JP2000329664A - Observation method of transmission electron microscope and holding jig - Google Patents

Observation method of transmission electron microscope and holding jig

Info

Publication number
JP2000329664A
JP2000329664A JP11136754A JP13675499A JP2000329664A JP 2000329664 A JP2000329664 A JP 2000329664A JP 11136754 A JP11136754 A JP 11136754A JP 13675499 A JP13675499 A JP 13675499A JP 2000329664 A JP2000329664 A JP 2000329664A
Authority
JP
Japan
Prior art keywords
sample
ring
observation
tem
transmission electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11136754A
Other languages
Japanese (ja)
Inventor
Etsuo Hamada
悦男 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP11136754A priority Critical patent/JP2000329664A/en
Publication of JP2000329664A publication Critical patent/JP2000329664A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an observation method of a transmission electron microscope whereby an observation sample can be TEM observed without disturbing a magnetic field of an electromagnetic lens even when the observation sample is a magnetic material, and obtain a holding jig which can stably hold the sample. SOLUTION: When a magnetic material is used as a sample for TEM, the sample 1 of the magnetic material is processed by the FIB method to a volume of not larger than 0.025 mm3. The sample 1 of the volume has a lateral width of 2 mm or smaller. A sample holding ring 2 has a ring width 2b whereby the sample 1 of the lateral width of 2 mm or smaller can be held to the vicinity of a center part of the ring 2. The sample 1 is held to the vicinity of the center part of the ring 2, to which a TEM observation is executed. A magnetic field of a TEM electromagnetic lens will not be disturbed by the other part than an observation area of the sample 1, so that an efficiency of the TEM observation and of a TEM-EDX analysis is greatly improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、透過型電子顕微
鏡(以下、「TEM」という)によって磁性材料を観察
する方法および保持治具に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for observing a magnetic material with a transmission electron microscope (hereinafter, referred to as "TEM") and a holding jig.

【0002】[0002]

【従来の技術】透過型電子顕微鏡(TEM)によって試
料観察を行う場合、試料対象材料を薄片化することが必
要である。そのため対象材料によっては、試料作製が困
難となる。例えば、めっき鋼板のめっき被膜−鋼板界面
の断面方向からの観察を行う場合、電解研摩法およびイ
オンミリング法等では、めっき被膜のみが選択的に研摩
されてしまう問題がある。また、ミクロトーム法では、
試料を切削するために、試料の変形、破壊および疵等に
より本来の構造を保てない等の問題が生じる。
2. Description of the Related Art When observing a sample with a transmission electron microscope (TEM), it is necessary to thin the material to be sampled. Therefore, depending on the target material, it is difficult to prepare a sample. For example, when observing the plating film of a plated steel sheet from the cross-sectional direction of the interface between the plating film and the steel sheet, there is a problem that only the plating film is selectively polished in the electrolytic polishing method and the ion milling method. In the microtome method,
Since the sample is cut, there arises a problem that the original structure cannot be maintained due to deformation, destruction, and flaws of the sample.

【0003】これに対し、収束イオンビーム(Focu
sed Ion Beam)法(以下、「FIB」とい
う)では、以上のような問題を生じることなく、所望の
箇所を高精度で加工可能であり、100nm程の厚さの
薄片ならば困難なく作製が可能である。従って、近年、
FIBは、TEM試料作製に盛んに使われるようになっ
ている。
On the other hand, a focused ion beam (Focu)
In the sed ion beam (hereinafter, referred to as "FIB") method, a desired portion can be processed with high accuracy without causing the above-described problems, and a thin piece having a thickness of about 100 nm can be manufactured without difficulty. It is possible. Therefore, in recent years,
FIB has been actively used for TEM sample preparation.

【0004】一般にFIBにより作製するTEM試料
は、TEMの試料ホルダに装着可能なように、図3に示
すような試料保持リングを備える試料保持用の治具に装
着される。リングの材質は主にCuであるが、試料中に
Cuが存在する場合等、分析の障害となる場合には、他
の材質(Ti、Au等)が用いられる。図3に示す従来
の保持治具においては、円弧状のリング5の径5aは約
3mm、リング幅5bは約0.5mmに設定されてい
る。
In general, a TEM sample manufactured by FIB is mounted on a sample holding jig provided with a sample holding ring as shown in FIG. 3 so as to be mountable on a TEM sample holder. The material of the ring is mainly Cu, but in the case where Cu is present in the sample or other obstacles to the analysis, other materials (Ti, Au, etc.) are used. In the conventional holding jig shown in FIG. 3, the diameter 5a of the arc-shaped ring 5 is set to about 3 mm, and the ring width 5b is set to about 0.5 mm.

【0005】試料ホルダの構成上、円弧状のリング5の
中心部近傍に観察領域6を位置させる必要が有るため、
試料(対象材料)4は、図4に示すように、例えば、
2.0mm(横幅)×0.5mm×50μm=0.05
mm3(体積)の大きさに前加工されて、図5に示すよ
うにリング5に接着される。図4において、4aは試料
の横幅を示す。
[0005] Because of the structure of the sample holder, it is necessary to position the observation area 6 near the center of the circular ring 5.
The sample (target material) 4 is, for example, as shown in FIG.
2.0 mm (width) × 0.5 mm × 50 μm = 0.05
It is pre-processed to a size of mm 3 (volume) and adhered to the ring 5 as shown in FIG. In FIG. 4, 4a indicates the width of the sample.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前加工
試料4が鉄鋼材料等のような磁性材料の場合には、上記
のように体積が0.05mm3もあると、リング中心部
のみならずその周辺にも試料が位置し、透過型電子顕微
鏡の磁界レンズの磁界が乱され、TEM観察が困難にな
る問題がある。
However, when the pre-processed sample 4 is a magnetic material such as a steel material, if the volume is as large as 0.05 mm 3 as described above, not only the center of the ring but also There is also a problem that the sample is located in the periphery, and the magnetic field of the magnetic lens of the transmission electron microscope is disturbed, making TEM observation difficult.

【0007】従って、この発明の目的は、観察試料が磁
性材料の場合においても、磁界レンズの磁界が乱れるこ
となくTEM観察を実施することができる透過型電子顕
微鏡の観察方法、および、当該試料を安定して保持する
ことができる保持治具を提供することにある。
Accordingly, an object of the present invention is to provide a transmission electron microscope observation method capable of performing a TEM observation without disturbing the magnetic field of a magnetic lens even when an observation sample is a magnetic material, and a method for observing the sample. An object of the present invention is to provide a holding jig that can stably hold.

【0008】[0008]

【課題を解決するための手段】我々は、上記課題を解決
するために鋭意研究を重ねた。その結果、観察領域以外
の部分が多く残存することが、レンズの磁界撹乱の要因
であること、即ち、試料の体積をできるだけ減少し観察
領域以外の箇所を減らすことにより、磁界の乱れを減少
することができることを知見した。この発明は、上記の
知見に基づいてなされたものである。
Means for Solving the Problems We have made intensive studies to solve the above problems. As a result, the fact that many parts other than the observation area remain is the cause of the magnetic field disturbance of the lens, that is, the magnetic field disturbance is reduced by reducing the volume of the sample as much as possible and reducing the parts other than the observation area. I realized that I can do it. The present invention has been made based on the above findings.

【0009】請求項1記載の発明は、透過型電子顕微鏡
の観察方法において、前記観察される磁性材料は予めそ
の体積が0.025mm3以下になるように加工され、し
かる後、収束イオンビーム法により観察領域を薄片化加
工されることに特徴を有する透過型電子顕微鏡の磁界レ
ンズの磁界の乱れの少ない透過型電子顕微鏡の観察方法
である。
According to a first aspect of the present invention, in the observation method of the transmission electron microscope, the magnetic material to be observed is processed beforehand so that its volume becomes 0.025 mm 3 or less, and thereafter, the focused ion beam method is used. This is a method for observing a transmission electron microscope, which is characterized in that the observation area is thinned by the method, wherein the magnetic field of the magnetic lens of the transmission electron microscope is less disturbed.

【0010】請求項2記載の発明は、磁性材料を保持す
るための試料保持リングを備える透過型電子顕微鏡の試
料保持治具において、前記試料保持リングは、横幅2m
m以下の磁性材料をリング中心部近傍に保持可能なリン
グ幅を有することに特徴を有する透過型電子顕微鏡の保
持治具である。
According to a second aspect of the present invention, in a sample holding jig of a transmission electron microscope having a sample holding ring for holding a magnetic material, the sample holding ring has a width of 2 m.
A holding jig for a transmission electron microscope characterized by having a ring width capable of holding a magnetic material of m or less in the vicinity of the center of the ring.

【0011】FIBによって磁性材料(試料)の体積を
0.025mm3以下に加工することにより、TEMの
観察領域以外の部分の面積が減少しレンズの磁界の乱れ
を防止することができる。
By processing the volume of the magnetic material (sample) to 0.025 mm 3 or less by the FIB, the area of the portion other than the observation region of the TEM can be reduced, and the magnetic field of the lens can be prevented from being disturbed.

【0012】体積を0.025mm3以下とすると、試
料の横幅は2mm以下と小さくなる。従来、透過型電子
顕微鏡の試料保持治具が備える試料保持リングは、その
径が約3mm、リング幅は約0.5mmが一般的なの
で、このようにリング幅が小さい従来のリングでは、横
幅が2mm以下の試料を中心部近傍に保持することはで
きない。従来の保持治具は、保持リングの中心部近傍が
空域となっているからである(図5参照)。請求項2に
記載のリング幅を有する試料保持治具によれば、横幅2
mm以下の試料をリングの中心部近傍に保持可能であ
る。
When the volume is 0.025 mm 3 or less, the lateral width of the sample becomes as small as 2 mm or less. Conventionally, a sample holding ring provided in a sample holding jig of a transmission electron microscope generally has a diameter of about 3 mm and a ring width of about 0.5 mm. Samples of 2 mm or less cannot be held near the center. This is because, in the conventional holding jig, the vicinity of the center of the holding ring is an air space (see FIG. 5). According to the sample holding jig having the ring width described in claim 2, the width 2
mm or less can be held near the center of the ring.

【0013】[0013]

【発明の実施の形態】次に、この発明の実施の形態を図
面を参照しながら説明する。
Next, an embodiment of the present invention will be described with reference to the drawings.

【0014】図1は、この発明の実施の形態に係る試料
保持治具である。図1に示すように、保持治具は円弧状
のリング2を備えている。リング2の径2aは3mmで
従来のリング5(図3参照)と同じであるが、そのリン
グ幅2bは1mmとなっている。このように、リング2
は、横幅2mmまたはそれ以下の試料1を円弧の中心部
近傍に保持するのに十分なリング幅2bを有しており、
リング2の中心部近傍に試料(磁性材料)1を保持でき
るようになっている。
FIG. 1 shows a sample holding jig according to an embodiment of the present invention. As shown in FIG. 1, the holding jig includes an arc-shaped ring 2. The diameter 2a of the ring 2 is 3 mm, which is the same as that of the conventional ring 5 (see FIG. 3), but the ring width 2b is 1 mm. Thus, ring 2
Has a ring width 2b sufficient to hold the sample 1 having a width of 2 mm or less near the center of the arc,
The sample (magnetic material) 1 can be held near the center of the ring 2.

【0015】図1に示す加工試料(磁性材料)1は、F
IBによって{1.0mm(横幅)×0.5mm×50
μ=0.025mm3(体積)}の大きさに加工されて
いる。これは、図4に示す大きさ{2.0mm(横幅)
×0.5mm×50μm=0.05mm3(体積)}の
従来の加工試料4の半分の大きさである。また、試料1
の体積は0.025mm3未満でもよい。
A processed sample (magnetic material) 1 shown in FIG.
1.0mm (width) x 0.5mm x 50 by IB
μ = 0.025 mm 3 (volume)}. This is the size shown in FIG. 4 {2.0 mm (width)
× 0.5 mm × 50 μm = 0.05 mm 3 (volume)}, which is half the size of the conventional processed sample 4. Sample 1
May be less than 0.025 mm 3 .

【0016】本実施の形態では、試料1の体積が従来の
試料4の半分以下となっている上に、TEMの電子線入
射方向から見て、より等方的な試料形状(図1参照)に
なっているので、TEMの磁界レンズの乱れを抑えるこ
とができる。例えば、従来の治具5を用いた試料4の大
きさでは(図3〜5参照)、試料4の傾斜角度0°か
ら、分析のために20°傾斜させたとき、電子ビームは
軸から大きく外れてしまい再度の大幅な軸調整が必要に
なり、ときには、ビームを軸の中心に戻すために電子銃
のシフトが必要な場合がある。本発明では、電子ビーム
は移動するものの、像観察用の蛍光板内にビームが留ま
っており、再度の軸調整も最小限で可能である。更に、
分析であれば再度の軸調整は必要ない。
In the present embodiment, the volume of the sample 1 is less than half of that of the conventional sample 4, and the sample is more isotropic when viewed from the electron beam incident direction of the TEM (see FIG. 1). , The disturbance of the magnetic lens of the TEM can be suppressed. For example, in the case of the size of the sample 4 using the conventional jig 5 (see FIGS. 3 to 5), when the sample 4 is tilted by 20 ° for analysis from the tilt angle of 0 °, the electron beam becomes large from the axis. It may deviate and require a major axis adjustment again, and sometimes the electron gun needs to be shifted to return the beam to the center of the axis. In the present invention, although the electron beam moves, the beam stays in the fluorescent plate for image observation, and the axial adjustment again can be minimized. Furthermore,
There is no need to adjust the axis again for analysis.

【0017】図2は、この発明の実施の形態に係る他の
保持治具である。図2に示すように、リング3の径3a
は3mmである。ほぼ直径方向に設けられた直線状の切
り欠き3bの中心部近傍に試料を保持することにより、
試料1をリング3の円弧の中心部近傍に保持することが
できる。図2に示すリング3を備える保持治具によって
も図1の保持治具と同等の効果を得ることができる。
FIG. 2 shows another holding jig according to the embodiment of the present invention. As shown in FIG. 2, the diameter 3a of the ring 3
Is 3 mm. By holding the sample near the center of the linear notch 3b provided substantially in the diameter direction,
The sample 1 can be held near the center of the arc of the ring 3. The same effect as the holding jig of FIG. 1 can be obtained by the holding jig provided with the ring 3 shown in FIG.

【0018】[0018]

【実施例】次に、この発明の実施例を説明する。Next, an embodiment of the present invention will be described.

【0019】{2.0mm(横幅)×0.5mm×50
μm=0.05mm3(体積)}の、従来の大きさの磁
性材料の供試体1を調製した。次いで、供試体1を従来
の保持治具(図3参照)に接着し、TEM観察実験に供
した。
$ 2.0 mm (width) x 0.5 mm x 50
A specimen 1 of a magnetic material having a conventional size of μm = 0.05 mm 3 (volume)} was prepared. Next, the specimen 1 was adhered to a conventional holding jig (see FIG. 3) and subjected to a TEM observation experiment.

【0020】また、供試体1と同じ大きさの磁性材料の
試料を本発明保持治具(図1参照)に接着し、FIBに
よって下記に示す大きさの供試体2〜5に加工した。そ
して、それぞれTEM観察に供した。供試体2〜5の大
きさは下記の通りであった。
Further, a sample of a magnetic material having the same size as the sample 1 was adhered to the holding jig of the present invention (see FIG. 1), and processed into samples 2 to 5 having the following sizes by FIB. Then, each was subjected to TEM observation. The sizes of the test specimens 2 to 5 were as follows.

【0021】供試体2:{1.6(横幅)mm×0.5
mm×50μm=0.04mm3(体積)} 供試体3:{1.4(横幅)mm×0.5mm×50μ
m=0.035mm3(体積)} 供試体4:{1.2(横幅)mm×0.5mm×50μ
m=0.030mm3(体積)} 供試体5:{1.0(横幅)mm×0.5mm×50μ
m=0.025mm3(体積)} TEM観察は、試料傾斜角度0°のときに、電子ビーム
の光軸調整を行い、次いで、20°傾斜して以下の項目
(1)〜(3)について比較を行った。 (1)倍率5万倍で、蛍光板上でのビームのずれ(蛍光
板中心部からのビームのずれ量)。 (2)ビームの非点補正量{従来の大きさの試料(供試
体1)を用いたときに必要な補正量を1とした}。 (3)像の非点補正量{従来の大きさの試料(供試体
1)を用いたときに必要な補正量を1とした}。
Specimen 2: $ 1.6 (width) mm x 0.5
mm × 50 μm = 0.04 mm 3 (volume)} Specimen 3: {1.4 (width) mm × 0.5 mm × 50 μm
m = 0.035mm 3 (volume)} Specimen 4: 1.2 (width) mm × 0.5mm × 50μ
m = 0.030 mm 3 (volume)} Specimen 5: {1.0 (width) mm × 0.5 mm × 50 μ
m = 0.025 mm 3 (volume)} In the TEM observation, when the sample tilt angle is 0 °, the optical axis of the electron beam is adjusted, and then the sample is tilted by 20 ° and the following items (1) to (3) are performed. A comparison was made. (1) Deflection of the beam on the phosphor plate at a magnification of 50,000 times (amount of displacement of the beam from the center of the phosphor plate). (2) Astigmatism correction amount of beam {The correction amount required when using a sample of the conventional size (specimen 1) was set to 1}. (3) Astigmatism correction amount of image {The correction amount required when using a sample of the conventional size (specimen 1) was set to 1}.

【0022】その結果を表1に示す。The results are shown in Table 1.

【0023】[0023]

【表1】 表1に示すように、本発明例である供試体5では、蛍光
板上でのビームの移動量、ビームおよび像の非点補正量
が、比較例(供試体1〜4)よりも大幅に減少している
ことが分かる。以上より、本発明によれば、TEM観察
およびTEM−EDX(エネルギー分散型蛍光X線)分
析の効率が大幅に向上することが分かる。
[Table 1] As shown in Table 1, in the specimen 5 of the present invention, the amount of movement of the beam on the phosphor plate and the amount of astigmatism correction of the beam and the image were significantly reduced as compared with the comparative examples (the specimens 1 to 4). You can see that it is doing. From the above, it can be seen that according to the present invention, the efficiency of TEM observation and TEM-EDX (energy dispersive X-ray fluorescence) analysis is significantly improved.

【0024】[0024]

【発明の効果】以上説明したように、この発明によれ
ば、従来の前加工法で作製した試料よりも体積の小さい
試料を用いることによって、TEMの磁界レンズに与え
る影響を減少させることができ、TEMの軸調整が容易
となり、良好な像および分析結果を得ることができ、T
EM観察およびTEM−EDX(エネルギー分散型蛍光
X線)分析の効率が大幅に向上し、かくして有用な効果
がもたらされる。
As described above, according to the present invention, the influence on the magnetic lens of the TEM can be reduced by using a sample having a smaller volume than a sample manufactured by the conventional pre-processing method. , Axis adjustment of the TEM becomes easy, and good images and analysis results can be obtained.
The efficiency of EM observation and TEM-EDX (energy dispersive X-ray fluorescence) analysis is greatly improved, and thus a useful effect is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施の形態に係る保持治具および試
料の装着状態を示す斜視図である。
FIG. 1 is a perspective view showing a holding jig and a mounted state of a sample according to an embodiment of the present invention.

【図2】この発明の実施の形態に係る他の保持治具を示
す説明図である。
FIG. 2 is an explanatory diagram showing another holding jig according to the embodiment of the present invention.

【図3】従来のFIBで加工するTEM観察用試料の保
持治具を示す説明図である。
FIG. 3 is an explanatory view showing a conventional jig for holding a TEM observation sample processed by FIB.

【図4】従来のTEM観察用試料を示す斜視図である。FIG. 4 is a perspective view showing a conventional TEM observation sample.

【図5】従来の保持治具および試料の装着状態を示す斜
視図である。
FIG. 5 is a perspective view showing a mounting state of a conventional holding jig and a sample.

【符号の説明】[Explanation of symbols]

1 試料 2 リング 2a リング径 2b リング幅 3 リング 3a リング径 3b 切り欠き 4 従来の試料 4a 横幅 5 リング 5a リング径 5b リング幅 6 観察領域 1 Sample 2 Ring 2a Ring diameter 2b Ring width 3 Ring 3a Ring diameter 3b Notch 4 Conventional sample 4a Width 5 Ring 5a Ring diameter 5b Ring width 6 Observation area

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 透過型電子顕微鏡の観察方法において、
前記観察される磁性材料は予めその体積が0.025m
3以下になるように加工され、しかる後、収束イオン
ビーム法により観察領域を薄片化加工されることを特徴
とする透過型電子顕微鏡の磁界レンズの磁界の乱れの少
ない透過型電子顕微鏡の観察方法。
1. A method for observing a transmission electron microscope, comprising:
The observed magnetic material has a volume of 0.025 m in advance.
m 3 is processed so as to become less, thereafter, observation of the focused ion beam method by transmission electron microscopy less transmission electron microscope of field disturbances in magnetic lens of the observation area, characterized in that it is processed sliced Method.
【請求項2】 磁性材料を保持するための試料保持リン
グを備える透過型電子顕微鏡の試料保持治具において、
前記試料保持リングは、横幅が2mm以下の磁性材料を
リング中心部近傍に保持可能なリング幅を有することを
特徴とする透過型電子顕微鏡の保持治具。
2. A sample holding jig of a transmission electron microscope having a sample holding ring for holding a magnetic material,
A holding jig for a transmission electron microscope, wherein the sample holding ring has a ring width capable of holding a magnetic material having a width of 2 mm or less near a center of the ring.
JP11136754A 1999-05-18 1999-05-18 Observation method of transmission electron microscope and holding jig Pending JP2000329664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11136754A JP2000329664A (en) 1999-05-18 1999-05-18 Observation method of transmission electron microscope and holding jig

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11136754A JP2000329664A (en) 1999-05-18 1999-05-18 Observation method of transmission electron microscope and holding jig

Publications (1)

Publication Number Publication Date
JP2000329664A true JP2000329664A (en) 2000-11-30

Family

ID=15182728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11136754A Pending JP2000329664A (en) 1999-05-18 1999-05-18 Observation method of transmission electron microscope and holding jig

Country Status (1)

Country Link
JP (1) JP2000329664A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7355420B2 (en) 2001-08-21 2008-04-08 Cascade Microtech, Inc. Membrane probing system
US7420381B2 (en) 2004-09-13 2008-09-02 Cascade Microtech, Inc. Double sided probing structures
US7492172B2 (en) 2003-05-23 2009-02-17 Cascade Microtech, Inc. Chuck for holding a device under test
US7656172B2 (en) 2005-01-31 2010-02-02 Cascade Microtech, Inc. System for testing semiconductors
US7681312B2 (en) 1998-07-14 2010-03-23 Cascade Microtech, Inc. Membrane probing system
US7688091B2 (en) 2003-12-24 2010-03-30 Cascade Microtech, Inc. Chuck with integrated wafer support
US7688097B2 (en) 2000-12-04 2010-03-30 Cascade Microtech, Inc. Wafer probe
US7688062B2 (en) 2000-09-05 2010-03-30 Cascade Microtech, Inc. Probe station
US7723999B2 (en) 2006-06-12 2010-05-25 Cascade Microtech, Inc. Calibration structures for differential signal probing
US7750652B2 (en) 2006-06-12 2010-07-06 Cascade Microtech, Inc. Test structure and probe for differential signals
US7759953B2 (en) 2003-12-24 2010-07-20 Cascade Microtech, Inc. Active wafer probe
US7764072B2 (en) 2006-06-12 2010-07-27 Cascade Microtech, Inc. Differential signal probing system
US7876114B2 (en) 2007-08-08 2011-01-25 Cascade Microtech, Inc. Differential waveguide probe
US7888957B2 (en) 2008-10-06 2011-02-15 Cascade Microtech, Inc. Probing apparatus with impedance optimized interface
US7893704B2 (en) 1996-08-08 2011-02-22 Cascade Microtech, Inc. Membrane probing structure with laterally scrubbing contacts
US7898281B2 (en) 2005-01-31 2011-03-01 Cascade Mircotech, Inc. Interface for testing semiconductors
US7898273B2 (en) 2003-05-23 2011-03-01 Cascade Microtech, Inc. Probe for testing a device under test
US7969173B2 (en) 2000-09-05 2011-06-28 Cascade Microtech, Inc. Chuck for holding a device under test
US8069491B2 (en) 2003-10-22 2011-11-29 Cascade Microtech, Inc. Probe testing structure
US8319503B2 (en) 2008-11-24 2012-11-27 Cascade Microtech, Inc. Test apparatus for measuring a characteristic of a device under test
US8410806B2 (en) 2008-11-21 2013-04-02 Cascade Microtech, Inc. Replaceable coupon for a probing apparatus
JP2013205017A (en) * 2012-03-27 2013-10-07 Nippon Steel & Sumitomo Metal Apparatus and method for preparing minute thin film sample for transmission electron microscope
CN106769162A (en) * 2017-02-20 2017-05-31 广西大学 A kind of transmission electron microscope magnetic sample preprocessor
CN108490221A (en) * 2018-03-23 2018-09-04 山东大学 A kind of preparation method for transmission electron microscope observation sample of magnetic material

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7893704B2 (en) 1996-08-08 2011-02-22 Cascade Microtech, Inc. Membrane probing structure with laterally scrubbing contacts
US7761986B2 (en) 1998-07-14 2010-07-27 Cascade Microtech, Inc. Membrane probing method using improved contact
US7681312B2 (en) 1998-07-14 2010-03-23 Cascade Microtech, Inc. Membrane probing system
US7969173B2 (en) 2000-09-05 2011-06-28 Cascade Microtech, Inc. Chuck for holding a device under test
US7688062B2 (en) 2000-09-05 2010-03-30 Cascade Microtech, Inc. Probe station
US7688097B2 (en) 2000-12-04 2010-03-30 Cascade Microtech, Inc. Wafer probe
US7761983B2 (en) 2000-12-04 2010-07-27 Cascade Microtech, Inc. Method of assembling a wafer probe
US7355420B2 (en) 2001-08-21 2008-04-08 Cascade Microtech, Inc. Membrane probing system
US7492175B2 (en) 2001-08-21 2009-02-17 Cascade Microtech, Inc. Membrane probing system
US7492172B2 (en) 2003-05-23 2009-02-17 Cascade Microtech, Inc. Chuck for holding a device under test
US7898273B2 (en) 2003-05-23 2011-03-01 Cascade Microtech, Inc. Probe for testing a device under test
US7876115B2 (en) 2003-05-23 2011-01-25 Cascade Microtech, Inc. Chuck for holding a device under test
US8069491B2 (en) 2003-10-22 2011-11-29 Cascade Microtech, Inc. Probe testing structure
US7688091B2 (en) 2003-12-24 2010-03-30 Cascade Microtech, Inc. Chuck with integrated wafer support
US7759953B2 (en) 2003-12-24 2010-07-20 Cascade Microtech, Inc. Active wafer probe
US7420381B2 (en) 2004-09-13 2008-09-02 Cascade Microtech, Inc. Double sided probing structures
US8013623B2 (en) 2004-09-13 2011-09-06 Cascade Microtech, Inc. Double sided probing structures
US7656172B2 (en) 2005-01-31 2010-02-02 Cascade Microtech, Inc. System for testing semiconductors
US7940069B2 (en) 2005-01-31 2011-05-10 Cascade Microtech, Inc. System for testing semiconductors
US7898281B2 (en) 2005-01-31 2011-03-01 Cascade Mircotech, Inc. Interface for testing semiconductors
US7723999B2 (en) 2006-06-12 2010-05-25 Cascade Microtech, Inc. Calibration structures for differential signal probing
US7750652B2 (en) 2006-06-12 2010-07-06 Cascade Microtech, Inc. Test structure and probe for differential signals
US7764072B2 (en) 2006-06-12 2010-07-27 Cascade Microtech, Inc. Differential signal probing system
US7876114B2 (en) 2007-08-08 2011-01-25 Cascade Microtech, Inc. Differential waveguide probe
US7888957B2 (en) 2008-10-06 2011-02-15 Cascade Microtech, Inc. Probing apparatus with impedance optimized interface
US8410806B2 (en) 2008-11-21 2013-04-02 Cascade Microtech, Inc. Replaceable coupon for a probing apparatus
US9429638B2 (en) 2008-11-21 2016-08-30 Cascade Microtech, Inc. Method of replacing an existing contact of a wafer probing assembly
US10267848B2 (en) 2008-11-21 2019-04-23 Formfactor Beaverton, Inc. Method of electrically contacting a bond pad of a device under test with a probe
US8319503B2 (en) 2008-11-24 2012-11-27 Cascade Microtech, Inc. Test apparatus for measuring a characteristic of a device under test
JP2013205017A (en) * 2012-03-27 2013-10-07 Nippon Steel & Sumitomo Metal Apparatus and method for preparing minute thin film sample for transmission electron microscope
CN106769162A (en) * 2017-02-20 2017-05-31 广西大学 A kind of transmission electron microscope magnetic sample preprocessor
CN106769162B (en) * 2017-02-20 2023-06-06 广西大学 Transmission electron microscope magnetic sample preprocessor
CN108490221A (en) * 2018-03-23 2018-09-04 山东大学 A kind of preparation method for transmission electron microscope observation sample of magnetic material

Similar Documents

Publication Publication Date Title
JP2000329664A (en) Observation method of transmission electron microscope and holding jig
US6875984B2 (en) Bio electron microscope and observation method of specimen
Stevie et al. Application of focused ion beam lift‐out specimen preparation to TEM, SEM, STEM, AES and SIMS analysis
EP2063449B1 (en) Method for obtaining a scanning transmission image of a sample in a particle-optical apparatus
US7291847B2 (en) Specimen tip and tip holder assembly
US6870161B2 (en) Apparatus for processing and observing a sample
JP3407101B2 (en) A microscope that can be observed simultaneously with an electron microscope and a scanning tunneling microscope under ultra-high vacuum
JP2009198412A (en) Preparation method of sample for transmission electron microscope, and sample for transmission electron microscope
Ren et al. Transmission electron imaging in the Delft multibeam scanning electron microscope 1
JP4654216B2 (en) Sample holder for charged particle beam equipment
EP1557866A1 (en) Beam optical component having a charged particle lens
Ramachandra et al. Optimized deconvolution for maximum axial resolution in three-dimensional aberration-corrected scanning transmission electron microscopy
CN111081515B (en) Charged particle beam device and sample processing and observing method
JP4958313B2 (en) Scanning electron microscope and method of using the same
JP2009259556A (en) Electron microscope observation sample supporting member
JP6406032B2 (en) Sample stage and electron microscope equipped with the same
JPH10312763A (en) Sample holder for electron microscope
EP0085323B1 (en) Electromagnetic lens polepiece structure
JP2013080605A (en) Sample holder tip, sample holder, and manufacturing method of sample holder tip
GB2118361A (en) Scanning electron beam apparatus
JP2001289752A (en) Magnetic material sample preparation method for transmission electron microscope observation
US20190318908A1 (en) Method for producing a tem sample
CN111474196A (en) Method for controlling deformation generated by preparation of transmission electron microscope sample
JP2011204367A (en) Sample stand for electron microscope
US20110180707A1 (en) Microsampling apparatus and sampling method thereof