JP5861874B2 - Concrete quality control test method - Google Patents

Concrete quality control test method Download PDF

Info

Publication number
JP5861874B2
JP5861874B2 JP2012020594A JP2012020594A JP5861874B2 JP 5861874 B2 JP5861874 B2 JP 5861874B2 JP 2012020594 A JP2012020594 A JP 2012020594A JP 2012020594 A JP2012020594 A JP 2012020594A JP 5861874 B2 JP5861874 B2 JP 5861874B2
Authority
JP
Japan
Prior art keywords
concrete
strain
linear expansion
expansion coefficient
strain gauge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012020594A
Other languages
Japanese (ja)
Other versions
JP2013160547A (en
Inventor
真人 辻埜
真人 辻埜
浩 橋田
浩 橋田
竜貴 湯浅
竜貴 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2012020594A priority Critical patent/JP5861874B2/en
Publication of JP2013160547A publication Critical patent/JP2013160547A/en
Application granted granted Critical
Publication of JP5861874B2 publication Critical patent/JP5861874B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はコンクリート品質管理試験方法に係り、コンクリートの強度試験用に利用されている円柱状軽量鋼製型枠にひずみゲージを貼り付け、型枠のひずみを測定し、コンクリート施工現場等において、試験対象であるコンクリートへの膨張材、収縮低減剤の混入の有無の確認と、膨張材の混入量の概略把握が可能とした試験において、コンクリート種類に適合した補償線膨張係数を有するひずみゲージを用いて、材齢経過時の温度変化の影響を小さくして、試験精度を高めるようにしたコンクリート品質管理試験方法に関する。   The present invention relates to a concrete quality control test method, and a strain gauge is attached to a cylindrical lightweight steel mold used for a concrete strength test, and the strain of the mold is measured. Use a strain gauge with a compensated linear expansion coefficient suitable for the concrete type in a test that enables confirmation of the presence or absence of the expansion material and shrinkage reducing agent in the target concrete, and the approximate amount of expansion material mixed in. Further, the present invention relates to a concrete quality control test method in which the influence of temperature change during the age of the material is reduced to improve the test accuracy.

出願人は、ひび割れ抑制を目的とした膨張コンクリートや収縮低減剤を混入したコンクリートの品質を、初期段階で把握評価できるコンクリート管理試験方法として、コンクリートの強度試験用に利用されている円柱状の軽量鋼製型枠の高さ方向中央部にひずみゲージを貼り付け、型枠のひずみを測定することで膨張コンクリートの初期膨張ひずみを評価し、品質管理に利用できる試験方法を提案している(特許文献1)。この試験方法により、コンクリート施工現場等において、試験対象であるコンクリートへの膨張材、収縮低減剤の混入の有無の確認と、膨張材の混入量の概略の推定を行えるようになった。   Applicant is a lightweight columnar material used for concrete strength test as a concrete management test method that can grasp and evaluate the quality of expansive concrete and cracking concrete mixed with the purpose of suppressing cracking at an early stage. A strain gauge is attached to the center of the steel mold in the height direction, and the initial expansion strain of expanded concrete is evaluated by measuring the strain of the mold, and a test method that can be used for quality control is proposed (patent) Reference 1). With this test method, it has become possible to confirm the presence or absence of mixing of an expansion material and a shrinkage reducing agent into the concrete to be tested and a rough estimate of the amount of expansion material mixed in the concrete construction site.

図1は、この試験方法における、上述した軽量鋼製の円柱型枠10の表面にひずみゲージを貼付し、そのひずみ量を測定する一態様を示した説明図である。この円柱型枠としては、一例として円筒形状に加工した板厚0.3mm程度のすずメッキ薄鋼板からなる既製品(商品名:軽量モールドSUMMIT)を用いた。ひずみゲージの貼付位置、方向は、型枠の高さ方向の中心位置、ひずみゲージの長手方向を型枠円周方向に一致させるように貼付した。ひずみゲージ11の表面を覆うようにブチルゴムシート12を貼付して防水処理を行っている。このひずみゲージ11からリード線13(図の簡単化のため、1本の線図で表示している)を測定装置14まで延長し測定装置14により、円柱型枠10内に各水準のコンクリートCが打設された直後から所定材齢までの間の円柱型枠10のひずみ変化を連続的に測定し、コンクリートの膨張性状の把握を行うものである。なお、同図には、型枠外表面に型枠切欠線15が形成されている。この型枠切欠線15で型枠を切り離すことができ、これによりコンクリート試験体の脱型を容易に行える。   FIG. 1 is an explanatory view showing an embodiment in which a strain gauge is affixed to the surface of the above-described lightweight steel cylindrical mold frame 10 and the amount of strain is measured in this test method. As this columnar mold, for example, a ready-made product (trade name: lightweight mold SUMMIT) made of a tin-plated thin steel sheet having a thickness of about 0.3 mm processed into a cylindrical shape was used. The strain gauges were attached so that the position and direction of the strain gauge were the center position in the height direction of the mold and the longitudinal direction of the strain gauge matched with the circumferential direction of the mold. A butyl rubber sheet 12 is pasted so as to cover the surface of the strain gauge 11 to perform waterproofing. A lead wire 13 (shown as a single diagram for the sake of simplicity) is extended from the strain gauge 11 to the measuring device 14, and each level of concrete C is placed in the cylindrical mold 10 by the measuring device 14. The strain change of the cylindrical form frame 10 immediately after the casting is placed until a predetermined age is continuously measured to grasp the expansion property of the concrete. In the figure, a mold notch line 15 is formed on the outer surface of the mold. The formwork can be cut off by this formwork cutout line 15, and the concrete specimen can be easily removed from the mold.

特開2011−169894公報JP2011-169894A

ところで、この品質管理試験方法は、コンクリート施工現場等において、簡易に行えることを想定している。そのため、コンクリートの種類、添加剤の種類に加えて、コンクリート打設場所の環境温度が与える影響を考慮し、その環境温度下で硬化が進行するコンクリートの適正なひずみ量を知ることが必要である。   By the way, it is assumed that this quality control test method can be easily performed at a concrete construction site or the like. Therefore, in addition to the type of concrete and the type of additive, it is necessary to consider the effect of the environmental temperature at the concrete placement site and to know the appropriate strain amount of the concrete that hardens under that environmental temperature. .

例えば、恒温室等の20℃環境下でのコンクリート硬化にひずみの経時変化について、異なる骨材(硬質砂岩砕石、石灰石砕石)を用いたコンクリートについて、コンクリート打設から材齢7日までの材齢と膨張ひずみ(ひずみゲージ測定値)との関係の一例を図2に示す。このように、一定の環境温度下(20℃)では、材齢1日までの間にそのほとんどのひずみ変化が生じ、その後ほぼ横ばいに安定する、概ねバイリニア型の経時変化を示すことが認められている。   For example, with regard to the time-dependent change of strain in concrete hardening under a 20 ° C environment such as a constant temperature room, for concrete using different aggregates (hard sandstone crushed stone, limestone crushed stone), the age from concrete placement to age 7 days FIG. 2 shows an example of the relationship between the strain and the expansion strain (strain gauge measurement value). In this way, at a constant ambient temperature (20 ° C.), it is recognized that most of the strain change occurs until the first day of aging, and then shows a generally bilinear type change with time, which stabilizes almost flat after that. ing.

しかし、実際のコンクリート打設作業を行う現場のような環境下では1日において気温変化がある場合が一般的である。そのような気温変化(日較差)を想定した場合のコンクリートひずみの経時変化を、たとえば図3に示したような温度履歴(最高温度約33℃/日、最低温度約17℃/日)で再現して、打設コンクリートの経時変化(コンクリート打設〜材齢7日)を測定した。その結果、図4に示したように、材齢経過に伴うコンクリートひずみは温度履歴(気温の変動)と連動して変動することが確認された。   However, in an environment such as a site where actual concrete placement work is performed, there is generally a case where there is a temperature change in one day. The time-dependent change in concrete strain assuming such a change in temperature (daily difference) is reproduced with a temperature history (maximum temperature of about 33 ° C./day, minimum temperature of about 17 ° C./day) as shown in FIG. 3, for example. And the time-dependent change (concrete casting-material age 7 days) of the cast concrete was measured. As a result, as shown in FIG. 4, it was confirmed that the concrete strain accompanying the aging of the material fluctuates in conjunction with the temperature history (temperature fluctuation).

この温度履歴に基づくコンクリートひずみは、型枠内のコンクリート自体のひずみ変動と、軽量鋼製型枠のひずみ(ひずみゲージ測定値)変動とが複合的に挙動していることが予想される。そのため、ひずみゲージによる測定値がコンクリートひずみを適正に示すような測定を行う必要がある。そこで、本発明の目的は上述した従来の技術が有する問題点を解消し、対象とするコンクリートの線膨張係数とひずみゲージの補償線膨張係数とに着目して、コンクリート試験体の硬化時の材齢経過において、適正なコンクリートひずみを測定できるようにしたコンクリート品質管理試験方法を提供することにある。   It is expected that the concrete strain based on this temperature history behaves in combination with the strain variation of the concrete itself in the mold and the strain (strain gauge measured value) variation of the lightweight steel mold. Therefore, it is necessary to perform measurement such that the measurement value by the strain gauge appropriately indicates the concrete strain. Accordingly, the object of the present invention is to solve the above-mentioned problems of the prior art, paying attention to the linear expansion coefficient of the target concrete and the compensated linear expansion coefficient of the strain gauge, the material at the time of curing the concrete specimen An object of the present invention is to provide a concrete quality control test method capable of measuring an appropriate concrete strain over time.

上記目的を達成するために、本発明はコンクリートを打設した薄肉円柱型枠の外側面に貼付したひずみゲージで、前記コンクリートの打設直後から所定材齢までのひずみ量を測定し、該ひずみ量の経時変化から、所定の添加材または添加剤が適正に混入されたコンクリートであるかの評価を行うコンクリートの品質管理試験方法において、前記コンクリートのひずみ量の経時的な温度変化に対応する前記ひずみゲージのひずみ変動が最小となる補償線膨張係数を有するひずみゲージを用いてひずみ量測定を行うことを特徴とする。 In order to achieve the above object, the present invention is a strain gauge affixed to the outer surface of a thin-walled cylindrical formwork in which concrete has been placed, and measures the amount of strain from immediately after placing the concrete to a predetermined material age. In a concrete quality control test method for evaluating whether a predetermined additive or an additive is appropriately mixed from a change in quantity over time, the concrete corresponding to a change in temperature over time of the strain amount of the concrete The strain amount is measured using a strain gauge having a compensation linear expansion coefficient that minimizes the strain fluctuation of the strain gauge.

前記コンクリートの線膨張係数を、あらかじめコンクリート長さ変化試験により求め、該線膨張係数に近い補償線膨張係数を有するひずみゲージを用いることが好ましい。 The linear expansion coefficient of the concrete is preferably obtained in advance by a concrete length change test, and a strain gauge having a compensated linear expansion coefficient close to the linear expansion coefficient is preferably used.

前記薄肉円柱型枠として薄鋼板製モールドを使用することが好ましい。   It is preferable to use a thin steel plate mold as the thin cylindrical mold.

以上に述べたように、本発明によれば、コンクリート施工現場等において、試験対象であるコンクリートへの膨張材、収縮低減剤の混入の有無の確認と、膨張材の混入量の概略把握とを行う品質管理試験において、コンクリート種類の線膨張係数に適合した補償線膨張係数を有するひずみゲージを用いて、材齢経過時の温度変化の影響を小さくして、試験精度を高めることができるという効果を奏する。   As described above, according to the present invention, in a concrete construction site or the like, confirmation of the presence or absence of mixing of an expansion material and a shrinkage reducing agent into the concrete to be tested, and a general grasp of the amount of expansion material mixed The effect of using a strain gauge with a compensation linear expansion coefficient that matches the linear expansion coefficient of the concrete type in the quality control test to be performed, reducing the effect of temperature changes during the age of the material, and improving the test accuracy Play.

本発明のコンクリート品質管理試験方法の装置構成の概略説明図。The schematic explanatory drawing of the apparatus structure of the concrete quality control test method of this invention. 20℃環境下におけるコンクリートひずみ経時変化図(打設後〜材齢7日)。A concrete strain time-dependent change figure in a 20 degreeC environment (after casting-material age 7 days). ひずみ測定試験用槽内温度履歴図(打設後〜材齢7日)。Temperature history chart in the strain measurement test tank (after casting to material age 7 days). 図3に示した温度履歴下におけるコンクリート(粗骨材:石灰岩砕石)ひずみ経時変化図(打設後〜材齢7日)。FIG. 4 is a time-dependent change diagram of the concrete (coarse aggregate: limestone crushed stone) strain under the temperature history shown in FIG. 線膨張係数測定時槽内温度履歴パターン図。The temperature history pattern figure in a tank at the time of a linear expansion coefficient measurement. 線膨張係数測定用試験コンクリート(粗骨材:硬質砂岩砕石)実ひずみ経時変化図(材齢25〜30日)。Test concrete for measuring linear expansion coefficient (coarse aggregate: hard sandstone crushed stone) Actual strain change with time (material age 25-30 days). 線膨張係数測定用試験コンクリート(粗骨材:石灰岩砕石)実ひずみ経時変化図(材齢25〜30日)。Test concrete for measuring linear expansion coefficient (coarse aggregate: limestone crushed stone) Actual strain change with time (material age 25-30 days). 図3に示した温度履歴下における、各補償線膨張係数のひずみゲージによるコンクリート(粗骨材:硬質砂岩砕石)ひずみ測定経時変化図(打設後〜材齢7日)。FIG. 4 is a time-dependent change diagram of the concrete (coarse aggregate: hard sandstone crushed stone) strain measurement using a strain gauge of each compensation linear expansion coefficient under the temperature history shown in FIG. 図3に示した温度履歴下における、各補償線膨張係数のひずみゲージによるコンクリート(粗骨材:石灰岩砕石)ひずみ測定経時変化図(打設後〜材齢7日)。FIG. 4 is a time-dependent change diagram of the concrete (coarse aggregate: limestone crushed stone) strain measurement using a strain gauge with each compensation linear expansion coefficient under the temperature history shown in FIG. 図8における線膨張係数α=11.8のひずみゲージによるコンクリートひずみ測定経時変化図(打設後〜材齢7日)。FIG. 9 is a time-dependent change diagram of concrete strain measurement with a strain gauge having a linear expansion coefficient α = 11.8 in FIG. 8 (after casting to material age 7 days). 図9における線膨張係数α=8.1のひずみゲージによるコンクリートひずみ測定経時変化図(打設後〜材齢7日)。FIG. 10 is a time-dependent change diagram of concrete strain measurement with a strain gauge having a linear expansion coefficient α = 8.1 in FIG. 9 (after casting to material age 7 days).

以下、本発明のコンクリート品質管理試験方法の実施するための形態として、以下の実施例について添付図面を参照して説明する。   Hereinafter, the following examples will be described with reference to the accompanying drawings as modes for carrying out the concrete quality control test method of the present invention.

上述した材齢経過に伴うコンクリートひずみの変動は、コンクリートの線膨張係数と軽量鋼製型枠の線膨張係数が異なるために、環境温度変化に対して複合的な変動を示していると考えられる。そこで、以下の実験を行い、環境温度変化に対してひずみ測定値が安定して推移する状況を設定することとした。   It is thought that the above-mentioned fluctuation of concrete strain with the lapse of age shows a complex fluctuation with respect to environmental temperature change because the linear expansion coefficient of concrete and the linear expansion coefficient of lightweight steel formwork are different. . Therefore, the following experiment was performed to set a situation where the strain measurement value stably changed with respect to the environmental temperature change.

[コンクリートの線膨張係数を求める試験]
以後の試験において使用する粗骨材(硬質砂岩砕石、石灰岩砕石)を用いた各コンクリートの線膨張係数を、長さ変化試験により求められた各実ひずみから算出する。
(コンクリート種類)
表1に2水準(粗骨材2種類:硬質砂岩砕石、石灰岩砕石)のコンクリートの調合とフレッシュ性状(スランプ値、フロー値、空気量、測定時温度)を示す。

Figure 0005861874
(試験方法)
鋼製型枠(供試体寸法=100×100×400(mm))に埋込み型ひずみ計を設置してコンクリートを打込み、線膨張係数の測定を行った。コンクリート打設後は、封緘状態にして図3に示したのと同様の温度履歴を与えて養生した。その後、材齢20日程度で脱型し、アルミ粘着テープを用いて封緘養生を続け、材齢23日頃から図5に示すような温度履歴における養生を行った。
(試験結果)
各コンクリートの埋込み型ひずみ計の実ひずみと温度変化の結果を図6,図7に示す。コンクリート実ひずみおよび温度が一定になった時の測定値を用いて線膨張係数αを算出した(コンクリートの長さ変化試験方法(JIS A1129 )の計算方法に準拠)。この結果、(以下、線膨張係数の表示:α×10-6)としたとき、
硬質砂岩砕石コンクリート:α=11.7
石灰岩砕石コンクリート :α= 8.3
を得た。 [Test to determine the linear expansion coefficient of concrete]
The linear expansion coefficient of each concrete using coarse aggregate (hard sandstone crushed stone, limestone crushed stone) used in the subsequent tests is calculated from each actual strain obtained by the length change test.
(Concrete type)
Table 1 shows the concrete mix and fresh properties (slump value, flow value, air volume, measurement temperature) of two levels (two types of coarse aggregate: hard sandstone crushed stone and limestone crushed stone).
Figure 0005861874
(Test method)
An embedded strain gauge was installed in a steel mold (specimen size = 100 × 100 × 400 (mm)), and concrete was driven in to measure the linear expansion coefficient. After placing the concrete, it was cured in a sealed state with the same temperature history as shown in FIG. Thereafter, the mold was removed at about 20 days of age, and sealing curing was continued using an aluminum adhesive tape, and curing at a temperature history as shown in FIG.
(Test results)
6 and 7 show the actual strain and temperature change results of the embedded strain gauges of each concrete. The linear expansion coefficient α was calculated using the measured values when the actual concrete strain and temperature became constant (based on the calculation method of the concrete length change test method (JIS A1129)). As a result, (hereinafter referred to as linear expansion coefficient display: α × 10 −6 )
Hard sandstone crushed concrete: α = 11.7
Limestone crushed concrete: α = 8.3
Got.

[コンクリート種類に応じたひずみゲージの選定評価試験]
コンクリートの線膨張係数は、一般にα=6〜11程度となることが知られている。粗骨材種類による線膨張係数の数値差として、石灰岩砕石を使用した場合には小さく、硬質砂岩砕石を使用した場合には、石灰岩砕石の場合より大きくなることが知られており、上記試験結果と合致することが確認された。このとき、上述した出願人の提案している品質管理試験方法の場合、コンクリートの剛性が軽量鋼製型枠に比べて十分大きいため、型枠内部のコンクリートの挙動によってひずみ値が決まってくることから、使用粗骨材によって想定されるコンクリートひずみと同程度の補償線膨張係数を有するひずみゲージを使用することで、本試験方法での温度変化による影響を小さくできることが想定できる。そこで、以下の試験により、その検証を行った。なお、本明細書において、「補償線膨張係数」とは、対象のひずみゲージが有する熱出力による線膨張係数をもとにして製品に明記されたひずみゲージの規格、仕様のひとつで、ひずみゲージ選択の指標となるものを指す。

[Strain gauge selection evaluation test according to concrete type]
It is known that the linear expansion coefficient of concrete is generally about α = 6 to 11. As the numerical difference of the linear expansion coefficient depending on the type of coarse aggregate, it is known that when limestone crushed stone is used, it is small, and when hard sandstone crushed stone is used, it becomes larger than limestone crushed stone. It was confirmed that it matched. At this time, in the case of the quality control test method proposed by the applicant described above, the rigidity of the concrete is sufficiently larger than that of the lightweight steel formwork, so that the strain value is determined by the behavior of the concrete inside the formwork. Therefore, it can be assumed that the effect of temperature change in this test method can be reduced by using a strain gauge having a compensation linear expansion coefficient comparable to the concrete strain assumed by the coarse aggregate used. Therefore, the verification was performed by the following test. In this specification, “compensated linear expansion coefficient” is one of the strain gauge standards and specifications specified for products based on the linear expansion coefficient due to the thermal output of the target strain gauge. Refers to an index of selection.

補償線膨張係数の異なるひずみゲージ(4水準)と線膨張係数の異なるコンクリート(2水準)を用いて、所定の温度履歴での本品質管理試験方法でのひずみ測定を行うこととした。上記試験組み合わせは表2に示したとおりの8種類である。なお、膨張材にはエトリンガイト−石灰複合系膨張材を使用した。コンクリート調合は、表1に示したのと同一である。

Figure 0005861874
Using strain gauges (4 levels) with different compensation linear expansion coefficients and concrete (2 levels) with different linear expansion coefficients, strain measurement was performed in this quality control test method at a predetermined temperature history. There are 8 types of test combinations as shown in Table 2. An ettringite-lime composite expansion material was used as the expansion material. The concrete mix is the same as shown in Table 1.
Figure 0005861874

図8は、図3に示した温度履歴で養生を行った本品質管理試験方法において、硬質砂岩砕石を用いたコンクリート種類に対して表2に示した各補償線膨張係数のひずみゲージを使用してコンクリート打設直後から、材齢7日までの間のひずみゲージによる経時変化を示したグラフである。いずれのひずみゲージを用いた場合にも、コンクリート温度変化に対応して所定のひずみ変動が現れる。そのうち、最小変動のひずみゲージの挙動を抽出して示したのが図10である。この補償線膨張係数(α=11.8)のひずみゲージのひずみは、他の補償線膨張係数のひずみゲージの変動の1/3〜4であり、最も温度変化に対する変動が小さい。これは、コンクリートの剛性が軽量鋼製型枠に比べて十分大きく、コンクリートの線膨張係数とひずみゲージの補償線膨張係数が近い、すなわち両者の数値差が小さいことに起因しているといえる。   FIG. 8 shows the results of the quality control test method in which the temperature history shown in FIG. 3 is used, and the strain gauges having the respective compensation linear expansion coefficients shown in Table 2 are used for the concrete types using the hard sandstone crushed stone. It is the graph which showed the time-dependent change by the strain gauge from immediately after concrete placement to 7 days of age. Regardless of which strain gauge is used, a predetermined strain fluctuation appears corresponding to the concrete temperature change. Of these, FIG. 10 shows the behavior of the strain gauge with the smallest fluctuation. The strain of the strain gauge having the compensation linear expansion coefficient (α = 11.8) is 1/3 to 4 of the fluctuation of the strain gauge having other compensation linear expansion coefficients, and the fluctuation with respect to the temperature change is the smallest. This can be attributed to the fact that the rigidity of the concrete is sufficiently larger than that of the lightweight steel formwork, and that the linear expansion coefficient of the concrete and the compensation linear expansion coefficient of the strain gauge are close, that is, the numerical difference between the two is small.

図9は、図3に示した温度履歴で養生を行った本品質管理試験方法において、石灰岩砕石を用いたコンクリート種類に対して表2に示した各補償線膨張係数のひずみゲージを使用してコンクリート打設直後から、材齢7日までの間のひずみゲージによる経時変化を示したグラフである。いずれのひずみゲージを用いた場合にも、コンクリート温度変化に対応して所定のひずみ変動が現れる。そのうち、最小変動のひずみゲージの挙動を抽出して示したのが図11である。この補償線膨張係数(α=8.1)のひずみゲージのひずみは、他の補償線膨張係数のひずみゲージの変動の1/3〜6であり、最も温度変化に対する変動が小さい。この場合も、石灰岩砕石を用いたコンクリートの線膨張係数とひずみゲージの補償線膨張係数の値が近いことが確認された。   FIG. 9 shows the results of the quality control test method in which the temperature history shown in FIG. 3 is used, and a strain gauge having each compensation linear expansion coefficient shown in Table 2 is used for the concrete type using limestone crushed stone. It is the graph which showed the time-dependent change by the strain gauge from immediately after concrete placement to age 7 days. Regardless of which strain gauge is used, a predetermined strain fluctuation appears corresponding to the concrete temperature change. Among them, FIG. 11 shows the behavior of the strain gauge with the minimum fluctuation. The strain of the strain gauge having the compensation linear expansion coefficient (α = 8.1) is 1/3 to 6 of the fluctuation of the strain gauge having another compensation linear expansion coefficient, and the fluctuation with respect to the temperature change is the smallest. Also in this case, it was confirmed that the linear expansion coefficient of the concrete using the limestone crushed stone was close to the value of the compensation linear expansion coefficient of the strain gauge.

このように、コンクリート種類の線膨張係数に近い、すなわち数値差が小さい補償線膨張係数のひずみゲージを選定することで、計測されるコンクリートひずみの温度変化による変動を小さくでき、より正確な評価ができることが認められた。   In this way, by selecting a strain gauge with a compensation linear expansion coefficient that is close to the linear expansion coefficient of the concrete type, that is, with a small numerical difference, fluctuations due to temperature changes in the measured concrete strain can be reduced, and more accurate evaluation can be performed. It was recognized that we could do it.

なお、本発明は上述した実施例に限定されるものではなく、各請求項に示した範囲内での種々の変更が可能である。すなわち、請求項に示した範囲内で適宜変更した技術的手段を組み合わせて得られる実施形態も、本発明の技術的範囲に含まれる。   In addition, this invention is not limited to the Example mentioned above, A various change within the range shown to each claim is possible. In other words, embodiments obtained by combining technical means appropriately changed within the scope of the claims are also included in the technical scope of the present invention.

10 軽量鋼製円柱型枠(円柱型枠)
11 ひずみゲージ
14 測定装置
10 Lightweight steel cylindrical formwork (cylindrical formwork)
11 Strain gauge 14 Measuring device

Claims (3)

コンクリートを打設した薄肉円柱型枠の外側面に貼付したひずみゲージで、前記コンクリートの打設直後から所定材齢までのひずみ量を測定し、該ひずみ量の経時変化から、所定の添加材または添加剤が適正に混入されたコンクリートであるかの評価を行うコンクリートの品質管理試験方法において、
前記コンクリートのひずみ量の経時的な温度変化に対応する前記ひずみゲージのひずみ変動が最小となる補償線膨張係数を有するひずみゲージを用いてひずみ量測定を行うことを特徴とするコンクリート品質管理試験方法。
With a strain gauge affixed to the outer surface of a thin-walled cylindrical formwork in which concrete has been placed, the amount of strain from immediately after placing the concrete to a predetermined age is measured. In the concrete quality control test method for evaluating whether the concrete is properly mixed with additives,
A concrete quality control test method comprising: measuring a strain amount using a strain gauge having a compensation linear expansion coefficient that minimizes a strain variation of the strain gauge corresponding to a temperature change with time of the strain amount of the concrete. .
前記コンクリートの線膨張係数を、あらかじめコンクリート長さ変化試験により求め、該線膨張係数に近い補償線膨張係数を有するひずみゲージを用いることを特徴とする請求項1に記載のコンクリート品質管理試験方法。 The concrete quality control test method according to claim 1, wherein a linear expansion coefficient of the concrete is obtained in advance by a concrete length change test, and a strain gauge having a compensated linear expansion coefficient close to the linear expansion coefficient is used. 前記薄肉円柱型枠に、薄鋼板製モールドを使用したことを特徴とする請求項1または請求項2に記載のコンクリートの品質管理試験方法。   The concrete quality control test method according to claim 1 or 2, wherein a thin steel plate mold is used for the thin cylindrical mold.
JP2012020594A 2012-02-02 2012-02-02 Concrete quality control test method Active JP5861874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012020594A JP5861874B2 (en) 2012-02-02 2012-02-02 Concrete quality control test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012020594A JP5861874B2 (en) 2012-02-02 2012-02-02 Concrete quality control test method

Publications (2)

Publication Number Publication Date
JP2013160547A JP2013160547A (en) 2013-08-19
JP5861874B2 true JP5861874B2 (en) 2016-02-16

Family

ID=49172925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012020594A Active JP5861874B2 (en) 2012-02-02 2012-02-02 Concrete quality control test method

Country Status (1)

Country Link
JP (1) JP5861874B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6108228B2 (en) 2013-08-01 2017-04-05 株式会社デンソー Head-up display device
JP6256942B2 (en) * 2013-10-29 2018-01-10 太平洋セメント株式会社 Initial crack test method for concrete

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS559425U (en) * 1978-07-01 1980-01-22
JP2000128605A (en) * 1998-10-19 2000-05-09 Ohbayashi Corp Composition for imitation stone
JP3955247B2 (en) * 2002-08-30 2007-08-08 嘉昭 佐藤 Concrete shrinkage cracking test equipment
JP2005069831A (en) * 2003-08-22 2005-03-17 Ps Mitsubishi Construction Co Ltd Concrete cask
JP4429821B2 (en) * 2004-06-24 2010-03-10 太平洋セメント株式会社 Method for estimating expansion stress of expansive concrete
JP5046278B2 (en) * 2007-05-23 2012-10-10 東亜建設工業株式会社 Method for determining the proportion of expansion material for concrete
JP2009058326A (en) * 2007-08-31 2009-03-19 Mitsubishi Materials Corp Linear expansion coefficient calculating method of hydraulic-setting material and apparatus of the same
JP2011022029A (en) * 2009-07-16 2011-02-03 Tobishima Corp Distortion detecting device for concrete structure
JP2011095115A (en) * 2009-10-30 2011-05-12 Denki Kagaku Kogyo Kk Method of measuring volume change rate and/or length change rate
JP5811390B2 (en) * 2010-01-25 2015-11-11 清水建設株式会社 Quality control test method for crack-suppressing concrete.

Also Published As

Publication number Publication date
JP2013160547A (en) 2013-08-19

Similar Documents

Publication Publication Date Title
JP2016037014A (en) Method for producing concrete molding and production management method for concrete molding
JP6986323B2 (en) Method for predicting dry shrinkage strain of concrete and method for predicting dry shrinkage stress of concrete
JP2020034423A (en) Method for estimating compressive strength of concrete
JP5861874B2 (en) Concrete quality control test method
JP2001324302A (en) Concrete embedded type strain gage and method for measuring strain of concrete
JP5822202B2 (en) Concrete quality control test method
JP7226913B2 (en) Drying shrinkage strain estimation method
JP2009058326A (en) Linear expansion coefficient calculating method of hydraulic-setting material and apparatus of the same
JP2010243472A (en) Method of early estimating concrete drying shrinkage strain
JP6893451B2 (en) How to predict the ultimate value of drying shrinkage strain of concrete
KR101904352B1 (en) Measuring method doe coefficient of thermal expansion of hardening cementitious materials using elastic membrane
JP2008008753A (en) Early estimation method of concrete dry shrinkage factor
JP5811390B2 (en) Quality control test method for crack-suppressing concrete.
Costa et al. Assessment of the long term behaviour of structural adhesives in the context of NSM flexural strengthening technique with prestressed CFRP laminates
JP4429821B2 (en) Method for estimating expansion stress of expansive concrete
JP6497707B2 (en) Strength estimation system for concrete demolding
JP5769074B2 (en) Quality control test method for crack-suppressing concrete.
JP2011095114A (en) Method of measuring volume change rate and/or length change rate of solid by correcting error due to temperature change
JP2013101070A (en) Management method and management device for revibration of concrete
JP2012107941A (en) Method for determining compounding amount of shrinkage reducing agent
KR101741137B1 (en) Test Method of Self-healing in Concrete Paste
CN112033842A (en) On-site nondestructive testing method for concrete split tensile strength
Buidens Effects of mix design using chloride-based accelerator on concrete pavement cracking potential
Fjellström Measurement and modelling of young concrete properties
JP2012047587A (en) Method of predicting activity index of fly ash for concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151209

R150 Certificate of patent or registration of utility model

Ref document number: 5861874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150