JP5862405B2 - Method for preparing micro thin film sample for transmission electron microscope - Google Patents

Method for preparing micro thin film sample for transmission electron microscope Download PDF

Info

Publication number
JP5862405B2
JP5862405B2 JP2012070579A JP2012070579A JP5862405B2 JP 5862405 B2 JP5862405 B2 JP 5862405B2 JP 2012070579 A JP2012070579 A JP 2012070579A JP 2012070579 A JP2012070579 A JP 2012070579A JP 5862405 B2 JP5862405 B2 JP 5862405B2
Authority
JP
Japan
Prior art keywords
thin film
film sample
sample
ion beam
focused ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012070579A
Other languages
Japanese (ja)
Other versions
JP2013205017A (en
Inventor
俊介 谷口
俊介 谷口
元一 重里
元一 重里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2012070579A priority Critical patent/JP5862405B2/en
Publication of JP2013205017A publication Critical patent/JP2013205017A/en
Application granted granted Critical
Publication of JP5862405B2 publication Critical patent/JP5862405B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

本発明は、鉄鋼材料等の磁性を有する金属材料の透過電子顕微鏡用の微小薄膜試料を集束イオンビームによって作製するための試料作製方法に関する。
The present invention relates to a sample preparation method for preparing a minute thin film sample for a transmission electron microscope of a metal material having magnetism such as a steel material by a focused ion beam.

より材質のよい金属材料、例えば鉄鋼材料を製造するには、ナノメートルオーダーの析出物や粒界偏析といった微細組織の制御が重要である。このような微細組織の制御を行う上で、実際の組織がどうなっているかを知るためには微小領域の解析技術が必要であり、透過電子顕微鏡(以下、TEM)による観察が必要不可欠となっている。とりわけ、透過電子顕微鏡を用いた観察手法の中でも、電子ビームをプローブとする走査透過電子顕微鏡法は、照射系の収差補正技術の発展もあり、高い分解能で微小領域の観察と元素分析を行うことができ、非常に重要な解析技術である。   In order to produce a metal material having a better material, for example, a steel material, it is important to control a fine structure such as nanometer order precipitates and grain boundary segregation. In order to control such a fine structure, in order to know what the actual structure is, an analysis technique of a minute region is necessary, and observation with a transmission electron microscope (hereinafter referred to as TEM) is indispensable. ing. Among other observation techniques using a transmission electron microscope, scanning transmission electron microscopy using an electron beam as a probe is also accompanied by the development of aberration correction technology in the irradiation system, which enables observation and elemental analysis of minute regions with high resolution. This is a very important analysis technique.

しかしながら、フェライト系の鉄鋼材料は磁性を持っており、一般に用いられているツインジェット電解研磨法により作製した3mmφのTEM観察用薄膜試料では、事前に収差補正を行っていても、試料の磁性の影響により実際のTEM観察時には収差が現れてしまい、本来TEMが持つ高い分解能を発揮することが困難である。   However, the ferritic steel material has magnetism, and the thin film sample for 3 mmφ TEM observation manufactured by the twin jet electropolishing method that is generally used has a magnetic property of the sample even if aberration correction is performed in advance. Due to the influence, aberrations appear during actual TEM observation, and it is difficult to exhibit the high resolution inherent in TEM.

そこで、試料の体積を小さくして試料の磁性の影響を低減する方法として、集束イオンビーム(以下、FIB)加工法が有効であることが特許文献1に開示されている。しかし、FIB加工では大きなエネルギーを有するイオンビームを照射するため、薄膜試料の表層には転位ループやイオン源元素の打ち込みなどのダメージ層が形成されるという問題があるが、特許文献1では考慮されていない。   Therefore, Patent Document 1 discloses that a focused ion beam (hereinafter referred to as FIB) processing method is effective as a method of reducing the influence of magnetism of a sample by reducing the volume of the sample. However, since FIB processing irradiates an ion beam having a large energy, there is a problem that a damage layer such as a dislocation loop or an ion source element is formed on the surface layer of the thin film sample. Not.

ダメージ層を取る方法として、FIB加工後に追加して、低加速電圧のアルゴンイオンスパッタリングを実施する方法が特許文献2に示されている。しかしながら、アルゴンイオンスパッタリングにおいては試料表面に微細な凹凸が形成され、高倍率での観察において微細な析出物のコントラストが不明瞭になり、観察が困難になるという問題があった。   As a method of taking a damaged layer, Patent Document 2 discloses a method of performing argon ion sputtering with a low acceleration voltage in addition to the FIB processing. However, argon ion sputtering has a problem that fine irregularities are formed on the sample surface, and the contrast of fine precipitates becomes unclear in observation at a high magnification, making observation difficult.

特開2001−289752号公報JP 2001-289552 A 特開2004−199969号公報Japanese Patent Laid-Open No. 2004-199969

本発明は、上記のような現状に鑑みてなされたものであり、磁性を有する金属材料、例えば鉄鋼材料において、集束イオンビーム加工によるイオン照射ダメージを導入することなく、磁性の影響の小さい透過電子顕微鏡用微小薄膜試料を作製する装置および方法を提供する。   The present invention has been made in view of the current situation as described above, and in a metal material having magnetism, for example, a steel material, without introducing ion irradiation damage due to focused ion beam processing, transmitted electrons having a small magnetic effect. An apparatus and method for producing a micro thin film sample for a microscope are provided.

上記の目的を達成するために、本発明の要旨とするところは次の通りである。
(1) 真空に排気された試料室を有し、磁性を有する金属材料から透過電子顕微鏡用微小薄膜試料を作製する透過電子顕微鏡用微小薄膜試料作製装置であって、上記試料室内で薄膜試料を載置して移動可能な試料ステージと、上記試料ステージに載置された薄膜試料に集束イオンビームを照射する集束イオンビーム照射光学系と、上記試料ステージに載置された薄膜試料に電子ビームを照射する電子ビーム照射光学系と、上記集束イオンビームおよび電子ビームの照射によって発生する二次電子を検出する二次電子検出器と、上記二次電子検出器にて検出した二次電子強度から二次電子像を表示する画像表示装置と、上記薄膜試料の一部を集束イオンビームの照射から遮蔽するための薄膜部材を備えた第1の可動プローブと、上記試料ステージに載置された薄膜試料に集束イオンビームを照射して切り出した微小薄膜試料を移送するための第2の可動プローブと、上記微小薄膜試料を切り出す際に上記第2の可動プローブと上記微小薄膜試料を固着するための原料ガスを供給するガスデポジション機構と、を備える透過電子顕微鏡用微小薄膜試料作製装置を用いた透過電子顕微鏡用微小薄膜試料作製方法であって、
予め電解研磨を施した薄膜試料を上記試料ステージに載置し、該薄膜試料に電子ビームを照射して二次電子像にて該薄膜試料を観察する薄膜試料載置工程と、
上記薄膜試料載置工程にて該薄膜試料を観察しながら、該薄膜試料の一部を遮蔽し集束イオンビームの照射から回避するための薄膜部材を備えた第1の可動プローブを、微小薄膜試料の切り出し箇所の上方に移動させる第1の薄膜部材移動工程と、
上記薄膜部材を含み上記薄膜試料の一部の領域に上記集束イオンビームを照射して上記薄膜試料の一部の領域を二次電子像にて観察し、微小薄膜試料の切り出し位置を設定し、上記集束イオンビームを照射して上記薄膜試料に切り込みを入れる切り込み加工工程と、
上記電子ビーム、または上記集束イオンビームを照射して、上記切り出し位置を二次電子像にて観察し、上記切り出し位置の一部に第2の可動プローブの先端をあてがい、上記集束イオンビームを照射して、上記切り出し位置と上記第2の可動プローブとの接触部分をデポジション膜により固着させる可動プローブ固着加工工程と、
上記切り出し位置に上記集束イオンビームを照射して微小薄膜試料を切り出す微小薄膜試料切り出し加工工程と、
上記切り出した微小薄膜試料を第2の可動プローブを用いて摘出し移送する摘出工程と、
上記微小薄膜試料を支持する支持体を試料ステージに載置する支持体載置工程と、
上記電子ビームを照射して、上記微小薄膜試料と上記支持体を二次電子像にて観察しながら、上記微小薄膜試料を上記支持体に移設する移設工程と、
上記電子ビームを照射して、上記支持体に移設した微小薄膜試料と上記支持体を二次電子像にて観察しながら、上記薄膜部材を備えた第1の可動プローブを上記微小薄膜試料の上方に移動させる第2の薄膜部材移動工程と、
上記集束イオンビームを照射し、上記支持体に移設した微小薄膜試料と上記支持体との接触部分を二次電子像にて観察して、デポジション膜により上記微小薄膜試料と上記支持体とを固着させる固着工程と、
上記集束イオンビームを照射して上記支持体に固着した上記微小薄膜試料から上記第2の可動プローブを切除する切除工程と、
を有することを特徴とする透過電子顕微鏡用微小薄膜試料作製方法。
In order to achieve the above object, the gist of the present invention is as follows.
(1) A micro-thin film sample preparation apparatus for a transmission electron microscope having a sample chamber evacuated to vacuum and manufacturing a micro-thin film sample for a transmission electron microscope from a metal material having magnetism. A sample stage that can be placed and moved; a focused ion beam irradiation optical system that irradiates a thin film sample placed on the sample stage with a focused ion beam; and an electron beam applied to the thin film sample placed on the sample stage. An electron beam irradiation optical system for irradiation, a secondary electron detector for detecting secondary electrons generated by the irradiation of the focused ion beam and the electron beam, and a secondary electron intensity detected by the secondary electron detector. An image display device for displaying a secondary electron image; a first movable probe including a thin film member for shielding a part of the thin film sample from irradiation of a focused ion beam; and the sample stay. A second movable probe for transferring the thin film sample cut out by irradiating the thin film sample placed on the die with a focused ion beam, and the second movable probe and the minute piece when cutting out the minute thin film sample. A thin film sample preparation method for a transmission electron microscope using a micro thin film sample preparation apparatus for a transmission electron microscope comprising a gas deposition mechanism for supplying a raw material gas for fixing a thin film sample,
A thin film sample placing step of placing a thin film sample subjected to electropolishing in advance on the sample stage, irradiating the thin film sample with an electron beam and observing the thin film sample in a secondary electron image;
While observing the thin film sample in the thin film sample mounting step, the first movable probe provided with a thin film member for shielding a part of the thin film sample and avoiding irradiation with the focused ion beam is used as a micro thin film sample. A first thin film member moving step of moving above the cutout portion of
Irradiating the focused ion beam to a partial area of the thin film sample including the thin film member, observing a partial area of the thin film sample with a secondary electron image, setting a cutting position of the micro thin film sample, An incision processing step of irradiating the focused ion beam and incising the thin film sample;
Irradiating the electron beam or the focused ion beam, observing the cut-out position in a secondary electron image, applying the tip of a second movable probe to a part of the cut-out position, and irradiating the focused ion beam A movable probe fixing process for fixing a contact portion between the cut-out position and the second movable probe by a deposition film;
Irradiating the cut-out position with the focused ion beam to cut out a micro-thin film sample;
An extraction step of extracting and transferring the cut out thin film sample using a second movable probe;
A support placing step of placing a support that supports the micro thin film sample on a sample stage;
A transfer step of transferring the micro thin film sample to the support while irradiating the electron beam and observing the micro thin film sample and the support in a secondary electron image;
While irradiating the electron beam and observing the micro thin film sample transferred to the support and the support in a secondary electron image, the first movable probe provided with the thin film member is positioned above the micro thin film sample. A second thin film member moving step to be moved to
The focused thin film is irradiated with the focused ion beam, the contact portion between the micro thin film sample transferred to the support and the support is observed with a secondary electron image, and the micro thin film sample and the support are separated by a deposition film. A fixing step for fixing;
An excision step of excising the second movable probe from the minute thin film sample fixed to the support by irradiating the focused ion beam;
A method for producing a micro thin film sample for a transmission electron microscope, comprising:

本発明に係るTEM用微小薄膜試料作製装置と作製方法によれば、FIB加工において微小薄膜試料のTEM観察箇所に高エネルギーの集束イオンビームを照射することなく試料を作製できるため、ダメージ層を形成することはない。試料の体積を小さくすることで、試料の磁性の影響により収差が現れることもない。また、本発明の作製方法によれば、電解研磨で前加工することにより十分に薄い領域が得られるので、FIB加工後に追加工することなくTEM用微小薄膜試料を得ることができる。   According to the TEM micro thin film sample preparation apparatus and method according to the present invention, a sample can be prepared without irradiating a high-energy focused ion beam to a TEM observation portion of a micro thin film sample in FIB processing, so that a damage layer is formed. Never do. By reducing the volume of the sample, no aberration appears due to the influence of the magnetism of the sample. Further, according to the manufacturing method of the present invention, a sufficiently thin region can be obtained by pre-processing by electropolishing, so that a TEM micro thin film sample can be obtained without additional processing after FIB processing.

本発明の透過電子顕微鏡用微小薄膜試料作製装置を示す概略構成図である。It is a schematic block diagram which shows the micro thin film sample preparation apparatus for transmission electron microscopes of this invention. 薄膜部材を用いて、集束イオンビームを遮蔽している様子を示す説明図であり、(a)は薄膜試料から微小薄膜試料を摘出する様子、(b)は微小薄膜試料を支持体に移設する様子を示す。It is explanatory drawing which shows a mode that the focused ion beam is shielded using a thin film member, (a) shows a mode that a micro thin film sample is extracted from a thin film sample, (b) transfers a micro thin film sample to a support body. Show the state. 本発明の試料作製方法の手順の概要を示す図である。It is a figure which shows the outline | summary of the procedure of the sample preparation method of this invention.

以下、本発明の実施の形態を、図を参照して説明する。まず、本発明の透過電子顕微鏡用微小薄膜試料作製装置としての集束イオンビーム加工装置の構成例について、図1を用いて説明する。図1は、集束イオンビーム加工装置の構成例を示す図である。集束イオンビーム加工装置は、真空に排気された試料室1内に配置された試料ステージ2、試料ステージ2に載置した薄膜試料3に対してガリウムを線源とする集束イオンビームを照射する集束イオンビーム照射光学系4と電子ビームを照射する電子ビーム照射光学系5、集束イオンビームおよび電子ビームの照射部から発生する二次電子を検出する二次電子検出器6、検出した二次電子強度を表示する画像表示装置7、薄膜試料3の一部への集束イオンビームの照射を遮蔽するための薄膜部材8を備えた第1の可動プローブ9、薄膜試料3から摘出した微小薄膜試料を移送するための第2の可動プローブ10、微小薄膜試料を摘出する際に第2の可動プローブ10と微小薄膜試料を固着するための原料ガスを供給するガスデポジション機構11を備える。試料ステージ2は、試料室1内において、薄膜試料3を載置した状態で、集束イオンビームの照射位置や方向に応じて移動可能である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, a configuration example of a focused ion beam processing apparatus as a micro thin film sample manufacturing apparatus for a transmission electron microscope of the present invention will be described with reference to FIG. FIG. 1 is a diagram illustrating a configuration example of a focused ion beam processing apparatus. The focused ion beam processing apparatus focuses a sample stage 2 placed in a sample chamber 1 evacuated to a vacuum and a thin film sample 3 placed on the sample stage 2 with a focused ion beam using gallium as a radiation source. An ion beam irradiation optical system 4, an electron beam irradiation optical system 5 for irradiating an electron beam, a secondary electron detector 6 for detecting secondary electrons generated from a focused ion beam and electron beam irradiation unit, and detected secondary electron intensity A first movable probe 9 having a thin film member 8 for shielding irradiation of a focused ion beam onto a part of the thin film sample 3, and a small thin film sample extracted from the thin film sample 3. The second movable probe 10 to perform the gas deposition mechanism for supplying the source gas for fixing the second movable probe 10 and the minute thin film sample when extracting the minute thin film sample Equipped with a 1. The sample stage 2 is movable in the sample chamber 1 in accordance with the irradiation position and direction of the focused ion beam while the thin film sample 3 is placed thereon.

図1には、集束イオンビーム照射光学系4を、試料ステージ2に対して鉛直方向に描き、試料ステージ2を傾斜させることなく、試料ステージ面と集束イオンビーム照射光学系4が正対するように描いているが、集束イオンビーム照射光学系4は鉛直方向になくともよい。   In FIG. 1, the focused ion beam irradiation optical system 4 is drawn in the vertical direction with respect to the sample stage 2 so that the sample stage surface and the focused ion beam irradiation optical system 4 face each other without tilting the sample stage 2. Although drawn, the focused ion beam irradiation optical system 4 may not be in the vertical direction.

薄膜部材8は、第1の可動プローブ9の先端部を任意の形に加工して作製してもよい。あるいは、モリブデンやタングステンなどの剛性が高く鉄よりもスパッタリングされ難い素材の薄膜を試料ステージ2に載置し、その薄膜を任意形状に加工した薄膜部材8を第1の可動プローブ9にガスデポジションによる蒸着膜で固着してもよい。   The thin film member 8 may be manufactured by processing the tip of the first movable probe 9 into an arbitrary shape. Alternatively, a thin film made of a material such as molybdenum or tungsten that is hard to be sputtered more easily than iron is placed on the sample stage 2, and a thin film member 8 obtained by processing the thin film into an arbitrary shape is gas deposited on the first movable probe 9. It may be fixed by a vapor deposition film.

以上のような透過電子顕微鏡用微小薄膜試料作製装置を用いて、透過電子顕微鏡用微小薄膜試料を作製する方法は、以下の工程を有する。
薄膜試料載置工程:予め電解研磨を施した薄膜試料3を試料ステージ2に載置し、薄膜試料3に電子ビームを照射して、画像表示装置7に表示される二次電子像にて薄膜試料3を観察する。
第1の薄膜部材移動工程:上記薄膜試料載置工程によって薄膜試料3を観察しながら、薄膜試料3の一部を遮蔽してその部分を集束イオンビームの照射から回避するための薄膜部材8を備えた第1の可動プローブ9を、微小薄膜試料3aの切り出し箇所の上方に移動させる。
切り込み加工工程:薄膜部材8を含み薄膜試料3の一部の領域に、集束イオンビームを照射して、その薄膜試料3の一部の領域を二次電子像にて観察し、微小薄膜試料3aの切り出し位置を設定し、集束イオンビームを照射して薄膜試料3に切り込みを入れる。
可動プローブ固着加工工程:電子ビームまたは集束イオンビームを照射して、微小薄膜試料3aの切り出し位置を二次電子像にて観察し、その切り出し位置の一部に第2の可動プローブ10の先端をあてがい、集束イオンビームを照射して、切り出し位置と第2の可動プローブ10との接触部分をデポジションによる蒸着膜12により固着させる。
微小薄膜試料切り出し加工工程:切り出し位置に集束イオンビームを照射して、微小薄膜試料3aを切り出す。
摘出工程:切り出した微小薄膜試料3aを、第2の可動プローブ10を用いて摘出し移送する。
支持体載置工程:微小薄膜試料3aを支持する支持体13を、試料ステージ2に載置する。
移設工程:電子ビームを照射して、微小薄膜試料3aと支持体13を二次電子像にて観察しながら、微小薄膜試料3aを支持体13に移設する。
第2の薄膜部材移動工程:電子ビームを照射して、支持体13に移設した微小薄膜試料3aと支持体13を二次電子像にて観察しながら、薄膜部材8を備えた第1の可動プローブ9を微小薄膜試料3aの上方に移動させる。
固着工程:集束イオンビームを照射し、支持体13に移設した微小薄膜試料3aと支持体13との接触部分を二次電子像にて観察して、デポジションによる蒸着膜14により、微小薄膜試料3aと支持体13とを固着させる。
切除工程:集束イオンビームを照射して支持体13に固着した微小薄膜試料3aから、第2の可動プローブ10を切除する。
A method for producing a micro thin film sample for a transmission electron microscope using the above-described micro thin film sample producing apparatus for a transmission electron microscope includes the following steps.
Thin film sample placement step: The thin film sample 3 that has been subjected to electropolishing in advance is placed on the sample stage 2, the thin film sample 3 is irradiated with an electron beam, and a thin film is displayed on the secondary electron image displayed on the image display device 7. Sample 3 is observed.
First thin film member moving step: While observing the thin film sample 3 in the thin film sample placing step, a thin film member 8 for shielding a part of the thin film sample 3 and avoiding the portion from irradiation with the focused ion beam is provided. The provided first movable probe 9 is moved above the cut-out portion of the minute thin film sample 3a.
Cutting process step: A part of the thin film sample 3 including the thin film member 8 is irradiated with a focused ion beam, and a part of the thin film sample 3 is observed with a secondary electron image, and the thin film sample 3a The thin film sample 3 is cut by irradiating with a focused ion beam.
Movable probe fixing processing step: irradiating an electron beam or a focused ion beam, observing the cut-out position of the minute thin film sample 3a with a secondary electron image, and the tip of the second movable probe 10 at a part of the cut-out position Then, the focused ion beam is irradiated, and the contact portion between the cut-out position and the second movable probe 10 is fixed by the deposited film 12 by deposition.
Micro thin film sample cutting process: A focused ion beam is irradiated to the cutting position to cut out the small thin film sample 3a.
Extraction step: The cut out thin film sample 3 a is extracted and transferred using the second movable probe 10.
Support body placing step: The support body 13 that supports the small thin film sample 3 a is placed on the sample stage 2.
Transfer step: The micro thin film sample 3a is transferred to the support 13 while irradiating an electron beam and observing the micro thin film sample 3a and the support 13 with a secondary electron image.
Second thin film member moving step: a first movable member provided with the thin film member 8 while observing the micro thin film sample 3a transferred to the support 13 and the support 13 with a secondary electron image by irradiating an electron beam. The probe 9 is moved above the small thin film sample 3a.
Fixing step: A contact portion between the thin film sample 3a transferred to the support 13 and the support 13 by irradiation with a focused ion beam is observed with a secondary electron image, and the deposited thin film sample 14 is deposited by deposition. 3a and the support 13 are fixed.
Excision step: The second movable probe 10 is excised from the small thin film sample 3a fixed to the support 13 by irradiation with a focused ion beam.

図2は、薄膜部材8にて、TEM観察用微小薄膜試料として摘出し観察したい領域(以下、観察領域と記す)15への集束イオンビームの照射を遮蔽している様子を示している。図2(a)は、薄膜試料3から微小薄膜試料3aを摘出する様子を示している(微小薄膜試料切り出し加工工程)。微小薄膜試料3aを摘出する際、薄膜試料3から切り出す微小薄膜試料3aの外周を切断し、薄膜試料3と微小薄膜試料3aとの間の隙間を作るための集束イオンビームによる加工、および、第2の可動プローブ10の微小薄膜試料3aへの固着のためのガスデポジションによる蒸着膜12が必要となる。その際、観察領域15に集束イオンビームが照射されると、ガリウムイオンの打ち込みや転位の導入、観察領域15が削れてなくなってしまうなどの問題が起こるため、薄膜部材8にて観察領域15を覆い隠し、観察領域15に集束イオンビームが照射されないようにしている。第2の可動プローブ10を微小薄膜試料3aに蒸着膜12により固着するタイミングは、集束イオンビームを照射して薄膜試料3を加工する際に、薄膜部材8の外周部のうち、第2の可動プローブ10が固着される位置付近の加工を終えた後から微小薄膜試料3aを完全に切り離すまでの間なら、いつでもよい。ただし、より好ましくは、第2の可動プローブ10が微小薄膜試料3aを摘出しようとしている領域に接した際に、摘出しようとしている微小薄膜試料3aの領域がたわんだり曲がったりする可能性を小さくするために、第2の可動プローブ10が固着される位置付近の加工を終えたら、他の箇所を加工する前に、第2の可動プローブ10を固着するのがよい。   FIG. 2 shows a state in which the thin film member 8 shields irradiation of a focused ion beam onto a region (hereinafter referred to as an observation region) 15 to be extracted and observed as a TEM observation micro thin film sample. FIG. 2A shows a state in which the small thin film sample 3a is extracted from the thin film sample 3 (micro thin film sample cutting process step). When extracting the micro thin film sample 3a, the outer periphery of the micro thin film sample 3a cut out from the thin film sample 3 is cut, and processing with a focused ion beam to create a gap between the thin film sample 3 and the micro thin film sample 3a; The vapor deposition film 12 by gas deposition is required for fixing the movable probe 10 of 2 to the minute thin film sample 3a. At this time, if the focused ion beam is irradiated to the observation region 15, problems such as implantation of gallium ions, introduction of dislocations, and the observation region 15 may not be removed occur. The observation area 15 is prevented from being irradiated with the focused ion beam. The timing at which the second movable probe 10 is fixed to the minute thin film sample 3a by the vapor deposition film 12 is the second movable probe of the outer peripheral portion of the thin film member 8 when the thin film sample 3 is processed by irradiating the focused ion beam. It may be any time after the processing near the position where the probe 10 is fixed until the micro thin film sample 3a is completely separated. However, more preferably, when the second movable probe 10 is in contact with the region where the minute thin film sample 3a is to be extracted, the possibility that the region of the minute thin film sample 3a to be extracted is bent or bent is reduced. Therefore, after finishing the vicinity of the position where the second movable probe 10 is fixed, it is preferable to fix the second movable probe 10 before processing other portions.

図2(b)は、微小薄膜試料3aを支持体13に移設した様子を示している(固着工程)。移設の際には微小薄膜試料3aと支持体13との固着のためのガスデポジションによる蒸着膜14の作製、第2の可動プローブ10の切除が必要となる。この際にも上述の通り、観察領域15に集束イオンビームが照射されると問題が発生するため、観察領域15を薄膜部材8にて覆い隠し、観察領域15に集束イオンビームが照射されないようにしている。   FIG. 2B shows a state in which the small thin film sample 3a is transferred to the support 13 (fixing step). At the time of transfer, it is necessary to produce the vapor deposition film 14 by gas deposition for fixing the small thin film sample 3 a and the support 13 and to cut off the second movable probe 10. At this time, as described above, a problem occurs when the observation region 15 is irradiated with the focused ion beam. Therefore, the observation region 15 is covered with the thin film member 8 so that the observation region 15 is not irradiated with the focused ion beam. ing.

本発明例として、フェライト単相組織を有する1.2mm厚の鋼板から、本発明の作製装置および作製方法により、TEM観察用微小薄膜試料を作製した。FIB加工の前準備として、ツインジェット電解研磨法により3mmφの電解研磨試料を作製した。作製方法は、まず、精密切断機により鋼板から10mm×15mm×1.2mmtの試料を切り出し、機械研磨により厚さを約60μmにまで薄くした試料から、ディスクパンチ装置を用いて3mmφのディスクを打ち抜いた。3mmφのディスクを、無水酢酸を90体積%、過塩素酸を10体積%の割合で混合した電解液を使用して、電解液温度14℃、印加電圧70Vの条件で、ツインジェット電解研磨法により観察箇所の試料厚さが約30nmの薄膜試料を得た。本発明例では、電解研磨した薄膜試料の作製方法としてツインジェット電解研磨法を用いたが、窓開け法など他の電解研磨法で薄膜試料を作製しても良い。   As an example of the present invention, a TEM observation micro thin film sample was fabricated from a 1.2 mm thick steel sheet having a ferrite single phase structure by the fabrication apparatus and fabrication method of the present invention. As preparation for FIB processing, a 3 mmφ electropolished sample was prepared by a twin jet electropolishing method. First, a 10 mm × 15 mm × 1.2 mmt sample was cut out from a steel plate with a precision cutting machine, and a 3 mmφ disk was punched out using a disk punch device from a sample that had been thinned to about 60 μm by mechanical polishing. It was. Using a 3 mmφ disk with an electrolytic solution in which acetic anhydride is mixed at 90% by volume and perchloric acid at a rate of 10% by volume, under conditions of an electrolytic solution temperature of 14 ° C. and an applied voltage of 70V, a twin jet electropolishing method is used. A thin film sample having a sample thickness of about 30 nm was obtained at the observation location. In the example of the present invention, the twin jet electropolishing method is used as a method for producing the electropolished thin film sample, but the thin film sample may be produced by other electropolishing methods such as a window opening method.

図3を用いて、図1の集束イオンビームを用いた本発明例の試料作製方法の手順について図番に沿って説明する。
図3(a):電子ビームを照射して得た二次電子像を観察しながら、薄膜試料3の電解研磨により開いた孔の縁部の微小薄膜試料摘出箇所に、第1の可動プローブ9の先端の薄膜部材8を移動させた。薄膜部材8の大きさは、約10μm×約10μm×約3μmtとした。
図3(b):集束イオンビームにより、観察領域15を遮蔽した薄膜部材8の1辺から2μm離れた位置を加工した。集束イオンビームは、加速電圧40kV、ビーム電流量0.4nAとした。薄膜部材8の1辺から2μm離れた位置を加工した理由は、マイクロサンプリングのための第2の可動プローブ10をガスデポジションにて薄膜試料3と固着する(図3(c))領域を確保するためである。本実施例では間隔を2μmとしたが、第2の可動プローブ10の先端部の大きさに合わせて調整すればよい。
図3(c):観察領域15と図3(b)による加工箇所の間の領域に第2の可動プローブ10を接触させた後、ガスデポジションにより第2の可動プローブ10と薄膜試料3を蒸着膜12にて固着させた。
図3(d):集束イオンビームにて観察領域15の残りの2辺の周りを加工し、約12μm×約11μmの大きさに切り出して微小薄膜試料3aを切り離し、第2の可動プローブ10にて微小薄膜試料3aを摘出した。
図3(e):電子ビームを照射して得た二次電子像を観察しながら、微小薄膜試料3aを固着した第2の可動プローブ10を移動し、支持体13に微小薄膜試料3aを接触させ、第1の可動プローブ9を移動して、薄膜部材8を微小薄膜試料3aの上方に、集束イオンビーム照射光学系4からの集束イオンビームを遮るよう移動した。
図3(f):集束イオンビームを照射してガスデポジションにて微小薄膜試料3aと支持体13を蒸着膜14にて固着し、次いで、第2の可動プローブ10を集束イオンビームにて切り離した。
The procedure of the sample preparation method of the present invention example using the focused ion beam of FIG. 1 will be described with reference to FIG.
FIG. 3A: While observing the secondary electron image obtained by irradiating the electron beam, the first movable probe 9 is formed at the position where the thin film sample is removed at the edge of the hole opened by the electrolytic polishing of the thin film sample 3. The thin film member 8 at the tip of was moved. The size of the thin film member 8 was about 10 μm × about 10 μm × about 3 μmt.
FIG. 3B: A position 2 μm away from one side of the thin film member 8 that shields the observation region 15 was processed by a focused ion beam. The focused ion beam had an acceleration voltage of 40 kV and a beam current amount of 0.4 nA. The reason why the position 2 μm away from one side of the thin film member 8 is processed is that the second movable probe 10 for microsampling is secured to the thin film sample 3 by gas deposition (FIG. 3C). It is to do. In this embodiment, the interval is set to 2 μm, but may be adjusted according to the size of the tip of the second movable probe 10.
FIG. 3C: After the second movable probe 10 is brought into contact with the region between the observation region 15 and the processing location shown in FIG. 3B, the second movable probe 10 and the thin film sample 3 are attached by gas deposition. The vapor deposition film 12 was fixed.
FIG. 3D: The periphery of the remaining two sides of the observation region 15 is processed with a focused ion beam, cut into a size of about 12 μm × about 11 μm, and the small thin film sample 3 a is cut off to form the second movable probe 10. Thus, a small thin film sample 3a was extracted.
FIG. 3E: While observing the secondary electron image obtained by irradiating the electron beam, the second movable probe 10 to which the minute thin film sample 3a is fixed is moved, and the minute thin film sample 3a is brought into contact with the support 13. Then, the first movable probe 9 was moved, and the thin film member 8 was moved above the small thin film sample 3a so as to block the focused ion beam from the focused ion beam irradiation optical system 4.
FIG. 3 (f): A thin ion sample 3a and a support 13 are fixed by a vapor deposition film 14 by gas deposition by irradiating a focused ion beam, and then the second movable probe 10 is separated by a focused ion beam. It was.

比較例1として、フェライト単相組織を有する1.2mm厚の鋼板から、精密切断機により8mm×8mm×1.2mmtの試料を切り出し、片面を鏡面研磨後、集束イオンビーム加工装置にて約10μm×約10μm×約0.15μmの大きさの断面観察試料を作製した。集束イオンビーム加工はイオン源を液体ガリウムとして、まず、断面観察試料の摘出箇所に保護膜としてタングステンをガスデポジションにて蒸着した。次に、加速電圧40kV、ビーム電流量31nAの条件にて試料摘出箇所周りの粗加工を行い、加速電圧40kV、ビーム電流量6nAの条件にて試料摘出箇所周りの仕上げ加工を行った。続いて、集束イオンビームにて断面観察試料を約10μm×約10μm×約2μmtの大きさに切り出して、可動プローブにて摘出し、支持体にタングステンの蒸着膜にて固着した。断面観察試料の厚さをさらに低減するために、加速電圧40kV、ビーム電流量1.4nAの条件にて約1μmの厚さにまで加工した後、加速電圧40kV、ビーム電流量0.4nAの条件にて約0.15μmの厚さにまで加工した。さらに、アルゴンイオンミリングを実施、ダメージ層の除去を行った。ミリング条件は加速電圧1kV、ビーム電流量10mAで1分、さらに加速電圧0.6kV、ビーム電流量10mAにて試料厚さが約30nmになるまでミリングを実施した。   As Comparative Example 1, an 8 mm × 8 mm × 1.2 mmt sample was cut out from a 1.2 mm-thick steel plate having a ferrite single-phase structure with a precision cutting machine, and one side was mirror-polished and then about 10 μm with a focused ion beam processing apparatus. A cross-sectional observation sample having a size of about 10 μm × about 0.15 μm was prepared. In the focused ion beam processing, the ion source was liquid gallium, and first, tungsten was vapor-deposited by gas deposition as a protective film at the location where the cross-sectional observation sample was extracted. Next, rough processing was performed around the sample extraction site under the conditions of an acceleration voltage of 40 kV and a beam current amount of 31 nA, and finishing processing was performed around the sample extraction site under the conditions of the acceleration voltage of 40 kV and the beam current amount of 6 nA. Subsequently, the cross-section observation sample was cut into a size of about 10 μm × about 10 μm × about 2 μmt with a focused ion beam, extracted with a movable probe, and fixed to the support with a vapor deposition film of tungsten. In order to further reduce the thickness of the cross-sectional observation sample, after processing to a thickness of about 1 μm under conditions of an acceleration voltage of 40 kV and a beam current of 1.4 nA, a condition of an acceleration voltage of 40 kV and a beam current of 0.4 nA To a thickness of about 0.15 μm. Further, argon ion milling was performed to remove the damaged layer. The milling conditions were an acceleration voltage of 1 kV and a beam current of 10 mA for 1 minute, and further milling was performed until the sample thickness reached about 30 nm at an acceleration voltage of 0.6 kV and a beam current of 10 mA.

比較例2として、フェライト単相組織を有する1.2mm厚の鋼板から、精密切断機により10mm×15mm×1.2mmtの試料を切り出し、機械研磨により厚さを約60μmにまで薄くした試料からディスクパンチ装置を用いて3mmφのディスクを打ち抜いた後、無水酢酸を90体積%、過塩素酸を10体積%の割合で混合した電解液を使用して電解液温度14℃、印加電圧70Vの条件でツインジェット電解研磨法により観察箇所の試料厚さが約30nmのTEM薄膜試料を得た。   As Comparative Example 2, a 10 mm × 15 mm × 1.2 mmt sample was cut out from a 1.2 mm thick steel plate having a ferrite single-phase structure with a precision cutting machine, and the thickness was reduced to about 60 μm by mechanical polishing. After punching out a 3 mmφ disk using a punching device, an electrolytic solution in which acetic anhydride was mixed at a rate of 90% by volume and perchloric acid at a rate of 10% by volume was used at an electrolytic solution temperature of 14 ° C. and an applied voltage of 70V. A TEM thin film sample having a specimen thickness of about 30 nm was obtained by a twin jet electropolishing method.

上述のように本発明例、比較例1、比較例2で作製した3つの試料を、照射系の収差補正を行った加速電圧300kVの透過電子顕微鏡において、収差に及ぼす磁性の影響の有無については、ロンチグラムの位相の揃った領域の収束半角が20mrad以上であれば磁性の影響をほぼ無視できるとして良否を判断した。さらに、試料の凹凸の影響については、検出角度61mradとした高角環状暗視野走査透過電子顕微鏡法にて観察を行い、晶帯軸入射ではないランダムな入射方向から倍率300万倍で観察した像の最小強度に対する最大強度の比が1.1未満であれば試料凹凸の影響は無視できるとして良否を判断した。これらの結果を表1に示す。   As described above, in the transmission electron microscope with the acceleration voltage of 300 kV in which the three samples prepared in the present invention example, comparative example 1 and comparative example 2 were subjected to the aberration correction of the irradiation system, whether or not there is an influence of magnetism on the aberration. If the convergence half-angle of the region having the same phase of the Ronchigram is 20 mrad or more, it was judged that the influence of magnetism can be almost ignored. Further, the influence of the unevenness of the sample was observed with a high-angle annular dark field scanning transmission electron microscope with a detection angle of 61 mrad, and an image observed at a magnification of 3 million times from a random incident direction other than the zone axis incidence. If the ratio of the maximum intensity to the minimum intensity is less than 1.1, it was judged that the influence of the sample irregularities can be ignored. These results are shown in Table 1.

Figure 0005862405
Figure 0005862405

表中の○は、上記の方法で磁性および試料の表面凹凸の影響を評価した時に、磁性または、試料の表面凹凸の影響をほぼ無視できたことを示し、×は磁性または、試料の表面凹凸の影響を無視できなかったことを示す。本発明の作製装置、作製方法で作製したTEM観察用微小薄膜試料は、磁性の影響も見られず、また表面凹凸の影響も見られず、良好な結果を得た。一方、集束イオンビーム加工によるマイクロサンプリング後にアルゴンイオンミリングを行った試料では、試料の持つ磁性により収差補正器で補正しきれない収差が現れる等の磁性の影響は見られなかったが、アルゴンイオンミリングの研磨むらによりナノメートルオーダーで像強度の変化が見られた(比較例1)。また、3mmφの電解研磨試料では表面凹凸による影響は見られなかったが、磁性の影響によりロンチグラムの位相が揃った領域の収束半角は20mradよりも小さかった(比較例2)。   The circles in the table indicate that when the effects of magnetism and surface irregularities of the sample were evaluated by the above method, the effects of magnetism or surface irregularities of the sample were almost negligible, and x was magnetic or surface irregularities of the sample. This indicates that the influence of could not be ignored. The microscopic thin film sample for TEM observation produced by the production apparatus and production method of the present invention did not show the influence of magnetism, and did not show the influence of surface irregularities, and obtained good results. On the other hand, in the sample that was subjected to argon ion milling after microsampling by focused ion beam processing, there was no influence of magnetism such as the appearance of aberration that could not be corrected by the aberration corrector due to the magnetism of the sample, but argon ion milling A change in image intensity on the order of nanometers was observed due to uneven polishing (Comparative Example 1). Moreover, although the influence by surface unevenness | corrugation was not seen in the electropolishing sample of 3 mm (phi), the convergence half angle of the area | region where the phase of the Ronchigram was aligned by the influence of magnetism was smaller than 20 mrad (comparative example 2).

1 試料室
2 試料ステージ
3 薄膜試料
3a 微小薄膜試料
4 集束イオンビーム照射光学系
5 電子ビーム照射光学系
6 二次電子検出器
7 画像表示装置
8 薄膜部材
9 第1の可動プローブ
10 第2の可動プローブ
11 ガスデポジション機構
12 蒸着膜
13 支持体
14 蒸着膜
DESCRIPTION OF SYMBOLS 1 Sample chamber 2 Sample stage 3 Thin film sample 3a Minute thin film sample 4 Focused ion beam irradiation optical system 5 Electron beam irradiation optical system 6 Secondary electron detector 7 Image display device 8 Thin film member 9 First movable probe 10 Second movable Probe 11 Gas deposition mechanism 12 Deposition film 13 Support 14 Deposition film

Claims (1)

真空に排気された試料室を有し、磁性を有する金属材料から透過電子顕微鏡用微小薄膜試料を作製する透過電子顕微鏡用微小薄膜試料作製装置であって、上記試料室内で薄膜試料を載置して移動可能な試料ステージと、上記試料ステージに載置された薄膜試料に集束イオンビームを照射する集束イオンビーム照射光学系と、上記試料ステージに載置された薄膜試料に電子ビームを照射する電子ビーム照射光学系と、上記集束イオンビームおよび電子ビームの照射によって発生する二次電子を検出する二次電子検出器と、上記二次電子検出器にて検出した二次電子強度から二次電子像を表示する画像表示装置と、上記薄膜試料の一部を集束イオンビームの照射から遮蔽するための薄膜部材を備えた第1の可動プローブと、上記試料ステージに載置された薄膜試料に集束イオンビームを照射して切り出した微小薄膜試料を移送するための第2の可動プローブと、上記微小薄膜試料を切り出す際に上記第2の可動プローブと上記微小薄膜試料を固着するための原料ガスを供給するガスデポジション機構と、を備える透過電子顕微鏡用微小薄膜試料作製装置を用いた透過電子顕微鏡用微小薄膜試料作製方法であって、
予め電解研磨を施した薄膜試料を上記試料ステージに載置し、該薄膜試料に電子ビームを照射して二次電子像にて該薄膜試料を観察する薄膜試料載置工程と、
上記薄膜試料載置工程にて該薄膜試料を観察しながら、該薄膜試料の一部を遮蔽し集束イオンビームの照射から回避するための薄膜部材を備えた第1の可動プローブを、微小薄膜試料の切り出し箇所の上方に移動させる第1の薄膜部材移動工程と、
上記薄膜部材を含み上記薄膜試料の一部の領域に上記集束イオンビームを照射して上記薄膜試料の一部の領域を二次電子像にて観察し、微小薄膜試料の切り出し位置を設定し、上記集束イオンビームを照射して上記薄膜試料に切り込みを入れる切り込み加工工程と、
上記電子ビーム、または上記集束イオンビームを照射して、上記切り出し位置を二次電子像にて観察し、上記切り出し位置の一部に第2の可動プローブの先端をあてがい、上記集束イオンビームを照射して、上記切り出し位置と上記第2の可動プローブとの接触部分をデポジション膜により固着させる可動プローブ固着加工工程と、
上記切り出し位置に上記集束イオンビームを照射して微小薄膜試料を切り出す微小薄膜試料切り出し加工工程と、
上記切り出した微小薄膜試料を第2の可動プローブを用いて摘出し移送する摘出工程と、
上記微小薄膜試料を支持する支持体を試料ステージに載置する支持体載置工程と、
上記電子ビームを照射して、上記微小薄膜試料と上記支持体を二次電子像にて観察しながら、上記微小薄膜試料を上記支持体に移設する移設工程と、
上記電子ビームを照射して、上記支持体に移設した微小薄膜試料と上記支持体を二次電子像にて観察しながら、上記薄膜部材を備えた第1の可動プローブを上記微小薄膜試料の上方に移動させる第2の薄膜部材移動工程と、
上記集束イオンビームを照射し、上記支持体に移設した微小薄膜試料と上記支持体との接触部分を二次電子像にて観察して、デポジション膜により上記微小薄膜試料と上記支持体とを固着させる固着工程と、
上記集束イオンビームを照射して上記支持体に固着した上記微小薄膜試料から上記第2の可動プローブを切除する切除工程と、
を有することを特徴とする透過電子顕微鏡用微小薄膜試料作製方法。
A micro thin film sample preparation apparatus for a transmission electron microscope having a sample chamber evacuated to vacuum and producing a thin film sample for a transmission electron microscope from a magnetic metal material, wherein the thin film sample is placed in the sample chamber. A movable sample stage, a focused ion beam irradiation optical system for irradiating a thin film sample placed on the sample stage with a focused ion beam, and an electron for irradiating the thin film sample placed on the sample stage with an electron beam A beam irradiation optical system, a secondary electron detector for detecting secondary electrons generated by irradiation of the focused ion beam and the electron beam, and a secondary electron image from a secondary electron intensity detected by the secondary electron detector; Mounted on the sample stage, a first movable probe having a thin film member for shielding a part of the thin film sample from irradiation of the focused ion beam, A second movable probe for transferring the thin film sample cut out by irradiating the focused thin film sample with a focused ion beam, and fixing the second movable probe and the small thin film sample when cutting out the thin film sample A thin film sample preparation method for a transmission electron microscope using a thin film sample preparation apparatus for a transmission electron microscope comprising a gas deposition mechanism for supplying a raw material gas for
A thin film sample placing step of placing a thin film sample subjected to electropolishing in advance on the sample stage, irradiating the thin film sample with an electron beam and observing the thin film sample in a secondary electron image;
While observing the thin film sample in the thin film sample mounting step, the first movable probe provided with a thin film member for shielding a part of the thin film sample and avoiding irradiation with the focused ion beam is used as a micro thin film sample. A first thin film member moving step of moving above the cutout portion of
Irradiating the focused ion beam to a partial area of the thin film sample including the thin film member, observing a partial area of the thin film sample with a secondary electron image, setting a cutting position of the micro thin film sample, An incision processing step of irradiating the focused ion beam and incising the thin film sample;
Irradiating the electron beam or the focused ion beam, observing the cut-out position in a secondary electron image, applying the tip of a second movable probe to a part of the cut-out position, and irradiating the focused ion beam A movable probe fixing process for fixing a contact portion between the cut-out position and the second movable probe by a deposition film;
Irradiating the cut-out position with the focused ion beam to cut out a micro-thin film sample;
An extraction step of extracting and transferring the cut out thin film sample using a second movable probe;
A support placing step of placing a support that supports the micro thin film sample on a sample stage;
A transfer step of transferring the micro thin film sample to the support while irradiating the electron beam and observing the micro thin film sample and the support in a secondary electron image;
While irradiating the electron beam and observing the micro thin film sample transferred to the support and the support in a secondary electron image, the first movable probe provided with the thin film member is positioned above the micro thin film sample. A second thin film member moving step to be moved to
The focused thin film is irradiated with the focused ion beam, the contact portion between the micro thin film sample transferred to the support and the support is observed with a secondary electron image, and the micro thin film sample and the support are separated by a deposition film. A fixing step for fixing;
An excision step of excising the second movable probe from the minute thin film sample fixed to the support by irradiating the focused ion beam;
A method for producing a micro thin film sample for a transmission electron microscope, comprising:
JP2012070579A 2012-03-27 2012-03-27 Method for preparing micro thin film sample for transmission electron microscope Active JP5862405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012070579A JP5862405B2 (en) 2012-03-27 2012-03-27 Method for preparing micro thin film sample for transmission electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012070579A JP5862405B2 (en) 2012-03-27 2012-03-27 Method for preparing micro thin film sample for transmission electron microscope

Publications (2)

Publication Number Publication Date
JP2013205017A JP2013205017A (en) 2013-10-07
JP5862405B2 true JP5862405B2 (en) 2016-02-16

Family

ID=49524278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012070579A Active JP5862405B2 (en) 2012-03-27 2012-03-27 Method for preparing micro thin film sample for transmission electron microscope

Country Status (1)

Country Link
JP (1) JP5862405B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103645204A (en) * 2013-11-22 2014-03-19 上海华力微电子有限公司 Method for improving success rate of transmission electron microscope's irradiation on sample
CN105628468B (en) * 2015-12-28 2018-05-15 西安电子科技大学 GaN base hetero-junctions transparent membrane transmission electron microscope cross-sectional sample preparation method
CN114527150B (en) * 2022-01-25 2022-09-27 北京科技大学 Method for shooting high-resolution image of nano Cu precipitated phase in magnetic steel

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0528950A (en) * 1991-07-23 1993-02-05 Hitachi Ltd Method and device for machining cross section
JP3236484B2 (en) * 1994-09-22 2001-12-10 株式会社荏原製作所 Energy beam processing method
JP3326293B2 (en) * 1995-02-02 2002-09-17 財団法人国際超電導産業技術研究センター Inorganic ultra-thin flake and method for producing the same
JP3263920B2 (en) * 1996-02-01 2002-03-11 日本電子株式会社 Sample preparation apparatus and method for electron microscope
WO1999005506A1 (en) * 1997-07-22 1999-02-04 Hitachi, Ltd. Method and apparatus for preparing samples
JPH11218473A (en) * 1998-02-02 1999-08-10 Mitsubishi Electric Corp Method and device for preparing sample for section transmission electron microscope
JP3825191B2 (en) * 1998-12-28 2006-09-20 株式会社神戸製鋼所 Aluminum alloy sputtering target material
JP2000329664A (en) * 1999-05-18 2000-11-30 Nkk Corp Observation method of transmission electron microscope and holding jig
JP4323655B2 (en) * 2000-01-25 2009-09-02 新日本製鐵株式会社 Method for preparing needle-shaped sample for field ion microscope observation
JP2001289752A (en) * 2000-04-07 2001-10-19 Nippon Steel Corp Magnetic material sample preparation method for transmission electron microscope observation
JP4890373B2 (en) * 2007-07-19 2012-03-07 新日本製鐵株式会社 Sample preparation method
JP5348634B2 (en) * 2009-08-10 2013-11-20 株式会社ケミカル山本 Electropolishing equipment for analytical samples

Also Published As

Publication number Publication date
JP2013205017A (en) 2013-10-07

Similar Documents

Publication Publication Date Title
EP2690648B1 (en) Method of preparing and imaging a lamella in a particle-optical apparatus
Munroe The application of focused ion beam microscopy in the material sciences
CN107084869B (en) High throughput TEM fabrication process and hardware for backside thinning of cross-sectional view thin layers
US7442924B2 (en) Repetitive circumferential milling for sample preparation
JP6105204B2 (en) Sample preparation method for TEM observation
US20040164242A1 (en) Sample preparation for transmission electron microscopy
KR20180132546A (en) Face-on, gas-assisted etching for plan-view lamellae preparation
US20060017016A1 (en) Method for the removal of a microscopic sample from a substrate
JP2004087174A (en) Ion beam device, and working method of the same
JP2009198412A (en) Preparation method of sample for transmission electron microscope, and sample for transmission electron microscope
CN104737266B (en) Charged particle beam apparatus and sample manufacture method
JP2007108105A (en) Method for preparing sample for electron microscope, converged ion beam device and a sample support stand
KR100796829B1 (en) Tem sample slicing process
Fischione et al. A small spot, inert gas, ion milling process as a complementary technique to focused ion beam specimen preparation
JP5862405B2 (en) Method for preparing micro thin film sample for transmission electron microscope
JP2018163826A (en) Charged particle beam machine and sample processing method
JP2016100119A (en) Sample holder, and method for observation by transmission type electron microscope
US7180061B2 (en) Method for electron beam-initiated coating for application of transmission electron microscopy
CN110082177B (en) Cleaning method for irradiation damage of crystal electronic element in TEM sample preparation process
CN111474197A (en) Method for controlling contamination resulting from transmission electron microscope sample preparation
Cen et al. Ion beam heating of kinetically constrained nanomaterials
JPH11218473A (en) Method and device for preparing sample for section transmission electron microscope
EP3023763B1 (en) Specimen preparation device
JP4170048B2 (en) Ion beam apparatus and ion beam processing method
CN111474196B (en) Method for controlling deformation generated by sample preparation of transmission electron microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151214

R151 Written notification of patent or utility model registration

Ref document number: 5862405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350