JP2011195368A - Method for predicting amount of drying shrinkage of mortar or concrete - Google Patents

Method for predicting amount of drying shrinkage of mortar or concrete Download PDF

Info

Publication number
JP2011195368A
JP2011195368A JP2010063102A JP2010063102A JP2011195368A JP 2011195368 A JP2011195368 A JP 2011195368A JP 2010063102 A JP2010063102 A JP 2010063102A JP 2010063102 A JP2010063102 A JP 2010063102A JP 2011195368 A JP2011195368 A JP 2011195368A
Authority
JP
Japan
Prior art keywords
amount
concrete
mortar
expansion
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010063102A
Other languages
Japanese (ja)
Other versions
JP5513947B2 (en
Inventor
Shigeo Koshikawa
茂雄 越川
Masami Uzawa
正美 鵜澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Taiheiyo Cement Corp
Original Assignee
Nihon University
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University, Taiheiyo Cement Corp filed Critical Nihon University
Priority to JP2010063102A priority Critical patent/JP5513947B2/en
Publication of JP2011195368A publication Critical patent/JP2011195368A/en
Application granted granted Critical
Publication of JP5513947B2 publication Critical patent/JP5513947B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for predicting the amount of drying shrinkage of mortar or concrete containing a swelling agent with high accuracy by a simple operation.SOLUTION: The method for predicting the amount of drying shrinkage of expansive mortar or concrete includes estimating the amount of expansion of the expansive mortar or concrete at a material age of 7 days in water from the amount of ettringite produced with the hydration reaction of cement in a cement hardened body at a material age of 7 days in water.

Description

本発明は、膨張材を含むモルタル又はコンクリートの乾燥収縮量を予測する方法に関する。   The present invention relates to a method for predicting the amount of drying shrinkage of mortar or concrete containing an expanding material.

コンクリートやモルタル造建築物の収縮ひび割れ制御設計において、乾燥収縮を予測することは重要である。モルタルやコンクリートには、その乾燥収縮やひび割れを低減する目的で膨張材が添加されることが多いことから、特に膨張材を含むモルタルやコンクリート(「膨張モルタル」、「膨張コンクリート」と称する)等の乾燥収縮の予測が必要とされる。   It is important to predict drying shrinkage in shrinkage crack control design of concrete and mortar buildings. Since mortar and concrete are often added with an expanding material for the purpose of reducing drying shrinkage and cracking, especially mortar and concrete containing expanding material (referred to as “expanded mortar” and “expanded concrete”), etc. It is necessary to predict drying shrinkage.

従来、このモルタルやコンクリートの乾燥収縮の把握は、モルタルやコンクリートの供試体を所定条件下で養生し、そのときに生じる乾燥収縮から、後の乾燥収縮を予測することが行われている。しかしながら、当該乾燥収縮量はセメントの種類やロット、膨張材のロットなどにより変化するものであり、特に練混ぜ温度や養生温度には極めて大きく左右され、予測することは難しい。従って、予測精度を向上させるためには、供用条件にあった恒温恒湿の試験室でモルタルやコンクリートを練混ぜ、膨張材を数水準混合して実際の収縮量を測定し、例えば6ヵ月後まで養生して供用配合を決定されているのが実情であり、工期が長期化する要因となっていた。   Conventionally, in order to grasp the drying shrinkage of mortar or concrete, a specimen of mortar or concrete is cured under a predetermined condition, and subsequent drying shrinkage is predicted from the drying shrinkage generated at that time. However, the amount of drying shrinkage varies depending on the type and lot of cement, the lot of expansion material, etc., and is extremely dependent on the mixing temperature and curing temperature, and is difficult to predict. Therefore, in order to improve the prediction accuracy, mortar and concrete are mixed in a constant temperature and humidity test room that meets the service conditions, and the actual shrinkage is measured by mixing several levels of expansion material. For example, after 6 months The actual situation is that the in-service formulation is determined after curing until the construction period is prolonged.

このため、短期間で得た乾燥収縮のデータに所定の演算を施すことにより、長期材齢での乾燥収縮量を予測する方法が提案されている。例えば、コンクリートの乾燥収縮に影響を与えると考えられている使用材料、調合条件の要因をパラメータとして加味した推定式を提示し、その推定式によって短期材齢から所要の材齢(乾燥期間)におけるコンクリートの乾燥収縮率を求める方法(特許文献1)が開示されている。
しかしながら、この方法では、乾燥収縮を行う温度の影響が不明確であり、論理的ではあるが、実際の収縮量の予測は出来にくいという問題がある。
For this reason, a method for predicting the amount of drying shrinkage in the long-term material age by applying a predetermined calculation to the data of drying shrinkage obtained in a short period has been proposed. For example, we present an estimation formula that takes into account the materials used and the factors of the blending conditions that are considered to affect the drying shrinkage of concrete as parameters, and from the short-term age to the required age (drying period) by the estimation formula A method for determining the drying shrinkage of concrete (Patent Document 1) is disclosed.
However, this method has a problem that the influence of the temperature at which drying shrinkage is performed is unclear, and although it is logical, it is difficult to predict the actual shrinkage amount.

一方、膨張モルタルやコンクリートの乾燥収縮量は、膨張材を加えていないモルタルやコンクリートの例えば6ヶ月後の乾燥収縮量から、膨張材を配合したモルタルやコンクリートの7日水中材齢の膨張量を減じた量により把握できることから、最近では、膨張材無添加の収縮量を把握しておき、そこに膨張材を添加した水中材齢7日間の膨張量を相殺することで、6ヵ月後の収縮量を予測するという考え方もある。   On the other hand, the amount of dry shrinkage of expanded mortar and concrete is the amount of expansion of 7-day underwater age of mortar and concrete mixed with expandable material, for example, from the amount of dry shrinkage after 6 months of mortar and concrete to which no expanded material is added. Since it can be grasped by the reduced amount, recently, the amount of shrinkage without the addition of the expansion agent is grasped, and the expansion amount of the underwater material age of 7 days with the addition of the expansion agent is offset there, so that the shrinkage after 6 months There is also the idea of predicting the quantity.

しかし、この場合においても、実際にコンクリートやモルタルを混練しなければならず、作業や費用、大型の装置や環境条件を実現する試験室が必要となり、それにかかる労力は計り知れないものがある。   However, even in this case, concrete or mortar must be actually kneaded, and work and cost, a large-scale apparatus and a test room for realizing environmental conditions are required, and the labor involved in that is immeasurable.

特開2008−8753号公報JP 2008-8753 A

本発明は、簡便な操作により高い精度で膨張材を含むモルタルやコンクリートの乾燥収縮量を予測する方法を提供することに関する。   The present invention relates to providing a method for predicting the amount of drying shrinkage of mortar or concrete containing an expanding material with high accuracy by a simple operation.

本発明者らは、上記課題を解決するために鋭意研究した結果、膨張材を含むモルタルやコンクリートにおいては、セメントの水和に伴って生成するエトリンガイト量が、膨張モルタルやコンクリートの水中材齢7日の膨張量と良好に相関し、当該エトリンガイト量を指標として、膨張モルタルやコンクリートの膨張量を把握でき、ひいては乾燥収縮量を正確に予測できることを見出した。
すなわち、本発明は、以下の発明に係るものである。
As a result of diligent research to solve the above problems, the present inventors have found that the amount of ettringite produced with cement hydration in the mortar and concrete containing the expanded material is 7 It was found that the amount of expansion of mortar and concrete can be grasped by using the amount of ettringite as an index, and that the amount of drying shrinkage can be accurately predicted.
That is, the present invention relates to the following inventions.

1)膨張モルタル又はコンクリートの乾燥収縮量を予測する方法であって、水中材齢7日のセメント硬化体について、セメントの水和反応に伴って生成されるエトリンガイトの量から前記膨張モルタル又はコンクリートの水中材齢7日の膨張量を推定することを特徴とする、膨張モルタル又はコンクリートの乾燥収縮量の予測方法。
2)膨張モルタル又はコンクリートの水中材齢7日の膨張量の推定が、以下の工程(1)〜(3)により行われる上記1)の方法。
(1)予測対象の膨張モルタル又はコンクリートの配合から骨材を除いたセメントペーストを作製し、水中養生する工程。
(2)前記工程(1)で得られる水中材齢7日のセメント硬化体を凍結乾燥し、粉砕する工程。
(3)前記工程(2)で得られた粉砕物中のエトリンガイト量を測定する工程。
3)膨張材無添加のモルタル又はコンクリートの乾燥収縮量から、膨張モルタル又はコンクリートの水中材齢7日の膨張量を相殺することにより当該膨張モルタル又はコンクリートの乾燥収縮量を算出する、上記1)又は2)の方法。
4)水中材齢7日のセメント硬化体について、セメントの水和反応に伴って生成されるエトリンガイト量を測定することを特徴とする膨張モルタル又はコンクリートの水中材齢7日の膨張量の推定方法。
1) A method for predicting the amount of dry shrinkage of expanded mortar or concrete, in the case of a 7-year-old underwater cement hardened body, from the amount of ettringite produced during cement hydration reaction, A method for predicting the amount of drying shrinkage of expanded mortar or concrete, wherein the amount of expansion of underwater material age 7 days is estimated.
2) The method of 1) above, wherein the estimation of the expansion amount of expanded mortar or concrete underwater material age 7 days is performed by the following steps (1) to (3).
(1) A step of producing a cement paste obtained by removing aggregates from a blend of expanded mortar or concrete to be predicted and curing in water.
(2) A step of freeze-drying and pulverizing the 7-day-old cement-hardened body obtained in the step (1).
(3) A step of measuring the amount of ettringite in the pulverized product obtained in the step (2).
3) The dry shrinkage amount of the expanded mortar or concrete is calculated by offsetting the expansion amount of the expanded mortar or concrete under water age 7 days from the dry shrinkage amount of the mortar or concrete to which no expander is added. Or the method of 2).
4) A method for estimating an expansion amount of an expanded mortar or concrete underwater age 7 days, characterized by measuring the amount of ettringite generated in association with a cement hydration reaction with respect to a hardened cement material underwater age 7 days .

本発明の乾燥収縮量の予測方法は、セメントの水和反応に伴って生成するエトリンガイト量を指標とすることから、骨材を含まない少量のセメントペーストを供試体とすることができ、モルタルやコンクリートを調製して混練する必要がないことから、廃棄物が少なく、簡便な操作により高い精度で、セメントモルタルやコンクリートの乾燥収縮量を予測することができる。   Since the method for predicting the amount of drying shrinkage of the present invention uses the amount of ettringite produced with the hydration reaction of cement as an index, a small amount of cement paste containing no aggregate can be used as a test specimen. Since it is not necessary to prepare and knead the concrete, there is little waste, and the dry shrinkage of cement mortar and concrete can be predicted with high accuracy by a simple operation.

(A)エトリンガイトの積分強度と膨張モルタルの膨張量の関係を示したグラフ。(B)膨張材添加量と膨張モルタルの膨張量の関係を示したグラフ。(A) A graph showing the relationship between the integrated strength of ettringite and the amount of expansion of the expanded mortar. (B) The graph which showed the relationship between the expansion material addition amount and the expansion amount of expansion mortar. 膨張材添加又は無添加のコンクリートにおける乾燥収縮量と膨張量を示したグラフ。The graph which showed the amount of drying shrinkage | contraction and the amount of expansion in concrete with or without the addition of an expanding material. エトリンガイトの積分強度と膨張モルタルの膨張量の関係における温度の影響を示したグラフ。The graph which showed the influence of the temperature in the relationship between the integrated intensity of ettringite and the expansion amount of expansion mortar. エトリンガイトの積分強度と膨張モルタルの膨張量の関係におけるセメント種の影響を示したグラフ。NC=普通セメント、HC=早強セメント、LC=低熱セメント、MC=中庸熱セメント、BB=高炉スラグセメント。The graph which showed the influence of the cement kind in the relationship between the integrated intensity of ettringite and the expansion amount of expansion mortar. NC = ordinary cement, HC = early strong cement, LC = low heat cement, MC = moderate heat cement, BB = blast furnace slag cement. (A)エトリンガイトの積分強度と膨張コンクリートの膨張量の関係を示したグラフ。(B)膨張材添加量と膨張コンクリートの膨張量の関係を示したグラフ。(A) A graph showing the relationship between the integrated strength of ettringite and the amount of expansion of expanded concrete. (B) The graph which showed the relationship between expansion material addition amount and the expansion amount of expansion concrete.

本発明の膨張モルタル又はコンクリートの乾燥収縮量の予測方法は、水中材齢7日のセメント硬化体について、セメントの水和反応に伴って生成されたエトリンガイトの量から前記膨張モルタル又はコンクリートの水中材齢7日の膨張量を推定することにより行われる。
本発明において、膨張モルタル又はコンクリートとは、膨張材が混和されたモルタル又はコンクリートを意味する。ここで、膨張材としては、セメント水和時においてSO4 2-及びH2Oと反応してエトリンガイトを生成するものが挙げられ、例えば、CaO−Al23−Fe23系化合物のカルシウムアルミノフェライト系膨張材や、CaO−Al23−SO3系化合物のカルシウムサルフォアルミネート系(CSA系)、等が挙げられる。
ここで、エトリンガイトとは、SO4 2-及びH2Oが存在するセメントの水和反応において、膨張材由来のアルミン酸三カルシウムとSO4 2-及びH2Oまたはカルシウムサルフォアルミネート(別名アウイン:3CaO・3Al23・3CaSO4)が反応して生成される水和物で化学式3CaO・Al23・3CaSO4・32H2Oで表される針状の水和物である。
The method for predicting the amount of drying shrinkage of expanded mortar or concrete according to the present invention is based on the amount of ettringite produced during the hydration reaction of cement for a cement hardened body with an underwater material age of 7 days. This is done by estimating the amount of expansion at age 7 days.
In the present invention, the expanded mortar or concrete means mortar or concrete mixed with an expanding material. Here, examples of the expanding material include those that react with SO 4 2− and H 2 O to generate ettringite during cement hydration. For example, CaO—Al 2 O 3 —Fe 2 O 3 based compounds Examples thereof include calcium aluminoferrite-based expansion materials and calcium sulfoaluminate-based (CSA-based) CaO—Al 2 O 3 —SO 3 based compounds.
Here, the ettringite, SO 4 2-and H in hydration of cement 2 O is present, the expansion member from the tricalcium aluminate and SO 4 2-and H 2 O or calcium monkey follower aluminate (aka (Auin: 3CaO.3Al 2 O 3 .3CaSO 4 ) is a hydrate formed by reaction and is a needle-like hydrate represented by the chemical formula 3CaO.Al 2 O 3 .3CaSO 4 .32H 2 O.

当該エトリンガイトを測定するための供試体及び測定手段は、セメントの水和に伴って生成するエトリンガイトを正確に測定できるものであれば特に限定されるものではないが、供試体としては、予測対象の膨張モルタル又はコンクリートから骨材を除いて配合計算し、調製されたセメントペーストを用いるのが作業効率の点から好ましく、エトリンガイトの測定は、粉末X線回折による積分強度により行うのが好ましい。
以下に、本発明において採用される膨張モルタル又はコンクリートの水中材齢7日の膨張量を推定する方法について、工程ごとに具体的に説明する。
The specimen and measuring means for measuring the ettringite are not particularly limited as long as it can accurately measure the ettringite produced with cement hydration. From the viewpoint of work efficiency, it is preferable to use a cement paste prepared by excluding aggregate from expanded mortar or concrete and using the prepared cement paste. It is preferable to measure ettringite based on the integrated intensity by powder X-ray diffraction.
Below, the method of estimating the expansion | swelling amount of the expansion | swelling mortar or concrete underwater age 7 days employ | adopted in this invention is demonstrated concretely for every process.

〔工程1〕
予測対象の膨張モルタル又はコンクリートの配合から骨材を除いたセメントペーストを作製し、これを水中養生する工程。
セメントペーストは、予測対象、すなわち乾燥収縮量を予測したい膨張モルタル又はコンクリートの配合から骨材を除いたペースト配合を計算し、作製される。
ここで、用いるセメントは、生成されるエトリンガイトが測定できる量であればよく、例えば10〜20g程度あればよい。
水中養生の条件は、予測対象となる膨張モルタル又はコンクリートに合致する条件で行うのが好ましい。
[Step 1]
A process of producing a cement paste from which aggregate is removed from the predicted mortar or concrete composition and curing it underwater.
The cement paste is produced by calculating a paste formulation excluding aggregates from a prediction target, that is, a composition of expanded mortar or concrete for which a drying shrinkage is to be predicted.
Here, the cement to be used may be an amount that can be measured by the generated ettringite, for example, about 10 to 20 g.
The conditions for underwater curing are preferably performed under conditions that match the expansion mortar or concrete to be predicted.

〔工程2〕
工程1で得られた材齢7日のセメント硬化体を凍結乾燥した後、粉砕する工程。
凍結乾燥の条件は限定されないが、例えばマイナス30℃、真空度5〜10Pa、乾燥温度マイナス20℃の条件下で、凍結真空乾燥するのが好ましい。
[Step 2]
A step of freeze-drying the 7-day-old hardened cement material obtained in step 1 and then pulverizing it.
The conditions for freeze-drying are not limited, but it is preferable to freeze-dry under conditions of, for example, minus 30 ° C., a degree of vacuum of 5 to 10 Pa, and a drying temperature of minus 20 ° C.

〔工程3〕
工程2で得られた粉砕物中のエトリンガイト量を測定する工程。
エトリンガイト量の測定は、特に限定されないが、粉末X線回折を用いその積分強度を求めるのが好ましい。
粉末X線回折は、慣用の粉末X線回折装置を使用して、慣用の方法により行うことができる。例えば、CuKα線を使用した粉末X線回折測定において、2θ(回折角)=9°付近に存在するピークの積分強度を求めることにより行われる。
[Step 3]
A step of measuring the amount of ettringite in the pulverized product obtained in step 2.
The measurement of the amount of ettringite is not particularly limited, but it is preferable to determine the integrated intensity using powder X-ray diffraction.
Powder X-ray diffraction can be performed by a conventional method using a conventional powder X-ray diffractometer. For example, in powder X-ray diffraction measurement using CuKα rays, it is performed by obtaining the integrated intensity of a peak existing in the vicinity of 2θ (diffraction angle) = 9 °.

図1に膨張モルタルをモデルとして作製されたセメントペーストの、水中材齢7日のセメント硬化体に含まれるエトリンガイトの粉末X線回折による積分強度を示す。これより、水中材齢7日のセメント硬化体中のエトリンガイト量は、JIS A 6202附属書1に準拠して測定された膨張モルタルの水中材齢7日の膨張量との間に非常に良い相関性を示す(図1A)。また、この相関性は養生温度、セメントの種類が異なっても同様に認められる(図3、図4)。更にこの相関は、コンクリートをモデルとした場合でも同様である(図5A)。一方、膨張量と膨張材添加量との間には相関は認められない(図1B、図5B)。
従って、セメントの水和反応に伴って生成するエトリンガイト量は、膨張モルタル又はコンクリートの水中材齢7日の膨張量を把握するための指標となり得る。
すなわち、試供体を7日間水中養生した場合に生成するエトリンガイトの積分強度を測定することにより、試供体に対応する膨張モルタル又はコンクリートの同一条件下での膨張量の推定が可能となる。斯様に、本発明の方法は、セメントの水和反応に伴って生成するエトリンガイトが測定できれば足りることから、供試体は骨材を除いて作製されるセメントペーストであればよく、セメントは数十グラムあれば十分であり、測定作業が極めて簡便に行うことができる。
FIG. 1 shows the integrated intensity of X-ray diffraction of ettringite contained in a 7-day-old cemented body of an underwater material of a cement paste produced using an expanded mortar as a model. Accordingly, the amount of ettringite in the cement hardened body at 7 days underwater age is very good correlation with the amount of expansion at 7 days underwater age of the expanded mortar measured according to JIS A 6202 Annex 1. (FIG. 1A). Moreover, this correlation is recognized similarly even if curing temperature and the kind of cement differ (FIG. 3, FIG. 4). Further, this correlation is the same even when concrete is used as a model (FIG. 5A). On the other hand, no correlation is observed between the expansion amount and the expansion material addition amount (FIGS. 1B and 5B).
Therefore, the amount of ettringite generated with the hydration reaction of the cement can be an index for grasping the amount of expansion of the expanded mortar or concrete under water age of 7 days.
That is, by measuring the integrated strength of ettringite produced when the specimen is cured under water for 7 days, it is possible to estimate the amount of expansion of the expanded mortar or concrete corresponding to the specimen under the same conditions. Thus, since the method of the present invention only needs to be able to measure ettringite produced with the hydration reaction of cement, the specimen may be a cement paste prepared by removing aggregates. Gram is sufficient, and the measurement operation can be performed very simply.

他方、膨張コンクリートは、JIS A 6202B法に従って7日間水中養生して膨張させ、その後、6ヶ月間気中で乾燥させると、図2(出典:太平洋マテリアル社 低添加型コンクリート用膨張材 太平洋ハイパーエクスパン 技術資料)に示すように、水中養生では膨張し、気中養生では収縮している。膨張材無添加では約400μ収縮している(図2、○:プレーンコンクリート)。一方、膨張材を入れたコンクリートは水中材齢7日で約220μ膨張している(図2、●:ハイパーエクスパン、▲:ハイパーエクスパンM、◆:エクスパン)。この量は6ヵ月後の収縮量180μとの合計が、無添加の収縮量と同じである。すなわち、無添加の収縮量がわかっていれば、水中材齢7日の膨張量がわかると、膨張材添加量に即した6ヶ月後の収縮量を予測することができる。   On the other hand, expanded concrete is cured underwater for 7 days in accordance with JIS A 6202B method, and then expanded in the air for 6 months. As shown in Bread Technical Data), it expands under water curing and contracts under air curing. When no expansion material is added, the shrinkage is about 400 μm (FIG. 2, ○: plain concrete). On the other hand, the concrete containing the expanded material expands by about 220 μm at the age of 7 days (Fig. 2, ●: Hyper Expand, ▲: Hyper Expand M, ◆: Expand). This amount is the same as the additive-free shrinkage amount in total with the shrinkage amount 180 μ after 6 months. That is, if the amount of shrinkage without addition is known, the amount of shrinkage after 6 months in accordance with the amount of expansion material added can be predicted when the amount of expansion underwater material age 7 days is known.

そうすると、上記のように供試体であるセメントペースト中のエトリンガイトの積分強度を測定し、モデルとなる膨張モルタル又はコンクリートの同一条件下での膨張量が推定できれば、モルタル又はコンクリートの収縮量を予測することができる。
これは、実際にモルタル又はコンクリートを練って測定するよりも遥かに簡便であり、廃棄物も少なくできる。
Then, as described above, the integrated strength of ettringite in the cement paste as the specimen is measured, and if the expansion amount of the model expansion mortar or concrete can be estimated under the same conditions, the shrinkage amount of the mortar or concrete is predicted. be able to.
This is much simpler and less waste than actually kneading and measuring mortar or concrete.

本発明の膨張モルタル又はコンクリートの乾燥圧縮量の予測に当たっては、(a)膨張材無添加の各種条件下でのモルタル又はコンクリートの乾燥収縮量のデータ、(b)膨張材を添加した場合のモルタル又はコンクリートの水中材齢7日の膨張量、(c)膨張材添加セメントペーストの水中材齢7日の硬化体中のエトリンガイト量と、(b)の膨張量との関係近似式(2次関数近似)について、予めデータベースとして準備する必要がある。   In predicting the dry compression amount of the expansion mortar or concrete of the present invention, (a) data on the amount of drying shrinkage of the mortar or concrete under various conditions with no expansion agent added, (b) mortar with the addition of the expansion agent Or the expansion amount of a concrete underwater material age 7 days, (c) ettringite amount in a hardened body of an underwater material age 7 days of an expansion material addition cement paste, and the expansion equation (b) (Approximation) must be prepared in advance as a database.

(a)膨張材無添加のセメントモルタル及びコンクリートの乾燥収縮量のデータ
膨張材無添加のモルタル又はコンクリートそれぞれについて、水セメント比、温度、セメントの種類等を変えた場合の乾燥収縮量(6ケ月〜1年を目処)について、データを収集する。
例えば、水セメント比は概ね30%〜60%、温度は5℃、20℃、30℃、セメントの種類は普通、早強、低熱、中庸熱ポルトランドセメントやスラグ、フライアッシュなどが混入した混合セメント等について、乾燥収縮量の測定データを収集する。
乾燥収縮量の測定は、例えば、コンクリートについては、JIS A 6202の付属書B法、モルタルについては、JIS A 6202付属書1又はJIS A 1129の記載に準じて行われたものを採用すれば良い。
(A) Data on drying shrinkage of cement mortar without addition of expansion agent and concrete Drying shrinkage when mortar or concrete without addition of expansion agent is changed in water cement ratio, temperature, cement type, etc. (6 months) Collect data for ~ 1 year).
For example, the water cement ratio is about 30% to 60%, the temperature is 5 ° C, 20 ° C, 30 ° C, the type of cement is normal, early strength, low heat, medium heat Portland cement, mixed slag, fly ash, etc. Collect measurement data of dry shrinkage.
For the measurement of the amount of drying shrinkage, for example, for concrete, what is performed according to the method described in JIS A 6202, Appendix B, and for mortar, the method described in JIS A 6202, Appendix 1 or JIS A 1129 may be adopted. .

(b)膨張セメントモルタル又はコンクリートにおける水中材齢7日の膨張量
(a)に対応した各種条件において、膨張材量を2ないし3水準として配合したセメントモルタル及びコンクリートを作製し、水中材齢7日の膨張量の測定データを収集する。
測定方法については、上記(a)と同様の方法を採用すれば良い。
(B) Expansion amount of expanded cement mortar or concrete under water age 7 days Under various conditions corresponding to (a), cement mortar and concrete blended with 2 to 3 levels of expanded material were prepared, and underwater age 7 Collect measurement data for daily dilatation.
About the measuring method, what is necessary is just to employ | adopt the method similar to said (a).

(c)膨張材添加セメントペーストの水中材齢7日のエトリンガイト量と膨張セメントモルタル又はコンクリートの水中材齢7日の膨張量との関係近似式(2次関数近似)
(a)に対応した各種条件について、上記工程3で示したように、骨材を除いたセメントペーストを作製し、水中材齢7日のセメント硬化体を凍結乾燥後、粉砕し、粉末X線回折(例えば9°付近(CuKa、2θ))のエトリンガイトの積分強度を求め、(b)の膨張セメントモルタル又はコンクリートの水中材齢7日の膨張量との関係を求める。
(C) Approximate expression (secondary function approximation) between the amount of ettringite on the 7th day of underwater age of the cement paste containing the expanded material and the amount of expanded cement mortar or 7th day of the expanded cement mortar or concrete
For the various conditions corresponding to (a), as shown in Step 3 above, a cement paste excluding aggregate was prepared, and the cemented body of 7 days old underwater material was freeze-dried, pulverized, and powder X-ray The integrated intensity of ettringite of diffraction (for example, around 9 ° (CuKa, 2θ)) is determined, and the relationship with the expansion amount of the expanded cement mortar or concrete underwater age 7 days of (b) is determined.

実施例1
CSA系膨張材(「デンカCSA」(電気化学工業))と普通ポルトランドセメント、水、ISO標準砂を水セメント比56%で下記表1の配合に従い練り混ぜ、温度20℃で水中養生した。JIS A 6202附属書1に従って、材齢7日の膨張モルタルの膨張量を測定した。
Example 1
A CSA-based expansion material (“DENKA CSA” (Electrochemical Industry)), ordinary Portland cement, water, and ISO standard sand were kneaded at a water cement ratio of 56% in accordance with the composition shown in Table 1 below, and cured under water at a temperature of 20 ° C. According to JIS A 6202 Annex 1, the amount of expansion of the expanded mortar at the age of 7 days was measured.

別途、この配合において砂を除いたセメントペーストを作製し、上記と同条件で養生した。材齢7日のセメント硬化体を真空凍結乾燥(凍結温度マイナス30℃、乾燥温度マイナス20℃、真空度10Pa)し、粉砕した後、粉末X線回折(リガク社 自動X線回折装置 RINT 2500)により2θ=9°付近のエトリンガイトの積分強度を測定した。結果を図1に示す。
図1Aに示すように、曲線は2次式で近似でき、相関係数は0.97であった。すなわち、エトリンガイトの積分強度は、膨張モルタルの膨張量との間に非常に良い相関性を示した。一方、エトリンガイトと膨張材添加量との関係には相関は認められない(図1B)。
Separately, a cement paste from which sand was removed in this formulation was prepared and cured under the same conditions as described above. 7-day-old cement-hardened material is vacuum freeze-dried (freezing temperature minus 30 ° C., drying temperature minus 20 ° C., vacuum degree 10 Pa), pulverized, and then powder X-ray diffraction (Rigaku Corporation automatic X-ray diffractometer RINT 2500) Was used to measure the integrated intensity of ettringite near 2θ = 9 °. The results are shown in FIG.
As shown in FIG. 1A, the curve can be approximated by a quadratic equation, and the correlation coefficient was 0.97. That is, the integrated intensity of ettringite showed a very good correlation with the amount of expansion of the expanded mortar. On the other hand, no correlation is observed in the relationship between ettringite and the amount of expansion material added (FIG. 1B).

実施例2
CSA系膨張材(「デンカCSA」(電気化学工業))と普通ポルトランドセメント、水、ISO標準砂を水セメント比56%で下記表2の配合に従い練り混ぜ、35℃、20℃及び5℃で水中養生した。JIS A 6202附属書1に従って、材齢7日の膨張モルタルの膨張量を測定した。
Example 2
CSA-based expansion material (“DENKA CSA” (Electrochemical Industry)), ordinary Portland cement, water, and ISO standard sand are kneaded at a water cement ratio of 56% according to the composition shown in Table 2 below, at 35 ° C., 20 ° C. and 5 ° C. Underwater curing. According to JIS A 6202 Annex 1, the amount of expansion of the expanded mortar at the age of 7 days was measured.

別途、この配合において砂を除いたセメントペーストを作製し、上記と同条件で養生した。実施例1と同様に、材齢7日のセメント硬化体を真空凍結乾燥し、粉砕した後、粉末X線回折により2θ=9°付近のエトリンガイトの積分強度を測定した。
その結果、図3に示すような曲線が得られ、各曲線は2次式で近似でき、相関係数は0.97であった。
Separately, a cement paste from which sand was removed in this formulation was prepared and cured under the same conditions as described above. In the same manner as in Example 1, a 7-day-old cement-hardened material was freeze-dried in vacuum, pulverized, and the integrated strength of ettringite near 2θ = 9 ° was measured by powder X-ray diffraction.
As a result, curves as shown in FIG. 3 were obtained, and each curve was approximated by a quadratic equation, and the correlation coefficient was 0.97.

実施例3
セメント種を、NC=普通セメント、HC=早強セメント、LC=低熱セメント、MC=中庸熱セメントとし、実施例2と同様に、材齢7日の膨張モルタルの膨張量及びそれに対応するセメント硬化体のエトリンガイトの積分強度を測定した。その結果、図4に示すような曲線が得られ、各曲線は2次式で近似でき、相関係数は0.98であった。
Example 3
The cement type is NC = ordinary cement, HC = early strong cement, LC = low heat cement, MC = moderate heat cement, and in the same manner as in Example 2, the expansion amount of the expanded mortar at the age of 7 days and corresponding cement hardening The integral intensity of ettringite in the body was measured. As a result, curves as shown in FIG. 4 were obtained. Each curve was approximated by a quadratic equation, and the correlation coefficient was 0.98.

実施例4
CSA系膨張材(「デンカCSA」(電気化学工業))と普通ポルトランドセメント、水、ISO標準砂を水セメント比54%で下記表3の配合に従い練り混ぜ、温度20℃で水中養生した。JIS A 6202附属書1に従って、材齢7日の膨張コンクリートの膨張量を測定した。
Example 4
A CSA-based expansion material (“DENKA CSA” (Electrochemical Industry)), ordinary Portland cement, water, and ISO standard sand were kneaded at a water cement ratio of 54% according to the composition shown in Table 3 below, and cured under water at a temperature of 20 ° C. In accordance with JIS A 6202 Annex 1, the amount of expansion of 7-day-old expanded concrete was measured.

別途、この配合において骨材を除いたセメントペーストを作製し、上記と同条件で養生した。実施例1と同様に、材齢7日のセメント硬化体を真空凍結乾燥し、粉砕した後、粉末X線回折により2θ=9°付近のエトリンガイトの積分強度を測定した。結果を図5Aに示す。
その結果、エトリンガイトの積分強度は、膨張コンクリートの膨張量との間に非常に良い相関性を示し、相関係数は0.99であった。一方、コンクリートの膨張量と膨張材添加量との関係には相関は認められない(図5B)。
Separately, a cement paste from which aggregate was removed in this formulation was prepared and cured under the same conditions as described above. In the same manner as in Example 1, a 7-day-old cement-hardened material was freeze-dried in vacuum, pulverized, and the integrated strength of ettringite near 2θ = 9 ° was measured by powder X-ray diffraction. The result is shown in FIG. 5A.
As a result, the integrated strength of ettringite showed a very good correlation with the amount of expansion of the expanded concrete, and the correlation coefficient was 0.99. On the other hand, there is no correlation between the relationship between the amount of expansion of concrete and the amount of expansion material added (FIG. 5B).

実施例5 膨張コンクリートの乾燥収縮量の予測
乾燥収縮量を予測したいコンクリートの配合は表4に示す。
Example 5 Prediction of Drying Shrinkage of Expanded Concrete Table 4 shows the mix of concrete for which the drying shrinkage is to be predicted.

予め用意した、膨張材無添加のコンクリートの20℃における乾燥収縮量のデータ(前記データベース(a))より、上記の配合(セメント量370kg/m3)及び温度条件等が合致するデータを抽出し、膨張材無添加の場合の6ヵ月後の乾燥収縮量(670μ)を求めた。 From the data of dry shrinkage at 20 ° C of the concrete with no expansion agent prepared in advance (the database (a)), the data that matches the above formula (cement amount 370kg / m 3 ) and temperature conditions are extracted. The amount of drying shrinkage (670 μ) after 6 months in the case of no addition of the expansion material was determined.

次に、このコンクリート配合から砂、骨材を除いたペースト配合を表5に示す。   Next, Table 5 shows the paste composition obtained by removing sand and aggregate from the concrete composition.

このペーストを練混ぜ、20℃で水中養生し、材齢7日のセメント硬化体を真空凍結乾燥し、粉砕した後、粉末X線回折を行い、9°付近(CuKa、2θ)のエトリンガイトの積分強度を測定したところ、125(cps・deg)であった。
これを、予め用意した、膨張材添加セメントペーストの水中材齢7日のエトリンガイト量と膨張コンクリートの膨張量との関係近似式(前記データベース(c))に当てはめ、膨張量(160μ)を求めた。
これより、所望の膨張コンクリートの6ヵ月後の乾燥収縮量は、670(膨張材無添加の場合の6ヵ月後の乾燥収縮量)−160=510μと予測することが出来る。
This paste is kneaded and cured in water at 20 ° C. A hardened cement material of 7 days old is vacuum-freeze-dried and pulverized, followed by powder X-ray diffraction and integration of ettringite around 9 ° (CuKa, 2θ) When the strength was measured, it was 125 (cps · deg).
This was applied in advance to a relational approximate expression (the database (c)) between the amount of ettringite under water age 7 days of expansion material-added cement paste and the expansion amount of expanded concrete, and the expansion amount (160 μm) was obtained. .
From this, the drying shrinkage amount after 6 months of the desired expanded concrete can be predicted as 670 (dry shrinkage amount after 6 months when no expansion material is added) −160 = 510 μm.

Claims (4)

膨張モルタル又はコンクリートの乾燥収縮量を予測する方法であって、水中材齢7日のセメント硬化体について、セメントの水和反応に伴って生成されたエトリンガイトの量から前記膨張モルタル又はコンクリートの水中材齢7日の膨張量を推定することを特徴とする、膨張モルタル又はコンクリートの乾燥収縮量の予測方法。   A method for predicting the amount of drying shrinkage of expanded mortar or concrete, wherein the cured mortar or concrete underwater material is obtained from the amount of ettringite produced during the cement hydration reaction for a 7-day-old cement hardened body. A method for predicting the amount of drying shrinkage of expanded mortar or concrete, wherein the amount of expansion at 7 days of age is estimated. 膨張モルタル又はコンクリートの水中材齢7日の膨張量の推定が、以下の工程(1)〜(3)により行われる請求項1記載の方法。
(1)予測対象の膨張モルタル又はコンクリートの配合から骨材を除いたセメントペーストを作製し、水中養生する工程。
(2)前記工程(1)で得られる水中材齢7日のセメント硬化体を凍結乾燥し、粉砕する工程。
(3)前記工程(2)で得られた粉砕物中のエトリンガイト量を測定する工程。
The method according to claim 1, wherein the estimation of the expansion amount of the expanded mortar or concrete underwater age of 7 days is performed by the following steps (1) to (3).
(1) A step of producing a cement paste obtained by removing aggregates from a blend of expanded mortar or concrete to be predicted and curing in water.
(2) A step of freeze-drying and pulverizing the 7-day-old cement-hardened body obtained in the step (1).
(3) A step of measuring the amount of ettringite in the pulverized product obtained in the step (2).
膨張材無添加のモルタル又はコンクリートの乾燥収縮量から、膨張モルタル又はコンクリートの水中材齢7日の膨張量を相殺することにより当該膨張モルタル又はコンクリートの乾燥収縮量を算出する、請求項1又は2記載の方法。   The amount of drying shrinkage of the expanded mortar or concrete is calculated by offsetting the amount of expansion of the expanded mortar or concrete under water age 7 days from the amount of drying shrinkage of the mortar or concrete to which no expansion material is added. The method described. 水中材齢7日のセメント硬化体について、セメントの水和反応に伴って生成されるエトリンガイト量を測定することを特徴とする膨張モルタル又はコンクリートの水中材齢7日の膨張量の推定方法。   An estimation method of an expansion amount of an expanded mortar or concrete underwater material age 7 days, wherein the amount of ettringite produced with a cement hydration reaction is measured for a cement hardened body of underwater material age 7 days.
JP2010063102A 2010-03-18 2010-03-18 Prediction method for drying shrinkage of mortar or concrete Active JP5513947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010063102A JP5513947B2 (en) 2010-03-18 2010-03-18 Prediction method for drying shrinkage of mortar or concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010063102A JP5513947B2 (en) 2010-03-18 2010-03-18 Prediction method for drying shrinkage of mortar or concrete

Publications (2)

Publication Number Publication Date
JP2011195368A true JP2011195368A (en) 2011-10-06
JP5513947B2 JP5513947B2 (en) 2014-06-04

Family

ID=44874042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010063102A Active JP5513947B2 (en) 2010-03-18 2010-03-18 Prediction method for drying shrinkage of mortar or concrete

Country Status (1)

Country Link
JP (1) JP5513947B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018105766A (en) * 2016-12-27 2018-07-05 太平洋マテリアル株式会社 Estimation method of coefficient of expansion of expansive concrete
JP2018205181A (en) * 2017-06-06 2018-12-27 太平洋セメント株式会社 Database construction method
JP2020134431A (en) * 2019-02-25 2020-08-31 住友金属鉱山シポレックス株式会社 Method for quantifying xonotlite formation rate by thermal shrinkage
CN114324834A (en) * 2021-12-10 2022-04-12 北京工业大学 Method for predicting volume stability of cement-based material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07242472A (en) * 1994-03-03 1995-09-19 Sumitomo Metal Mining Co Ltd Production of large-sized lightweight foamed concrete panel
JP2002226241A (en) * 2001-01-30 2002-08-14 Mitsui Constr Co Ltd Method for recycling concrete material by vacuum freeze drying
JP2008008753A (en) * 2006-06-29 2008-01-17 Shimizu Corp Early estimation method of concrete dry shrinkage factor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07242472A (en) * 1994-03-03 1995-09-19 Sumitomo Metal Mining Co Ltd Production of large-sized lightweight foamed concrete panel
JP2002226241A (en) * 2001-01-30 2002-08-14 Mitsui Constr Co Ltd Method for recycling concrete material by vacuum freeze drying
JP2008008753A (en) * 2006-06-29 2008-01-17 Shimizu Corp Early estimation method of concrete dry shrinkage factor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013057546; 笠井芳夫: コンクリート総覧 , 19980610, P.98-100 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018105766A (en) * 2016-12-27 2018-07-05 太平洋マテリアル株式会社 Estimation method of coefficient of expansion of expansive concrete
JP2018205181A (en) * 2017-06-06 2018-12-27 太平洋セメント株式会社 Database construction method
JP2020134431A (en) * 2019-02-25 2020-08-31 住友金属鉱山シポレックス株式会社 Method for quantifying xonotlite formation rate by thermal shrinkage
JP7136456B2 (en) 2019-02-25 2022-09-13 住友金属鉱山シポレックス株式会社 Quantification method of xonotlite formation rate by thermal shrinkage
CN114324834A (en) * 2021-12-10 2022-04-12 北京工业大学 Method for predicting volume stability of cement-based material
CN114324834B (en) * 2021-12-10 2024-03-12 北京工业大学 Method for predicting volume stability of cement-based material

Also Published As

Publication number Publication date
JP5513947B2 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
Junaid et al. A mix design procedure for low calcium alkali activated fly ash-based concretes
Tang et al. Influence of axial loading and carbonation age on the carbonation resistance of recycled aggregate concrete
Gu et al. Early strength development and hydration of ordinary Portland cement/calcium aluminate cement pastes
Wang et al. Cementitious composites blending with high belite sulfoaluminate and medium-heat Portland cements for largescale 3D printing
Rai et al. A statistical investigation of different parameters influencing compressive strength of fly ash induced geopolymer concrete
García-Maté et al. Tailored setting times with high compressive strengths in bassanite calcium sulfoaluminate eco-cements
Zhang et al. Effects of mineral admixtures and additional gypsum on the expansion performance of sulphoaluminate expansive agent at simulation of mass concrete environment
KR101333084B1 (en) High early strength cement comprising blast furnace slag and CSA cement
JP5784002B2 (en) Cement composition for repair, cement mortar material for repair using the same, and cement mortar for repair
JP5513947B2 (en) Prediction method for drying shrinkage of mortar or concrete
Trümer et al. Sulphate and ASR resistance of concrete made with calcined clay blended cements
WO2021057935A1 (en) Concrete formulation system for repairing cultural relic building and use method thereof
Zhang et al. Measuring and modeling hydration kinetics of well cements under elevated temperature and pressure using chemical shrinkage test method
CN105236928A (en) Method for improving water stability of potassium magnesium phosphate cement-base material
JP2012002763A (en) Method for estimating drying shrinkage of concrete cured body
Chandak et al. Compressive strength and ultrasonic pulse velocity of concrete with metakaolin
JP2012002764A (en) Method for estimating drying shrinkage of aggregate and concrete hardened body
Amen Degree of hydration and strength development of low water-to-cement ratios in silica fume cement system
Song et al. Effects of Ca (OH) 2 on the reinforcement corrosion of sulfoaluminate cement mortar
Noor et al. A critical review of the role of ettringite in binders composed of CAC–PC–C andCSA–PC–C
JP2017067477A (en) Method for estimating compressive strength and/or static elastic modulus of concrete
CN104529378B (en) Novel water-resistant quick-hardened inorganic cementing material and preparation method thereof
Joel et al. Modelling of compressive strength of cement slurry at different slurry weights and temperatures
Xu et al. Effect of calcium sulfate on the formation of ettringite in calcium aluminate and sulfoaluminate blended systems
Li et al. Unlocking the potential of ordinary Portland cement with hydration control additive enabling low-carbon building materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130212

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140328

R150 Certificate of patent or registration of utility model

Ref document number: 5513947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250