JP2008008753A - Early estimation method of concrete dry shrinkage factor - Google Patents

Early estimation method of concrete dry shrinkage factor Download PDF

Info

Publication number
JP2008008753A
JP2008008753A JP2006179491A JP2006179491A JP2008008753A JP 2008008753 A JP2008008753 A JP 2008008753A JP 2006179491 A JP2006179491 A JP 2006179491A JP 2006179491 A JP2006179491 A JP 2006179491A JP 2008008753 A JP2008008753 A JP 2008008753A
Authority
JP
Japan
Prior art keywords
drying
concrete
period
coefficient
calculation reference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006179491A
Other languages
Japanese (ja)
Inventor
Takashi Ozawa
貴史 小澤
Hiroshi Hashida
浩 橋田
Akira Nishida
朗 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2006179491A priority Critical patent/JP2008008753A/en
Publication of JP2008008753A publication Critical patent/JP2008008753A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Solid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To estimate highly accurately in a short-term material age, a concrete dry shrinkage factor in a long-term material age, in order to control concrete shrinkage crack caused by concrete dry shrinkage. <P>SOLUTION: In this method, a drying period calculation reference period required for reaching a concrete dry shrinkage factor which is a half of the final concrete dry shrinkage factor is set from a change-with-time characteristic coefficient determined by multiplying a factor exerting an influence on the concrete dry shrinkage as a coefficient. An extrapolation primary complementary coefficient is determined based on the drying period calculation reference period and one piece of short-term drying period measured data. The concrete dry shrinkage factor at an optional drying period-elapsed time after the drying period calculation reference period is estimated from the drying period calculation reference period and the extrapolation primary complementary coefficient. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はコンクリート乾燥収縮率の早期推定方法に係り、特にコンクリートの乾燥収縮に起因して生じるコンクリートの収縮ひび割れを制御するために、長期材齢におけるコンクリートの乾燥収縮率を、短期材齢において、早期に高精度で推定できるようにしたコンクリート乾燥収縮率の早期推定方法に関する。   The present invention relates to an early estimation method of concrete drying shrinkage rate, and in particular, to control the shrinkage cracking of concrete caused by drying shrinkage of concrete, the drying shrinkage rate of concrete in long-term age, The present invention relates to an early estimation method for concrete drying shrinkage that can be estimated with high accuracy at an early stage.

コンクリート構造物に生じるひび割れの発生原因の1つとしてコンクリートの乾燥収縮がある。このコンクリートの収縮ひび割れを制御するためには、長期材齢(長期の乾燥期間)にわたり進行して達する乾燥収縮量(終局乾燥収縮量)あるいは乾燥収縮率(終局乾燥収縮率)を推定、予測することが重要である。   One of the causes of cracks generated in concrete structures is drying shrinkage of concrete. In order to control the shrinkage cracking of this concrete, the dry shrinkage amount (final dry shrinkage amount) or dry shrinkage rate (final dry shrinkage rate) that progresses over the long-term age (long-term drying period) is estimated and predicted. This is very important.

ところで、通常のコンクリートの乾燥収縮率(収縮ひずみ)を測定する長さ変化試験(JIS A 1129)では、一般に材齢7日まで水中養生を行った後乾燥させ、通常6ヶ月程度の期間の測定が必要となる。一般的なコンクリート工事において、半年以上前にコンクリートの品質確認を行うことは難しく、上述の試験をそのまま、コンクリート工事のために適用することは現実的でない。このため、短期間で得た乾燥収縮のデータから長期材齢での乾燥収縮量を推定(予測)するために、種々の既往の研究が進められており、日本、諸外国の各種コンクリート基準、規準において、それぞれ独自の調査、研究成果をもとにした推定(予測)式等が提案されている。   By the way, in the length change test (JIS A 1129) for measuring the drying shrinkage rate (shrinkage strain) of ordinary concrete, it is generally dried after being cured under water until the age of 7 days, and usually measured for a period of about 6 months. Is required. In general concrete construction, it is difficult to confirm the quality of concrete more than six months ago, and it is not practical to apply the above test as it is for concrete construction. For this reason, various past studies are underway to estimate (predict) the amount of drying shrinkage at long-term ages from data on drying shrinkage obtained in a short period of time. Various concrete standards in Japan and other countries, The standard proposes estimation (prediction) formulas based on independent research and research results.

日本建築学会では、非特許文献1において、既往の研究結果(非特許文献2)等をもとに、乾燥期間4週と26週(前述の6ヶ月にほぼ対応)とにおける乾燥収縮ひずみの関係として、両者の比の平均値として1.8を例示しており、さらに他のデータを加味して、乾燥ひずみの設計値として1σ程度を累加した値を推奨している。   In the Architectural Institute of Japan, in Non-Patent Document 1, based on past research results (Non-Patent Document 2), etc., the relationship between the drying shrinkage strain at the drying period of 4 weeks and 26 weeks (corresponding to the above 6 months) As an average value of the ratio of the two, 1.8 is exemplified, and a value obtained by accumulating about 1σ is recommended as a design value of the drying strain in consideration of other data.

非特許文献2では、26週乾燥収縮率と短期材齢(高温・減圧養生による迅速乾燥収縮試験による)での乾燥収縮率の比を室内実験データに基づいて求め、短期材齢での乾燥収縮率の実測値にこの比を乗じることで、26週乾燥収縮率を推定する手法が提案されている。   In Non-Patent Document 2, the ratio of the drying shrinkage at 26 weeks and the drying shrinkage at the short-term age (according to the rapid drying shrinkage test by high temperature and reduced pressure curing) is obtained based on laboratory experiment data, and the drying shrinkage at the short-term age A method for estimating the 26-week drying shrinkage rate by multiplying the measured value of the rate by this ratio has been proposed.

その他の規準推奨値としてはたとえばCEB-FIP-1990式、土木学会式等がある。CEB-FIP-1990式は試験体の養生条件、材齢の他、部材断面等を要因として考慮した予測式となっている。土木学会式は多数の実験データをもとに作成された実験回帰式である。これに対して非特許文献3に開示された研究結果では、前述のCEB-FIP-1990式に対して土木学会式を適用することで短期材齢データでの補足を行い、実験値データからの予測式の精度アップが得られたことが明らかにされている。   Other standard recommended values include, for example, the CEB-FIP-1990 formula and the Japan Society of Civil Engineers formula. The CEB-FIP-1990 formula is a prediction formula that takes into account factors such as the curing conditions and age of the specimen as well as the cross-section of the member. The Japan Society of Civil Engineers formula is an experimental regression formula created based on a large number of experimental data. On the other hand, in the research results disclosed in Non-Patent Document 3, supplementation with short-term age data is performed by applying the civil engineering formula to the above-mentioned CEB-FIP-1990 formula. It has been clarified that the accuracy of the prediction formula has been improved.

日本建築学会編,「鉄筋コンクリート造建築物の収縮ひび割れ制御設計・施工指針(案)・解説」,社団法人日本建築学会,平成18年2月10日,p.120Edited by Architectural Institute of Japan, “Shrinkage Crack Control Design / Construction Guidelines (Draft) / Commentary of Reinforced Concrete Buildings”, Architectural Institute of Japan, February 10, 2006, p. 120 日本建築学会編,「日本建築学会学術講演梗概集(近畿)」,社団法人日本建築学会,2005年9月,p.601〜p.602The Architectural Institute of Japan, “Abstracts of Architectural Lectures of the Architectural Institute of Japan (Kinki)”, The Architectural Institute of Japan, September 2005, p. 601-p. 602 日本建築学会編,「日本建築学会学術講演梗概集(東海)」,社団法人日本建築学会,2003年9月,p.115〜p.116The Architectural Institute of Japan, “Abstracts of Architectural Lectures of the Architectural Institute of Japan (Tokai)”, The Architectural Institute of Japan, September 2003, p. 115-p. 116

ところが、非特許文献1,非特許文献2に開示された予測式、規準による提案では、
(1)室内実験データから乾燥期間4週と26週の乾燥収縮率の比を算出するには、基準となる6ヶ月材齢のデータを収集する必要があるため、実用的ではない。
(2)実際のコンクリートでは、使用材料や調合条件によって乾燥収縮の経時変化特性が異なる。このため乾燥期間4週と26週の比を一律に1.8として規定した場合、推定精度が劣るおそれがある。
(3)短期データとして使用できるのは、事前に関係を求めた乾燥期間(4週)における測定データだけであり、推定可能な乾燥収縮率も事前に関係を求めた乾燥期間(26週)におけるものだけである。
However, with the prediction formulas and criteria proposed in Non-Patent Document 1 and Non-Patent Document 2,
(1) It is not practical to calculate the ratio of the drying shrinkage ratio between the drying period of 4 weeks and 26 weeks from the laboratory experiment data, since it is necessary to collect data on the age of 6 months as a reference.
(2) With actual concrete, the time-dependent change characteristics of drying shrinkage differ depending on the materials used and the mixing conditions. For this reason, when the ratio between the drying period of 4 weeks and 26 weeks is uniformly defined as 1.8, the estimation accuracy may be inferior.
(3) Short-term data can be used only for measurement data in the drying period (4 weeks) for which the relationship was obtained in advance, and the estimated drying shrinkage rate was also obtained in the drying period (26 weeks) for which the relationship was obtained in advance. Only things.

また、非特許文献3や、既往の研究による各種の提案推定(予測)式においても、コンクリートの使用材料(セメント種類、骨材種類・品質、混和材の有無)や調合条件(水セメント比)によって乾燥収縮の経時変化特性が異なることについては考慮されておらず、また、その推定精度についても十分な検証が行われていない。
そこで、本発明の目的は上述した従来の技術が有する問題点を解消し、コンクリートの乾燥収縮に影響を与えると考えられている使用材料、調合条件の要因をパラメータとして加味した推定式を提案し、その推定式によって短期材齢から所要の材齢(乾燥期間)におけるコンクリートの乾燥収縮率を求めるようにしたコンクリート乾燥収縮率の早期推定方法を提供することにある。
Also, in Non-Patent Document 3 and various proposal estimation (prediction) formulas based on past research, materials used for cement (cement type, aggregate type / quality, presence / absence of admixture) and mixing conditions (water cement ratio) It is not taken into consideration that the time-dependent change characteristics of drying shrinkage differ depending on each other, and the verification accuracy is not sufficiently verified.
Therefore, the object of the present invention is to solve the problems of the conventional techniques described above, and propose an estimation formula that takes into account the materials used and the factors of the mixing conditions that are considered to affect the drying shrinkage of the concrete as parameters. It is an object of the present invention to provide an early estimation method for a concrete drying shrinkage rate in which the drying shrinkage rate of concrete in a required age (drying period) is obtained from the short-term age by the estimation formula.

上記目的を達成するために、本発明はコンクリートの乾燥収縮に影響を与える因子を係数として乗じてなる経時変化特性係数から終局乾燥収縮率の1/2の乾燥収縮率に達する乾燥期間算出基準期間を設定し、該乾燥期間算出基準期間と1個の短期乾燥期間測定データとをもとに外挿1次補完係数を求め、前記乾燥期間算出基準期間と外挿1次補完係数とから、前記乾燥期間算出基準期間以後の任意の乾燥期間経過時のコンクリートの乾燥収縮率を推定することを特徴とする。   In order to achieve the above object, the present invention provides a drying period calculation reference period that reaches a drying shrinkage ratio that is 1/2 of the ultimate drying shrinkage ratio from a time-varying characteristic coefficient obtained by multiplying a factor that affects the drying shrinkage of concrete as a coefficient. And calculating an extrapolation primary complementation coefficient based on the drying period calculation reference period and one short-term drying period measurement data, and from the drying period calculation reference period and the extrapolation primary complementation coefficient, It is characterized by estimating the drying shrinkage rate of concrete when an arbitrary drying period has elapsed after the drying period calculation reference period.

コンクリートの乾燥収縮に影響を与える因子を係数として乗じてなる経時変化特性係数から終局乾燥収縮率の1/2の乾燥収縮率に達する乾燥期間算出基準期間を設定し、該乾燥期間算出基準期間と複数個の短期乾燥期間測定データとをもとに終局乾燥収縮率に漸近する外挿近似式を求め、該外挿近似式に基づいて前記乾燥期間算出基準期間以後の任意の乾燥経過時のコンクリートの乾燥収縮率を推定することを特徴とする。   A drying period calculation reference period that reaches a drying shrinkage ratio that is 1/2 of the ultimate drying shrinkage ratio is set from a time-varying characteristic coefficient that is multiplied by a factor that affects the drying shrinkage of the concrete, and the drying period calculation reference period Based on a plurality of short-term drying period measurement data, an extrapolation approximation formula that asymptotically approximates the ultimate drying shrinkage rate is obtained, and based on the extrapolation approximation formula, concrete at any time after the drying period calculation reference period It is characterized in that the drying shrinkage rate of is estimated.

前記外挿近似式は、前記複数個の短期乾燥期間測定データをもとに最小二乗法により求めることが好ましい。   The extrapolation approximation formula is preferably obtained by a least square method based on the plurality of short-term drying period measurement data.

前記経時変化特性係数は、それぞれ水セメント比、骨材絶乾密度の相違に応じた1次式で規定された係数を含むようにすることが好ましい。   It is preferable that the time-varying characteristic coefficient includes a coefficient defined by a linear expression according to a difference in water cement ratio and aggregate dry density.

さらに、前記経時変化特性係数は、骨材種類、セメント種類の相違、膨張材の使用の有無に応じて設定された係数を含むようにすることが好ましい。   Furthermore, it is preferable that the time-varying characteristic coefficient includes a coefficient set according to the difference in aggregate type, cement type, and whether or not an expansion material is used.

以上に述べたように、本発明によれば、短期の乾燥期間に得られた少ない測定データから所定の長期の乾燥期間でのコンクリート乾燥収縮率を、簡易な解析を経て、高い精度で知ることができるという効果を奏する。   As described above, according to the present invention, the concrete drying shrinkage rate in a predetermined long drying period can be known with high accuracy from a small amount of measurement data obtained in a short drying period through a simple analysis. There is an effect that can be.

以下、本発明のコンクリート乾燥収縮率の早期推定方法を実施するための最良の形態として、以下の測定データ数の違いにより選択可能な2例の実施例について添付図面を参照して説明する。   Hereinafter, as the best mode for carrying out the method for early estimation of the concrete drying shrinkage rate of the present invention, two examples that can be selected depending on the difference in the number of measurement data will be described with reference to the accompanying drawings.

図1は、本発明のコンクリート乾燥収縮率の早期推定方法によって測定対象のコンクリートの長期乾燥期間tにおける乾燥収縮率の算定を行うようにした推定方法のフローチャートである。同図に示したように、まず、本発明では、乾燥収縮率の変動に影響を及ぼすと考えられる使用材料、調合条件の複数の要因を因子として考慮し、コンクリートの乾燥収縮に与える影響を割増係数あるいは低減係数として評価し、これらの係数を乗じて得られた係数(以下、経時変化特性係数と記す。)に、基本乾燥期間D(日)を乗じて、使用材料・調合条件を考慮した、乾燥期間算出基準期間(=最終乾燥収縮率Stの1/2に達する乾燥期間(日):Nsa)を算出する。 FIG. 1 is a flowchart of an estimation method in which the drying shrinkage rate in the long-term drying period t of the concrete to be measured is calculated by the early estimation method of the concrete drying shrinkage rate of the present invention. As shown in the figure, first, in the present invention, the influence on the drying shrinkage of concrete is increased by taking into account the factors of use materials and blending conditions that are considered to affect the fluctuation of the drying shrinkage rate as factors. It was evaluated as a coefficient or a reduction coefficient, and the coefficient obtained by multiplying these coefficients (hereinafter referred to as the time-varying characteristic coefficient) was multiplied by the basic drying period D (days) to take into consideration the materials used and the mixing conditions. , drying period calculation reference period (= 1/2 is reached dry period of the last drying shrinkage S t (day): Nsa) is calculated.

ここで、経時変化特性係数について図2,表1を参照して説明する。本発明では、既往の推定式で因子として考慮されたものも採用しているが、図2各図に示したように、水セメント比Xの違いによる係数Pαの変化、骨材の絶乾密度Ddの違いによる係数Gαの変化を、それぞれ1次回帰式で求めた係数を採用している。また、その他の因子として、骨材種類の違いによる係数Gβ、セメント種類の違いによる係数Cα等も加味したものとなっているが、係数Gβを適用する際、石灰石を骨材として使用する場合には0.9、その他の骨材については1.0の係数設定を行っている。また係数Cαを適用する際は、3種類のセメント(普通ポルトランドセメント、中庸熱セメント、高炉セメント(B種))について、各セメントの乾燥収縮の進行速度を考慮した。その結果、乾燥収縮進行速度の遅い中庸熱セメントを最高値として、それぞれCαを1.0,1.25,0.6とした。また、膨張材を使用した場合の係数Cβとして不使用の場合(1.0)に対して1.1の係数とした。   Here, the time-varying characteristic coefficient will be described with reference to FIG. In the present invention, what is considered as a factor in the existing estimation formula is adopted, but as shown in each figure of FIG. 2, the change in the coefficient Pα due to the difference in the water cement ratio X, the absolute dry density of the aggregate A coefficient obtained by a linear regression equation for the change in the coefficient Gα due to the difference in Dd is employed. In addition, as other factors, the coefficient Gβ due to the difference in aggregate type, the coefficient Cα due to the difference in cement type, and the like are taken into account, but when applying the coefficient Gβ, limestone is used as an aggregate. Is set to 0.9, and 1.0 for other aggregates. Further, when applying the coefficient Cα, the progress of drying shrinkage of each cement was taken into consideration for three types of cement (ordinary Portland cement, moderately heated cement, and blast furnace cement (Type B)). As a result, Cα was set to 1.0, 1.25, and 0.6, respectively, with the highest value for moderately heated cement with a slow drying shrinkage progression rate. Further, the coefficient Cβ in the case of using the expansion material was set to a coefficient of 1.1 with respect to the case of not using (1.0).

Figure 2008008753
Figure 2008008753

下式のように、上述の各係数Pα,Gα,Gβ,Cα,Cβをすべて乗じて得られた係数(経時変化特性係数)を基本乾燥期間Dに乗じて得られた値を乾燥期間算出基準期間Nsa(日)として算出する。
Nsa=D×Pα×Gα×Gβ×Cα×Cβ …(式1)
ここで、基本乾燥期間Dは、本発明のための室内実験において基準とした調合の平均値をもとに設定した(本実施例ではD=25(日))。
As shown in the following formula, a value obtained by multiplying the basic drying period D by a coefficient (time-varying characteristic coefficient) obtained by multiplying all the coefficients Pα, Gα, Gβ, Cα, and Cβ as described above is a drying period calculation standard. Calculated as the period Nsa (days).
Nsa = D × Pα × Gα × Gβ × Cα × Cβ (Formula 1)
Here, the basic drying period D was set based on the average value of the preparation based on the laboratory experiment for the present invention (D = 25 (days) in this example).

なお、上述した各経時変化特性に影響を与える係数の大小の影響と、乾燥期間算出基準期間Nsaとの関係の乾燥期間の経過による変化は図3に模式的に示した関係曲線によってその傾向を知ることができる。   It should be noted that the change in the relationship between the above-described coefficient effect that affects each time-dependent change characteristic and the drying period calculation reference period Nsa due to the passage of the drying period is shown by the relationship curve schematically shown in FIG. I can know.

次に、乾燥期間算出基準期間:Nsaをもとにした推定式を設定するにあたり、任意の短期間の乾燥期間での測定データ数に応じて2種類の推定方法のいずれかを適用することが可能である。   Next, in setting the estimation formula based on the dry period calculation reference period: Nsa, either of two estimation methods may be applied according to the number of measurement data in an arbitrary short-term drying period. Is possible.

[測定データが1個の場合]
任意の乾燥期間t(日)におけるコンクリートの乾燥収縮率Stは、乾燥期間算出基準期間Nsaと短期乾燥期間ts(日)における1個の測定データStsを利用した(式2)から外挿1次補完係数kを求めておくことにより、(式3)として簡単に求めることができる。
[When there is one measurement data]
The drying shrinkage St of the concrete in an arbitrary drying period t (days) is extrapolated from the equation (2) using one measurement data Sts in the drying period calculation reference period Nsa and the short drying period ts (days). By obtaining the complementary coefficient k, it can be easily obtained as (Equation 3).

Figure 2008008753
St=k・Sts …(式3)
ここで、
St:乾燥期間t(日)における乾燥収縮率
k:外挿1次補完係数
Sts:乾燥期間ts(日)における乾燥収縮率(実測値)
Nsa:乾燥期間算出基準期間(日)
t:乾燥期間(日)
ts:短期測定時の乾燥期間(日)
Figure 2008008753
St = k · Sts (Formula 3)
here,
St: Drying shrinkage ratio during the drying period t (days)
k: extrapolation first-order interpolation coefficient
Sts: Drying shrinkage rate during drying period ts (days) (actual measurement value)
Nsa: Drying period calculation reference period (days)
t: Drying period (days)
ts: Drying period for short-term measurement (days)

[実施例1の効果]
図4(a)は、式1を用いた推定方法と従来技術の推定方法の精度を比較した相関図である。同図には、95%信頼限界も併せて示してある。図4(b)に示した従来技術は、4週乾燥収縮率の実測値を定数倍(1.8倍)することで、26週乾燥収縮率を推定したものである。一方、この従来技術と比較するため、本発明の推定方法においても、乾燥材齢4週の測定データをk倍することで、26週乾燥収縮率を推定した結果を示した。このときの係数kは、Nsaにより変化する値であり、具体的には、(式2)にt=182,ts=28並びに各調合に対応するNsaを代入して求めた。表−2にt=182,ts=28の場合のNsaとkとの関係を例示した。
[Effect of Example 1]
FIG. 4A is a correlation diagram comparing the accuracy of the estimation method using Equation 1 and the estimation method of the prior art. The figure also shows the 95% confidence limit. The prior art shown in FIG. 4B estimates the 26-week dry shrinkage rate by multiplying the measured value of the 4-week dry shrinkage rate by a constant (1.8 times). On the other hand, in order to compare with this prior art, the estimation method of the present invention also showed the result of estimating the 26-week drying shrinkage rate by multiplying the measurement data of the dry material age of 4 weeks by k. The coefficient k at this time is a value that varies depending on Nsa. Specifically, it was obtained by substituting t = 182, ts = 28 and Nsa corresponding to each formulation into (Equation 2). Table 2 illustrates the relationship between Nsa and k when t = 182 and ts = 28.

Figure 2008008753
Figure 2008008753

図4(a)の相関図で示した試験結果では、Nsaは10.4〜32.5の範囲にあるため、係数kは1.30〜1.83となった。その相関精度については、従来技術では決定係数R2=0.76,95%信頼区間±1.22×10-4であったのに対し、本発明の推定方法では、決定係数R2=0.87,95%信頼区間±0.88×10-4であった。同一条件で比較した場合、本発明の推定方法は従来技術と比較して高精度に乾燥収縮率を推定できることが実証された。 In the test results shown in the correlation diagram of FIG. 4A, since Nsa is in the range of 10.4 to 32.5, the coefficient k is 1.30 to 1.83. Regarding the correlation accuracy, the determination coefficient R 2 = 0.76 and 95% confidence interval ± 1.22 × 10 −4 in the conventional technique, whereas in the estimation method of the present invention, the determination coefficient R 2 = 0. .87, 95% confidence interval ± 0.88 × 10 −4 . When compared under the same conditions, it was demonstrated that the estimation method of the present invention can estimate the drying shrinkage rate with higher accuracy than the prior art.

[測定データが2個以上の場合]
短期の乾燥期間の測定データが複数個ある場合には、任意の乾燥期間t(日)におけるコンクリートの乾燥収縮率は、乾燥期間算出基準期間Nsaと短期の乾燥期間における測
定データ(たとえばt=7,14,21,…日)を利用して、乾燥期間t(日)を横軸、乾燥収縮率Stを縦軸とするグラフ上のデータの関係式(外挿近似式)を最小二乗法により算定する。この結果、終局乾燥収縮率S∞に漸近する関係式が得られる(図5)。またこの関係式は下式で表すことができる。
[When there are two or more measurement data]
In the case where there are a plurality of measurement data for a short drying period, the drying shrinkage rate of the concrete in an arbitrary drying period t (days) is the measurement data for the drying period calculation reference period Nsa and the short drying period (for example, t = 7). , 14, 21,...), A relational expression (extrapolation approximate expression) of data on the graph with the drying period t (day) as the horizontal axis and the drying shrinkage rate St as the vertical axis is calculated by the least square method. Calculate. As a result, a relational expression asymptotic to the ultimate dry shrinkage S∞ is obtained (FIG. 5). This relational expression can be expressed by the following expression.

St=S∞・t/(Nsa+t) …(式4)
ここで、
St:乾燥期間t(日)における乾燥収縮率
S∞:終局乾燥収縮率
Nsa:乾燥期間算出基準期間(日)
t:乾燥期間(日)
したがって、以後は(式4)に所定の乾燥期間tを代入することで乾燥期間t(日)での乾燥収縮率Stを求めることができる。この式4は、乾燥期間の経過により短期の測定データの測定点数が増えた段階で再設定することで、その精度を高めることができる。
St = S∞ · t / (Nsa + t) (Formula 4)
here,
St: Drying shrinkage during the drying period t (days)
S∞: Ultimate drying shrinkage
Nsa: Drying period calculation reference period (days)
t: Drying period (days)
Therefore, thereafter, the drying shrinkage rate St in the drying period t (days) can be obtained by substituting the predetermined drying period t into (Equation 4). The accuracy of the equation 4 can be improved by resetting the equation 4 when the number of measurement points of the short-term measurement data increases as the drying period elapses.

[実施例2の効果]
図6は、図4(a)と同一データに対して、(式4)を用いた推定方法の精度を示した相関図である。従来技術(図4(b))の推定方法と比較するため、本発明の推定方法では乾燥期間3週までの測定データを用いて関係式を求め、26週乾燥収縮率までを推定した結果を示した。その相関精度については、本発明の推定方法では、決定係数R2=0.89,95%信頼区間±0.79×10-4であった。本発明の推定方法では従来技術に比べ、材齢で1週早く推定が可能で、さらにその精度もより高い値(乾燥収縮率)を推定することが確認された。
[Effect of Example 2]
FIG. 6 is a correlation diagram showing the accuracy of the estimation method using (Expression 4) for the same data as FIG. 4 (a). In order to compare with the estimation method of the prior art (FIG. 4B), in the estimation method of the present invention, a relational expression is obtained using measurement data up to a drying period of 3 weeks, and the results up to the 26-week drying shrinkage rate are estimated. Indicated. Regarding the correlation accuracy, in the estimation method of the present invention, the coefficient of determination R 2 = 0.89, 95% confidence interval ± 0.79 × 10 −4 . In the estimation method of the present invention, it was confirmed that it was possible to estimate the material age one week earlier than the prior art, and that the accuracy was estimated to be higher (dry shrinkage rate).

本発明によるコンクリート乾燥収縮率の早期推定方法の実施例における作業手順を示したフローチャート。The flowchart which showed the work procedure in the Example of the early estimation method of the concrete dry shrinkage rate by this invention. 経時変化特性係数を求めるための係数の関係式を示したグラフ。The graph which showed the relational expression of the coefficient for calculating | requiring a time-dependent change characteristic coefficient. 各係数の大小の影響と、乾燥期間算出基準期間Nsaとの関係の乾燥期間の経過による変化を模式的に示した関係曲線図。The relationship curve figure which showed typically the change by progress of the drying period of the influence of the magnitude of each coefficient, and the relationship with the drying period calculation reference period Nsa. 本発明の推定方法(実施例1)と従来技術の推定方法の精度を比較した相関図。The correlation diagram which compared the precision of the estimation method (Example 1) of this invention, and the estimation method of a prior art. 短期の測定データから関係式(外挿近似式)を最小二乗法により求めた実施例を示した関係曲線図。The relationship curve figure which showed the Example which calculated | required the relational expression (extrapolation approximate expression) from the short-term measurement data by the least square method. 本発明の推定方法(実施例2)の精度を示した相関図。The correlation diagram which showed the precision of the estimation method (Example 2) of this invention.

Claims (5)

コンクリートの乾燥収縮に影響を与える因子を係数として乗じてなる経時変化特性係数から終局乾燥収縮率の1/2の乾燥収縮率に達する乾燥期間算出基準期間を設定し、該乾燥期間算出基準期間と1個の短期乾燥期間測定データとをもとに外挿1次補完係数を求め、前記乾燥期間算出基準期間と外挿1次補完係数とから、前記乾燥期間算出基準期間以後の任意の乾燥期間経過時のコンクリートの乾燥収縮率を推定することを特徴とするコンクリート乾燥収縮率の早期推定方法。   A drying period calculation reference period that reaches a drying shrinkage ratio that is 1/2 of the ultimate drying shrinkage ratio is set from a time-varying characteristic coefficient that is multiplied by a factor that affects the drying shrinkage of the concrete, and the drying period calculation reference period An extrapolation primary complementary coefficient is obtained based on one short-term drying period measurement data, and an arbitrary drying period after the drying period calculation reference period is determined from the drying period calculation reference period and the extrapolated primary interpolation coefficient. An early estimation method of concrete drying shrinkage characterized by estimating the drying shrinkage of concrete at the time. コンクリートの乾燥収縮に影響を与える因子を係数として乗じてなる経時変化特性係数から終局乾燥収縮率の1/2の乾燥収縮率に達する乾燥期間算出基準期間を設定し、該乾燥期間算出基準期間と複数個の短期乾燥期間測定データとをもとに終局乾燥収縮率に漸近する外挿近似式を求め、該外挿近似式に基づいて前記乾燥期間算出基準期間以後の任意の乾燥経過時のコンクリートの乾燥収縮率を推定することを特徴とするコンクリート乾燥収縮率の早期推定方法。   A drying period calculation reference period that reaches a drying shrinkage ratio that is 1/2 of the ultimate drying shrinkage ratio is set from a time-varying characteristic coefficient that is multiplied by a factor that affects the drying shrinkage of the concrete, and the drying period calculation reference period Based on a plurality of short-term drying period measurement data, an extrapolation approximation formula that asymptotically approximates the ultimate drying shrinkage rate is obtained, and based on the extrapolation approximation formula, concrete at any time after the drying period calculation reference period A method for early estimation of dry shrinkage of concrete characterized by estimating dry shrinkage of concrete. 前記外挿近似式は、前記複数個の短期乾燥期間測定データをもとに最小二乗法により求められた請求項2に記載のコンクリート乾燥収縮率の早期推定方法。   The method of early estimation of the concrete drying shrinkage rate according to claim 2, wherein the extrapolation approximation formula is obtained by a least square method based on the plurality of short-term drying period measurement data. 前記経時変化特性係数は、それぞれ水セメント比、骨材絶乾密度の相違に応じた1次式で規定された係数を含む請求項1または請求項2に記載のコンクリート乾燥収縮率の早期推定方法。   The method for early estimation of concrete drying shrinkage rate according to claim 1 or 2, wherein the time-varying characteristic coefficient includes a coefficient defined by a linear expression corresponding to a difference in water cement ratio and aggregate dry density, respectively. . 前記経時変化特性係数は、骨材種類、セメント種類の相違、膨張材の使用の有無に応じて設定された係数を含む請求項1または請求項2に記載のコンクリート乾燥収縮率の早期推定方法。   The method for early estimation of the concrete drying shrinkage rate according to claim 1 or 2, wherein the time-varying characteristic coefficient includes a coefficient set according to an aggregate type, a cement type difference, and whether or not an expansion material is used.
JP2006179491A 2006-06-29 2006-06-29 Early estimation method of concrete dry shrinkage factor Pending JP2008008753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006179491A JP2008008753A (en) 2006-06-29 2006-06-29 Early estimation method of concrete dry shrinkage factor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006179491A JP2008008753A (en) 2006-06-29 2006-06-29 Early estimation method of concrete dry shrinkage factor

Publications (1)

Publication Number Publication Date
JP2008008753A true JP2008008753A (en) 2008-01-17

Family

ID=39067098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006179491A Pending JP2008008753A (en) 2006-06-29 2006-06-29 Early estimation method of concrete dry shrinkage factor

Country Status (1)

Country Link
JP (1) JP2008008753A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010214284A (en) * 2009-03-16 2010-09-30 Japan Organo Co Ltd Chlorine resistance estimation method of separation membrane
JP2010243472A (en) * 2009-03-19 2010-10-28 Sumitomo Osaka Cement Co Ltd Method of early estimating concrete drying shrinkage strain
JP2011195368A (en) * 2010-03-18 2011-10-06 Nihon Univ Method for predicting amount of drying shrinkage of mortar or concrete
JP2012002763A (en) * 2010-06-18 2012-01-05 Taiheiyo Cement Corp Method for estimating drying shrinkage of concrete cured body
JP2012107994A (en) * 2010-11-17 2012-06-07 Taiheiyo Cement Corp Estimation method of drying shrinkage strain of concrete to which shrinkage suppressing material is added
JP2012107941A (en) * 2010-11-16 2012-06-07 Taiheiyo Cement Corp Method for determining compounding amount of shrinkage reducing agent
JP2020001983A (en) * 2018-06-29 2020-01-09 太平洋セメント株式会社 Prediction method for dry-shrinkage strain of concrete
CN113945640A (en) * 2021-10-14 2022-01-18 华能澜沧江水电股份有限公司 Method for determining final setting time point of concrete

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010214284A (en) * 2009-03-16 2010-09-30 Japan Organo Co Ltd Chlorine resistance estimation method of separation membrane
JP2010243472A (en) * 2009-03-19 2010-10-28 Sumitomo Osaka Cement Co Ltd Method of early estimating concrete drying shrinkage strain
JP2011195368A (en) * 2010-03-18 2011-10-06 Nihon Univ Method for predicting amount of drying shrinkage of mortar or concrete
JP2012002763A (en) * 2010-06-18 2012-01-05 Taiheiyo Cement Corp Method for estimating drying shrinkage of concrete cured body
JP2012107941A (en) * 2010-11-16 2012-06-07 Taiheiyo Cement Corp Method for determining compounding amount of shrinkage reducing agent
JP2012107994A (en) * 2010-11-17 2012-06-07 Taiheiyo Cement Corp Estimation method of drying shrinkage strain of concrete to which shrinkage suppressing material is added
JP2020001983A (en) * 2018-06-29 2020-01-09 太平洋セメント株式会社 Prediction method for dry-shrinkage strain of concrete
JP7106373B2 (en) 2018-06-29 2022-07-26 太平洋セメント株式会社 Method for Predicting Drying Shrinkage Strain of Concrete
CN113945640A (en) * 2021-10-14 2022-01-18 华能澜沧江水电股份有限公司 Method for determining final setting time point of concrete
CN113945640B (en) * 2021-10-14 2023-12-19 华能澜沧江水电股份有限公司 Method for determining concrete final setting time point

Similar Documents

Publication Publication Date Title
JP2008008753A (en) Early estimation method of concrete dry shrinkage factor
JP5246113B2 (en) Early estimation method of concrete drying shrinkage strain
Wendner et al. The B4 model for multi-decade creep and shrinkage prediction
Galobardes et al. Maturity method to predict the evolution of the properties of sprayed concrete
JP5671267B2 (en) Method for estimating drying shrinkage of hardened concrete
JP2016037014A (en) Method for producing concrete molding and production management method for concrete molding
Abdel-Jawad The maturity method: Modifications to improve estimation of concrete strength at later ages
JP5713427B2 (en) Prediction method of drying shrinkage strain of concrete.
JP2013092445A (en) Early-stage evaluation method for concrete dry shrinkage strain
JP2014020866A (en) Method for early estimating concrete drying shrinkage strain
JP2007057493A (en) Crack prediction method of concrete
JP5713640B2 (en) Method for determining the amount of shrinkage reducing agent
JP5930294B2 (en) Quantitative evaluation method of crack reduction effect by shrinkage reducing material and selection method of shrinkage reducing material
JP6286340B2 (en) Method for estimating concrete strength
JP2012002764A (en) Method for estimating drying shrinkage of aggregate and concrete hardened body
JP6508467B2 (en) Prediction method of adiabatic temperature rise of concrete
JP2006010420A (en) Estimation method of expansion stress of expansive concrete
JP4268065B2 (en) Method for estimating concrete strength
JP2017067477A (en) Method for estimating compressive strength and/or static elastic modulus of concrete
JP6512960B2 (en) Concrete evaluation method
JP2012251965A (en) Method for obtaining dynamic modulus of elasticity of coarse aggregate and method for estimating dry shrinkage strain of concrete
JP5255271B2 (en) Strength management method for high-strength concrete structures
JP5930386B2 (en) Method for predicting drying shrinkage strain of concrete and method for predicting drying shrinkage stress of concrete
JP2005308561A (en) Estimation method of structure concrete strength and database for estimation
Fjellström et al. Model for concrete strength development including strength reduction at elevated temperatures