JP2020034423A - Method for estimating compressive strength of concrete - Google Patents

Method for estimating compressive strength of concrete Download PDF

Info

Publication number
JP2020034423A
JP2020034423A JP2018161256A JP2018161256A JP2020034423A JP 2020034423 A JP2020034423 A JP 2020034423A JP 2018161256 A JP2018161256 A JP 2018161256A JP 2018161256 A JP2018161256 A JP 2018161256A JP 2020034423 A JP2020034423 A JP 2020034423A
Authority
JP
Japan
Prior art keywords
concrete
compressive strength
air permeability
permeability coefficient
estimating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018161256A
Other languages
Japanese (ja)
Inventor
峰磯 神頭
Mineki Shinto
峰磯 神頭
泰博 平野
Yasuhiro Hirano
泰博 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sharyo Ltd
Original Assignee
Nippon Sharyo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sharyo Ltd filed Critical Nippon Sharyo Ltd
Priority to JP2018161256A priority Critical patent/JP2020034423A/en
Publication of JP2020034423A publication Critical patent/JP2020034423A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

To provide a method for estimating compressive strength of a concrete structure, in which compressive strength of installed concrete can be estimated by measuring an air infiltration coefficient.SOLUTION: An air infiltration coefficient of the installed concrete is measured and compressive strength of the concrete is estimated using a correlation diagram of the air infiltration coefficient and the compressive strength created in advance. In this case, using the same concrete material used from a concrete structure before placing the concrete, a compression strength test and an air infiltration test are performed to create the correlation diagram. By doing this, the air infiltration coefficient of the concrete structure at the site is measured and the compressive strength can be estimated by obtaining the air infiltration coefficient.SELECTED DRAWING: Figure 1

Description

本発明は、コンクリートの圧縮強度を推定する方法に関し、詳しくはコンクリートの透気係数を計測することで、そのコンクリート構造物の圧縮強度を推定する技術に関する。   The present invention relates to a method for estimating the compressive strength of concrete, and more particularly to a technique for estimating the compressive strength of a concrete structure by measuring the permeability coefficient of concrete.

コンクリート製の構造物を建造するにあたっては、打設したコンクリートの品質を適宜確認する必要がある。特に強度を必要とする部分では、コンクリートの圧縮強度の計測を行う必要があり、従来はコンクリートを打設する際に作成した標準供試体を用いて圧縮強度を計測したり、テストハンマーを用いた打撃に対する反発度から強度を推定したりして圧縮強度の調査を行っていた。   When constructing a concrete structure, it is necessary to appropriately check the quality of the cast concrete. It is necessary to measure the compressive strength of concrete, especially in areas where strength is required.Conventionally, compressive strength was measured using a standard specimen created when placing concrete, or a test hammer was used. Investigating the compressive strength by estimating the strength from the degree of rebound to impact.

しかしながら、同じ材料を用いて作成した標準供試体は、実際に打設されたコンクリートと同じ硬化条件とする為に、同じ硬化期間を要する。また、テストハンマーを用いた表面の反発度から算定する手法では、厳密には圧縮強度とは異なることと、テストハンマーを用いた手法の場合、打設したコンクリートが硬化した後にしか圧縮強度を計測することができない。   However, a standard specimen prepared using the same material requires the same curing period to achieve the same curing conditions as concrete that is actually cast. Also, the method of calculating from the degree of rebound of the surface using a test hammer is strictly different from the compressive strength, and in the case of the method using a test hammer, the compressive strength is measured only after the poured concrete has hardened Can not do it.

特許文献1には、コンクリート表層品質の評価指標の算出方法が開示されている。コンクリートに対してTorrent法を用いて透気係数を計測し、Wenner法を用いて電気抵抗率測定を行って、得られた電気抵抗率測定値と材齢との間の関係を表す近似式を算定する。そして、電気抵抗率の近似直線式の傾きの値を表層透気係数の近似直線の傾きの値で除して表層透気性指数を算出し、表層透気性指数の値を用いてコンクリート品質を評価している。   Patent Literature 1 discloses a method for calculating an evaluation index of concrete surface layer quality. An air-permeability coefficient is measured for concrete using the Torrent method, an electric resistivity measurement is performed using the Wenner method, and an approximate expression representing a relationship between the obtained electric resistivity measured value and the material age is obtained. Calculate. Then, the value of the slope of the approximate linear equation of electrical resistivity is divided by the value of the slope of the approximate straight line of the surface air permeability coefficient to calculate the surface air permeability index, and the concrete quality is evaluated using the value of the surface air permeability index. are doing.

特許文献2には、打設されたコンクリートの品質判定方法が開示されている。コンクリート内に電極を配設した供試体を用い、供試体の養生期間を変動させた条件毎に作成し、硬化中における抵抗値の推移を計測・記録し、各供試体について性能試験を行い、この性能試験結果を記録し、コンクリートの水和反応の進行度による抵抗値と養生期間と性能試験結果との相関関係を把握する。一方、実構造物のコンクリートのかぶりに位置する部分に電極を配設し、型枠内にコンクリートを打設し、電極についてコンクリートのかぶり部分の硬化中における抵抗値の推移を計測する。そして、この計測した抵抗値を、相関関係の抵抗値に当て嵌めることにより、実構造物の打設されたコンクリートの品質を判定する。   Patent Literature 2 discloses a method for determining the quality of cast concrete. Using specimens with electrodes arranged in concrete, created for each condition where the curing period of the specimen was varied, measured and recorded the change in resistance value during curing, performed a performance test on each specimen, The performance test results are recorded, and the correlation between the resistance value according to the degree of progress of the hydration reaction of the concrete, the curing period, and the performance test results is grasped. On the other hand, an electrode is disposed on a portion of the actual structure located at the concrete cover, concrete is poured into the formwork, and a change in the resistance value of the electrode during curing of the concrete cover is measured. Then, by applying the measured resistance value to the resistance value of the correlation, the quality of the concrete placed on the actual structure is determined.

特開2013−92471号公報JP 2013-92471 A 特開2014−125757号公報JP 2014-125575 A

しかしながら、特許文献1及び特許文献2のいずれも電気抵抗値を推定してコンクリートの品質を評価する手法ではあるが、圧縮強度について調査する手法ではなく、別途圧縮強度について調査する必要がある。このため、早期にコンクリート構造物の圧縮強度を調査できる方法が切望されていた。   However, both Patent Literature 1 and Patent Literature 2 are methods for estimating the electrical resistance value to evaluate the quality of concrete, but it is not a method for investigating the compressive strength, but it is necessary to separately investigate the compressive strength. For this reason, there has been an urgent need for a method capable of investigating the compressive strength of a concrete structure at an early stage.

そこで、本発明はこの様な課題を解決する為に、打設したコンクリートの圧縮強度を、透気係数を計測することで推定する事のできるコンクリート構造物の圧縮強度推定方法の提供を目的とする。   In order to solve such problems, the present invention has an object to provide a method for estimating the compressive strength of a concrete structure, which can estimate the compressive strength of cast concrete by measuring an air permeability coefficient. I do.

前記目的を達成するために、本発明の一態様によるコンクリート構造物の圧縮強度推定方法は、以下のような特徴を有する。   In order to achieve the above object, a method for estimating compressive strength of a concrete structure according to one aspect of the present invention has the following features.

(1)打設したコンクリートの透気係数を計測し、事前に作成した透気係数と圧縮強度の相関図を用いて、前記コンクリートの圧縮強度を推定すること、を特徴とする。 (1) The concrete is characterized by measuring the air permeability of cast concrete and estimating the compressive strength of the concrete by using a correlation diagram between the air permeability and the compressive strength created in advance.

上記(1)に記載の態様によって、事前に作成した透気係数と圧縮強度の相関図を用いることで、現場で透気係数を計測するだけでコンクリートの圧縮強度を推定することが可能になる。透気係数は例えばTorrent法などを用いることで、現場で比較的簡単に計測することが可能である。これまでのように、複数の標準供試体を作成して圧縮強度試験を行い、コンクリートの圧縮強度を求める必要がなくなるため、現場での確認作業が単純化される。   According to the aspect described in the above (1), it is possible to estimate the compressive strength of concrete by simply measuring the air permeability coefficient on site by using the correlation diagram of the air permeability and the compressive strength created in advance. . The air permeability coefficient can be measured relatively easily on site by using, for example, the Torrent method. As in the past, there is no need to prepare a plurality of standard specimens and perform a compressive strength test to determine the compressive strength of concrete, so that the on-site confirmation work is simplified.

また、後述する実験によって、養生条件によってコンクリートの透気係数のばらつきが変化する事が分かったため、早期に圧縮強度の推定をすることで、長期的な圧縮強度の変化を予測することも可能となる。こうした透気係数の計測によって、コンクリートの圧縮強度を推定する事で、コンクリート構造物の品質を早期に判断することができ、必要に応じて補強や、打設のやり直しといった判断も早期に行うことが可能となる。現場管理において、この事は非常に大きなメリットとなる。   In addition, the experiments described later revealed that the variation in the permeability coefficient of concrete changes depending on the curing conditions, so that by estimating the compressive strength early, it is possible to predict long-term changes in compressive strength. Become. By estimating the compressive strength of concrete by measuring such air permeability coefficient, the quality of concrete structures can be judged at an early stage, and if necessary, judgments such as reinforcement and redoing of casting should be made at an early stage. Becomes possible. This is a huge advantage in field management.

(2)(1)に記載のコンクリート構造物の圧縮強度推定方法において、前記相関図は、複数の材齢の異なる供試体を、前記コンクリートを用いて作成し、前記供試体を用いて圧縮強度及び透気係数を計測して、作られること、が好ましい。 (2) In the method for estimating the compressive strength of a concrete structure according to (1), the correlation diagram may be such that a plurality of specimens having different ages are prepared using the concrete, and the compressive strength is determined using the specimens. It is preferable to be made by measuring the air permeability coefficient.

(3)(1)または(2)に記載のコンクリート構造物の圧縮強度推定方法において、前記相関図は、複数の配合の異なる前記コンクリートよりなる供試体を用意し、該供試体の圧縮強度と透気係数を計測して、作られること、が好ましい。 (3) In the method for estimating the compressive strength of a concrete structure according to (1) or (2), the correlation diagram prepares a specimen made of the concrete having a plurality of different compositions, and compares the compressive strength of the specimen with the compressive strength of the specimen. It is preferable that the air permeability coefficient is measured and made.

上記(2)または(3)に記載の態様によって、材齢毎のコンクリートの圧縮強度と透気係数の相関図が得られるため、複数のコンクリート構造物を作成するにあたって、初期にこの相関図を作成しておけば、共通した相関図を用いてコンクリート構造物の圧縮強度を推定することが可能となる。また、配合の異なるコンクリートに関してもそれぞれ相関図を作成してデータベース化しておけば、配合毎の相関図を用いて圧縮強度を推定することができるので、より広いコンクリート構造物に対しても対応が可能となる。   According to the mode described in the above (2) or (3), a correlation diagram between the compressive strength of concrete and the air permeability coefficient for each age can be obtained. Therefore, when creating a plurality of concrete structures, the correlation diagram is initially determined. If created, the compressive strength of a concrete structure can be estimated using a common correlation diagram. Also, if a correlation diagram is created for concrete with different mixes and created in a database, the compressive strength can be estimated using the correlation diagram for each mix, so that it can be applied to wider concrete structures. It becomes possible.

本実施形態の、コンクリートの圧縮強度を推定するための手順を示すフローチャートである。It is a flowchart of this embodiment which shows the procedure for estimating the compressive strength of concrete. 本実施形態の、材齢56日以降の圧縮強度を示すグラフである。It is a graph which shows the compressive strength after 56 days of material age of this embodiment. 本実施形態の、表層透気試験の結果を示すグラフである。It is a graph which shows the result of the surface air permeability test of this embodiment. 本実施形態の、水中養生期間7日の、材齢による比較を示すグラフである。It is a graph which shows the comparison according to a material age in the underwater curing period of 7 days of this embodiment. 本実施形態の、水中養生期間28日の、材齢による比較を示すグラフである。It is a graph which shows the comparison according to material age in the underwater curing period of 28 days of this embodiment. 本実施形態の、圧縮強度と透気係数で整理したグラフである。It is the graph which arranged by compression strength and air permeability coefficient of this embodiment.

まず、本発明の実施形態について、図面を用いて説明を行う。図1に、本実施形態の、コンクリートの圧縮強度を推定するための手順をフローチャートに示す。橋梁などの構造物のコンクリート打設にあたって、作業者は次のような手順でコンクリートの圧縮強度を推定する。   First, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a flowchart illustrating a procedure for estimating the compressive strength of concrete according to the present embodiment. When placing concrete, such as a bridge, a worker estimates the compressive strength of concrete in the following procedure.

まず、S10で、コンクリートで供試体を作成する。作成する供試体はコンクリートの圧縮強度試験を行う為の標準供試体と、表層透気試験を行うための平板供試体の2タイプで、複数の材齢を調査できるように、必要な数の供試体を用意する。なお、この作業は現場で行う必要はなく、例えばコンクリートを作る生コン工場など設備のある場所で行ってもよい。   First, in S10, a specimen is made of concrete. There are two types of specimens: a standard specimen for compressive strength test of concrete and a flat specimen for surface air permeability test. Prepare a sample. This work does not need to be performed on site, but may be performed at a place where facilities are available, such as a ready-mixed concrete factory for making concrete.

S11で、圧縮強度の計測を行う。コンクリートの圧縮強度の計測は、標準供試体を用いて行う。標準供試体は、本実施形態ではφ100mm×200mmの円筒状のものを想定しているが、特にこれに限定されるものではない。   In S11, the compression strength is measured. The measurement of the compressive strength of concrete is performed using a standard specimen. In the present embodiment, the standard specimen is assumed to be a cylindrical one of φ100 mm × 200 mm, but is not particularly limited to this.

S12で、透気係数の計測を行う。コンクリートの透気係数(本実施形態ではkT値を用いている)の計測は、平板供試体を用いて行う。平板供試体は、本実施形態では長さと幅が300mmで厚さが60mmのものを想定しているが、特にこれに限定されるものでは無い。   In S12, the air permeability coefficient is measured. The measurement of the air permeability coefficient of the concrete (kT value is used in this embodiment) is performed using a flat plate specimen. In this embodiment, the flat plate specimen is assumed to have a length and width of 300 mm and a thickness of 60 mm, but is not particularly limited to this.

S13で、圧縮強度と透気係数の相関図を作成する。ここでは、複数の供試体より得られたデータを用いて相関図を作る。例えば、縦軸に圧縮強度(N/mm)を、横軸に透気係数(10−16)をとり、近似直線を引く。この近似直線は材齢毎に作られる。詳細については後述する。このS10からS13までの一連の作業が第1手順P1であり、同じ配合のコンクリートを製造する毎に相関図を作成する作業を行うことが好ましい。 In S13, a correlation diagram between the compressive strength and the air permeability coefficient is created. Here, a correlation diagram is created using data obtained from a plurality of test specimens. For example, an approximate straight line is drawn by taking the compressive strength (N / mm 2 ) on the vertical axis and the air permeability coefficient (10 −16 m 2 ) on the horizontal axis. This approximate straight line is created for each age. Details will be described later. The series of operations from S10 to S13 is the first procedure P1, and it is preferable to perform the operation of creating a correlation diagram each time concrete having the same composition is manufactured.

S14で、コンクリート構造物の透気係数の計測を行う。表層透気試験はTorrent法を用いるのが好ましく、実構造物の表面にチャンバーセルを吸着させて、コンクリートの透気係数を計測する。なお、Torrent法については既によく知られている方法なので、原理や計測方法などの詳細は割愛する。   In S14, the air permeability coefficient of the concrete structure is measured. It is preferable to use the Torrent method for the surface air permeability test. The chamber cell is adsorbed on the surface of the actual structure, and the air permeability coefficient of the concrete is measured. Since the Torrent method is a well-known method, the details such as the principle and the measuring method are omitted.

S15で、S14で計測した透気係数とS13で作成した相関図を用いて、コンクリートの圧縮強度を推定する。そして手順を終了する。S14とS15の手順は、実構造物に対して、現場で行う第2手順P2である。同じ配合で作られたコンクリートを用いたコンクリート構造物であれば、S13で得られた相関図が利用可能である為、現場で複数の実構造物の透気係数を計測するだけで、圧縮強度を推定することが可能となる。   In S15, the compressive strength of the concrete is estimated using the air permeability coefficient measured in S14 and the correlation diagram created in S13. Then, the procedure ends. The procedures of S14 and S15 are a second procedure P2 performed on the actual structure at the site. In the case of concrete structures using concrete made with the same composition, the correlation diagram obtained in S13 can be used. Can be estimated.

本実施形態のコンクリート構造物の圧縮強度推定方法は上記構成であるため、以下に示すような作用及び効果を奏する。   Since the method for estimating the compressive strength of a concrete structure according to the present embodiment has the above-described configuration, the following functions and effects are achieved.

まず、実構造物のコンクリートの圧縮強度が、早期に推定可能である点が挙げられる。これは、打設したコンクリートの透気係数を計測し、事前に作成した透気係数と圧縮強度の相関図を用いて、コンクリートの圧縮強度を推定するからである。また、前記相関図は、複数の材齢の異なる供試体を、前記コンクリートを用いて作成して用意し、前記供試体を用いて圧縮強度及び透気係数を計測して、作られることが好ましい。また、前記相関図は、複数の配合の異なる前記コンクリートよりなる供試体を用意し、該供試体の圧縮強度と透気係数を計測して、作られること、が好ましい。   First, the compressive strength of concrete of an actual structure can be estimated at an early stage. This is because the air permeability coefficient of the poured concrete is measured, and the compressive strength of the concrete is estimated by using a correlation diagram of the air permeability coefficient and the compressive strength created in advance. Further, the correlation diagram is preferably made by preparing a plurality of specimens of different ages using the concrete, preparing the specimen, measuring the compressive strength and the air permeability coefficient using the specimen. . In addition, it is preferable that the correlation diagram is prepared by preparing a specimen made of a plurality of concretes having different compositions and measuring the compressive strength and the air permeability coefficient of the specimen.

この相関図によってコンクリートの圧縮強度が求められる理由について、次に説明を行う。まず、コンクリートの圧縮強度に関する試験の手法と、その結果について説明する。行った試験は標準供試体を用いた圧縮強度試験と、平板供試体を用いた表層透気試験である。   Next, the reason why the compressive strength of concrete is obtained from the correlation diagram will be described. First, the method of testing the compressive strength of concrete and the results will be described. The tests performed were a compressive strength test using a standard specimen and a surface air permeability test using a flat specimen.

圧縮強度試験では、前述した標準供試体を用いて圧縮強度の調査を行っている。なお、使用材料は呼び名が30−8−25Nのコンクリートとし、普通ポルトラントセメントを用い、水セメント比は48.5%、細骨材率は42.5%としている。コンクリートの配合に関しては表1に示す通りである。   In the compressive strength test, the compressive strength is investigated using the standard specimen described above. The material used is concrete having a name of 30-8-25N, ordinary portland cement is used, the water cement ratio is 48.5%, and the fine aggregate ratio is 42.5%. Table 1 shows the composition of the concrete.

Figure 2020034423
Figure 2020034423

表層透気係数の試験では、圧縮強度試験の場合と同じコンクリートで作成した前述の平板供試体を用いている。平板供試体は振動台によって締固めを行い、表面をコテ仕上げとした。この平板供試体の表層透気係数と、電気抵抗値の計測を行った。表層透気係数についてはTorrent法で、電気抵抗値についてはWenner法で行った。Wenner法についても、既によく知られている方法なので、原理や計測方法などの説明は割愛する。   In the test of the surface air permeability coefficient, the above-mentioned flat plate specimen made of the same concrete as in the case of the compressive strength test is used. The flat specimen was compacted by a shaking table, and the surface was ironed. The surface air permeability coefficient and the electric resistance value of this flat plate specimen were measured. The surface air permeability coefficient was determined by the Torrent method, and the electrical resistance value was determined by the Wenner method. Since the Wenner method is also a well-known method, the description of the principle, the measurement method, and the like is omitted.

次に養生時の条件を列挙する。
(a)脱型し、初期養生と後期養生をそれぞれ20℃の気中で行う。
(b)初期養生を3日間、20℃の水中で行った後、脱型し、後期養生を20℃相対湿度60%の気中で養生を行う。
(c)初期養生を5日間、20℃の水中で行った後、脱型し、後期養生を20℃相対湿度60%の気中で養生を行う。
(d)初期養生を7日間、20℃の水中で行った後、脱型し、後期養生を20℃相対湿度60%の気中で養生を行う。
(e)初期養生を14日間、20℃の水中で行った後、脱型し、後期養生を20℃相対湿度60%の気中で養生を行う。
(f)初期養生を28日間、20℃の水中で行った後、脱型し、後期養生を20℃相対湿度60%の気中で養生を行う。
(g)脱型し、初期養生と後期養生をそれぞれ20℃の水中で行う。
Next, conditions for curing are listed.
(A) Demold, and perform initial curing and late curing in the air at 20 ° C., respectively.
(B) After the initial curing is performed in water at 20 ° C. for 3 days, the mold is removed, and the late curing is performed in the air at 20 ° C. and a relative humidity of 60%.
(C) After the initial curing is performed in water at 20 ° C. for 5 days, the mold is removed, and the late curing is performed in the air at 20 ° C. and a relative humidity of 60%.
(D) After the initial curing is performed in water at 20 ° C. for 7 days, the mold is removed, and the late curing is performed in the air at 20 ° C. and a relative humidity of 60%.
(E) The initial curing is performed in water at 20 ° C. for 14 days, then the mold is removed, and the late curing is performed in the air at 20 ° C. and a relative humidity of 60%.
(F) After the initial curing is performed in water at 20 ° C. for 28 days, the mold is removed, and the late curing is performed in the air at 20 ° C. and a relative humidity of 60%.
(G) Demold, and carry out initial curing and late curing in water at 20 ° C., respectively.

この(a)乃至(g)の7つの条件を対象に、圧縮強度試験及び表層透気試験を行っている。また、(a)乃至(g)における、初期養生と後期養生の期間を合わせた全期間は182日としている。試験材齢は7日、14日、28日、56日、90日、140日、182日の7材齢としている。   A compression strength test and a surface air permeability test are performed on the seven conditions (a) to (g). Further, in (a) to (g), the total period including the initial curing and the late curing is 182 days. The test ages are 7, 14, 28, 56, 90, 140, and 182 days.

圧縮強度試験結果について、図2に材齢56日以降の圧縮強度を示している。縦軸に圧縮強度(N/mm)を、横軸に材齢(日)を示している。これによれば、(a)の全期間を気中で養生した供試体は他の(b)乃至(g)の条件に比べて明らかに圧縮強度が低くなっている様子が分かる。一般的に言われる通り、湿潤養生期間が長くなるにつれてコンクリートの圧縮強度は増進する傾向にあり、この結果もそれを示している。また、同様の理由より、(b)乃至(d)の条件よりも、(e)乃至(g)の条件の方が圧縮強度は高くなっている。つまり、図2より、条件(e)の14日以上の水中養生が、長期養生の効果を十分得る為には望ましい事がわかる。 FIG. 2 shows the results of the compressive strength test after 56 days of material age. The vertical axis shows the compressive strength (N / mm 2 ), and the horizontal axis shows the age (days). According to this, it can be seen that the specimens that have been cured in the entire period of (a) clearly have a lower compressive strength than the other conditions (b) to (g). As is generally said, the compressive strength of concrete tends to increase as the moist curing period increases, and this result also indicates this. For the same reason, the compressive strength is higher under the conditions (e) to (g) than the conditions (b) to (d). In other words, FIG. 2 shows that underwater curing for 14 days or more under condition (e) is desirable to sufficiently obtain the effect of long-term curing.

図3に、表層透気試験の結果について示している。縦軸に電気抵抗値(kΩcm)を、横軸に透気係数(10−16)を示している。また、表層品質の区分として、「非常に良い」「良い」「普通」「悪い」「非常に悪い」という指標を示している。表層透気試験の結果も、(a)の全期間気中で養生した平板供試体に比べて、水中で養生を行った(b)乃至(f)の結果の方が良好であった。また、全体的な傾向として、水中での養生期間が長い供試体ほど、表層品質が「良い」という傾向になっている。 FIG. 3 shows the results of the surface air permeability test. The vertical axis represents the electric resistance value (kΩcm), and the horizontal axis represents the air permeability coefficient (10 −16 m 2 ). In addition, as the classification of the surface quality, indexes of “very good”, “good”, “normal”, “bad”, and “very bad” are shown. As for the result of the surface air permeability test, the results of (b) to (f) obtained by curing in water were better than those of the flat specimens cured in air for the entire period of (a). Also, as a general tendency, a specimen having a longer curing time in water has a tendency that the surface quality is "good".

次に、この表層透気試験について、材齢によって比較したものを次に示す。図4に、水中での養生期間が7日の供試体同士の比較を、グラフに示す。図5に、水中での養生期間が28日の供試体同士の比較を、グラフに示す。いずれも縦軸に電気抵抗値(kΩcm)を、横軸に透気係数(10−16)を示している。また、表層品質の区分は図3と同様にした。これによれば、全体的なばらつき具合は、水中での養生期間が7日である場合に比べて、水中での養生期間が28日である場合の方が小さくなっていることが分かる。この事は、水中での養生期間が長くなるほど、より安定した表層品質が得られることを示唆している。 Next, the results of the surface air permeability test, which are compared according to the material age, are shown below. FIG. 4 is a graph showing a comparison between specimens having a curing period in water of 7 days. FIG. 5 is a graph showing a comparison between specimens having a curing period in water of 28 days. In each case, the vertical axis indicates the electric resistance value (kΩcm), and the horizontal axis indicates the air permeability coefficient (10 −16 m 2 ). The classification of the surface quality was the same as in FIG. According to this, it can be seen that the overall degree of variation is smaller when the underwater curing period is 28 days than when the underwater curing period is 7 days. This suggests that the longer the curing time in water, the more stable surface quality can be obtained.

図6に、圧縮強度と透気係数で整理したグラフを示す。縦軸に圧縮強度(N/mm)を、横軸に透気係数(10−16)を示している。材齢28ではR=0.958、材齢56ではR=0.966、材齢90ではR=0.96、材齢140ではR=0.94、材齢182ではR=0.973という相関係数が示され、何れの材齢でも透気係数と圧縮強度の間には強い相関関係があることが分かった。この図6のグラフは(a)乃至(e)の結果を圧縮強度と透気係数で整理したもので、このグラフの意味するところは、養生期間によらず圧縮強度と透気係数との間には相関関係がある事を意味する。そして、表層品質の優れたコンクリートは圧縮強度にも優れた傾向を示すことが分かった。 FIG. 6 shows a graph arranged by compressive strength and air permeability coefficient. The vertical axis indicates the compressive strength (N / mm 2 ), and the horizontal axis indicates the air permeability coefficient (10 −16 m 2 ). Age of 28 in the R 2 = 0.958, the age 56 in R 2 = 0.966, the age of 90 R 2 = 0.96, an age of 140 in R 2 = 0.94, an age of 182 in R 2 = 0.973, indicating that there is a strong correlation between the air permeability coefficient and the compressive strength at any age. The graph of FIG. 6 is obtained by rearranging the results of (a) to (e) by the compressive strength and the air permeability coefficient. Means that there is a correlation. And it turned out that the concrete which was excellent in surface layer quality also shows the tendency which was excellent also in compressive strength.

この結果により、透気係数と圧縮強度には相関関係があり、透気係数の計測によって長期圧縮強度を推定できることが分かる。即ち、例えば材齢28の時にTorrent法にて実構造物のコンクリートの透気係数を計測することで、図6に示すようにコンクリートの圧縮強度が推定できる。また、図2に示すようにコンクリートの透気係数に関して、同じ養生条件であれば大きな変化が無いため、早期の透気係数の計測により将来的な圧縮強度を推定することができる。特に、14日以上の湿潤養生をした場合には図5に示すように透気係数の材齢によるばらつきが少なくなる傾向にある為、信頼性が高くなる。   From this result, it is understood that there is a correlation between the air permeability coefficient and the compressive strength, and the long-term compressive strength can be estimated by measuring the air permeability coefficient. That is, for example, by measuring the air permeability coefficient of concrete of an actual structure at the age of 28 by the Torrent method, the compressive strength of concrete can be estimated as shown in FIG. Further, as shown in FIG. 2, there is no significant change in the air permeability of concrete under the same curing conditions, so that the future compressive strength can be estimated by measuring the air permeability at an early stage. In particular, when moisture curing is performed for 14 days or more, as shown in FIG. 5, the variation in the air permeability with age tends to be reduced, so that the reliability is improved.

よって、現場で実構造物の透気係数を計測することで、コンクリートの圧縮強度が推定出来るため、想定される圧縮強度に達していない場合には、早期に対応することが可能である。また、非破壊検査である透気係数の計測によって圧縮強度を知ることが出来る点も、メリットとして挙げられる。これまでのように複数の標準供試体を作って圧縮強度試験を行う必要があると現場作業が繁雑になるが、透気係数を測るだけで圧縮強度を知ることができる。そして、早期に打設のやり直しや補強を行うかを判断することができる。   Therefore, by measuring the air permeability coefficient of the actual structure at the site, the compressive strength of the concrete can be estimated, and if the compressive strength does not reach the expected compressive strength, it is possible to respond quickly. Another advantage is that the compressive strength can be known by measuring the air permeability as a nondestructive inspection. If it is necessary to prepare a plurality of standard specimens and perform a compressive strength test as in the past, the work on site becomes complicated, but the compressive strength can be known only by measuring the air permeability coefficient. Then, it is possible to determine whether to start over and reinforce the casting at an early stage.

また、こうした相関関係は、同じ配合のコンクリート構造物に対して成立することが判明していることから、コンクリートの配合を変えた相関関係をデータベース化しておけば、配合に応じた圧縮強度を知ることが可能となる。すなわち、このようなデータベースによって、コンクリートの配合と透気係数の実測値を得れば、非破壊検査による圧縮強度の推定が可能となる。更に、材齢28日以降のコンクリート強度、例えばJIS規格に定められる材齢91日のコンクリート強度も推測可能である。   In addition, since it is known that such a correlation is established for concrete structures having the same composition, if the correlation obtained by changing the composition of concrete is stored in a database, the compressive strength corresponding to the composition can be known. It becomes possible. That is, if the measured values of the composition of the concrete and the air permeability coefficient are obtained from such a database, it is possible to estimate the compressive strength by nondestructive inspection. Further, the concrete strength after the age of 28 days, for example, the concrete strength at the age of 91 days specified by JIS standards can be estimated.

以上、本発明に係るコンクリート構造物の圧縮強度推定方法に関する説明をしたが、本発明はこれに限定されるわけではなく、その趣旨を逸脱しない範囲で様々な変更が可能である。例えば、本実施形態では湿潤養生を行っているが、その他の養生方法にも適用が可能である。また、コンクリート構造物に関しても、本実施形態では橋梁だと説明しているが、橋梁だけでなく他の構造物に適用することを妨げない。また、本実施形態では圧縮強度の計測と透気係数の計測を異なる形状の供試体を用いて行っているが、同一形状の供試体で行っても良い。   Although the method for estimating the compressive strength of a concrete structure according to the present invention has been described above, the present invention is not limited to this, and various modifications can be made without departing from the gist of the present invention. For example, in the present embodiment, the wet curing is performed, but the present invention is also applicable to other curing methods. Further, in the present embodiment, a concrete structure is described as a bridge, but this does not prevent application to other structures in addition to the bridge. Further, in the present embodiment, the measurement of the compressive strength and the measurement of the air permeability coefficient are performed using test pieces having different shapes, but may be performed using test pieces having the same shape.

Claims (3)

打設したコンクリートの透気係数を計測し、
事前に作成した透気係数と圧縮強度の相関図を用いて、前記コンクリートの圧縮強度を推定すること、
を特徴とするコンクリート構造物の圧縮強度推定方法。
Measure the air permeability coefficient of the cast concrete,
Using a correlation diagram of the permeability coefficient and compressive strength created in advance, to estimate the compressive strength of the concrete,
A method for estimating the compressive strength of a concrete structure, characterized in that:
請求項1に記載のコンクリート構造物の圧縮強度推定方法において、
前記相関図は、複数の材齢の異なる供試体を、前記コンクリートを用いて作成し、前記供試体を用いて圧縮強度及び透気係数を計測して、作られること、
を特徴とするコンクリート構造物の圧縮強度推定方法。
The method for estimating compressive strength of a concrete structure according to claim 1,
The correlation diagram is that a plurality of specimens of different ages are created using the concrete, and the compressive strength and the air permeability are measured using the specimen, and that the specimen is made.
A method for estimating the compressive strength of a concrete structure, characterized in that:
請求項1または請求項2に記載のコンクリート構造物の圧縮強度推定方法において、
前記相関図は、複数の配合の異なる前記コンクリートよりなる供試体を用意し、該供試体の圧縮強度と透気係数を計測して、作られること、
を特徴とするコンクリート構造物の圧縮強度推定方法。
In the method for estimating compressive strength of a concrete structure according to claim 1 or 2,
The correlation diagram is prepared by preparing a specimen consisting of a plurality of different concrete of the composition, measuring the compressive strength and air permeability coefficient of the specimen, it is made,
A method for estimating the compressive strength of a concrete structure, characterized in that:
JP2018161256A 2018-08-30 2018-08-30 Method for estimating compressive strength of concrete Pending JP2020034423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018161256A JP2020034423A (en) 2018-08-30 2018-08-30 Method for estimating compressive strength of concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018161256A JP2020034423A (en) 2018-08-30 2018-08-30 Method for estimating compressive strength of concrete

Publications (1)

Publication Number Publication Date
JP2020034423A true JP2020034423A (en) 2020-03-05

Family

ID=69667810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018161256A Pending JP2020034423A (en) 2018-08-30 2018-08-30 Method for estimating compressive strength of concrete

Country Status (1)

Country Link
JP (1) JP2020034423A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021133212A (en) * 2020-02-28 2021-09-13 株式会社三洋物産 Game machine
JP2021133213A (en) * 2020-02-28 2021-09-13 株式会社三洋物産 Game machine
JP2021133211A (en) * 2020-02-28 2021-09-13 株式会社三洋物産 Game machine
JP2021133214A (en) * 2020-02-28 2021-09-13 株式会社三洋物産 Game machine
JP2021133210A (en) * 2020-02-28 2021-09-13 株式会社三洋物産 Game machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013189764A (en) * 2012-03-12 2013-09-26 Yokogawa Koji Kk Floor slab reinforcing method of bridge, bridge floor slab structure, and heat insulation member
JP2014125757A (en) * 2012-12-26 2014-07-07 Sato Kogyo Co Ltd Quality determination method of installed concrete, form removal timing determination method and form removal timing setting method, lifetime estimation method of concrete structure, management method of construction information and form for measuring resistance value of installed concrete
JP2018124253A (en) * 2017-02-03 2018-08-09 三井住友建設株式会社 Stress measurement device and stress measurement method of concrete structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013189764A (en) * 2012-03-12 2013-09-26 Yokogawa Koji Kk Floor slab reinforcing method of bridge, bridge floor slab structure, and heat insulation member
JP2014125757A (en) * 2012-12-26 2014-07-07 Sato Kogyo Co Ltd Quality determination method of installed concrete, form removal timing determination method and form removal timing setting method, lifetime estimation method of concrete structure, management method of construction information and form for measuring resistance value of installed concrete
JP2018124253A (en) * 2017-02-03 2018-08-09 三井住友建設株式会社 Stress measurement device and stress measurement method of concrete structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
林亮太: "透気係数による各種コンクリートの物質移動抵抗性評価方法に関する基礎的研究", コンクリート工学年次論文集, vol. 35, no. 1, JPN6022031389, 2013, pages 745 - 750, ISSN: 0004987968 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021133212A (en) * 2020-02-28 2021-09-13 株式会社三洋物産 Game machine
JP2021133213A (en) * 2020-02-28 2021-09-13 株式会社三洋物産 Game machine
JP2021133211A (en) * 2020-02-28 2021-09-13 株式会社三洋物産 Game machine
JP2021133214A (en) * 2020-02-28 2021-09-13 株式会社三洋物産 Game machine
JP2021133210A (en) * 2020-02-28 2021-09-13 株式会社三洋物産 Game machine

Similar Documents

Publication Publication Date Title
JP2020034423A (en) Method for estimating compressive strength of concrete
Gopalan Sorptivity of fly ash concretes
Wendner et al. The B4 model for multi-decade creep and shrinkage prediction
Yang et al. Development of a new in situ test method to measure the air permeability of high performance concretes
KR102190604B1 (en) A curing method of concrete specimens and an evaluation method of early concrete solidity that is using thereof
Weiss et al. Toward performance specifications for concrete durability: Using the formation factor for corrosion and critical saturation for freeze-thaw
Silva et al. Electrical resistivity as a means of quality control of concrete–influence of test procedure
JP2010243472A (en) Method of early estimating concrete drying shrinkage strain
JP2006329961A (en) Method for analyzing concentration distribution of element diffused in concrete
JP2014125757A (en) Quality determination method of installed concrete, form removal timing determination method and form removal timing setting method, lifetime estimation method of concrete structure, management method of construction information and form for measuring resistance value of installed concrete
Theiner et al. Evaluation of the effects of drying shrinkage on the behavior of concrete structures strengthened by overlays
Das et al. A strategy for in situ determination of self-healing state for strain hardening cementitious composites
Wang et al. Correlation of electrical conductivity, compressive strength, and permeability of repair materials
Jansson Measurement of concrete thermal properties at high temperature
Chen et al. Evaluating elastic modulus of lightweight aggregate
Charmchi The Role of Concrete Maturity in Resistivity-Based Performance Specifications
Velásquez et al. Effect of beam size on the creep stiffness of asphalt mixtures at low temperatures
JP2003262581A (en) Method for testing durability of concrete
Maes et al. Resistance of cracked concrete to chloride attack
Ferreira et al. Quality control based on electrical resistivity measurements
Yoon Effect of water and chloride content on electrical resistivity in concrete
Hedlund et al. Effect on stress development of restrained thermal and moisture deformation
Mohammadi et al. Influence of moisture content and water absorption in concrete
Gökçe et al. A functional bleeding test apparatus for concrete
JP4491680B2 (en) Method for evaluating fresh properties and estimating water content of hardened concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230214