JP3326293B2 - Inorganic ultra-thin flake and method for producing the same - Google Patents

Inorganic ultra-thin flake and method for producing the same

Info

Publication number
JP3326293B2
JP3326293B2 JP01577495A JP1577495A JP3326293B2 JP 3326293 B2 JP3326293 B2 JP 3326293B2 JP 01577495 A JP01577495 A JP 01577495A JP 1577495 A JP1577495 A JP 1577495A JP 3326293 B2 JP3326293 B2 JP 3326293B2
Authority
JP
Japan
Prior art keywords
inorganic
thin film
thin
ultra
flake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01577495A
Other languages
Japanese (ja)
Other versions
JPH08209340A (en
Inventor
建国 文
直己 腰塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Superconductivity Technology Center
Original Assignee
International Superconductivity Technology Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Superconductivity Technology Center filed Critical International Superconductivity Technology Center
Priority to JP01577495A priority Critical patent/JP3326293B2/en
Publication of JPH08209340A publication Critical patent/JPH08209340A/en
Application granted granted Critical
Publication of JP3326293B2 publication Critical patent/JP3326293B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、第1の無機物からなる
厚さ100Å〜200Åの極薄片の一端部に前記第1の
無機物よりも硬質の第2の無機物が付着され、その反対
側端部が基板上に支持されている無機物極薄片及びその
製作方法に関し、特に、透過型電子顕微鏡(TEM)試
料用の半導体、磁性体、強誘電体、超電導体等の無機物
極薄片及びその製作方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to an ultra-thin 100-.mu.m-thick thin piece made of a first inorganic substance, wherein a second inorganic substance harder than the first inorganic substance is adhered to one end of the very thin section, and an opposite end thereof. In particular, the present invention relates to an ultra-thin inorganic flake whose part is supported on a substrate and a method for producing the same, and more particularly, to an ultra-thin inorganic flake such as a semiconductor, a magnetic material, a ferroelectric, and a superconductor for a transmission electron microscope (TEM) sample and a method for producing the same It is about.

【0002】[0002]

【従来の技術】イオンミリング法による透過型電子顕微
鏡(TEM)の試料作製は、ウルトラミクロトーム法、
電解研磨等の他の手法に比べ試料の形状、硬度、導電性
などの制約をうけず特定箇所を特定方向から観察できる
ため、多く利用されるようになっている。
2. Description of the Related Art A sample of a transmission electron microscope (TEM) by an ion milling method is manufactured by an ultramicrotome method,
Compared to other methods such as electrolytic polishing, a specific portion can be observed from a specific direction without being restricted by the shape, hardness, conductivity, and the like of the sample, and thus is widely used.

【0003】しかしながら、断面試料の作製は、イオン
ミリングまでの前処理が繁雑であり、試料作製時間が長
く、1週間に1〜2個の試料作製が限度であった。
However, the preparation of a cross-sectional sample requires complicated pre-processing up to ion milling, and the sample preparation time is long, and one to two samples per week are limited.

【0004】そこで、試料作製時間を短縮するために、
断面試料作製法(イオンシャドー法)が提案された(日
本金属学会、1994年、発行の「金属学会セミナー、
局所領域のキャラクタリゼーション(II)」、P60〜
64)。
[0004] In order to shorten the sample preparation time,
A cross-sectional sample preparation method (ion shadow method) was proposed (The Japan Institute of Metals, 1994
Characterization of Local Area (II) ”, P60-
64).

【0005】このイオンシャドー法の手順は、試料をT
EM試料ホルダに入るように、図10に示すサイズ(長
さ3mm、幅0.3mm〜0.2mm以下)に切断する。
[0005] In this ion shadow method, a sample is subjected to T
Cut to the size shown in FIG. 10 (length 3 mm, width 0.3 mm to 0.2 mm or less) so as to enter the EM sample holder.

【0006】シリコン基板の厚さが、0.5mm以下の場
合、TEMホルダーへの装填が困難となるので、ダミー
のシリコン板を瞬間接着剤で接着する。
When the thickness of the silicon substrate is less than 0.5 mm, it is difficult to load the TEM holder, so a dummy silicon plate is bonded with an instant adhesive.

【0007】試料切断時には、膜面の破損を少なくする
ため、膜面をワックスでスライドガラスに固定して切断
する。
At the time of cutting a sample, in order to reduce damage to the film surface, the film surface is fixed to a slide glass with wax and cut.

【0008】次に、試料表面を洗浄後、図11に示すよ
うに、多層膜面にダイヤモンド粉末を分散させて付着す
る。ダイヤモンド粉末のサイズは、観察する多層膜の厚
さ(断面の深さ)と膜の材質(イオンエッチング速度)
により0.2μ〜1.0μを使用する。ダイヤモンド粉末
は、市販されているダイヤモンドスラリーを遠心分離器
にかけ(10000rpmで数分間)ルプリケーション
液と分離し、アセトン、ダィフロン等の溶剤で数回洗浄
する。洗浄溶剤を乾燥した後にエタノール中に入れて使
用する。
Next, after cleaning the surface of the sample, as shown in FIG. 11, diamond powder is dispersed and adhered to the surface of the multilayer film. The size of the diamond powder depends on the thickness (cross-section depth) of the multilayer film to be observed and the material of the film (ion etching rate)
0.2 μm to 1.0 μm. The diamond powder is obtained by centrifuging a commercially available diamond slurry (at 10,000 rpm for several minutes) to separate it from the ruplication solution, and washing it several times with a solvent such as acetone or Diflon. After the washing solvent is dried, it is used in ethanol.

【0009】次に、アルゴン(Ar)イオンを図12に
示すように、ダイヤモンド粉末の付着した多層膜面に垂
直に照射する。加速電圧3〜5kV、イオン電流0.5
mAで3〜7分照射する。ダイヤモンドは、イオンミリ
ング速度が遅いので、点線で示すように多層膜とシリコ
ン基板だけが深くエッチングされる。アルゴンイオンの
電流密度は、図13に示すように、試料面上でガウシア
ン分布しており、ビーム径は半値幅で約1mmφである。
そのため試料の中央部は、深くエッチングされ試料の両
端は浅いエッチングとなる。
Next, as shown in FIG. 12, argon (Ar) ions are irradiated perpendicularly to the surface of the multilayer film to which the diamond powder is attached. Accelerating voltage 3-5 kV, ion current 0.5
Irradiate with mA for 3-7 minutes. Since diamond has a low ion milling speed, only the multilayer film and the silicon substrate are deeply etched as shown by the dotted line. As shown in FIG. 13, the current density of argon ions has a Gaussian distribution on the sample surface, and the beam diameter is about 1 mmφ in half width.
Therefore, the center of the sample is etched deeply, and both ends of the sample are etched shallowly.

【0010】TEM試料ホルダは、一般に3mmφの試料
用となっているが、イオンシャドー法で作製した試料
は、ユーセントリックゴニオメータの傾斜軸方向に試料
を橋渡しするように入れると、観察時に便利である。
Although the TEM sample holder is generally used for a sample of 3 mmφ, it is convenient for observation when the sample produced by the ion shadow method is inserted so as to bridge the sample in the tilt axis direction of the eucentric goniometer. .

【0011】[0011]

【発明が解決しようとする問題点】本発明者は、前記従
来技術を検討した結果、以下の問題点を見いだした。
DISCLOSURE OF THE INVENTION As a result of studying the above prior art, the present inventor has found the following problems.

【0012】前記提案された従来のイオンシャドー法で
作製した試料は、図5に示すように、柱状の薄膜のため
膜厚が厚く透過型電子顕微鏡(TEM)では原子像を観
察することができなかった。
As shown in FIG. 5, a sample prepared by the conventional ion shadow method proposed above has a columnar thin film and is thick, so that an atomic image can be observed with a transmission electron microscope (TEM). Did not.

【0013】また、電解研磨等の他の手法では、研磨に
より膜の厚さを1mmから10μmまでにすることは極め
て困難であり、かつ、2日間位かかるという問題があっ
た。
In other methods such as electrolytic polishing, it is extremely difficult to reduce the thickness of the film from 1 mm to 10 μm by polishing, and there is a problem that it takes about two days.

【0014】本発明の目的は、無機物からなる厚さ10
0Å〜200Åの極薄片の一端部に前記無機物よりも高
い硬度をもつ無機物が付着され、その反対側端部が基板
上に支持されている無機物極薄片を提供することにあ
る。
An object of the present invention is to provide an inorganic material having a thickness of 10%.
An object of the present invention is to provide an inorganic thin flake in which an inorganic material having a higher hardness than the inorganic material is attached to one end of the ultrathin flake of 0 ° to 200 °, and the opposite end is supported on a substrate.

【0015】本発明の他の目的は、薄膜断面の原子像を
TEMで観察するための試料作製時間を短縮することが
可能な技術を提供することにある。
Another object of the present invention is to provide a technique capable of shortening a sample preparation time for observing an atomic image of a cross section of a thin film with a TEM.

【0016】本発明の前記ならびにその他の目的及び新
規な特徴は、本明細書の記述及び添付図面によって明ら
かになるであろう。
The above and other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings.

【0017】[0017]

【課題を解決するための手段】本願によって開示される
発明のうち代表的なものの概要を簡単に説明すれば、以
下のとおりである。
The following is a brief description of an outline of a typical invention among the inventions disclosed by the present application.

【0018】(1)基板上に所定の厚さの第1の無機物
薄膜を形成し、該第1の無機物薄膜の一端辺部に前記第
1の無機物よりも硬質の第2の無機物粉末もしくは線状
無機物を付着させ、該硬質の第2の無機物粉末もしくは
線状無機物が付着した第1の無機物薄膜の表面に垂直に
イオンビーム照射して第1の無機物薄膜の柱状体を得た
後に、該第1の無機物薄膜の裏面側からイオンビームを
10〜20度の範囲の角度に傾斜させて照射して該柱状
体を極薄片化することを特徴とする無機物極薄片の作製
方法。
(1) A first inorganic thin film having a predetermined thickness is formed on a substrate, and a second inorganic powder or wire harder than the first inorganic material is formed on one end of the first inorganic thin film. After the columnar inorganic material is deposited, the surface of the first inorganic thin film to which the hard second inorganic powder or the linear inorganic material is attached is vertically irradiated with an ion beam to obtain a columnar body of the first inorganic thin film. A method for producing an inorganic ultra-thin flake, comprising irradiating an ion beam at an angle in the range of 10 to 20 degrees from the back side of the first inorganic thin film to ultra-thin the columnar body.

【0019】(2)第1の無機物からなる厚さ100Å
〜200Åの極薄片の一端部に該第1の無機物よりも硬
質の第2の無機物が付着、その反対側端部が基板表面
の一端辺部上に支持されていることを特徴とする、上記
(1)に記載の作製方法によって作製された無機物極薄
片。
(2) Thickness of 100 ° made of the first inorganic substance
A second inorganic substance, which is harder than the first inorganic substance, adheres to one end of the ultra-thin flake of about 200 °, and the opposite end is the substrate surface.
An inorganic ultra-thin flake produced by the production method as described in (1) above, which is supported on one end side of the inorganic substance.

【0020】(3)前記第1の無機物極薄片が基板表面
の一端辺部上に複数個立設されていることを特徴とする
上記(2)に記載の無機物極薄片。
(3) The first inorganic ultra-thin flake is a substrate surface
2. The inorganic ultra-thin flake according to the above (2), wherein a plurality of flakes are provided upright on one end side of the inorganic material.

【0021】[0021]

【作用】本発明の無機物極薄片によれば、第1の無機物
からなる厚さ100Å〜200Åの極薄片であるので、
第1の無機物の薄膜断面の原子像を透過型電子顕微鏡
(TEM)で観察することができる。
According to the present invention, since the inorganic ultra-thin flakes are made of the first inorganic substance and have a thickness of 100 to 200 mm,
An atomic image of a cross section of the thin film of the first inorganic substance can be observed with a transmission electron microscope (TEM).

【0022】これにより、あらゆる無機物の薄膜断面の
信頼性のよい高分解能原子像を短時間で得ることができ
る。これにより、薄膜電子デバイスの研究開発の促進に
大きく寄与することができる。
As a result, a highly reliable high-resolution atomic image of the cross section of any inorganic thin film can be obtained in a short time. This can greatly contribute to the promotion of research and development of thin-film electronic devices.

【0023】本発明の無機物極薄片の作製方法によれ
ば、基板上に所定の厚さの無機物薄膜を形成し、該無機
物薄膜の一端辺部に前記第1の無機物よりも硬質の第2
の無機物粉末もしくは線状無機物を付着し、該硬質の無
機物粉末もしくは線状無機物が付着された第1の無機物
薄膜の前面に垂直にイオンビーム照射し、その後に当該
第1の無機物薄膜の裏面側からイオンビームを10〜2
0度の範囲の角度に傾斜させて照射することにより、短
時間で第1の無機物からなる厚さ100Å〜200Åの
極薄片を得ることができる。
According to the method for manufacturing an inorganic ultra-thin flake of the present invention, an inorganic thin film having a predetermined thickness is formed on a substrate, and a second hard material, which is harder than the first inorganic material, is formed on one end of the inorganic thin film.
Of the first inorganic thin film to which the hard inorganic powder or the linear inorganic material is attached, and vertically irradiating the front surface of the first inorganic thin film to which the hard inorganic powder or the linear inorganic material is attached, and thereafter, the back side of the first inorganic thin film 10-2 ion beam
By irradiating at an angle in the range of 0 degree, it is possible to obtain an ultrathin flake of the first inorganic substance having a thickness of 100 ° to 200 ° in a short time.

【0024】[0024]

【実施例】以下、本発明の実施例を図面を参照して詳細
に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0025】本発明による一実施例の極薄片は、図1に
示すように、第1の無機物からなる厚さ100Å〜20
0Åの極薄片1の一端部に前記第1の無機物よりも硬質
の第2の無機物2が付着され、その反対側の端部が基板
3上に支持されているものである。
As shown in FIG. 1, the ultra-thin flake of one embodiment according to the present invention is made of a first inorganic material having a thickness of 100 to 20 mm.
A second inorganic substance 2 harder than the first inorganic substance is attached to one end of the ultrathin piece 1 of 0 °, and the opposite end is supported on the substrate 3.

【0026】前記極薄膜1は、例えば、YBCOの酸化
物超電導体薄膜、半導体薄膜、ダイヤモンド薄膜、磁性
薄膜(ガーネット薄膜)、誘電体薄膜等のうちのいずれ
か一つの材料の極薄片からなっている。
The ultra-thin film 1 is made of, for example, an ultra-thin flake of any one of YBCO oxide superconductor thin film, semiconductor thin film, diamond thin film, magnetic thin film (garnet thin film), dielectric thin film and the like. I have.

【0027】前記第2の無機物2は、前記第1の無機物
からなる厚さ100Å〜200Åの極薄片1の第1の無
機物よりも硬質の無機物からなっており、好ましくは硬
度8以上の硬い無機物(例えば、ダイヤモンド)を用い
る。
The second inorganic substance 2 is made of an inorganic substance which is harder than the first inorganic substance of the ultra-thin flake 1 made of the first inorganic substance and having a thickness of 100 to 200 °, preferably a hard inorganic substance having a hardness of 8 or more. (For example, diamond).

【0028】前記基板3は、例えば、SrTiO3から
なる単結晶基板、MgO、LaAlO3、Si、GaA
s、GGGのうちのいずれか一つの材質からなってい
る。
The substrate 3 is, for example, a single crystal substrate made of SrTiO 3 , MgO, LaAlO 3 , Si, GaAs
s and GGG.

【0029】本実施例では、基板3上に複数個の極薄片
1が立設されているが、一枚の極薄片であってもよい。
In this embodiment, a plurality of ultra-thin pieces 1 are erected on the substrate 3, but one ultra-thin piece may be used.

【0030】次に、前記本実施例の無機物極薄片の作製
方法について説明する。
Next, a method of producing the inorganic thin piece of the present embodiment will be described.

【0031】図2に示すように、例えば、SrTiO3
(100)からなる単結晶基板11の上に、所定厚さの
YBCOの酸化物超電導体薄膜12を蒸着法(他の方法
であってもよい、例えば、レーザアブレーション、スパ
ッタリング、MBE、MOCVD、LPE等を用いる)
で形成し、それを100μmの幅に切断して試料(基板
11付き薄膜)13を形成する。試料13の切断時に
は、膜面の破損を少なくするため、膜面をワックスでス
ライドガラスに固定して切断する。
As shown in FIG. 2, for example, SrTiO 3
On a single crystal substrate 11 made of (100), a YBCO oxide superconductor thin film 12 having a predetermined thickness is deposited by a vapor deposition method (another method may be used, for example, laser ablation, sputtering, MBE, MOCVD, LPE). Etc.)
And cut it into a width of 100 μm to form a sample (thin film with substrate 11) 13. At the time of cutting the sample 13, the film surface is fixed to a slide glass with wax to cut the film surface in order to reduce damage to the film surface.

【0032】次に、図3の(a)に示すように、ガラス
板21の上に1μm〜2μmのダイヤモンド粉末22を所
定量載置してアルコールもしくはアセトン溶液を注入
し、それをガラス板23で押さえてこすって分散させ
る。前記ガラス板21の替りにろ紙を用いてもよい。
Next, as shown in FIG. 3A, a predetermined amount of 1 μm to 2 μm diamond powder 22 is placed on a glass plate 21 and an alcohol or acetone solution is injected into the glass plate 21. Press and rub to disperse. Filter paper may be used instead of the glass plate 21.

【0033】また、図3の(c)に示すように、ガラス
板21の上に1μm〜2μmの磁性体粉末(例えば鉄微粒
子)31を所定量載置してガラス板21の下から磁石3
2を移動させて磁性体粉末(例えば鉄微粒子)31を均
一分散させたものを用いてもよい。
As shown in FIG. 3C, a predetermined amount of a magnetic powder (for example, iron fine particles) 31 of 1 μm to 2 μm is placed on the glass plate 21 and the magnet 3 is placed under the glass plate 21.
The magnetic powder (for example, iron fine particles) 31 may be uniformly dispersed by moving the magnetic powder 2.

【0034】次に、前記試料13の酸化物超電導体薄膜
12の表面を洗浄後、図3の(b)に示すように、前記
ガラス板21の上に分散されたダイヤモンド粉末22を
当該酸化物超電導体薄膜12の表面の一端辺部に付着さ
せる。
Next, after cleaning the surface of the oxide superconductor thin film 12 of the sample 13, the diamond powder 22 dispersed on the glass plate 21 is washed with the oxide powder as shown in FIG. It is attached to one side of the surface of the superconductor thin film 12.

【0035】図4は、本実施例の酸化物超電導体薄膜1
2の極薄片を形成するためのイオンミリングホルダーの
外観構成を示す斜視図、図5は、図4のX−X線で切っ
た断面図、図6は、銅グリッド(Copper grid)板の構
成を示す平面図である。
FIG. 4 shows an oxide superconductor thin film 1 of this embodiment.
FIG. 5 is a perspective view showing an external configuration of an ion milling holder for forming an extremely thin piece of FIG. 2, FIG. 5 is a cross-sectional view taken along line XX of FIG. 4, and FIG. 6 is a configuration of a copper grid (Copper grid) plate. FIG.

【0036】図4〜図6において、51はイオンミリン
グホルダー本体(チタンからなっている)、52は銅グ
リッド(Copper grid)板、53はカバー、54はグリ
ッド、55は固定用ネジである。
4 to 6, reference numeral 51 denotes an ion milling holder main body (made of titanium), 52 denotes a copper grid (Copper grid) plate, 53 denotes a cover, 54 denotes a grid, and 55 denotes fixing screws.

【0037】図5に示すように、前記ダイヤモンド粉末
22を付着した試料13を銅グリド(Copper grid)板
52上に載置し、この銅グリド(Copper grid)板52
をイオンミリングホルダー本体51に設置し、その上に
カバー53を固定ネジ55で取り付ける。
As shown in FIG. 5, the sample 13 to which the diamond powder 22 has been attached is placed on a copper grid (Copper grid) plate 52, and the copper grid (Copper grid) plate 52
Is set on the ion milling holder main body 51, and the cover 53 is mounted thereon with fixing screws 55.

【0038】そして、図7の(a)に示すように、アル
ゴン(Ar)イオンを前記試料13のダイヤモンド粉末
22の付着した膜面に垂直に照射する。加速電圧3〜5
kV、イオン電流0.5mAで3〜7分照射する。ダイ
ヤモンドは、イオンミリング速度が遅いので、図7の
(b)に示す点線で示すように、酸化物超電導体薄膜1
2と単結晶基板11だけが深くエッチングされ、図7の
(c)に示すような柱状体14が形成される。
Then, as shown in FIG. 7A, the film surface of the sample 13 on which the diamond powder 22 is adhered is vertically irradiated with argon (Ar) ions. Acceleration voltage 3-5
Irradiate for 3-7 minutes at kV, ion current 0.5 mA. Since diamond has a low ion milling speed, as shown by the dotted line in FIG.
Only the substrate 2 and the single crystal substrate 11 are deeply etched to form the pillars 14 as shown in FIG.

【0039】次に、図7の(d)に示すように、前記試
料13のダイヤモンド粉末22の付着した膜面の裏面側
からアルゴン(Ar)イオンビームを15度傾斜させて
約10分間照射することにより、無機物からなる厚さ1
00Å〜200Åの極薄片15が形成される。
Next, as shown in FIG. 7 (d), an argon (Ar) ion beam is irradiated for about 10 minutes from the back side of the film surface of the sample 13 on which the diamond powder 22 is adhered, at an angle of 15 degrees. The thickness of inorganic material 1
An ultra-thin piece 15 of 00 ° to 200 ° is formed.

【0040】以上、説明したように、本実施例の酸化物
超電導体薄膜12の極薄片によれば、酸化物超電導体
(第1の無機物)からなる厚さ100Å〜200Åの極
薄片15であるので、薄膜断面の原子像を透過型電子顕
微鏡(TEM)で観察することができる。この透過型電
子顕微鏡写真を図8及び図9(図8のa軸方向部分:a
-axis部分の拡大写真)に示す。
As described above, according to the ultrathin piece of the oxide superconductor thin film 12 of the present embodiment, the ultrathin piece 15 made of the oxide superconductor (first inorganic substance) and having a thickness of 100 to 200 mm. Therefore, an atomic image of the cross section of the thin film can be observed with a transmission electron microscope (TEM). 8 and 9 (a-axis direction portion of FIG. 8: a
(enlarged photograph of -axis part).

【0041】図8及び図9において、a-axisはa
軸方向部分、c-axisはc軸方向部分、白い部分の
ところは原子である。
8 and 9, a-axis is a
The axial portion, c-axis, is the c-axis portion, and the white portions are atoms.

【0042】前記酸化物超電導体薄膜12の薄膜断面の
原子像を透過型電子顕微鏡(TEM)で観察することに
より、酸化物超電導体薄膜12(あらゆる無機物)の薄
膜断面の高分解能原子像を短時間で確実に得ることがで
きるので、酸化物超電導体デバイス(あらゆる薄膜電子
デバイス)の研究開発の促進に大きく寄与することがで
きる。
By observing an atomic image of a cross section of the thin film of the oxide superconductor thin film 12 with a transmission electron microscope (TEM), a high-resolution atomic image of the thin film cross section of the oxide superconductor thin film 12 (all inorganic substances) is shortened. Since it can be reliably obtained in a short time, it can greatly contribute to the promotion of research and development of oxide superconductor devices (all thin film electronic devices).

【0043】また、本実施例の極薄片の作製方法によれ
ば、基板11上に所定の厚さの酸化物超電導体薄膜12
を形成し、該薄膜12の一端辺部にダイヤモンド(硬度
10)粉末22を付着し、該薄膜12の前面に垂直にア
ルゴン(Ar)イオンビームを照射し、その後に該無機
物薄膜の裏面側からアルゴン(Ar)イオンビームを1
0〜20度の範囲の角度に傾斜させて照射することによ
り、短時間で酸化物超電導体薄膜12からなる厚さ10
0Å〜200Åの極薄片15を得ることができる。
Further, according to the method for manufacturing an ultra-thin flake of this embodiment, the oxide superconductor thin film 12 having a predetermined thickness is formed on the substrate 11.
Is formed, diamond (hardness 10) powder 22 is adhered to one end of the thin film 12, and the front surface of the thin film 12 is irradiated with an argon (Ar) ion beam vertically, and then from the back side of the inorganic thin film. Argon (Ar) ion beam 1
By irradiating at an angle in the range of 0 to 20 degrees, the thickness of the oxide superconductor thin film 12 can be reduced in a short time.
It is possible to obtain a very thin piece 15 of 0 to 200 degrees.

【0044】以上、本発明を実施例に基づき具体的に説
明したが、本発明は、前記実施例に限定されるものでは
なく、その要旨を逸脱しない範囲において種々変更し得
ることはいうまでもない。
As described above, the present invention has been specifically described based on the embodiments. However, it is needless to say that the present invention is not limited to the above-described embodiments, and can be variously modified without departing from the gist thereof. Absent.

【0045】[0045]

【発明の効果】本願によって開示される発明のうち代表
的なものによって得られる効果を簡単に説明すれば、以
下のとおりである。
The effects obtained by typical ones of the inventions disclosed by the present application will be briefly described as follows.

【0046】第1の無機物からなる厚さ100Å〜20
0Åの極薄片であるので、薄膜断面の原子像を透過型電
子顕微鏡(TEM)で観察することができる。
The thickness of the first inorganic material is from 100 to 20.
Since it is an extremely thin piece of 0 °, an atomic image of a cross section of the thin film can be observed with a transmission electron microscope (TEM).

【0047】これにより、あらゆる無機物の薄膜断面の
高分解能原子像を短時間で信頼性よく得ることができ
る。これにより、本発明は、薄膜電子デバイスの研究開
発の促進に大きく寄与することができる。
Thus, a high-resolution atomic image of a cross section of any inorganic thin film can be obtained in a short time and with high reliability. Thereby, the present invention can greatly contribute to promotion of research and development of thin-film electronic devices.

【0048】また、厚さ100〜200Åの極薄片を利
用した様々な量子効果デバイスを実現することが可能と
なり、新機能を有する電子デバイスの開発に重要な役割
を果たすものと考えられる。
Further, it becomes possible to realize various quantum effect devices using ultrathin pieces having a thickness of 100 to 200 mm, and it is considered that they play an important role in the development of electronic devices having new functions.

【0049】本発明の無機物の極薄片作製方法によれ
ば、基板上に所定の厚さの第1の無機物薄膜を形成し、
該第1の無機物薄膜の一端辺部に前記第1の無機物より
も硬質の第2の無機物粉末もしくは線状無機物を付着
し、該硬質の第2の無機物粉末もしくは線状無機物が付
着された第1の無機物薄膜の前面に垂直にイオンビーム
照射し、その後に当該第1の無機物薄膜の裏面側からイ
オンビームを10〜20度の範囲の角度に傾斜させて照
射することにより、短時間で第1の無機物からなる厚さ
100Å〜200Åの極薄片を得ることができる。
According to the method for producing an extremely thin inorganic material of the present invention, a first inorganic thin film having a predetermined thickness is formed on a substrate,
A second inorganic powder or a linear inorganic substance harder than the first inorganic substance is attached to one end side of the first inorganic thin film, and the second hard inorganic powder or the linear inorganic substance is attached to the first inorganic thin film. By irradiating the ion beam perpendicularly to the front surface of the first inorganic thin film and thereafter irradiating the ion beam from the back surface side of the first inorganic thin film at an angle in the range of 10 to 20 degrees, the ion beam is irradiated in a short time. It is possible to obtain an ultrathin flake having a thickness of 100 ° to 200 ° made of one inorganic substance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による一実施例の極薄片の構成を示す斜
視図である。
FIG. 1 is a perspective view showing the configuration of an extremely thin piece according to one embodiment of the present invention.

【図2】本実施例の極薄片の作製方法を説明するための
図である。
FIG. 2 is a diagram for explaining a method for producing an ultra-thin piece according to the present embodiment.

【図3】本実施例の極薄片の作製方法を説明するための
図である。
FIG. 3 is a diagram for explaining a method for producing an ultra-thin piece according to the present embodiment.

【図4】本実施例の極薄片を形成するためのイオンミリ
ングホルダーの外観構成を示す斜視図である。
FIG. 4 is a perspective view showing an external configuration of an ion milling holder for forming an extremely thin piece according to the present embodiment.

【図5】図4のX−X線で切った断面図である。FIG. 5 is a sectional view taken along line XX of FIG. 4;

【図6】本実施例の銅グリッド(Copper grid)板の構
成を示す平面図である。
FIG. 6 is a plan view showing a configuration of a copper grid (Copper grid) plate of the present embodiment.

【図7】本実施例の極薄片の作製方法を説明するための
図である。
FIG. 7 is a diagram for explaining a method for producing an ultra-thin piece according to the present embodiment.

【図8】本実施例の資料の透過型電子顕微鏡の写真であ
る。
FIG. 8 is a photograph of a sample of the present example taken with a transmission electron microscope.

【図9】図8のa軸方向部分(a-axis部分)の拡
大透過型電子顕微鏡写真である。
9 is an enlarged transmission electron micrograph of a portion in the a-axis direction (a-axis portion) of FIG. 8;

【図10】従来技術の問題点を説明するための図であ
る。
FIG. 10 is a diagram for explaining a problem of the related art.

【図11】従来技術の問題点を説明するための図であ
る。
FIG. 11 is a diagram for explaining a problem of the related art.

【図12】従来技術の問題点を説明するための図であ
る。
FIG. 12 is a diagram for explaining a problem of the related art.

【図13】従来技術の問題点を説明するための図であ
る。
FIG. 13 is a diagram for explaining a problem of the related art.

【符号の簡単な説明】[Brief description of reference numerals]

1…極薄片、2…第2の無機物、3…基板、11…単結
晶基板、12…酸化物超電導体薄膜、13…試料、15
…極薄片、21,23…ガラス板、22…ダイヤモンド
粉末、31…磁性体粉末(例えば鉄微粒子)、32…磁
石、51…イオンミリングホルダー本体、52…銅グリ
ッド板、53…カバー、54…グリッド、55…固定用
ネジ。
DESCRIPTION OF SYMBOLS 1 ... Ultra thin piece, 2 ... Second inorganic substance, 3 ... Substrate, 11 ... Single crystal substrate, 12 ... Oxide superconductor thin film, 13 ... Sample, 15
... ultra-thin pieces, 21, 23 ... glass plate, 22 ... diamond powder, 31 ... magnetic powder (for example, iron fine particles), 32 ... magnet, 51 ... ion milling holder body, 52 ... copper grid plate, 53 ... cover, 54 ... Grid, 55 ... fixing screws.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−18873(JP,A) 特開 平5−54327(JP,A) 特開 平6−207891(JP,A) 特開 昭62−274237(JP,A) 特開 平6−132001(JP,A) 吉岡忠則,「局所領域のキャラクタリ ゼーション(2)」,金属学会セミナ ー・テキスト,日本,社団法人日本金属 学会,1994年9月5日,p.59−64 (58)調査した分野(Int.Cl.7,DB名) G01N 1/00 - 1/44 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-5-18873 (JP, A) JP-A-5-54327 (JP, A) JP-A-6-207891 (JP, A) JP-A-62-1987 274237 (JP, A) JP-A-6-132001 (JP, A) Yoshioka Tadanori, "Characterization of Local Regions (2)", Seminar Textbook of the Institute of Metals, Japan, Japan Institute of Metals, September 1994 March 5, p. 59-64 (58) Field surveyed (Int. Cl. 7 , DB name) G01N 1/00-1/44 JICST file (JOIS)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板上に所定の厚さの第1の無機物薄膜
を形成し、該第1の無機物薄膜の一端辺部に前記第1の
無機物よりも硬質の第2の無機物粉末もしくは線状無機
物を付着させ、該硬質の第2の無機物粉末もしくは線状
無機物が付着した第1の無機物薄膜の表面に垂直にイオ
ンビーム照射して第1の無機物薄膜の柱状体を得た後
に、該第1の無機物薄膜の裏面側からイオンビームを1
0〜20度の範囲の角度に傾斜させて照射して該柱状体
を極薄片化することを特徴とする無機物極薄片の作製方
法。
1. A first inorganic thin film having a predetermined thickness is formed on a substrate, and a second inorganic powder or a linear harder than the first inorganic material is formed on one end of the first inorganic thin film. After depositing an inorganic substance and vertically irradiating the surface of the first inorganic thin film to which the hard second inorganic powder or the linear inorganic substance is attached with an ion beam to obtain a columnar body of the first inorganic thin film, Ion beam is applied from the back side of 1 inorganic thin film
A method for producing an inorganic ultrathin flake, characterized in that the columnar body is made ultrathin by irradiating it at an angle in the range of 0 to 20 degrees.
【請求項2】 第1の無機物からなる厚さ100Å〜2
00Åの極薄片の一端部に該第1の無機物よりも硬質の
第2の無機物が付着し、その反対側端部が基板表面の一
端辺部上に支持されていることを特徴とする、請求項1
に記載の作製方法によって作製された無機物極薄片。
2. A thickness of 100 to 2 made of a first inorganic substance.
A second inorganic substance, which is harder than the first inorganic substance, adheres to one end of the ultra-thin piece of 00 °, and the opposite end is supported on one end of the substrate surface. Item 1
5. An inorganic ultra-thin flake produced by the production method described in 1).
【請求項3】 前記第1の無機物極薄片が基板表面の一
端辺部上に複数個立設されていることを特徴とする請求
項2に記載の無機物極薄片。
3. The inorganic ultra-thin flake according to claim 2, wherein a plurality of the first inorganic ultra-thin flakes are erected on one end of the substrate surface.
JP01577495A 1995-02-02 1995-02-02 Inorganic ultra-thin flake and method for producing the same Expired - Fee Related JP3326293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01577495A JP3326293B2 (en) 1995-02-02 1995-02-02 Inorganic ultra-thin flake and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01577495A JP3326293B2 (en) 1995-02-02 1995-02-02 Inorganic ultra-thin flake and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08209340A JPH08209340A (en) 1996-08-13
JP3326293B2 true JP3326293B2 (en) 2002-09-17

Family

ID=11898164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01577495A Expired - Fee Related JP3326293B2 (en) 1995-02-02 1995-02-02 Inorganic ultra-thin flake and method for producing the same

Country Status (1)

Country Link
JP (1) JP3326293B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0927880A4 (en) * 1997-07-22 2010-11-17 Hitachi Ltd Method and apparatus for preparing samples
US6828566B2 (en) 1997-07-22 2004-12-07 Hitachi Ltd Method and apparatus for specimen fabrication
WO2002071031A1 (en) * 2001-03-01 2002-09-12 Moore Thomas M Total release method for sample extraction from a charged particle instrument
JP4952597B2 (en) * 2008-01-25 2012-06-13 株式会社デンソー Processing equipment
JP5862405B2 (en) * 2012-03-27 2016-02-16 新日鐵住金株式会社 Method for preparing micro thin film sample for transmission electron microscope

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吉岡忠則,「局所領域のキャラクタリゼーション(2)」,金属学会セミナー・テキスト,日本,社団法人日本金属学会,1994年9月5日,p.59−64

Also Published As

Publication number Publication date
JPH08209340A (en) 1996-08-13

Similar Documents

Publication Publication Date Title
Aboaf et al. Magnetic properties and structure of cobalt-platinum thin films
Kitakami et al. Low-temperature ordering of L1–CoPt thin films promoted by Sn, Pb, Sb, and Bi additives
Latyshev et al. Growth and study of single-phase 2212 BSCCO whiskers of submicron cross-sectional area
JP3064306B2 (en) Method of forming weakly coupled Josephson junction and superconducting device using the same
JP2533860B2 (en) Magnetic superlattice film and magnetic head using the same
DE69428227T2 (en) Soft magnetic multilayer film for a magnetic head
JP3326293B2 (en) Inorganic ultra-thin flake and method for producing the same
TW201135992A (en) High temperature superconducting films and methods for modifying or creating same
JPS5863121A (en) Method of forming uniform flat magnetized layer in ferry magnetic garnet film
EP0352860B1 (en) Process for producing iron garnet coatings
Cohen Lorentz microscopy of small ferromagnetic particles
JP3392653B2 (en) Oxide superconductor Josephson junction device and method of manufacturing the same
JP2721595B2 (en) Manufacturing method of polycrystalline thin film
Madsen et al. Influence of material properties on TEM specimen preparation of thin films
Norgate et al. Ion beam etching
Tago et al. Magnetic properties of ion beam sputtered Co-Zr and Co-Zr-Re amorphous films
DE69113010T2 (en) Article with superconductor / insulator layer structure and method for producing the article.
Hetherington Preparation of semiconductor cross sections by cleaving
Wittmer et al. Interface properties of hydrogenated amorphous carbon films on Ge (100) surfaces
US4508952A (en) Electron beam cutting
Van Der Zaag et al. The permeability of plated ferrite films
Hammond et al. Studies of electron beam coevaporated Nb 3 Sn composites: Critical current and microstructure
Shearwood et al. Fabrication and magnetisation measurements of variable-pitch gratings of cobalt on GaAs
JP3253297B2 (en) Oxide superconducting thin film
JPH10294499A (en) Squid and manufacture therefor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100705

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100705

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110705

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110705

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120705

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120705

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130705

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees