JP5860772B2 - 通信回路及び半導体装置 - Google Patents

通信回路及び半導体装置 Download PDF

Info

Publication number
JP5860772B2
JP5860772B2 JP2012143698A JP2012143698A JP5860772B2 JP 5860772 B2 JP5860772 B2 JP 5860772B2 JP 2012143698 A JP2012143698 A JP 2012143698A JP 2012143698 A JP2012143698 A JP 2012143698A JP 5860772 B2 JP5860772 B2 JP 5860772B2
Authority
JP
Japan
Prior art keywords
transistor
signal
current
circuit
bipolar transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012143698A
Other languages
English (en)
Other versions
JP2014007683A (ja
Inventor
茂行 岡部
茂行 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2012143698A priority Critical patent/JP5860772B2/ja
Priority to US13/914,499 priority patent/US8879645B2/en
Priority to EP13172966.7A priority patent/EP2680440A3/en
Publication of JP2014007683A publication Critical patent/JP2014007683A/ja
Priority to US14/504,243 priority patent/US9054770B2/en
Priority to US14/732,557 priority patent/US9264083B2/en
Application granted granted Critical
Publication of JP5860772B2 publication Critical patent/JP5860772B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1081Reduction of multipath noise
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/003Modifications for increasing the reliability for protection
    • H03K19/00346Modifications for eliminating interference or parasitic voltages or currents
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/12Neutralising, balancing, or compensation arrangements
    • H04B1/123Neutralising, balancing, or compensation arrangements using adaptive balancing or compensation means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B15/00Suppression or limitation of noise or interference
    • H04B15/02Reducing interference from electric apparatus by means located at or near the interfering apparatus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Dc Digital Transmission (AREA)
  • Logic Circuits (AREA)
  • Noise Elimination (AREA)
  • Amplifiers (AREA)

Description

本発明は、通信回路及び半導体装置に関し、特にそれぞれ電池セルの電圧測定を可能とする複数の電圧測定装置間の差動通信に好適に利用できるものである。
車両走行用の駆動源としてモータを使用する電気自動車(EV:electric vehicle)やハイブリッド車(HEV:hybrid electric vehicle)が自動車メーカを問わず多くの企業・団体で開発されている。これらモータを駆動するためには数百ボルトの高電圧を有する車両搭載電源が必要とされる。このような車両搭載電源は、数ボルト程度の電圧を発生する素電池(「電池セル」とも称する)を複数個直列に接続した組電池で実現されている。
電気自動車等では車両の走行時や充電時などすべての使用環境下において、電池の状態(例えば、過充電状態、過放電状態、充電残量等)を判断するために各電池セルVCL1つずつの電圧を高精度で測定する必要がある。電池電圧の高精度な検出技術は電池エネルギの有効活用に必須であり、特に車両用電源としては車両の安全性や車両走行距離の長距離化に繋がる重要な技術である。
このような高精度化の要求に応え、且つさらなる低コスト化を実現するために、車両搭載電源における電圧測定装置は、電池セルVCL1つにつき1つのAD変換器(以下、「ADC」とも称する)を備えるのではなく、電池セル数個〜十数個を1ブロックとして捉え、1ブロックにつき1つのADCを持つ構成が主に実用化されている。またその構成を実現するために、電圧測定装置は、マルチプレクサ回路(以下、「MUX」とも称する)を搭載し、MUXにより最下位電位(グラウンド(GND)レベル)を基準にして設計されるADCの信号入力に複数の異なる電圧水準にある電池電圧を時間的に順次切り替えることで、電圧の測定を実現している。
上記のように、電池セル数個〜十数個を1ブロックとして捉え、1ブロックにつき1つのADCを持つ構成が採用される場合、電池セルのブロックに対応して複数の電圧測定装置が設けられる。そしてこの電圧測定装置においては、電池監視に関する制御指示や電圧測定結果等を別の電圧測定装置との間で相互に通信するための通信機能部が設けられている。電圧測定装置の動作用電源電圧は、対応する電池セルのブロックから供給されるため、電圧測定装置間の通信は、異電位間通信となる。異電位間通信では、電流通信が望ましい。また、この電流通信では、差動通信が採用される。差動の電流通信は、シングルエンドの電流通信に比べて、信号振幅を小さくしてデータ伝送速度を高速にできる点で優れている。
特許文献1には、低コモンモード利得で、高入力インピーダンスの平衡入出力型差動増幅回路が記載されている。この差動増幅回路は、差動信号を受信し、増幅し、出力する(明細書段落0013)。また、入力のコモンモードの電位が変化し、差動入力の非反転入力の電位がそれぞれの差動入力の反転入力よりも高く、又は低くなると、電位差がなくなるまで入力コモンモード制御出力の電位が上昇又は下降し、差動入力部の回路が飽和しないように調整される(明細書段落0015)。
特許文献2には、差動増幅器の入力信号における同相ノイズの影響を排除するための技術が記載されている。この差動増幅器は、差動信号を受信し、増幅する(明細書段落0013,0026,0027)。また、同相ノイズVnの電位に応じて差動増幅器の各入力端の電圧をプルダウン又はプルアップすることが記載されている(明細書段落0044〜0048)。
特開2000−332548号公報 特開2003−133862号公報
上記のように電圧測定装置の動作用電源電圧は、対応する電池セル(「素電池」という)のブロックから供給されるため、電圧測定装置間の通信は、異電位間通信となる。このため、電圧測定装置間の通信は、電圧通信よりも電流通信が望ましい。この電流通信において、デバイスの発熱を抑え、かつ電池セルの放電量を抑えるには、通信電流を少なくする必要がある。しかし、通信電流が少ないと、車両走行用の駆動源であるモータの回転駆動に起因するコモンモードノイズの影響を受けやすく、通信不良を生ずる虞がある。特に通信速度を上げる為に電流入力段をカスコード接続等にした場合に顕著に通信不良を引き起こす虞がある。例えば、電圧測定装置間の差動の通信電流に、コモンモードノイズによる電流が負極性で加算された場合には、信号レベルが減衰され、コモンモードノイズのレベルによっては、通信電流の向きが、通信電流の本来の方向とは逆方向になってしまう。この結果、受信側では、通信電流を十分なレベルで取り込むことができなくなる。
その他の課題と新規な特徴は、本明細書の記述及び添付図面から明らかになるであろう。
課題を解決するための手段のうち代表的なものの概要を簡単に説明すれば下記の通りである。
すなわち、通信回路は、第1信号を伝達するための第1伝送路と、上記第1信号とは逆位相の第2信号を伝達するための第2伝送路とを用いた差動通信を可能にする受信回路を含む。この受信回路は、上記第1信号及び上記第2信号にコモンモードノイズが重畳された場合の電流の減衰分を補うための補償回路を備える。この補償回路は、第1補償回路と第2補償回路とを含む。第1補償回路は、上記第1信号のうち、コモンモードノイズが重畳された場合の電流の減衰分を検出し、それを上記第2信号に加算することで、上記第1信号の減衰分を補う。第2補償回路は、上記第2信号のうち、コモンモードノイズが重畳された場合の電流の減衰分を検出し、それを上記第1信号に加算することで、上記第2信号の減衰分を補う。
課題を解決するための手段のうち代表的なものによって得られる効果を簡単に説明すれば下記の通りである。
すなわち、差動通信を可能にする受信回路において、電流通信におけるコモンモードノイズの影響を軽減することができる。
EV又はHEV用バッテリ装置の構成例を示すブロック図である。 複数の電圧測定装置や電池監視用マイクロコンピュータの接続状態の説明図である。 図1に示されるバッテリ装置に含まれる通信機能部における送信回路と受信回路との接続状態の説明図である。 図1に示されるバッテリ装置に含まれる通信機能部における送信回路と受信回路との接続状態の説明図である。 図9において、第1補償回路及び第2補償回路が設けられていない場合の信号の流れの説明図である。 図5における主要部の電流波形の説明図である。 図9に示される構成における信号の流れの説明図である。 図7における主要部の電流波形の説明図である。 図3に示される送信回路及び受信回路の構成例回路図である。 図4に示される送信回路及び受信回路の構成例回路図である。 図3に示される受信回路の別の構成例回路図である。 図4に示される受信回路の別の構成例回路図である。 図3に示される受信回路の別の構成例回路図である。 図4に示される受信回路の別の構成例回路図である。 図10に示される受信回路の他の構成例回路図である。
1.実施の形態の概要
先ず、本願において開示される代表的な実施の形態について概要を説明する。代表的な実施の形態についての概要説明で括弧を付して参照する図面中の参照符号はそれが付された構成要素の概念に含まれるものを例示するに過ぎない。また、図面中で使用されているバイポーラトランジスタはMOSトランジスタに置き換え可能となる場合もあるが、例としてバイポーラトランジスタで記載している。図面中で使用されているMOSトランジスタはバイポーラトランジスタに置き換え可能となる場合もあるが、例としてMOSトランジスタで記載している。
〔1〕代表的な実施の形態に係る通信回路(70,71)は、第1信号を伝達するための第1伝送路(45,47)と、上記第1信号とは逆位相の第2信号を伝達するための第2伝送路(46,48)とを用いた差動通信を可能にする受信回路(42,44)を含む。上記受信回路は、上記第1信号及び上記第2信号にコモンモードノイズが重畳された場合の電流の減衰分を補うための補償回路を備える。この補償回路は、第1補償回路(95)と第2補償回路(96)とを含む。第1補償回路(95)は、上記第1信号のうち、コモンモードノイズが重畳された場合の電流の減衰分を検出し、それを上記第2信号に加算することで、上記第1信号の減衰分を補う。第2補償回路(96)は、上記第2信号のうち、コモンモードノイズが重畳された場合の電流の減衰分を検出し、それを上記第1信号に加算することで、上記第2信号の減衰分を補う。
上記の構成によれば、受信回路には、第1信号及び第2信号にコモンモードノイズが重畳された場合の電流の減衰分を補うための回路として、第1補償回路と第2補償回路とが設けられるため、受信回路においては、コモンモードノイズに起因する減衰分が補われ、良好な信号レベルを得ることができる。これにより、電流通信におけるコモンモードノイズの影響を軽減することができる。
〔2〕上記〔1〕において、上記受信回路を容易に形成するには、上記第1信号を伝送路の寄生容量の影響を抑えた状態で取り込むための第1トランジスタ(Q1,Q28)と、上記第2信号を伝送路の寄生容量の影響を抑えた状態で取り込むための第2トランジスタ(Q2,Q29)とを設けると良い。このとき上記受信回路には、上記第1トランジスタを介して伝達された上記第1信号と、上記第2トランジスタを介して伝達された上記第2信号とを比較するための比較器(91,103)を設けることができる。
〔3〕上記〔2〕において、上記第1補償回路は、上記第1トランジスタに縦続接続された第3トランジスタ(Q3)と、上記第3トランジスタにカレントミラー接続され、上記第2信号に加算される電流を得る第4トランジスタ(Q4)とを含んで、容易に形成することができる。上記第2補償回路は、上記第2トランジスタに縦続接続された第5トランジスタ(Q6)と、上記第5トランジスタにカレントミラー接続され、上記第1信号に加算される電流を得る第6トランジスタ(Q5)とを含んで容易に形成することができる。
〔4〕上記〔3〕において、上記第4トランジスタは、上記第4トランジスタに流れる電流が、上記比較器での比較前の上記第2信号に加算されるように接続される。上記第6トランジスタは、上記第6トランジスタに流れる電流が、上記比較器での比較前の上記第1信号に加算されるように接続される。このような接続により、コモンモードノイズに起因する減衰分を容易に補うことができる。
〔5〕上記〔4〕において、上記第1伝送路から見た上記受信回路の入力インピーダンスを調整するための第1インピーダンス調整回路(108)と、上記第2伝送路から見た上記受信回路の入力インピーダンスを調整するための第2インピーダンス調整回路(109)とを含む。第1インピーダンス調整回路により、第1伝送路から見た受信回路の入力インピーダンスが低減され、第2インピーダンス調整回路により、第2伝送路から見た上記受信回路の入力インピーダンスが低減される。このように入力インピーダンスが低減されることにより、寄生容量の充放電時間を短縮することができるので、信号の伝達速度の向上を図ることができる。
〔6〕上記〔5〕において、上記第1インピーダンス調整回路を容易に形成するには、上記第1トランジスタと上記第2トランジスタとの間に設けられた第7トランジスタ(Q30)と、上記第7トランジスタの動作を制御するための第1フィードバック回路(Q32,Q34,Q36)とを設けると良い。このとき、第1フィードバック回路は、上記第1トランジスタ(Q1)と上記第7トランジスタ(Q30)との直列接続ノード(110)の電圧に応じて第7トランジスタ(Q30)の動作を制御するように構成することができる。上記第2インピーダンス調整回路を容易に形成するには、上記第4トランジスタ(Q2)と上記第5トランジスタ(Q6)との間に設けられた第8トランジスタ(Q31)と、上記第8トランジスタの動作を制御するための第2フィードバック回路(Q33,Q35,Q37)とを設けると良い。このとき、第2フィードバック回路は、上記第4トランジスタ(Q2)と上記第8トランジスタ(Q31)との直列接続ノード(111)の電圧に応じて第8トランジスタ(Q31)の動作を制御するように構成することができる。
〔7〕上記〔1〕において、上記受信回路を容易に形成するには、上記第1信号を増幅するための第9トランジスタ(Q53)と、上記第2信号を増幅するための第10トランジスタ(Q56)とを設けると良い。このとき、上記受信回路には、上記第9トランジスタの出力と、上記第10トランジスタの出力とを比較するための比較器(91)を設けることができる。
〔8〕上記〔7〕において、上記第1補償回路は、第11トランジスタ(Q55)と、第12トランジスタ(Q57)と、第13トランジスタ(Q58)とを含んで容易に構成することができる。このとき、第11トランジスタ(Q55)は、上記第1信号に重畳されるコモンモードノイズによって上記第1信号とは逆方向に流れる電流を増幅する。上記第12トランジスタ(Q57)は、上記第11トランジスタの負荷を形成する。上記第1トランジスタ(Q58)は、上記第12トランジスタにカレントミラー接続され、上記比較器での比較前の上記第2信号に加算される電流を得る。
上記第2補償回路は、第14トランジスタ(Q56)と、第15トランジスタ(Q60)と、第16トランジスタ(Q59)とを含んで容易に構成することができる。このとき、上記第14トランジスタ(Q56)は、上記第2信号に重畳されるコモンモードノイズによって上記第2信号とは逆方向に流れる電流を増幅する。上記第15トランジスタ(Q60)は、上記第14トランジスタの負荷を形成する。上記第16トランジスタ(Q59)は、上記第15トランジスタにカレントミラー接続されて、上記比較器での比較前の上記第1信号に加算される電流を得る。
〔9〕上記〔8〕において、上記第13トランジスタは、上記第13トランジスタに流れる電流が、上記比較器での比較前の上記第2信号に加算されるように接続される。上記第16トランジスタは、上記第16トランジスタに流れる電流が、上記比較器での比較前の上記第1信号に加算されるように接続される。このような接続により、コモンモードノイズに起因する減衰分を容易に補うことができる。
〔10〕複数の素電池が互いに直列接続された組電池の電圧を測定するための電圧測定機能部(20)と、上記電圧測定機能による電圧測定結果を通信可能な通信機能部(70,71)とを含む半導体装置において、上記通信機能部は、上記通信回路と同様に構成することができる。
2.実施の形態の詳細
実施の形態について更に詳述する。
《実施の形態1》
図1には、EV又はHEV用のバッテリの電圧測定システムの一例が示される。
同図において、モータ11はモータ駆動用インバータ12の両端にバッテリから電力が供給されることにより駆動される。同図に示される電圧測定システムを構成するバッテリ装置10は、複数の素電池が直列に接続された組電池から構成されるバッテリ101と、上記バッテリを構成する電池セルのうち数個〜十数個を一組とし、一組の電池セル1毎に割り当てられた複数の電圧測定装置2と、電池監視用マイクロコンピュータ(MCU)6とを備える。バッテリ101は、例えば電気自動車等の車両全体で数百個の素電池から構成され、最上位の電圧は例えば400V程度である。また、バッテリ101を構成する素電池は、例えば、リチウムイオン電池である。
電池監視用マイクロコンピュータ(MCU)6は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、及び通信機能を有し、公知の半導体集積回路製造技術により、単結晶シリコン基板などの一つの半導体基板に形成される。この電池監視用マイクロコンピュータ6は、電圧測定装置2を制御することにより、バッテリ電圧の測定を実行させ、測定結果に基づいてモータ駆動用インバータ12に対する電池からの電力供給を制御する。また、電池制御用マイクロコンピュータ7との間でCAN(Controller Area Network)通信等を行う。
各電圧測定装置2は、電圧測定機能部20、制御部50、及び通信機能部70,71を有し、公知の半導体集積回路製造技術により、単結晶シリコン基板などの一つの半導体基板に形成される。上記電圧測定機能部20は、MUX30及びADC60を含む。
MUX30は、バッテリ101のうち測定対象とされる一組の電池セル1について電圧測定を行うために、電池セル1の端子を選択的にADC60に接続する。ADC60は、制御部50からの制御信号に応じて、上記MUX30によって選択された電池セル1の電圧を測定して、その結果を出力する。通信機能部70,71は、電池監視用マイクロコンピュータ6からの制御指示や、上記ADC60からの電圧測定結果等を、互いに隣接する電圧測定装置2間で相互に通信する。
図2には、複数の電圧測定装置2や電池監視用マイクロコンピュータ6の接続状態が示される。
複数の電圧測定装置2や電池監視用マイクロコンピュータ6には、シリアル通信を可能とするシリアルインタフェースが設けられる。電池監視用マイクロコンピュータ6には、チップセレクトCS、シリアルクロックSCK、データ出力MOSI、データ入力MISOの各端子が設けられる。電圧測定装置2には、チップセレクトCS、シリアルクロックSCK、シリアルデータ出力SO、シリアルデータ入力SIの各端子が設けられる。電池監視用マイクロコンピュータ6のチップセレクトCS、シリアルクロックSCK、データ出力MOSI、データ入力MISOの各端子は、それぞれ電圧測定装置2のチップセレクトCS、シリアルクロックSCK、シリアルデータ入力SI、シリアルデータ出力SOの各端子に接続される。電圧測定装置2と電池監視用マイクロコンピュータ6との間では、シングルエンド伝送もしくは差動伝送の電圧通信が行われる。互いに隣接する電圧測定装置2間では、一対の信号線を使ってデータを伝送する差動伝送が行われる。差動伝送では、対をなす2本の伝送路によって、互いに逆位相の信号が伝送される。電圧測定装置2には、グラウンドGNDを基準とする電源電圧VCCを取り込むための電源端子が設けられている。電圧測定装置2の動作用電源電圧は、対応する素電池の直列接続ノードから供給される。動作用電源電圧は、装置2のデバイス耐圧や接続される素電池の数と素電池1個辺りの電圧で決定される。例えば素電池1個辺りの電圧が1.4Vから5Vで、電圧測定装置2に12個の素電圧が接続される場合は16.8Vから60Vとなる。この場合デバイス耐圧は最低でも60V以上のものを使用する必要がある。そして互いに隣接する電圧測定装置2間では、電流通信が行われる。
図1に示される通信機能部70,71は、それぞれ送信回路及び受信回路を含む。例えば図3に示されるように、バッテリ101におけるノードN1の電位を電源電圧VCCとする電圧測定装置2から、バッテリ101におけるノードN2の電位を電源電圧VCCとする電圧測定装置2への信号伝達には、通信機能部70内の送信回路41と、通信機能部71内の受信回路42とが用いられる。この場合、送信回路41と受信回路42とは、差動通信のための一対の伝送路45,46を介して結合される。一方の伝送路45に第1信号による電流INpが流れるとき、他方の伝送路46には、上記第1信号とは逆位相の第2信号による電流INnが流れる。
尚、第1信号INpや第2信号INnには、コモンモードノイズNcomが重畳される場合があるが、それについては後に詳述する。
図9には、図3に示される送信回路41及び受信回路42の構成例が示される。
送信回路41は、次のように構成される。
nチャネル型MOSトランジスタQ10,Q12、及び抵抗R3が互いに直列接続される。nチャンネル型MOSトランジスタQ10は高耐圧素子が使用される。nチャネル型MOSトランジスタQ10のドレイン電極は、伝送路45に結合される。nチャネル型MOSトランジスタQ10のゲート電極には、参照電圧V1が供給され、nチャネル型MOSトランジスタQ10のゲート・ソース電極間で所定の電圧降下を生じさせることで、nチャネル型MOSトランジスタQ12に高電圧が印加されないようにしている。nチャネル型MOSトランジスタQ12のソース電極の電位と、参照電圧V3を仮想設置する増幅器(アンプ)92が設けられ、この増幅器92の出力信号が、nチャネル型MOSトランジスタQ12のゲート電極に伝達されるようになっている。nチャネル型MOSトランジスタQ12のゲート電極とグラウンドGNDとの間に、nチャネル型MOSトランジスタQ14が設けられる。入力端子97を介して、nチャネル型MOSトランジスタQ14のゲート電極に送信データが伝達され、その送信データに呼応して、伝送路45には、第1信号による電流INpが流れるようになっている。nチャネル型MOSトランジスタQ10のソースにはカレントミラー回路(nチャネル型MOSトランジスタQ91、Q92)が接続され、nチャネル型MOSトランジスタQ10のソース電流が完全に0(ゼロ)とはならないようにしている。
また、nチャネル型MOSトランジスタQ11,Q13、及び抵抗R4が互いに直列接続される。nチャンネル型MOSトランジスタQ11は高耐圧素子が使用される。nチャネル型MOSトランジスタQ11のドレイン電極は、伝送路46に結合される。nチャネル型MOSトランジスタQ11のゲート電極には、参照電圧V2が供給され、nチャネル型MOSトランジスタQ11のゲート・ソース電極間で所定の電圧降下を生じさせることで、nチャネル型MOSトランジスタQ13に高電圧が印加されないようにしている。nチャネル型MOSトランジスタQ13のソース電極の電位と、参照電圧V4を仮想設置する増幅器(アンプ)93が設けられ、この増幅器93の出力信号が、nチャネル型MOSトランジスタQ13のゲート電極に伝達されるようになっている。nチャネル型MOSトランジスタQ13のゲート電極とグラウンドGNDとの間に、nチャネル型MOSトランジスタQ15が設けられる。入力端子98を介して、nチャネル型MOSトランジスタQ15のゲート電極に送信データが伝達され、その送信データに呼応して、伝送路46には、第2信号による電流INnが流れるようになっている。nチャネル型MOSトランジスタQ11のソースにはカレントミラー回路(nチャネル型MOSトランジスタQ91、Q93が接続され、nチャネル型MOSトランジスタQ11のソース電流が完全に0(ゼロ)とはならないようにしている。
受信回路42は次のように構成される。
受信回路42は、バイポーラトランジスタQ1〜Q8、抵抗R1,R2、比較器91を含む。上記バイポーラトランジスタQ1〜Q8は、npn型とされる。バイポーラトランジスタQ1,Q2のコレクタ電極は、それぞれ抵抗R1,R2を介して定電圧Vregの端子に接続される。定電圧Vregは、電源電圧VCCを降圧回路で降圧したもので、例えば5Vとされる。本例では、伝送路の寄生容量により信号の伝達速度の低下を防ぐため、カスコード入力回路が採用される。こうすることで、抵抗R1とR2の値を大きくすることができ、比較器91への入力電圧を十分にとることができる。カスコード入力回路を採用しない場合、寄生容量による伝達速度の低下を改善するならば、抵抗R1とR2の値を小さくし、抵抗R1とR2に発生する電圧降下を小さくする必要がある。この場合、比較器91への入力電圧を十分にとることができなくなる虞がある。すなわち、バイポーラトランジスタQ1のエミッタ電極は、第1信号を取り込むために伝送路45に結合され、バイポーラトランジスタQ2のエミッタ電極は、第2信号を取り込むために伝送路46に結合される。バイポーラトランジスタQ1は、上記第1信号を伝達するために伝送路45に電流を供給するための電流バッファとして機能する。バイポーラトランジスタQ2は、上記第2信号を伝達するために上記伝送路46に電流を供給するための電流バッファとして機能する。バイポーラトランジスタQ1,Q2のベース電極には、所定のバイアス電圧が供給される。このバイアス電圧は、定電流源94と、それに直列接続されたバイポーラトランジスタQ7,Q8とで形成される。バイポーラトランジスタQ7,Q8は、それぞれコレクタ電極とベース電極とが結合されることで、ダイオードとして機能する。抵抗R1とバイポーラトランジスタQ1との直列接続ノードの電位と、抵抗R2とバイポーラトランジスタQ2との直列接続ノードの電位とが、比較器91で比較されるようになっている。この比較器91での比較結果が、受信回路42での差動通信における受信信号とされる。
また、この受信回路42には、伝送路45の第1信号、及び伝送路46の第2信号にコモンモードノイズが重畳された場合の電流の減衰分を補うための回路として、第1補償回路95と第2補償回路96とが設けられる。
第1補償回路95は、伝送路45によって伝送される第1信号のうち、所定の入力レンジを越えた分を検出し、それを第2信号に加算することで、上記第1信号の減衰分を補うために設けられている。第1補償回路95は、バイポーラトランジスタQ1に縦続接続されたバイポーラトランジスタQ3と、このバイポーラトランジスタQ3にカレントミラー接続されたバイポーラトランジスタQ4とを含む。伝送路45に流れる第1信号に重畳されたコモンモードノイズに起因して、上記第1信号とは逆方向の電流がバイポーラトランジスタQ3に流れた場合に、それに応じてバイポーラトランジスタQ4に電流が流れる。この電流は、抵抗R2を介して供給されることにより、比較器91に伝達される第2信号に加算されるようになっている。
第2補償回路96は、伝送路46によって伝送される第2信号のうち、所定の入力レンジを越えた分を検出し、それを第1信号に加算することで、上記第1信号の減衰分を補うために設けられている。第2補償回路96は、バイポーラトランジスタQ2に縦続接続されたバイポーラトランジスタQ6と、このバイポーラトランジスタQ6にカレントミラー接続されたバイポーラトランジスタQ5とを含む。伝送路46に流れる第2信号に重畳されたコモンモードノイズに起因して、上記第2信号とは逆方向の電流がバイポーラトランジスタQ6に流れた場合に、それに応じてバイポーラトランジスタQ5に電流が流れる。この電流は、抵抗R1を介して供給されることにより、比較器91に伝達される第1信号に加算されるようになっている。
次に、伝送路45,46の信号に、コモンモードノイズNcomが重畳された場合の動作について説明する。
説明の便宜上、伝送路45における受信回路42側の端部には電流Aが流れ、伝送路46における受信回路42側の端部には電流Bが流れ、バイポーラトランジスタQ1のコレクタ電極側には電流Cが流れ、バイポーラトランジスタQ2のコレクタ電極側に電流Dが流れるものとする。バイポーラトランジスタQ1のコレクタ電極とバイポーラトランジスタQ5のコレクタ電極との結合箇所から抵抗R1に至る経路に電流C’が流れ、バイポーラトランジスタQ2のコレクタ電極とバイポーラトランジスタQ4のコレクタ電極との結合箇所から抵抗R2に至る経路に電流D’が流れるものとする。バイポーラトランジスタQ4のコレクタ電極に電流C2が流れ、バイポーラトランジスタQ5のコレクタ電極に電流D2が流れるものとする。
図5には、図9において、第1補償回路95及び第2補償回路96が設けられていない場合の信号の流れが示され、図6には、図5における主要部の電流波形が示される。
伝送路45には、第1信号による電流INpが流れ、伝送路46には、第2信号による電流INnが流れる。本例では、この第1信号による電流INpと第2信号による電流INnに、コモンモードノイズNcomによる電流が負極性で加算されるものとする。このような加算により信号レベルが減衰され、コモンモードノイズNcomのレベルによっては、電流Aや電流Bが逆流する場合がある。
受信回路42においては、伝送路45の第1信号がバイポーラトランジスタQ1のエミッタ電極に伝達され、伝送路46の第2信号がバイポーラトランジスタQ2のエミッタ電極に伝達されるため、信号電流が所定の基準レベルを越える必要がある。信号電流の基準レベルDlangeは、例えば0アンペアであり、受信回路42において信号を取り込むには、電流Aや電流Bがこの基準レベルDlangeを越えている必要がある。電流A(入力in)が基準レベルDlange以上(in≧Dlange)であれば、この入力inが電流Cとされる。電流A(入力in)が基準レベルDlangeに満たない場合(in<Dlange)には、電流Cは「0」になる。同様に、電流B(入力in)が基準レベルDlange以上(in≧Dlange)であれば、この入力inが電流Dとされる。電流B(入力in)が基準レベルDlangeに満たない場合(in<Dlange)には、電流Dは「0」になる。つまり、入力電流が基準レベル未満で逆流する場合、バイポーラトランジスタQ1,Q2にはエミッタ電流を流すことができないので、受信回路42に信号を取り込むことができない。このように電流Aや電流Bが基準レベルに満たない範囲は、受信信号として取り込むことができないこのため、電流C,Dが減衰され、それにより電流C,Dの差分Eも減衰される。
これに対して、第1補償回路95及び第2補償回路96が設けられている場合には、入力電流が基準レベル未満でも、バイポーラトランジスタQ3,Q6に電流を流すことができ、第1信号及び第2信号にコモンモードノイズが重畳された場合の電流の減衰分を補うことができる。つまり、入力電流が基準レベル未満の場合でも、バイポーラトランジスタQ3に電流が流れ、それに応じてバイポーラトランジスタQ4に流れる電流が、バイポーラトランジスタQ2に流れる電流Dに加算される。この加算結果が電流D’となる。同様に、入力電流が基準レベル未満の場合でも、バイポーラトランジスタQ6に電流が流れ、それに応じてバイポーラトランジスタQ5に流れる電流D2がバイポーラトランジスタQ1に流れる電流Cに加算される。この加算結果が電流C’となる。このような電流加算により、以下のように、コモンモードノイズに起因する減衰分が補われる。
図7には、図9に示される構成における信号の流れが示され、図8には、図7における主要部の電流波形が示される。
第1補償回路95及び第2補償回路96が設けられている場合には、電流C2は、電流Aが基準レベルDlange以上の場合(in≧Dlange)、「0」となり、電流Aが基準レベルDlangeに満たない場合(in<Dlange)には、電流Aの符号が反転されて電流C2となる。この電流C2が電流Dに加算される。これにより、電流D’は、電流Dに電流INpの減衰分が加算されたものとなる。同様に、電流D2は、電流Bが基準レベルDlange以上の場合(in≧Dlange)、「0」となり、電流Bが基準レベルDlangeに満たない場合(in<Dlange)には、電流Bの符号が反転されて電流D2となる。この電流D2が電流Cに加算される。これにより電流C’は、電流Cに電流INnの減衰分が加算されたものとなる。この結果、電流C’,D’の差分Eは、コモンモードノイズに起因する減衰分が補われ、良好な信号レベルとなる。
実施の形態1によれば、以下の作用効果を奏する。
すなわち、受信回路42には、第1信号及び第2信号にコモンモードノイズが重畳された場合の電流の減衰分を補うための回路として、第1補償回路95と第2補償回路96とが設けられるため、受信回路42においては、コモンモードノイズに起因する減衰分が補われ、良好な信号レベルを得ることができる。
《実施の形態2》
図4に示されるように、バッテリ101におけるノードN2の電位を電源電圧VCCとする電圧測定装置2から、バッテリ101におけるノードN1の電位を電源電圧VCCとする電圧測定装置2への信号伝達には、通信機能部71内の送信回路43と、通信機能部71内の受信回路44とが用いられる。この場合、送信回路43と受信回路44とは、差動通信のための一対の伝送路47,48を介して結合される。一方の伝送路47に第1信号による電流INpが流れるとき、他方の伝送路48には、上記第1信号とは逆位相の第2信号による電流INnが流れる。
図10には、図4に示される送信回路43及び受信回路44の構成例が示される。
送信回路43は、次のように構成される。
抵抗R5、pチャネル型MOSトランジスタQ18,Q20が互いに直列接続される。pチャネル型MOSトランジスタQ20のドレイン電極は、伝送路47に結合される。pチャネル型MOSトランジスタQ20のゲート電極には、参照電圧V7が供給され、pチャネル型MOSトランジスタQ20のドレイン・ソース電極間で所定の電圧降下を生じさせることで、伝送路47を介して受信回路44に高電圧が印加されないようにしている。pチャネル型MOSトランジスタQ18のソース電極の電位と、参照電圧V5との比較を行う比較器104が設けられ、この比較器104の出力信号が、pチャネル型MOSトランジスタQ18のゲート電極に伝達されるようになっている。pチャネル型MOSトランジスタQ18のゲート電極と低電圧Vregとの間に、pチャネル型MOSトランジスタQ16が設けられる。入力端子99を介して、pチャネル型MOSトランジスタQ16のゲート電極に送信データが伝達され、その送信データに呼応して、伝送路47には、第1信号による電流INpが流れるようになっている。pチャネル型MOSトランジスタQ20のソースにはカレントミラー回路(pチャネル型MOSトランジスタQ94、Q95)が接続され、pチャネル型MOSトランジスタQ20のソース電流が完全に0(ゼロ)とはならないようにしている。
抵抗R6、pチャネル型MOSトランジスタQ19,Q21が互いに直列接続される。pチャネル型MOSトランジスタQ21のドレイン電極は、伝送路48に結合される。pチャネル型MOSトランジスタQ21のゲート電極には、参照電圧V8が供給され、pチャネル型MOSトランジスタQ21のドレイン・ソース電極間で所定の電圧降下を生じさせることで、伝送路48を介して受信回路44に高電圧が印加されないようにしている。pチャネル型MOSトランジスタQ19のソース電極の電位と、参照電圧V6との比較を行う比較器105が設けられ、この比較器105の出力信号が、pチャネル型MOSトランジスタQ19のゲート電極に伝達されるようになっている。pチャネル型MOSトランジスタQ19のゲート電極と低電圧Vregとの間に、pチャネル型MOSトランジスタQ17が設けられる。入力端子100を介して、pチャネル型MOSトランジスタQ17のゲート電極に送信データが伝達され、その送信データに呼応して、伝送路48には、第2信号による電流INnが流れるようになっている。pチャネル型MOSトランジスタQ21のソースには、カレントミラー回路(pチャネル型MOSトランジスタQ94、Q96)が接続され、pチャネル型MOSトランジスタQ21のソース電流が完全に0(ゼロ)とはならないようにしている。
受信回路44は次のように構成される。
受信回路44は、バイポーラトランジスタQ22〜Q29、抵抗R7,R8、比較器103を含む。上記バイポーラトランジスタQ22〜Q29は、pnp型とされる。バイポーラトランジスタQ28,Q29のコレクタ電極は、それぞれ抵抗R7,R8を介してグラウンドGNDに接続される。寄生容量により信号の伝達速度の低下を防ぐため、カスコード入力回路が採用される。すなわち、バイポーラトランジスタQ28のエミッタ電極は、第1信号を取り込むために伝送路47に結合され、バイポーラトランジスタQ29のエミッタ電極は、第2信号を取り込むために伝送路48に結合される。バイポーラトランジスタQ28は、上記第1信号を取り込むための電流バッファとして機能する。バイポーラトランジスタQ29は、上記第2信号を取り込むための電流バッファとして機能する。バイポーラトランジスタQ28,Q29のベース電極には、所定のバイアス電圧が供給される。このバイアス電圧は、電源電圧VCCと定電流源102との間に直列接続されたバイポーラトランジスタQ22,Q23とで形成される。バイポーラトランジスタQ22,Q23は、それぞれコレクタ電極とベース電極とが結合されることで、ダイオードとして機能する。抵抗R7とバイポーラトランジスタQ28との直列接続ノードの電位と、抵抗R8とバイポーラトランジスタQ29との直列接続ノードの電位とが、比較器103で比較されるようになっている。この比較器103での比較結果が、受信回路44での差動通信における受信信号とされる。
また、この受信回路44には、図9に示される受信回路42と同様に、第1信号及び第2信号にコモンモードノイズが重畳された場合の電流の減衰分を補うための回路として、第1補償回路95と第2補償回路96とが設けられる。
第1補償回路95は、伝送路47によって伝送される第1信号のうち、所定の入力レンジを越えた分を検出し、それを第2信号に加算することで、上記第1信号の減衰分を補うために設けられている。第1補償回路95は、バイポーラトランジスタQ28に縦続接続されたバイポーラトランジスタQ24と、このバイポーラトランジスタQ24にカレントミラー接続されたバイポーラトランジスタQ25とを含む。伝送路47に流れる第1信号に重畳されたコモンモードノイズに起因して、上記第1信号による電流INpとは逆方向の電流がバイポーラトランジスタQ24に流れた場合に、それに応じてバイポーラトランジスタQ25に電流が流れる。この電流は、抵抗R8を介してグラウンドGNDに流れることにより、比較器103に伝達される第2信号に加算されるようになっている。
第2補償回路96は、伝送路48によって伝送される第2信号のうち、所定の入力レンジを越えた分を検出し、それを第1信号に加算することで、上記第1信号の減衰分を補うために設けられている。第2補償回路96は、バイポーラトランジスタQ29に縦続接続されたバイポーラトランジスタQ27と、このバイポーラトランジスタQ27にカレントミラー接続されたバイポーラトランジスタQ26とを含む。伝送路48に流れる第2信号に重畳されたコモンモードノイズに起因して、上記第2信号とは逆方向の電流INnがバイポーラトランジスタQ27に流れた場合に、それに応じてバイポーラトランジスタQ26に電流が流れる。この電流は、抵抗R7を介してグラウンドGNDに流れることにより、比較器103に入力される第1信号に加算されるようになっている。
次に、伝送路47,48の信号に、コモンモードノイズNcomが重畳された場合の動作について説明する。
説明の便宜上、伝送路47における受信回路44側の端部に電流Aが流れ、伝送路48における受信回路44側の端部に電流Bが流れ、バイポーラトランジスタQ28のコレクタ電極側に電流Cが流れ、バイポーラトランジスタQ29のコレクタ電極側に電流Dが流れるものとする。バイポーラトランジスタQ28のコレクタ電極とバイポーラトランジスタQ26のコレクタ電極との結合箇所から抵抗R7に至る経路に電流C’が流れ、バイポーラトランジスタQ29のコレクタ電極とバイポーラトランジスタQ25のコレクタ電極との結合箇所から抵抗R8に至る経路に電流D’が流れるものとする。バイポーラトランジスタQ25のコレクタ電極に電流D2が流れ、バイポーラトランジスタQ26のコレクタ電極に電流C2が流れるものとする。
図10に示される受信回路44においても、図9に示される受信回路42の場合と同様に、第1補償回路95及び第2補償回路96が設けられている。このため、入力電流が基準レベル未満でも、バイポーラトランジスタQ24,Q27に電流を流すことができ、第1信号及び第2信号にコモンモードノイズが重畳された場合の電流の減衰分を補うことができる。つまり、入力電流が基準レベル未満の場合でも、バイポーラトランジスタQ24に電流が流れ、それに応じてバイポーラトランジスタQ25に流れる電流D2がバイポーラトランジスタQ29に流れる電流Dに加算されるので、電流D’は、電流Dに、電流INpにおける減衰分が加算されたものとなる。同様に、入力電流が基準レベル未満の場合でも、バイポーラトランジスタQ27に電流が流れ、それに応じてバイポーラトランジスタQ26に流れる電流C2がバイポーラトランジスタQ28に流れる電流Cに加算されるので、電流C’は、電流INnの減衰分が加算されたものとなる。この結果、電流C’,D’の差分は、コモンモードノイズに起因する減衰分が補われ、良好な信号レベルとなる。
実施の形態2によれば、以下の作用効果を奏する。
すなわち、受信回路44には、第1信号及び第2信号にコモンモードノイズが重畳された場合の電流の減衰分を補うための回路として、第1補償回路95と第2補償回路96とが設けられるため、受信回路44においては、図9に示される受信回路42と同様に、コモンモードノイズに起因する減衰分が補われ、良好な信号レベルを得ることができる。
《実施の形態3》
図11には、図3に示される受信回路42の別の構成例が示される。
図11に示される受信回路42が、図9に示されるのと大きく相違するのは、第1伝送路45から見た受信回路42の入力インピーダンスを調整するための第1インピーダンス調整回路108と、伝送路46から見た受信回路42の入力インピーダンスを調整するための第2インピーダンス調整回路109とを備える点である。また、図11に示される受信回路42においては、バイポーラトランジスタQ1,Q2のベース電極にフィードバックがかかっている。
第1インピーダンス調整回路108は、バイポーラトランジスタQ1とバイポーラトランジスタQ3との間に設けられたバイポーラトランジスタQ30と、直列接続ノード110の電圧に応じてバイポーラトランジスタQ30の動作を制御するための第1フィードバック回路FB1とを含む。上記バイポーラトランジスタQ30はpnp型とされる。
上記第1フィードバック回路FB1は、バイポーラトランジスタQ32,Q34,Q36を含む。バイポーラトランジスタQ32,Q34,Q36は、何れもnpn型とされる。バイポーラトランジスタQ34のエミッタ電極は、ダイオード接続されたバイポーラトランジスタQ36を介してグラウンドGNDに接続される。バイポーラトランジスタQ34のコレクタ電極には定電圧Vregが供給される。バイポーラトランジスタQ34のベース電極には、バイポーラトランジスタQ1とバイポーラトランジスタQ30との直列接続ノード110の電圧が供給される。バイポーラトランジスタQ34のエミッタ電極の電圧がバイポーラトランジスタQ32のベース電極に伝達される。バイポーラトランジスタQ32のコレクタ電極は、互いに直列接続されたダイオードD1,D3を介して定電流源106に結合される。バイポーラトランジスタQ32のエミッタ電極はグラウンドGNDに結合される。バイポーラトランジスタQ32のコレクタ電極の電圧がバイポーラトランジスタQ30のベース電極に伝達される。このような構成によれば、バイポーラトランジスタQ1とバイポーラトランジスタQ30との直列接続ノード110の電圧レベルに応じてバイポーラトランジスタQ30とバイポーラトランジスタQ1がフィードバック制御されることにより、第1伝送路45から見た受信回路42の入力インピーダンスが低減される。これにより、バイポーラトランジスタQ1とバイポーラトランジスタQ30との直列接続ノード110付近の寄生容量の充放電時間を短縮することができるので、伝送路45による信号の伝達速度の向上を図ることができる。
第2インピーダンス調整回路109は、バイポーラトランジスタQ2とバイポーラトランジスタQ6との間に設けられたバイポーラトランジスタQ31と、直列接続ノード111の電圧に応じてバイポーラトランジスタQ31の動作を制御するための第2フィードバック回路FB2とを含む。上記バイポーラトランジスタQ31はpnp型とされる。
上記第2フィードバック回路FB2は、バイポーラトランジスタQ33,Q35,Q37を含む。バイポーラトランジスタQ33,Q35,Q37は、何れもnpn型とされる。バイポーラトランジスタQ35のエミッタ電極は、ダイオード接続されたバイポーラトランジスタQ37を介してグラウンドGNDに接続される。バイポーラトランジスタQ35のコレクタ電極には定電圧Vregが供給される。バイポーラトランジスタQ35のベース電極には、バイポーラトランジスタQ2とバイポーラトランジスタQ31との直列接続ノード111の電圧が供給される。バイポーラトランジスタQ35のエミッタ電極の電圧がバイポーラトランジスタQ33のベース電極に伝達される。バイポーラトランジスタQ33のコレクタ電極は、互いに直列接続されたダイオードD2,D4を介して定電流源107に結合される。バイポーラトランジスタQ33のエミッタ電極はグラウンドGNDに結合される。バイポーラトランジスタQ33のコレクタ電極の電圧がバイポーラトランジスタQ31のベース電極に伝達される。このような構成によれば、バイポーラトランジスタQ2とバイポーラトランジスタQ31との直列接続ノード111の電圧レベルに応じてバイポーラトランジスタQ31がフィードバック制御されることにより、伝送路46から見た受信回路42の入力インピーダンスが低減される。これにより、バイポーラトランジスタQ2とバイポーラトランジスタQ31との直列接続ノード111付近の寄生容量の充放電時間を短縮することができるので、伝送路46による信号の伝達速度の向上を図ることができる。
実施の形態3によれば、以下の作用効果を奏する。
(1)受信回路42には、第1信号及び第2信号にコモンモードノイズが重畳された場合の電流の減衰分を補うための回路として、第1補償回路95と第2補償回路96とが設けられるため、受信回路42においては、図9に示される場合と同様に、コモンモードノイズに起因する減衰分が補われ、良好な信号レベルを得ることができる。
(2)第1インピーダンス調整回路108により、伝送路45から見た受信回路42の入力インピーダンスが低減され、第2インピーダンス調整回路109により、伝送路46から見た上記受信回路42の入力インピーダンスが低減される。このように入力インピーダンスが低減されることにより、寄生容量の充放電時間を短縮することができるので、信号の伝達速度の向上を図ることができる。
《実施の形態4》
図12には、図4に示される受信回路44の別の構成例が示される。
図12に示される受信回路44が、図10に示されるのと大きく相違するのは、伝送路47から見た受信回路44の入力インピーダンスを調整するための第1インピーダンス調整回路115と、伝送路48から見た受信回路44の入力インピーダンスを調整するための第2インピーダンス調整回路116とを備える点である。
第1インピーダンス調整回路115は、バイポーラトランジスタQ28とバイポーラトランジスタQ24との間に設けられたバイポーラトランジスタQ40と、バイポーラトランジスタQ40の動作を制御するための第1フィードバック回路FB1とを含む。第1フィードバック回路FB1は、バイポーラトランジスタQ28とバイポーラトランジスタQ40との直列接続ノード115の電圧に応じてバイポーラトランジスタQ40の動作を制御する。上記バイポーラトランジスタQ40はnpn型とされる。
上記第1フィードバック回路FB1は、バイポーラトランジスタQ42,Q44,Q46を含む。バイポーラトランジスタQ42,Q44,Q46は、何れもpnp型とされる。バイポーラトランジスタQ46のエミッタ電極は、ダイオード接続されたバイポーラトランジスタQ44を介して定電圧Vregの端子に接続される。バイポーラトランジスタQ46のコレクタ電極はグラウンドGNDに結合される。バイポーラトランジスタQ46のベース電極には、バイポーラトランジスタQ28とバイポーラトランジスタQ40との直列接続ノード117の電圧が供給される。バイポーラトランジスタQ46のエミッタ電極の電圧がバイポーラトランジスタQ42のベース電極に伝達される。バイポーラトランジスタQ42のコレクタ電極は、互いに直列接続されたダイオードD5,D7を介して定電流源119に結合される。バイポーラトランジスタQ42のエミッタ電極は定電圧Vregの端子に結合される。バイポーラトランジスタQ42のコレクタ電極の電圧がバイポーラトランジスタQ40のベース電極に伝達される。このような構成によれば、バイポーラトランジスタQ28とバイポーラトランジスタQ40との直列接続ノード117の電圧レベルに応じてバイポーラトランジスタQ40がフィードバック制御されることにより、伝送路47から見た受信回路44の入力インピーダンスが低減される。これにより、バイポーラトランジスタQ28とバイポーラトランジスタQ40との直列接続ノード115付近の寄生容量の充放電時間を短縮することができるので、伝送路47による信号の伝達速度の向上を図ることができる。
第2インピーダンス調整回路109は、バイポーラトランジスタQ29とバイポーラトランジスタQ27との間に設けられたバイポーラトランジスタQ41と、バイポーラトランジスタQ41の動作を制御するための第2フィードバック回路FB2とを含む。第2フィードバック回路FB2は、バイポーラトランジスタQ29とバイポーラトランジスタQ41との直列接続ノード118の電圧に応じてバイポーラトランジスタQ41の動作を制御する。上記バイポーラトランジスタQ41はnpn型とされる。
上記第2フィードバック回路FB2は、バイポーラトランジスタQ43,Q45,Q47を含む。バイポーラトランジスタQ43,Q45,Q47は、何れもpnp型とされる。バイポーラトランジスタQ47のエミッタ電極は、ダイオード接続されたバイポーラトランジスタQ45を介して定電圧Vregの端子に接続される。バイポーラトランジスタQ47のコレクタ電極はグラウンドGNDに結合される。バイポーラトランジスタQ47のベース電極には、バイポーラトランジスタQ29とバイポーラトランジスタQ41との直列接続ノード118圧が供給される。バイポーラトランジスタQ47エミッタ電極の電圧がバイポーラトランジスタQ43ベース電極に伝達される。バイポーラトランジスタQ43コレクタ電極は、互いに直列接続されたダイオードD6,D8を介して定電流源120に結合される。バイポーラトランジスタQ43のエミッタ電極は定電圧Vregの端子に結合される。バイポーラトランジスタQ43のコレクタ電極の電圧がバイポーラトランジスタQ41のベース電極に伝達される。このような構成によれば、バイポーラトランジスタQ29とバイポーラトランジスタQ41との直列接続ノード118の電圧レベルに応じてバイポーラトランジスタQ41がフィードバック制御されることにより、伝送路48から見た受信回路44の入力インピーダンスが低減される。これにより、バイポーラトランジスタQ29とバイポーラトランジスタQ41との直列接続ノード118付近の寄生容量の充放電時間を短縮することができるので、伝送路48による信号の伝達速度の向上を図ることができる。
実施の形態4によれば、以下の作用効果を奏する。
(1)受信回路44には、第1信号及び第2信号にコモンモードノイズが重畳された場合の電流の減衰分を補うための回路として、第1補償回路95と第2補償回路96とが設けられるため、受信回路44においては、図10に示される場合と同様に、コモンモードノイズに起因する減衰分が補われ、良好な信号レベルを得ることができる。
(2)第1インピーダンス調整回路115により、伝送路47から見た受信回路44の入力インピーダンスが低減され、第2インピーダンス調整回路116により、伝送路48から見た上記受信回路44の入力インピーダンスが低減される。このように入力インピーダンスが低減されることにより、寄生容量の充放電時間を短縮することができるので、信号の伝達速度の向上を図ることができる。
《実施の形態5》
図13には、図3に示される受信回路42の別の構成例が示される。
受信回路42は、バイポーラトランジスタQ50〜Q60、抵抗R11,R12、比較器91を含む。バイポーラトランジスタQ50,Q51,Q52,Q55,Q56は、npn型とされる。バイポーラトランジスタQ53,Q54,Q57,Q58,Q59,Q60は、pnp型とされる。
バイポーラトランジスタQ53のベース電極には伝送路45が接続されることにより、電流Aは、バイポーラトランジスタQ53のベース電極を介して流れる。バイポーラトランジスタQ54のベース電極には伝送路46が接続されることにより、電流Bは、バイポーラトランジスタQ54のベース電極を介して流れる。バイポーラトランジスタQ53のエミッタ電極と、バイポーラトランジスタQ54のエミッタ電極とは、バイポーラトランジスタQ52に共通接続されている。バイポーラトランジスタQ52のコレクタ電極には定電圧Vregが供給される。バイポーラトランジスタQ52のベース電極には、所定のバイアス電圧が供給される。このバイアス電圧は、定電流源200に結合されたバイポーラトランジスタQ50,Q51によって形成される。バイポーラトランジスタQ50,Q51は、それぞれダイオード接続されている。バイポーラトランジスタQ53のコレクタ電極は、抵抗R11を介してグラウンドGNDに接続される。バイポーラトランジスタQ54のコレクタ電極は、抵抗R12を介してグラウンドGNDに接続される。抵抗R11の端子電圧と、抵抗R12の端子電圧とが比較器91で比較される。この比較器91での比較結果が、受信回路42での差動通信における受信信号とされる。
また、この受信回路42には、伝送路45の第1信号、及び伝送路46の第2信号にコモンモードノイズが重畳された場合の電流の減衰分を補うための回路として、第1補償回路95と第2補償回路96とが設けられる。
第1補償回路95は、バイポーラトランジスタQ55,Q57,Q58を含む。バイポーラトランジスタQ55は、伝送路45の第1信号に重畳されるコモンモードノイズによって上記第1信号とは逆方向に流れる電流を増幅する。バイポーラトランジスタQ55のベース電極は伝送路45に接続される。バイポーラトランジスタQ56のエミッタ電極はグラウンドGNDに結合される。バイポーラトランジスタQ55のコレクタ電極にはバイポーラトランジスタQ57が結合される。バイポーラトランジスタQ57は、バイポーラトランジスタQ55の負荷とされる。バイポーラトランジスタQ58は、バイポーラトランジスタQ57にカレントミラー接続される。このバイポーラトランジスタQ58のコレクタ電極に流れる電流が比較器91に入力される第2信号に加算される。つまり、抵抗R12に流れる電流D’は、電流Dに電流C2が加算されたものとなる。
第2補償回路96は、バイポーラトランジスタQ56,Q59,Q60を含む。バイポーラトランジスタQ56は、伝送路46の第2信号に重畳されるコモンモードノイズによって上記第2信号とは逆方向に流れる電流を増幅する。バイポーラトランジスタQ56のベース電極は伝送路45に接続される。バイポーラトランジスタQ56のエミッタ電極はグラウンドGNDに結合される。バイポーラトランジスタQ56のコレクタ電極にはバイポーラトランジスタQ60が結合される。バイポーラトランジスタQ60は、バイポーラトランジスタQ56の負荷とされる。バイポーラトランジスタQ59は、バイポーラトランジスタQ60にカレントミラー接続される。このバイポーラトランジスタQ59のコレクタ電極に流れる電流が比較器91に入力される第2信号に加算される。つまり、電流D2が電流Cに加算されることで、抵抗R11に流れる電流C’は、電流Cに電流D2が加算されたものとなる。
実施の形態5によれば、以下の作用効果を奏する。
(1)受信回路42には、第1信号及び第2信号にコモンモードノイズが重畳された場合の電流の減衰分を補うための回路として、第1補償回路95と第2補償回路96とが設けられるため、受信回路42においては、図9に示される場合と同様に、コモンモードノイズに起因する減衰分が補われ、良好な信号レベルを得ることができる。
(2)バイポーラトランジスタQ53のコレクタ電流(電流C)は、バイポーラトランジスタQ53のベース電流(電流A)が、このバイポーラトランジスタQ53の直流電流増幅率(hfe)倍されたものとされる。バイポーラトランジスタQ54のコレクタ電流(電流D)は、バイポーラトランジスタQ54のベース電流(電流B)がバイポーラトランジスタQ54のhfe倍されたものとされる。伝送路45の電流INpや伝送路46の電流INnが少ない場合でも、上記のように受信後にバイポーラトランジスタQ53,Q54で電流増幅が行われることにより、回路に十分な信号電流を流すことができるので、伝達速度の改善を図ることができる。
(3)第1補償回路95及び第2補償回路96においては、それぞれバイポーラトランジスタQ55,Q56によって、入力信号の電流増幅が行われる。これは、バイポーラトランジスタQ53,Q54で電流増幅が行われることに対応させたもので、このようにすることで、第1信号及び第2信号にコモンモードノイズが重畳された場合の電流の減衰分を精度良く補うことができる。
《実施の形態6》
図14には、図4に示される受信回路44の別の構成例が示される。
受信回路44は、バイポーラトランジスタQ70〜Q80、抵抗R13,R14、比較器103を含む。バイポーラトランジスタQ70,Q71,Q72,Q75,Q76は、pnp型とされる。バイポーラトランジスタQ73,Q74,Q77,Q78,Q79,Q80は、npn型とされる。
バイポーラトランジスタQ73のベース電極には伝送路47が接続されることにより、電流Aは、バイポーラトランジスタQ73のベース電極を介して流れる。バイポーラトランジスタQ74のベース電極には伝送路48が接続されることにより、電流Bは、バイポーラトランジスタQ74のベース電極を介して流れる。バイポーラトランジスタQ73のエミッタ電極と、バイポーラトランジスタQ74のエミッタ電極とは、バイポーラトランジスタQ72に共通接続されている。バイポーラトランジスタQ72のコレクタ電極はグラウンドGNDに結合される。バイポーラトランジスタQ72のベース電極には、所定のバイアス電圧が供給される。このバイアス電圧は、定電流源201に結合されたバイポーラトランジスタQ70,Q71によって形成される。バイポーラトランジスタQ70,Q71は、それぞれダイオード接続される。バイポーラトランジスタQ73のコレクタ電極は、抵抗R13を介して定電圧Vregの端子に接続される。バイポーラトランジスタQ74のコレクタ電極は、抵抗R14を介して定電圧Vregの端子に接続される。バイポーラトランジスタQ73のコレクタ電圧と、バイポーラトランジスタQ74のコレクタ電圧とが比較器91で比較される。この比較器91での比較結果が、受信回路44での差動通信における受信信号とされる。
また、この受信回路44には、伝送路47の第1信号、及び伝送路48の第2信号にコモンモードノイズが重畳された場合の電流の減衰分を補うための回路として、第1補償回路95と第2補償回路96とが設けられる。
第1補償回路95は、バイポーラトランジスタQ75,Q77,Q78を含む。バイポーラトランジスタQ75は、伝送路47の第1信号に重畳されるコモンモードノイズによって上記第1信号とは逆方向に流れる電流を増幅する。バイポーラトランジスタQ75のベース電極は伝送路47に接続される。バイポーラトランジスタQ75のエミッタ電極は定電圧Vregの端子に結合される。バイポーラトランジスタQ75のコレクタ電極にはバイポーラトランジスタQ77が結合される。バイポーラトランジスタQ77は、バイポーラトランジスタQ75の負荷とされる。バイポーラトランジスタQ78は、バイポーラトランジスタQ77にカレントミラー接続される。このバイポーラトランジスタQ78のコレクタ電極に流れる電流が比較器91に入力される第2信号に加算される。つまり、抵抗R14に流れる電流(電流D’)は、電流Dに電流C2が加算されたものとなる。
第2補償回路96は、バイポーラトランジスタQ76,Q79,Q80を含む。バイポーラトランジスタQ76は、伝送路48の第2信号に重畳されるコモンモードノイズによって上記第2信号とは逆方向に流れる電流を増幅する。バイポーラトランジスタQ76のベース電極は伝送路48に接続される。バイポーラトランジスタQ76のエミッタ電極は定電圧Vregの端子に結合される。バイポーラトランジスタQ76のコレクタ電極にはバイポーラトランジスタQ80が結合される。バイポーラトランジスタQ80は、バイポーラトランジスタQ76の負荷とされる。バイポーラトランジスタQ79は、バイポーラトランジスタQ80にカレントミラー接続される。このバイポーラトランジスタQ79のコレクタ電極に流れる電流が比較器103に入力される第2信号に加算される。つまり、抵抗R13に流れる電流(電流C’)は、電流Cに電流D2が加算されたものとなる。
実施の形態6によれば、以下の作用効果を奏する。
(1)受信回路44には、第1信号及び第2信号にコモンモードノイズが重畳された場合の電流の減衰分を補うための回路として、第1補償回路95と第2補償回路96とが設けられるため、受信回路44においては、図10に示される場合と同様に、コモンモードノイズに起因する減衰分が補われ、良好な信号レベルを得ることができる。
(2)バイポーラトランジスタQ73のコレクタ電流(電流C)は、バイポーラトランジスタQ73のベース電流(電流A)がバイポーラトランジスタQ73のhfe倍されたものとされる。バイポーラトランジスタQ74のコレクタ電流(電流D)は、バイポーラトランジスタQ74のベース電流(電流B)がバイポーラトランジスタQ74のhfe倍されたものとされる。伝送路47の電流INpや伝送路48の電流INnが少ない場合でも、上記のように受信後にバイポーラトランジスタQ73,Q74で電流増幅が行われることにより、回路に十分な信号電流を流すことができるので、伝達速度の改善を図ることができる。
(3)第1補償回路95及び第2補償回路96においては、それぞれバイポーラトランジスタQ75,Q76によって、入力信号の電流増幅が行われる。これは、バイポーラトランジスタQ73,Q74で電流増幅が行われることに対応させたもので、このようにすることで、第1信号及び第2信号にコモンモードノイズが重畳された場合の電流の減衰分を精度良く補うことができる。
《実施の形態7》
図15には、図10に示される受信回路44の別の構成例が示される。図10に示す構成と同一な部分は同一の参照番号が付されている。
送信回路43と受信回路44との間の通信速度を改善するには、受信回路44の入力段の入力信号の電圧振幅を小さくすればよい。図10に示す受信回路44においては、コモンモードノイズNcomにより、バイポーラトランジスタQ24へ電流が流れている状態からバイポーラトランジスタQ28へ電流が流れる状態に推移する場合、第1信号の電圧振幅が大きくなりやすい事が発明者の検討により判明した。第2信号に関しても同様であり、バイポーラトランジスタQ27へ電流が流れている状態からバイポーラトランジスタQ29へ電流が流れる状態に推移する場合、第2信号の電圧振幅が大きくなりやすい。
図15に示す受信回路44においては、この対策として、ベース電圧をフィードバックさせる方式を採用することにより、入力段の電圧振幅を小さくすることが可能とされている。
図15において、第1補償回路95は、pチャネル型MOSトランジスタQ100,Q101を含み、第2補償回路96は、pチャネル型MOSトランジスタQ102,Q103含む。pチャネル型MOSトランジスタQ110,Q113,Q115およびQ118は、pチャネル型MOSトランジスタQ100およびQ103に電流が流れていない場合、pnp型バイポーラトランジスタQ28およびQ29のエミッタ電圧をpチャネル型MOSトランジスタQ115のドレイン電極の電圧に設定または固定するために設けられる。pチャネル型MOSトランジスタQ106,Q107,Q108が設けられることにより、バイポーラトランジスタQ28,Q29に高電圧が印加されないようになっている。尚、202〜205は定電流源である。
ベース電圧をフィードバックさせることにより通信電流を安定させるため、pチャネル型MOSトランジスタQ112,Q111,Q116およびQ117が設けられる。すなわち、コモンモードノイズの重畳により、pチャネル型MOSトランジスタQ100もしくはQ103へ通信電流が流れているとき、pnp型バイポーラトランジスタQ110のエミッタ電極の電位を、pnp型バイポーラトランジスタQ104およびQ105のそれぞれのエミッタ電極の電圧の低い方の電位に設定または固定されるようになっている。このような構成が、ベース電圧のフィードバック構成とされる。
上記の構成によれば、pチャネル型MOSトランジスタQ100もしくはQ103に電流が流れ、pチャネル型MOSトランジスタQ100もしくはQ103のドレイン電圧が低下した場合でもあっても、pチャネル型MOSトランジスタQ100もしくはQ103のドレイン電圧の低下にしたがって、pnp型バイポーラトランジスタQ28およびQ29のベース電位が低下する。このため、入力端子の電圧振幅を小さくし、通信速度を改善させることができる。
上記のようにベース電圧をフィードバックさせる場合においても、コモンモードノイズにより、電流の減衰が発生する虞があるが、第1補償回路95及び第2補償回路96が設けられているので、図10に示される構成の場合と同様に、コモンモードノイズに起因する減衰分が補われ、良好な信号レベルを得ることができる。
ただし、上記フィードバック構成を採用すると、図10の回路構成より、信号の減衰量が小さくなる場合がある。例えば、コモンモードノイズにより、pチャネル型MOSトランジスタQ100へ電流が流れ、pnp型バイポーラトランジスタQ105のベース電位が低下する。すると、pnp型バイポーラトランジスタQ103およびQ105のベース・エミッタ間電圧およびゲート・ソース間電圧が増加し、pnp型バイポーラトランジスタQ103およびQ105の電流が増加して、信号の減衰を抑えるように電流が流れる。そのため、信号の減衰量は小さくなる。そこで、信号の減衰量の補償分を適切に設定するため、pチャネル型MOSトランジスタQ100,Q101,Q102およびQ103のカレントミラー比は適切な値に設定される。
また、電流の切り替え時のpチャネル型MOSトランジスタQ109のソース電圧を安定させるためは、pチャネル型MOSトランジスタQ109のソース電圧をpnp型バイポーラトランジスタQ104およびQ105のベースを接続することが有効となる。pチャネル型MOSトランジスタQ109のソース電圧をpnp型バイポーラトランジスタQ104およびQ105のベースを接続していない場合と比べ、ノイズを相殺しやすいという効果がある。
図15のフィードバック方式と図12のフィードバック方式とを比較すると、コモンモードノイズの周波数が低い場合には、図15のフィードバック方式のほうがフィードバック帯域が低い場合でも有効に働く。
以上本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
電流の基準レベルDlangeは、0アンペア以外の任意の値に設定することができる。
1 電池セル
2 電圧測定装置
6 電池監視用マイクロコンピュータ
7 電池制御用マイクロコンピュータ
10 バッテリ装置
11 モータ
12 モータ駆動用インバータ
20 電圧測定機能部
30 MUX
41,43 送信回路
42,44 受信回路
50 制御部
60 ADC
70,71 通信制御部
91,92,93,103,104,105 比較器
95 第1補償回路
96 第2補償回路
101 バッテリ
Q1〜Q8,Q22〜Q37,Q40〜Q47,Q50〜60,Q70〜Q80 バイポーラトランジスタ
Q10〜Q21 MOSトランジスタ
R1〜R8,R11〜R14 抵抗
FB1 第1フィードバック回路
FB2 第2フィードバック回路

Claims (10)

  1. 第1信号を伝達するための第1伝送路と、上記第1信号とは逆位相の第2信号を伝達するための第2伝送路とを用いた差動通信を可能にする受信回路を含み、
    上記受信回路は、上記第1信号及び上記第2信号にコモンモードノイズが重畳された場合の電流の減衰分を補うための補償回路を備え、
    上記補償回路は、上記第1信号のうち、コモンモードノイズが重畳された場合の電流の減衰分を検出し、それを上記第2信号に加算することで、上記第1信号の減衰分を補うための第1補償回路と、
    上記第2信号のうち、コモンモードノイズが重畳された場合の電流の減衰分を検出し、それを上記第1信号に加算することで、上記第2信号の減衰分を補うための第2補償回路と、を含む通信回路。
  2. 上記受信回路は、上記第1信号を取り込むための第1トランジスタと、
    上記第2信号を取り込むための第2トランジスタと、
    上記第1トランジスタを介して伝達された上記第1信号と、上記第2トランジスタを介して伝達された上記第2信号とを比較するための比較器と、をさらに含む請求項1記載の通信回路。
  3. 上記第1補償回路は、上記第1トランジスタに縦続接続された第3トランジスタと、
    上記第3トランジスタにカレントミラー接続され、上記第2信号に加算される電流を得る第4トランジスタと、を含み、
    上記第2補償回路は、上記第2トランジスタに縦続接続された第5トランジスタと、
    上記第5トランジスタにカレントミラー接続され、上記第1信号に加算される電流を得る第6トランジスタと、を含む請求項2記載の通信回路。
  4. 上記第4トランジスタは、上記第4トランジスタに流れる電流が、上記比較器での比較前の上記第2信号に加算されるように接続され、
    上記第6トランジスタは、上記第6トランジスタに流れる電流が、上記比較器での比較前の上記第1信号に加算されるように接続される請求項3記載の通信回路。
  5. 上記第1伝送路から見た上記受信回路の入力インピーダンスを調整するための第1インピーダンス調整回路と、
    上記第2伝送路から見た上記受信回路の入力インピーダンスを調整するための第2インピーダンス調整回路と、を含む請求項4記載の通信回路。
  6. 上記第1インピーダンス調整回路は、上記第1トランジスタと上記第2トランジスタとの間に設けられた第7トランジスタと、
    上記第1トランジスタと上記第7トランジスタとの直列接続ノードの電圧に応じて上記第7トランジスタの動作を制御するための第1フィードバック回路と、を含み、
    上記第2インピーダンス調整回路は、上記第4トランジスタと上記第5トランジスタとの間に設けられた第8トランジスタと、
    上記第4トランジスタと上記第8トランジスタとの直列接続ノードの電圧に応じて上記第8トランジスタの動作を制御するための第2フィードバック回路と、を含む請求項5記載の通信回路。
  7. 上記受信回路は、上記第1信号を増幅するための第9トランジスタと、
    上記第2信号を増幅するための第10トランジスタと、
    上記第9トランジスタの出力と、上記第10トランジスタの出力とを比較するための比較器と、を含む請求項1記載の通信回路。
  8. 上記第1補償回路は、上記第1信号に重畳されるコモンモードノイズによって上記第1信号とは逆方向に流れる電流を増幅する第11トランジスタと、
    上記第11トランジスタの負荷を形成する第12トランジスタと、
    上記第12トランジスタにカレントミラー接続され、上記比較器での比較前の上記第2信号に加算される電流を得る第13トランジスタと、を含み、
    上記第2補償回路は、上記第2信号に重畳されるコモンモードノイズによって上記第2信号とは逆方向に流れる電流を増幅する第14トランジスタと、
    上記第14トランジスタの負荷を形成する第15トランジスタと、
    上記第15トランジスタにカレントミラー接続されて、上記比較器での比較前の上記第1信号に加算される電流を得る第16トランジスタと、を含む請求項7記載の通信回路。
  9. 上記第13トランジスタは、上記第13トランジスタに流れる電流が、上記比較器での比較前の上記第2信号に加算されるように接続され、
    上記第16トランジスタは、上記第16トランジスタに流れる電流が、上記比較器での比較前の上記第1信号に加算されるように接続される請求項8記載の通信回路。
  10. 複数の素電池が互いに直列接続された組電池の電圧を測定するための電圧測定機能部と、
    上記電圧測定機能による電圧測定結果を通信可能な通信機能部と、を含み、
    上記通信機能部は、第1信号を伝達するための第1伝送路と、上記第1信号とは逆位相の第2信号を伝達するための第2伝送路とを用いた差動通信を可能にする受信回路を含み、
    上記受信回路は、上記第1信号及び上記第2信号にコモンモードノイズが重畳された場合の電流の減衰分を補うための補償回路を備え、
    上記補償回路は、上記第1信号のうち、コモンモードノイズが重畳された場合の電流の減衰分を検出し、それを上記第2信号に加算することで、上記第1信号の減衰分を補うための第1補償回路と、
    上記第2信号のうち、コモンモードノイズが重畳された場合の電流の減衰分を検出し、それを上記第1信号に加算することで、上記第2信号の減衰分を補うための第2補償回路と、を含む半導体装置。
JP2012143698A 2012-06-27 2012-06-27 通信回路及び半導体装置 Active JP5860772B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012143698A JP5860772B2 (ja) 2012-06-27 2012-06-27 通信回路及び半導体装置
US13/914,499 US8879645B2 (en) 2012-06-27 2013-06-10 Communication circuit and semiconductor device
EP13172966.7A EP2680440A3 (en) 2012-06-27 2013-06-20 Communication circuit and semiconductor device
US14/504,243 US9054770B2 (en) 2012-06-27 2014-10-01 Communication circuit and semiconductor device
US14/732,557 US9264083B2 (en) 2012-06-27 2015-06-05 Communication circuit and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012143698A JP5860772B2 (ja) 2012-06-27 2012-06-27 通信回路及び半導体装置

Publications (2)

Publication Number Publication Date
JP2014007683A JP2014007683A (ja) 2014-01-16
JP5860772B2 true JP5860772B2 (ja) 2016-02-16

Family

ID=48746226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012143698A Active JP5860772B2 (ja) 2012-06-27 2012-06-27 通信回路及び半導体装置

Country Status (3)

Country Link
US (3) US8879645B2 (ja)
EP (1) EP2680440A3 (ja)
JP (1) JP5860772B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5860772B2 (ja) * 2012-06-27 2016-02-16 ルネサスエレクトロニクス株式会社 通信回路及び半導体装置
US9374050B1 (en) * 2014-07-08 2016-06-21 Linear Technology Corporation Level-shifting amplifier
GB2530502A (en) 2014-09-23 2016-03-30 Nec Corp Communication system
US9800133B2 (en) * 2016-03-22 2017-10-24 Infineon Technologies Ag Active common mode cancellation
KR102660729B1 (ko) * 2016-10-28 2024-04-26 삼성전자주식회사 전원 잡음을 검출하는 불휘발성 메모리 장치 및 그것의 동작 방법

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5592510A (en) * 1994-03-29 1997-01-07 Apple Computer, Inc. Common mode early voltage compensation subcircuit for current driver
KR20010082514A (ko) * 1998-12-24 2001-08-30 오카야마 노리오 노차간통신시스템
JP2000332548A (ja) 1999-05-12 2000-11-30 Lucent Technol Inc 信号増幅回路および平衡入出力型差動増幅回路
US6826390B1 (en) * 1999-07-14 2004-11-30 Fujitsu Limited Receiver, transceiver circuit, signal transmission method, and signal transmission system
CN1193355C (zh) * 2000-05-17 2005-03-16 日本胜利株式会社 信息记录媒体及其记录方法
JP2003133862A (ja) 2001-10-26 2003-05-09 Yamaha Corp 差動増幅器
US6661288B2 (en) * 2002-02-09 2003-12-09 Texas Instruments Incorporated Apparatus for effecting high speed switching of a communication signal
US7492841B2 (en) * 2003-01-30 2009-02-17 Andrew Corporation Relative phase/amplitude detection system
US7308044B2 (en) * 2003-09-30 2007-12-11 Rambus Inc Technique for receiving differential multi-PAM signals
JP2005244276A (ja) * 2004-02-24 2005-09-08 Oki Electric Ind Co Ltd 差動増幅回路
US7570710B1 (en) * 2004-12-15 2009-08-04 Rf Magic, Inc. In-phase and quadrature-phase signal amplitude and phase calibration
US8355428B2 (en) * 2006-11-09 2013-01-15 Sony Corporation Data receiving device
US8396164B2 (en) * 2008-03-17 2013-03-12 Denso Corporation Receiving device including impedance control circuit and semiconductor device including impedance control circuit
WO2010041352A1 (ja) * 2008-10-08 2010-04-15 パナソニック株式会社 受信回路、受信システム
WO2011058714A1 (ja) * 2009-11-13 2011-05-19 パナソニック株式会社 ドライバ回路、レシーバ回路及びそれらを含む通信システムの制御方法
JP2012124571A (ja) * 2010-12-06 2012-06-28 Toshiba Corp 差動信号出力装置、および、携帯機器
US8705595B2 (en) * 2011-05-06 2014-04-22 Telefonaktiebolaget L M Ericsson (Publ) Digital output power measurement in radio communication systems
JP5860772B2 (ja) * 2012-06-27 2016-02-16 ルネサスエレクトロニクス株式会社 通信回路及び半導体装置

Also Published As

Publication number Publication date
US20150270858A1 (en) 2015-09-24
US8879645B2 (en) 2014-11-04
US20150016575A1 (en) 2015-01-15
EP2680440A3 (en) 2017-12-20
US9264083B2 (en) 2016-02-16
US20140003562A1 (en) 2014-01-02
EP2680440A2 (en) 2014-01-01
JP2014007683A (ja) 2014-01-16
US9054770B2 (en) 2015-06-09

Similar Documents

Publication Publication Date Title
JP5860772B2 (ja) 通信回路及び半導体装置
US6621273B2 (en) Voltage measurement apparatus
US20160131690A1 (en) Power source voltage detection apparatus
JP4923442B2 (ja) 差動信号伝送回路および差動信号伝送装置
US7528636B2 (en) Low differential output voltage circuit
KR20190013828A (ko) 디스플레이 패널 및 그의 게이트 드라이버 온 어레이(goa) 회로의 과전류 보호 회로
JP2011232161A (ja) 半導体装置及び電池電圧の監視方法
US8823563B1 (en) Calibration circuit for an analog-to-digital converter
US10110179B2 (en) Audio circuit
US20170324239A1 (en) Electro-static discharge protection circuit
CN109959837B (zh) 一种漏电检测电路
US10429878B2 (en) Test device
CN109164290B (zh) 悬浮电压采样电路及方法
JP2007057250A (ja) 高電圧測定装置
JP2020103008A (ja) スナバ回路、制御回路、及び情報処理装置
US5663673A (en) Output circuit having at least one external transistor
US7952359B2 (en) Test apparatus having bidirectional differential interface
EP3435107A1 (en) Voltage monitor with a trimming circuit and method therefore
US7982542B1 (en) Power transistor feedback circuit with noise and offset compensation
US7348910B2 (en) Reference module apparatus and method therefor
TW201433801A (zh) 調試電路及具有該調試電路之主機板
KR101790288B1 (ko) 차동 입력 레벨 쉬프터
US11451202B2 (en) Signal output circuit
US20230268916A1 (en) Semiconductor device
JP2003124788A (ja) 増幅回路および波形整形回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151221

R150 Certificate of patent or registration of utility model

Ref document number: 5860772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150