JP5860203B2 - Elastic bearing for bridge - Google Patents

Elastic bearing for bridge Download PDF

Info

Publication number
JP5860203B2
JP5860203B2 JP2010173680A JP2010173680A JP5860203B2 JP 5860203 B2 JP5860203 B2 JP 5860203B2 JP 2010173680 A JP2010173680 A JP 2010173680A JP 2010173680 A JP2010173680 A JP 2010173680A JP 5860203 B2 JP5860203 B2 JP 5860203B2
Authority
JP
Japan
Prior art keywords
elastic body
bridge
elastic
pier
bridge girder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010173680A
Other languages
Japanese (ja)
Other versions
JP2012031687A (en
Inventor
聡 柴山
聡 柴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2010173680A priority Critical patent/JP5860203B2/en
Publication of JP2012031687A publication Critical patent/JP2012031687A/en
Application granted granted Critical
Publication of JP5860203B2 publication Critical patent/JP5860203B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

本発明は橋桁と橋脚との間に設けられた高減衰の橋梁用弾性支承に関するものである。   The present invention relates to an elastic bearing for a high-damping bridge provided between a bridge girder and a pier.

この種の橋梁用弾性支承として図10に示すものが一般的に知られている。橋梁用弾性支承1は橋桁2と橋脚3との間に配置されるもので、橋桁2から橋脚3に加わる歪み、即ち、外気温度の変化に伴う橋桁2の橋軸方向(図10の双方向矢印)への剪断力、風などによる橋軸方向に直行する方向を含む水平方向への剪断力等を減衰している。   As this type of elastic bearing for bridges, the one shown in FIG. 10 is generally known. The bridge elastic support 1 is disposed between the bridge girder 2 and the pier 3 and is subjected to strain applied from the bridge girder 2 to the pier 3, that is, the direction of the bridge axis of the bridge girder 2 according to the change in the outside air temperature (bidirectional in FIG. 10). The shearing force to the arrow), the shearing force in the horizontal direction including the direction perpendicular to the bridge axis direction due to wind, etc. are attenuated.

この橋梁用弾性支承1は、ソールプレート11、上沓12、弾性支持部13、下沓14及びベースプレート15を順次配置した構造となっている。また、弾性支持部13の上面はソールプレート11及び上沓12を介して橋桁2に連結する一方、弾性支持部13の下面は下沓14及びベースプレート15を介して橋脚3に連結し、これにより、弾性支持部13が橋桁2及び橋脚3に一体に連結している。   The bridge elastic support 1 has a structure in which a sole plate 11, an upper collar 12, an elastic support portion 13, a lower collar 14, and a base plate 15 are sequentially arranged. Further, the upper surface of the elastic support portion 13 is connected to the bridge girder 2 via the sole plate 11 and the upper heel 12, while the lower surface of the elastic support portion 13 is connected to the pier 3 via the lower ridge 14 and the base plate 15, thereby The elastic support portion 13 is integrally connected to the bridge girder 2 and the pier 3.

また、弾性支持部13は間隔をおいて複数配置された補強プレート13aと該各補強プレート13aを覆う弾性体13bとを有し、弾性体13bの弾性力により橋桁2から加わる歪みが吸収されている。この弾性体13bは各補強プレート13aに交互に積層し加硫接着したゴム製の内部弾性体13cと、内部弾性体13c及び各補強プレート13aの外周面を覆うよう加硫接着したゴム製の側壁弾性体13dとからなり、この側壁弾性体13dにより内部弾性体13cを外部環境から保護し、内部弾性体13cの劣化(クラックなど)を防止するようにしている。   The elastic support portion 13 has a plurality of reinforcing plates 13a arranged at intervals and an elastic body 13b covering each of the reinforcing plates 13a, and the strain applied from the bridge girder 2 is absorbed by the elastic force of the elastic body 13b. Yes. The elastic body 13b is composed of rubber inner elastic bodies 13c alternately laminated and vulcanized and bonded to the reinforcing plates 13a, and rubber side walls bonded and vulcanized so as to cover the outer peripheral surfaces of the inner elastic bodies 13c and the reinforcing plates 13a. The side elastic body 13d protects the internal elastic body 13c from the external environment and prevents the internal elastic body 13c from being deteriorated (such as cracks).

しかしながら、この橋梁用弾性支承では、内部弾性体13cが側壁弾性体13dで保護されるものの、側壁弾性体13dにもクラックやしわが形成され、橋梁用弾性支承の外観を損ねるばかりか、残存した歪みにより局部破壊を引き起こすおそれがあった。   However, in this elastic support for bridges, although the internal elastic body 13c is protected by the side wall elastic body 13d, cracks and wrinkles are formed in the side wall elastic body 13d, and the appearance of the elastic support for bridge is not only damaged. There was a risk of local destruction due to distortion.

このような問題点を解決するため、出願人は特開2009−243652号公報(特許文献1)に記載した弾性支承を提案した。特許文献1に記載した弾性支承は、側壁弾性体を内外2層で構成したもので、内層を破断伸びを優先したゴム材料で形成する一方、外層を硬度を優先したゴム材料で形成している。これにより、内層で剪断力を低減する一方、外層でクラック等の発生を防止している。   In order to solve such problems, the applicant has proposed an elastic bearing described in Japanese Patent Application Laid-Open No. 2009-243652 (Patent Document 1). The elastic bearing described in Patent Document 1 is composed of an inner and outer two layers of a side wall elastic body, and the inner layer is formed of a rubber material giving priority to elongation at break while the outer layer is made of a rubber material giving priority to hardness. . This reduces the shearing force in the inner layer, while preventing the occurrence of cracks and the like in the outer layer.

また、出願人は同じく上記問題点を解決するため、特開2000−1820号公報(特許文献2)に記載した弾性支承も提案している。特許文献2に記載した弾性支承は、補強プレートと交互に積層した内部弾性体のうち、橋桁や橋脚に近接した内部弾性体の周縁部に剪断弾性係数の大きな補強ゴムを使用し、これにより、内部弾性体のクラックを防止する構造となっている。   The applicant has also proposed an elastic bearing described in Japanese Patent Laid-Open No. 2000-1820 (Patent Document 2) in order to solve the above-mentioned problem. The elastic bearing described in Patent Document 2 uses a reinforcing rubber having a large shear elastic modulus at the peripheral edge of the internal elastic body adjacent to the bridge girder or the pier among the internal elastic bodies alternately laminated with the reinforcing plate, The structure prevents the internal elastic body from cracking.

特開2009−243652JP2009-233652 特開2000−1820JP2000-1820

しかしながら、前記特許文献1の弾性支承では、側壁弾性体として2種類の弾性体を用意する必要があり材料コストが割高になることはもとより、側壁弾性体を内部弾性体に接着する際、内部弾性体の外側に2種類の弾性体を配置するなど製造工程が複雑となるという問題点を有していた。   However, in the elastic support of Patent Document 1, it is necessary to prepare two types of elastic bodies as the side wall elastic bodies, and not only the material cost is high, but also when the side wall elastic bodies are bonded to the internal elastic bodies, the internal elasticity There is a problem that the manufacturing process becomes complicated, such as arranging two types of elastic bodies outside the body.

また、前記特許文献2の弾性支承では、内部弾性体としてこれまた2種類の弾性体を用意する必要があり、特許文献1と同様に材料のコスト高や製造工程の複雑化を招くものとなっていた。   Moreover, in the elastic support of the said patent document 2, it is necessary to prepare this and two types of elastic bodies as an internal elastic body, and similarly to patent document 1, the cost of a material and the complexity of a manufacturing process will be caused. It was.

本発明の目的は、前記従来の課題に鑑み、弾性体に突出部を形成するのみで、弾性体の表面歪を軽減できる橋梁用弾性支承を提供することにある。   An object of the present invention is to provide an elastic bearing for a bridge that can reduce the surface distortion of the elastic body only by forming a protruding portion on the elastic body in view of the conventional problems.

本発明は前記課題を解決するため、請求項1の発明は、間隔をおいて複数配置された補強プレートと各補強プレートを覆う弾性体により構成された弾性支持部と、弾性体を橋桁側に連結する橋桁連結プレートと、弾性体を橋脚に連結する橋脚連結プレートとを備え、橋桁から橋脚に加わる変形力を低減する橋梁用弾性支承において、弾性体は橋桁連結プレート側及び前記橋脚連結プレート側が外方向に突出する突出部を有し、突出部は補助プレートの端から一定の厚さ寸法W2となっている部分から、凹状の曲線部、凸状の曲線部を介して上下方向に対して所定寸法に亘って一定の厚さ寸法W1からなる部分へ続く一体的部材で形成するとともに、弾性体は、各補強プレートと交互に積層して接着した内部弾性体と、内部弾性体、各補強プレート、橋桁連結プレート及び橋脚連結プレートの側面を覆う側壁弾性体とからなり、突出部を側壁弾性体に形成した構造となっている。 In order to solve the above-mentioned problems, the invention of claim 1 is characterized in that a plurality of reinforcing plates arranged at intervals and an elastic support portion constituted by an elastic body covering each reinforcing plate, and an elastic body on the bridge girder side. In the elastic support for a bridge, which includes a bridge girder connection plate to be connected and a bridge pier connection plate for connecting an elastic body to the pier, and reduces deformation force applied to the pier from the bridge girder, the elastic body has a bridge girder connection plate side and the pier connection plate side. It has a projecting portion that projects outward, and the projecting portion has a constant thickness dimension W2 from the end of the auxiliary plate, and extends in a vertical direction through a concave curved portion and a convex curved portion. The elastic body is formed of an integral member extending to a portion having a predetermined thickness dimension W1 over a predetermined dimension, and an elastic body is formed by alternately laminating and bonding each reinforcing plate, an internal elastic body, and each reinforcement. Pre DOO, consists of a side wall elastic body covering the side surfaces of the girder connection plate and pier connecting plate, and has a structure formed on the side wall elastic protrusions.

請求項1の発明によれば、橋桁から弾性支持部に水平方向の剪断変形力が加わったとしても、弾性体は橋桁連結プレート側及び前記橋脚連結プレート側が外方向に突出する突出部を有し、突出部は補助プレートの端から一定の厚さ寸法W2となっている部分から、凹状の曲線部、凸状の曲線部を介して上下方向に対して所定寸法に亘って一定の厚さ寸法W1からなる部分へ続く一体的部材で形成するとともに、弾性体は、各補強プレートと交互に積層して接着した内部弾性体と、内部弾性体、各補強プレート、橋桁連結プレート及び橋脚連結プレートの側面を覆う側壁弾性体とからなり、突出部を側壁弾性体に形成しているため、これら連結プレート側で生ずるクラックやしわを低減することができる。 According to the first aspect of the present invention, even if a horizontal shearing deformation force is applied from the bridge girder to the elastic support portion, the elastic body has a protruding portion in which the bridge girder connection plate side and the pier connection plate side protrude outward. The protruding portion has a constant thickness dimension over a predetermined dimension in the vertical direction from the portion having a constant thickness dimension W2 from the end of the auxiliary plate through the concave curved portion and the convex curved portion. The elastic body includes an internal elastic body that is alternately laminated and bonded to each reinforcing plate, an internal elastic body, each reinforcing plate, a bridge girder connecting plate, and a bridge pier connecting plate. consists of a side wall elastic body covering the side surfaces, the protrusions can be reduced cracks or wrinkles occurring in the order, these connecting plate side are formed in the side wall elastic body.

なお、突出部は請求項の発明の如く内部弾性体を突出させて形成してもよい。 Incidentally, the projecting portion may be formed by projecting the inner elastic member as in the invention of claim 2.

請求項の発明は、請求項1又は請求項の橋梁用弾性支承において、突出部は弾性体の側面のうち少なくとも橋軸方向と直行する側面に有する構造となっている。 A third aspect of the present invention, the bridges elastic bearing according to claim 1 or claim 2, the protruding portion has a structure having a side surface orthogonal to the at least bridge axis direction of the side surfaces of the elastic body.

一般に外気温度の変化に伴う歪みは特に橋軸方向で発生するため、少なくとも、橋軸方向と直行する側面に形成することが必要となる。   In general, distortion caused by changes in the outside air temperature is generated particularly in the direction of the bridge axis.

本発明によれば、弾性体に突出部を形成するだけで、弾性体の表面歪を軽減できるので、極めて簡単な剪断力減衰構造となっている。   According to the present invention, since the surface distortion of the elastic body can be reduced only by forming the protruding portion on the elastic body, an extremely simple shear force damping structure is obtained.

第1実施形態に係る橋梁用弾性支承の橋軸方向断面図Cross-sectional view in the direction of the bridge axis of the elastic bearing for bridges according to the first embodiment 第1実施形態の要部拡大断面図The principal part expanded sectional view of 1st Embodiment 第1実施形態に係る橋梁用弾性支承の変形状態を示す橋軸方向断面図Cross-sectional view in the direction of the bridge axis showing the deformation state of the elastic bearing for bridges according to the first embodiment 突出部の厚さ寸法に対応した歪変形量を示す断面図Sectional drawing which shows the amount of distortion deformation corresponding to the thickness dimension of a protrusion part FEMモデルによる表面歪解析を示す断面図Sectional view showing surface strain analysis by FEM model 第2実施形態に係る橋梁用弾性支承の一部を省略した橋軸方向断面図Bridge axis direction sectional view in which a part of the bridge elastic bearing according to the second embodiment is omitted. 第3実施形態に係る橋梁用弾性支承の橋軸方向断面図Cross-sectional view in the direction of the bridge axis of the elastic bearing for bridges according to the third embodiment 第4実施形態に係る橋梁用弾性支承の橋軸方向断面図Cross section in the direction of the bridge axis of the elastic bearing for bridges according to the fourth embodiment 第5実施形態に係る橋梁用弾性支承の橋軸方向断面図Cross-sectional view in the direction of the bridge axis of the elastic bearing for bridges according to the fifth embodiment 従来の橋梁用弾性支承の橋軸方向断面図Cross-sectional view in the axial direction of a conventional elastic bearing for bridges

図1乃至図3は本発明に係る橋梁用弾性支承を示すもので、図1は第1実施形態に係る橋梁用弾性支承の橋軸方向断面図、図2は第1実施形態の要部拡大断面図、図3は第1実施形態に係る橋梁用弾性支承の変形状態を示す橋軸方向断面図である。なお、図10に示す従来例と同一構成部分は同一符号を用い、その詳細な説明は省略する。   FIGS. 1 to 3 show an elastic bearing for a bridge according to the present invention. FIG. 1 is a cross-sectional view of the elastic bearing for a bridge according to the first embodiment, and FIG. 2 is an enlarged view of a main part of the first embodiment. Sectional drawing and FIG. 3 are bridge axial direction sectional drawings which show the deformation | transformation state of the elastic bearing for bridges concerning 1st Embodiment. The same components as those of the conventional example shown in FIG. 10 are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施形態に係る橋梁用弾性支承20は、従来例と同様に橋桁2と橋脚3との間に配置され、また、橋梁用弾性支承20の構造も従来例と同様に上位にある橋桁2から下位にある橋脚3に向かって、ソールプレート11、上沓12、弾性支持部21、下沓14及びベースプレート15と順次配置されている。更に、弾性支持部21の上面に連結するソールプレート11及び上沓12はボルト16a,16bによって橋桁2に連結する一方、弾性支持部21の下面に連結する下沓14及びベースプレート15はボルト16c,16dによって橋脚3に連結しており、これにより、弾性支持部21が橋桁2と橋脚3を連結する構造となっている。   The bridge elastic bearing 20 according to the present embodiment is arranged between the bridge girder 2 and the bridge pier 3 in the same manner as in the conventional example, and the structure of the bridge elastic bearing 20 is higher than the bridge girder 2 in the same manner as in the conventional example. A sole plate 11, an upper rod 12, an elastic support portion 21, a lower rod 14 and a base plate 15 are sequentially arranged toward the lower pier 3. Further, the sole plate 11 and the upper rod 12 connected to the upper surface of the elastic support portion 21 are connected to the bridge girder 2 by bolts 16a and 16b, while the lower rod 14 and the base plate 15 connected to the lower surface of the elastic support portion 21 are bolts 16c and 16b. The elastic support portion 21 connects the bridge girder 2 and the pier 3 by connecting to the pier 3 by 16d.

以上の構成に特徴的構成を有するものではなく、本実施形態に係る橋梁用弾性支承20は弾性支持部21の構造に特徴有しており、以下、弾性支持部21の構造を詳述する。   The elastic support 20 for bridges according to the present embodiment is characterized by the structure of the elastic support part 21 and does not have a characteristic structure as described above, and the structure of the elastic support part 21 will be described in detail below.

弾性支持部21は全体としては例えば直方体形状に形成され、橋桁2から橋脚3へ伝達される剪断力を低減する弾性体22と、上下に間隔をおいて複数配置された鉄鋼製の補強プレート23と、弾性体22の上部に配置された鉄鋼製の橋桁連結プレート24と、弾性体22の下部に配置された鉄鋼製の橋脚連結プレート25とを有する。   The elastic support portion 21 is formed in a rectangular parallelepiped shape as a whole, for example, an elastic body 22 that reduces a shearing force transmitted from the bridge girder 2 to the pier 3, and a plurality of steel reinforcing plates 23 that are arranged at intervals in the vertical direction. And a steel bridge girder connection plate 24 disposed on the upper portion of the elastic body 22 and a steel bridge pier connection plate 25 disposed on the lower portion of the elastic body 22.

ここで、橋桁連結プレート24がボルト16eを介して上沓12に連結され、一方、橋脚連結プレート25がボルト16fを介して下沓14に連結されており、これにより、弾性体22が橋桁連結プレート24を介して橋桁2側に連結するとともに、橋脚連結プレート25を介して橋脚3側に連結されている。   Here, the bridge girder connection plate 24 is connected to the upper bridge 12 via the bolt 16e, while the pier connection plate 25 is connected to the lower bridge 14 via the bolt 16f, whereby the elastic body 22 is connected to the bridge girder. It is connected to the bridge girder 2 side via the plate 24 and connected to the pier 3 side via the pier connection plate 25.

弾性体22は、各補強プレート23と交互に積層してなる内部弾性体22aを有し、この内部弾性体22aにより橋桁2や橋脚3側から伝達される剪断力を減衰している。内部弾性体22aの材料は、剪断力の吸収に好適な材料、即ち、特許文献1などで出願人が既に提案している高減衰ゴムが使用されている。例えば、天然ゴム(NR)、イソプレンゴム(IR)、スチレンブタジエン共重合ゴム(SBR)、ブタジエンゴム(BR)、アクリロニトリルブタジエンゴム(NBR)、シリコーンゴム等である。また、これらゴムには、必要に応じて、充填剤、可塑剤、老化防止剤、加硫剤、加硫促進剤、加硫助剤等の添加剤が配合されている。   The elastic body 22 has an internal elastic body 22a formed by alternately laminating with the reinforcing plates 23, and the internal elastic body 22a attenuates the shearing force transmitted from the bridge girder 2 or the pier 3 side. As the material of the internal elastic body 22a, a material suitable for absorbing a shearing force, that is, a high damping rubber already proposed by the applicant in Patent Document 1 or the like is used. Examples thereof include natural rubber (NR), isoprene rubber (IR), styrene butadiene copolymer rubber (SBR), butadiene rubber (BR), acrylonitrile butadiene rubber (NBR), and silicone rubber. These rubbers are blended with additives such as a filler, a plasticizer, an anti-aging agent, a vulcanizing agent, a vulcanization accelerator, and a vulcanizing auxiliary as necessary.

また、弾性体22は側壁弾性体22bを有している。側壁弾性体22bは内部弾性体22a、各補強プレート23、橋桁連結プレート24及び橋脚連結プレート25の側面を覆うもので、内部弾性体22a等を外部の衝撃等から保護している。側壁弾性体22bの材料は、内部弾性体22aと同様に弾性材料形成され、かつ、耐候性や外部衝撃に優れたものが好ましい。例えば、ブチルゴム、アクリルゴム、エチレンプロピレンゴム(EPDM)等である。   The elastic body 22 has a side wall elastic body 22b. The side wall elastic body 22b covers the side surfaces of the internal elastic body 22a, the reinforcing plates 23, the bridge girder connection plate 24 and the pier connection plate 25, and protects the internal elastic body 22a and the like from external impacts and the like. The material of the side wall elastic body 22b is preferably an elastic material formed in the same manner as the internal elastic body 22a and is excellent in weather resistance and external impact. For example, butyl rubber, acrylic rubber, ethylene propylene rubber (EPDM) and the like.

また、側壁弾性体22bの厚さ寸法は均一なものではなく、図2に示すように、橋桁連結プレート24及び橋脚連結プレート25側の厚さ寸法W1が、補強プレート23側の厚さ寸法W2より2倍ほど大きく設計し、各連結プレート24,25側に外方向に突出した突出部26を形成している。   Further, the thickness dimension of the side wall elastic body 22b is not uniform, and as shown in FIG. 2, the thickness dimension W1 on the bridge girder connection plate 24 and pier connection plate 25 side is the thickness dimension W2 on the reinforcing plate 23 side. Further, it is designed to be twice as large, and a protruding portion 26 protruding outward is formed on the side of each connecting plate 24, 25.

本実施形態に係る橋梁用弾性支承20において、突出部26は次のような解析等に基づき設けられた。   In the elastic bearing 20 for a bridge according to the present embodiment, the protruding portion 26 is provided based on the following analysis or the like.

即ち、図3に示すように、橋梁用弾性支承20が橋軸方向に変位するとき、図4(a)(b)に示すように、各内部弾性体22aと各補強プレート23が橋軸方向に変位し、弾性支持部21全体が斜めに延びている。これにより、各補強プレート23を間に隣接する各内部弾性体22a間に、歪みが発生し、この歪みが側壁弾性体22bの外面に凹所B1,B2を形成する要因となっている。   That is, as shown in FIG. 3, when the bridge elastic support 20 is displaced in the direction of the bridge axis, as shown in FIGS. 4 (a) and 4 (b), each internal elastic body 22a and each reinforcing plate 23 are in the direction of the bridge axis. The elastic support portion 21 as a whole extends obliquely. As a result, distortion occurs between the internal elastic bodies 22a adjacent to the reinforcing plates 23, and this distortion is a factor for forming the recesses B1 and B2 on the outer surface of the side wall elastic body 22b.

ここで、図4(a)に示すように、側壁弾性体22bの厚さ寸法が小さいときは、凹所B1の凹みが大きく、剪断変形量が大きいことが理解できる。これに対して、図4(b)に示すように、側壁弾性体22bの厚さ寸法が大きいときは、凹所B2の凹みが小さく、剪断変形量が小さいことが理解できる。   Here, as shown in FIG. 4A, when the thickness dimension of the side wall elastic body 22b is small, it can be understood that the dent of the recess B1 is large and the amount of shear deformation is large. On the other hand, as shown in FIG. 4B, when the thickness dimension of the side wall elastic body 22b is large, it can be understood that the recess of the recess B2 is small and the amount of shear deformation is small.

更に、図5に示すように、出願人はFEMモデルによる表面歪解析を行った。このモデル100は、本実施形態と同様に、橋桁連結プレート101と橋脚連結プレート102との間に補強プレート103と内部弾性体104とを交互に積層するとともに、各補強プレート103及び内部弾性体104の側面に側壁弾性体105を配置し、これらの各部材101〜105を加硫接着したものである。   Further, as shown in FIG. 5, the applicant conducted a surface strain analysis using an FEM model. Similar to the present embodiment, the model 100 has the reinforcing plates 103 and the internal elastic bodies 104 alternately stacked between the bridge girder connecting plates 101 and the pier connecting plates 102, and the reinforcing plates 103 and the internal elastic bodies 104. A side wall elastic body 105 is arranged on the side surface of each of these members, and these members 101 to 105 are vulcanized and bonded.

ここで、図5(a)に示すように、橋軸方向に剪断力を加えモデル100を変形させた。ここで、モデル100の左右両側面に生ずる剪断変形量を検証したところ、図5(b)(c)に示すように、側壁弾性体10の外面のうち、橋桁連結プレート101及び橋脚連結プレート102側に剪断変形量が集中していることが分かった。   Here, as shown in FIG. 5A, the model 100 was deformed by applying a shearing force in the direction of the bridge axis. Here, the amount of shear deformation generated on the left and right side surfaces of the model 100 was verified. As shown in FIGS. 5B and 5C, the bridge girder connection plate 101 and the pier connection plate 102 out of the outer surface of the side wall elastic body 10. It was found that the amount of shear deformation was concentrated on the side.

以上の解析等から、特許文献1,2に記載された発明から想到できない次のような技術的構造を創作した。即ち、弾性体22において、橋桁連結プレート24及び橋脚連結プレート25側を外方向に突出させることにより、側壁弾性体22bの歪変形量を効率よく小さくできるという技術的構造である。   Based on the above analysis and the like, the following technical structure that cannot be conceived from the inventions described in Patent Documents 1 and 2 was created. That is, in the elastic body 22, the amount of distortion deformation of the side wall elastic body 22b can be efficiently reduced by projecting the bridge girder connection plate 24 and the pier connection plate 25 side outward.

本実施形態に係る橋梁用弾性支承20によれば、弾性体22のうち、連結プレート24,25側を外方向に突出した突出部26を有するため、弾性体の表面歪を軽減できるし、また、単に突出部26を設けるだけであり、極めて簡単な剪断力減衰構造となっている。   According to the bridge elastic support 20 according to the present embodiment, the elastic body 22 has the protruding portions 26 protruding outward from the connecting plates 24 and 25 side of the elastic body 22, so that the surface distortion of the elastic body can be reduced. The projecting portion 26 is simply provided, and a very simple shear force damping structure is obtained.

図6は本発明に係る橋梁用弾性支承の第2の実施形態を示すもので、前記第1実施形態と同一構成部分は同一符号で示し、その説明を省略する。   FIG. 6 shows a second embodiment of an elastic bearing for a bridge according to the present invention. The same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

本実施形態に係る橋梁用弾性支承30は弾性体32のうち側壁弾性体32bの構造を改良したものである。   The bridge elastic support 30 according to the present embodiment is obtained by improving the structure of the side wall elastic body 32 b of the elastic body 32.

前記第1実施形態では、側壁弾性体の厚さ寸法において各連結プレート24,25側のみを考慮するものであったが、本実施形態では突出部36に加え、補強プレート23側の厚さ寸法も考慮したものである。即ち、補強プレート23側の厚さ寸法を各連結プレート24,25から離れるに従って小さくするという改良を行った。これにより、側壁弾性体32bを剪断応力に応じた過不足のない適切な厚さ寸法に設定できる。   In the first embodiment, only the side of each connecting plate 24, 25 is considered in the thickness dimension of the side wall elastic body, but in this embodiment, the thickness dimension on the reinforcing plate 23 side in addition to the protruding portion 36. Is also taken into consideration. In other words, the thickness dimension on the reinforcing plate 23 side is improved as the distance from the connecting plates 24 and 25 decreases. Thereby, the side wall elastic body 32b can be set to an appropriate thickness dimension without excess or deficiency according to the shear stress.

図7は本発明に係る橋梁用弾性支承の第3の実施形態を示すもので、前記第1実施形態と同一構成部分は同一符号で示し、その説明を省略する。   FIG. 7 shows a third embodiment of an elastic bearing for a bridge according to the present invention. The same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

前記第1実施形態では突出部を側壁弾性体に形成していたが、本実施形態に係る橋梁用弾性支承40は内部弾性体42aに突出部46を形成した。   In the first embodiment, the protruding portion is formed on the side wall elastic body. However, the bridge elastic support 40 according to the present embodiment has the protruding portion 46 formed on the internal elastic body 42a.

即ち、図7に示すように、弾性体42のうち内部弾性体42aのうち、橋桁連結プレート24及び橋脚連結プレート25側を外側方向に突出させた突出部46を形成するとともに、突出部46を含む内部弾性体42aの外面に略均一に側壁弾性体42bを接着している。   That is, as shown in FIG. 7, a protruding portion 46 is formed by protruding the bridge girder connecting plate 24 and the pier connecting plate 25 side of the inner elastic body 42 a of the elastic body 42 in the outward direction. The side wall elastic body 42b is bonded substantially uniformly to the outer surface of the internal elastic body 42a.

本実施形態に係る橋梁用弾性支承40においても各連結プレート24,25側の厚さ寸法が大きくなっているため、弾性体42に加わる剪断変形に対して減衰効果を十分に発揮することができる。   Also in the bridge elastic support 40 according to the present embodiment, since the thickness dimension on the side of each of the connecting plates 24 and 25 is large, a damping effect can be sufficiently exerted against the shear deformation applied to the elastic body 42. .

図8は本発明に係る橋梁用弾性支承の第4の実施形態を示すもので、前記第1実施形態と同一構成部分は同一符号で示し、その説明を省略する。   FIG. 8 shows a fourth embodiment of an elastic bearing for a bridge according to the present invention. The same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

前記第1実施形態では弾性体22及び補強プレート23を保持するプレートとして、上下に橋桁連結プレート24と橋脚連結プレート25を配置していたが、図8に示すように、本実施形態に係る橋梁用弾性支承50ではこれら各連結プレート24,25を上沓12及び下沓14と兼用としたものである。本実施形態によれば、各連結プレート24,25が除去された分、構造も簡単なものとなっている。   In the first embodiment, the bridge girder connection plate 24 and the bridge pier connection plate 25 are arranged above and below as the plates for holding the elastic body 22 and the reinforcing plate 23. However, as shown in FIG. 8, the bridge according to this embodiment is provided. In the elastic bearing 50 for use, each of the connecting plates 24 and 25 is also used as the upper rod 12 and the lower rod 14. According to the present embodiment, the structure is simplified because the connecting plates 24 and 25 are removed.

図9は本発明に係る橋梁用弾性支承の第5の実施形態を示すもので、前記第1実施形態と同一構成部分は同一符号で示し、その説明を省略する。   FIG. 9 shows a fifth embodiment of an elastic bearing for a bridge according to the present invention. The same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

前記第1実施形態に係る弾性体22は内部弾性体22aと側壁弾性体22bより構成しているが、本実施形態に係る橋梁用弾性支承60は弾性体62を内部弾性体62aのみで構成している。即ち、側壁弾性体を有しないタイプの橋梁用弾性支承60においても内部弾性体62aに突出部66を形成することにより、これまた、前記第1実施形態と同様の作用効果を発揮する。   The elastic body 22 according to the first embodiment is configured by the internal elastic body 22a and the side wall elastic body 22b, but the bridge elastic support 60 according to the present embodiment includes the elastic body 62 only by the internal elastic body 62a. ing. That is, even in the bridge elastic bearing 60 of the type having no side wall elastic body, by forming the protruding portion 66 on the internal elastic body 62a, the same operation effect as the first embodiment is exhibited.

なお、前記各実施形態では突出部26,36,46,66を弾性体の橋軸方向に対向する面はもとより、これと隣接する橋軸方向に沿った側面にも形成しているが、外気温度などで大きく変形する部分が橋軸方向と対向する側面であるため、少なくともこの対向側面に設ける必要がある。   In each of the above embodiments, the protrusions 26, 36, 46, 66 are formed not only on the surface of the elastic body facing the bridge axis direction, but also on the side surface along the bridge axis direction adjacent thereto. Since the portion that greatly deforms due to temperature or the like is the side surface facing the bridge axis direction, it is necessary to provide at least the facing side surface.

20,30,40,50,60…橋梁用弾性支承、21…弾性支持部、22…弾性体、22a…内部弾性体、22b…側壁弾性体、23…補強プレート、24…橋桁連結プレート、25…橋脚連結プレート、26,36,46,66…突出部。   20, 30, 40, 50, 60 ... elastic support for bridge, 21 ... elastic support, 22 ... elastic body, 22a ... internal elastic body, 22b ... side wall elastic body, 23 ... reinforcing plate, 24 ... bridge girder connection plate, 25 ... Abutment connection plate, 26, 36, 46, 66 ... Projection.

Claims (3)

間隔をおいて複数配置された補強プレートと該各補強プレートを覆う弾性体と該弾性体を橋桁側に連結する橋桁連結プレートと、該弾性体を橋脚に連結する橋脚連結プレートとを有する弾性支持部を備え、該橋桁から該橋脚に加わる変形力を低減する橋梁用弾性支承において、
前記弾性体は前記橋桁連結プレート側及び前記橋脚連結プレート側が外方向に突出する突出部を有し、該突出部は補強プレートの端から一定の厚さ寸法W2となっている部分から、凹状の曲線部、凸状の曲線部を介して上下方向に対して所定寸法に亘って一定の厚さ寸法W1からなる部分へ続く一体的部材で形成するとともに、
前記弾性体は、前記各補強プレートと交互に積層して接着した内部弾性体と、該内部弾性体、該各補強プレート、前記橋桁連結プレート及び前記橋脚連結プレートの側面を覆う側壁弾性体とからなり、前記突出部を該側壁弾性体に形成した
ことを特徴とする橋梁用弾性支承。
A reinforcing plate having a plurality spaced, and an elastic body covering the respective reinforcing plates, the girder connection plate for connecting the elastic body bridge girder side and a pier connecting plate for connecting the elastic body piers In an elastic bearing for a bridge that includes an elastic support portion and reduces deformation force applied to the pier from the bridge girder,
The elastic body has a protruding portion that protrudes outward on the bridge girder connecting plate side and the pier connecting plate side , and the protruding portion has a concave shape from a portion having a constant thickness W2 from the end of the reinforcing plate. With a curved part, a curved part, and an integral member that continues to a part consisting of a constant thickness dimension W1 over a predetermined dimension with respect to the vertical direction via a convex curved part,
The elastic body includes an internal elastic body that is alternately laminated and bonded to the reinforcing plates, and a side wall elastic body that covers side surfaces of the internal elastic bodies, the reinforcing plates, the bridge girder connecting plate, and the pier connecting plate. An elastic bearing for a bridge , wherein the protruding portion is formed on the side wall elastic body .
間隔をおいて複数配置された補強プレートと、該各補強プレートを覆う弾性体と、該弾性体を橋桁側に連結する橋桁連結プレートと、該弾性体を橋脚に連結する橋脚連結プレートとを有する弾性支持部を備え、該橋桁から該橋脚に加わる変形力を低減する橋梁用弾性支承において、
前記弾性体は前記橋桁連結プレート側及び前記橋脚連結プレート側が外方向に突出する突出部を有し、該突出部は補強プレートの端から一定の厚さ寸法W2となっている部分から、凹状の曲線部、凸状の曲線部を介して上下方向に対して所定寸法に亘って一定の厚さ寸法W1からなる部分へ続く一体的部材で形成するとともに、
前記弾性体は、前記各補強プレートと交互に積層して接着した内部弾性体と、該内部弾性体、該各補強プレート、前記橋桁連結プレート及び前記橋脚連結プレートの側面を覆う側壁弾性体とからなり、前記突出部を該内部弾性体に形成するとともに該側壁弾性体は該内部弾性体の側面を略均一に覆うよう形成した
ことを特徴とする橋梁用弾性支承。
A plurality of reinforcing plates arranged at intervals, an elastic body that covers each of the reinforcing plates, a bridge girder connection plate that connects the elastic body to the bridge girder side, and a bridge pier connection plate that connects the elastic body to the bridge pier In an elastic bearing for a bridge that includes an elastic support portion and reduces deformation force applied to the pier from the bridge girder,
The elastic body has a protruding portion that protrudes outward on the bridge girder connecting plate side and the pier connecting plate side, and the protruding portion has a concave shape from a portion having a constant thickness W2 from the end of the reinforcing plate. With a curved part, a curved part, and an integral member that continues to a part consisting of a constant thickness dimension W1 over a predetermined dimension with respect to the vertical direction via a convex curved part,
The elastic body includes an internal elastic body that is alternately laminated and bonded to the reinforcing plates, and a side wall elastic body that covers side surfaces of the internal elastic bodies, the reinforcing plates, the bridge girder connecting plate, and the pier connecting plate. An elastic bearing for a bridge , wherein the protruding portion is formed on the internal elastic body, and the side wall elastic body is formed so as to substantially uniformly cover a side surface of the internal elastic body .
前記突出部は、前記弾性体の側面のうち少なくとも橋軸方向と直行する側面に有する
ことを特徴とする請求項1又は2記載の橋梁用弾性支承。
The protrusion claim 1 or 2 bridges elastic bearing according to characterized in that it has on a side surface orthogonal to the at least bridge axis direction in the side surface of the bullet resistant material.
JP2010173680A 2010-08-02 2010-08-02 Elastic bearing for bridge Expired - Fee Related JP5860203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010173680A JP5860203B2 (en) 2010-08-02 2010-08-02 Elastic bearing for bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010173680A JP5860203B2 (en) 2010-08-02 2010-08-02 Elastic bearing for bridge

Publications (2)

Publication Number Publication Date
JP2012031687A JP2012031687A (en) 2012-02-16
JP5860203B2 true JP5860203B2 (en) 2016-02-16

Family

ID=45845405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010173680A Expired - Fee Related JP5860203B2 (en) 2010-08-02 2010-08-02 Elastic bearing for bridge

Country Status (1)

Country Link
JP (1) JP5860203B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6055231B2 (en) * 2012-08-10 2016-12-27 住友ゴム工業株式会社 Bridges and bridge dampers
JP6326943B2 (en) * 2014-04-30 2018-05-23 横浜ゴム株式会社 Rubber bearing
CN106351118A (en) * 2016-10-17 2017-01-25 上海市政工程设计研究总院(集团)有限公司 Earthquake isolation and reduction structure and earthquake reduction method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2570341B2 (en) * 1987-04-06 1997-01-08 株式会社ブリヂストン Seismic isolation structure
JP2002039264A (en) * 2000-07-19 2002-02-06 Bando Chem Ind Ltd Flange integrated base isolation structure
JP2002363917A (en) * 2001-06-11 2002-12-18 Ohtsu Chemical Kk Pivotally supporting device
JP3859609B2 (en) * 2003-04-01 2006-12-20 株式会社カイモン Fixed load bearing member
JP2007113649A (en) * 2005-10-19 2007-05-10 Toyo Tire & Rubber Co Ltd Laminated rubber for base isolation

Also Published As

Publication number Publication date
JP2012031687A (en) 2012-02-16

Similar Documents

Publication Publication Date Title
JP5373274B2 (en) Anti-vibration structure
US20100007069A1 (en) Vibration damping system
JP5860203B2 (en) Elastic bearing for bridge
JP5422865B2 (en) Seismic reinforcement
JP3896669B2 (en) Seismic isolation structure
JP2623584B2 (en) Seismic isolation device
JPH01190847A (en) Vibration-proof rubber
JP6655128B2 (en) Composite plate reinforcement structure and construction method
CN105283615A (en) Sound-insulating floor structure
KR101195774B1 (en) Expansion joint for bridge or underground driveway
JP5686237B2 (en) Laminated rubber bearing
JP3121118U (en) Seismic isolation rubber bearing device for structures
JP6957990B2 (en) Seismic control device and building
EP3555368B1 (en) Layered support
JP2006250300A (en) Laminated rubber body with incorporated lead plug
JP3952105B2 (en) Laminated rubber bearing
WO2004111486A1 (en) Leaf spring
JP4878338B2 (en) Reinforcement structure of buildings and structures
JP5065745B2 (en) Elastic fixed bearing
JP2011033194A (en) Laminated rubber body containing lead plug
US12005965B2 (en) Body structure for vehicle
JP3751685B2 (en) Cable stayed damper
JP2001207412A (en) Rubber support body
JP2008038570A (en) Sheet shearing panel reinforcing structure
JP5577147B2 (en) Isolation structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140507

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150227

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150309

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151218

R150 Certificate of patent or registration of utility model

Ref document number: 5860203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees