水型原子力プラントにおいて、
    前記分岐配管は、第一調整弁を備え、
    前記抽気の外部出力を行うときは、前記第一調整弁を閉弁するとともに前記背圧加減弁を開弁し、
    前記抽気の外部出力を行わないときは、前記第一調整弁を開弁するとともに前記背圧加減弁を閉弁することを特徴とする加圧水型原子力プラント。
  4. 請求項2または請求項3に記載の加圧水型原子力プラントにおいて、
    複数の前記背圧加減弁が、前記第一配管に並列に設けられていることを特徴とする加圧水型原子力プラント。
  5. 請求項から請求項のいずれか1項に記載の加圧水型原子力プラントにおいて、
    前記湿分分離加熱器を経由した前記高圧タービン排気を前記抽気と合流させて外部出力させる第二配管を備えることを特徴とする加圧水型原子力プラント。
  6. 請求項1から請求項のいずれか1項に記載の加圧水型原子力プラントにおいて、
    前記主蒸気を前記抽気と合流させて外部出力させる第三配管を備えることを特徴とする加圧水型原子力プラント。
  7. 蒸気発生器において核分裂反応により発生した熱エネルギーによって加熱された一次冷却材との熱交換により二次冷却材を気化させて主蒸気を発生させるステップと、
    高圧タービンにおいて前記主蒸気を入力しその熱エネルギーを運動エネルギーに変換して高圧タービン排気を出力するステップと、
    低圧タービンにおいて前記高圧タービン排気を入力しその熱エネルギーを運動エネルギーに変換した後の低圧タービン排気を復水させるステップと、
    背圧タービンにおいて前記高圧タービン排気を入力しその熱エネルギーを運動エネルギーに変換した後の背圧タービン排気を抽気として外部出力させるステップと、
    湿分分離加熱器において前記高圧タービン排気を入力して含まれる湿分を除去し加熱して出力するステップと、
    分岐配管において前記背圧タービン排気の一部を分岐して、前記低圧タービン排気と合流し復水させるステップと、を含み、
    前記低圧タービン及び前記背圧タービンは、互いに並列に接続されて、前記湿分分離加熱器から出力された前記高圧タービン排気を入力することを特徴とする加圧水型原子力プラントの蒸気供給方法。
JP2012166239A 2012-07-26 2012-07-26 加圧水型原子力プラント及びその蒸気供給方法 Active JP5865799B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012166239A JP5865799B2 (ja) 2012-07-26 2012-07-26 加圧水型原子力プラント及びその蒸気供給方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012166239A JP5865799B2 (ja) 2012-07-26 2012-07-26 加圧水型原子力プラント及びその蒸気供給方法

Publications (2)

Publication Number Publication Date
JP2014025801A JP2014025801A (ja) 2014-02-06
JP5865799B2 true JP5865799B2 (ja) 2016-02-17

Family

ID=50199579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012166239A Active JP5865799B2 (ja) 2012-07-26 2012-07-26 加圧水型原子力プラント及びその蒸気供給方法

Country Status (1)

Country Link
JP (1) JP5865799B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6081544B1 (ja) * 2015-08-19 2017-02-15 三菱日立パワーシステムズ株式会社 蒸気タービンプラント
JP6081543B1 (ja) * 2015-08-19 2017-02-15 三菱日立パワーシステムズ株式会社 蒸気タービンプラント
RU193412U1 (ru) * 2019-07-11 2019-10-29 федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) Насос погружного типа для перекачки тяжелых жидкометаллических теплоносителей
CN114810242B (zh) * 2022-04-15 2023-10-20 国核电力规划设计研究院有限公司 一种背压汽轮机汽源能量综合利用方法及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5495805A (en) * 1978-01-13 1979-07-28 Hitachi Ltd Reheat type boiling water reactor electric power plant
JP3959172B2 (ja) * 1998-03-27 2007-08-15 株式会社東芝 蒸気タービンの制御方法
JP2007063066A (ja) * 2005-08-31 2007-03-15 Toshiba Corp 水素製造方法および装置
EP2204553A1 (de) * 2008-06-23 2010-07-07 Siemens Aktiengesellschaft Dampfkraftanlage

Also Published As

Publication number Publication date
JP2014025801A (ja) 2014-02-06

Similar Documents

Publication Publication Date Title
EP2375009B1 (en) Steam turbine plant
US4043130A (en) Turbine generator cycle for provision of heat to an external heat load
JP5865799B2 (ja) 加圧水型原子力プラント及びその蒸気供給方法
JP6550659B2 (ja) 給水方法、この方法を実行する給水系統、給水系統を備える蒸気発生設備
JP2011179494A (ja) 排熱回収ボイラ配管を予熱するシステム及び方法
JP2010242673A (ja) 蒸気タービンシステム及びその運転方法
JP2015068314A (ja) 燃料ガス加熱設備およびコンバインドサイクル発電プラント
JP2010249056A (ja) 蒸気タービンプラント及びその運転方法
US8015811B2 (en) Method and apparatus for varying flow source to aid in windage heating issue at FSNL
JP2007224883A (ja) 蒸気タービンの過速防止装置
JP2013245684A (ja) 蒸気ランキンプラント
JP5959454B2 (ja) 蒸気タービンシステム
EP2375010A2 (en) Steam turbine plant
JP2006063886A (ja) 火力発電プラント
JP6628613B2 (ja) 蒸気タービンプラント、原子力プラント及び蒸気タービンプラントの出力調整方法
JP2017166722A (ja) 発電プラントの運転方法
JP5656754B2 (ja) ごみ焼却炉用発電設備及びその制御方法
JP2017057837A (ja) 蒸気タービン設備と蒸気タービン設備の運転方法
WO2014017293A1 (ja) 複合動力機器及び複合動力機器の運転方法
JP2015014261A (ja) 蒸気タービンプラントおよびその運転方法
RU2600655C2 (ru) Способ работы теплоэлектроцентрали с открытой теплофикационной системой и устройство для его осуществления
KR101559728B1 (ko) 열병합 발전설비 냉각시스템
JP2012117532A (ja) 蒸気駆動発電プラント
EP3460203B1 (en) Steam turbine plant
JP2011111925A (ja) 二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151228

R151 Written notification of patent or utility model registration

Ref document number: 5865799

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151