JP3121118U - Seismic isolation rubber bearing device for structures - Google Patents

Seismic isolation rubber bearing device for structures Download PDF

Info

Publication number
JP3121118U
JP3121118U JP2006000705U JP2006000705U JP3121118U JP 3121118 U JP3121118 U JP 3121118U JP 2006000705 U JP2006000705 U JP 2006000705U JP 2006000705 U JP2006000705 U JP 2006000705U JP 3121118 U JP3121118 U JP 3121118U
Authority
JP
Japan
Prior art keywords
seismic isolation
rubber
laminated
bearing device
laminated rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006000705U
Other languages
Japanese (ja)
Inventor
惣一郎 清水
洋一 熊谷
Original Assignee
東京ファブリック工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京ファブリック工業株式会社 filed Critical 東京ファブリック工業株式会社
Priority to JP2006000705U priority Critical patent/JP3121118U/en
Application granted granted Critical
Publication of JP3121118U publication Critical patent/JP3121118U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

【課題】鉛直方向剛性を低くするとともに水平方向の変位が過度に大きくならないようにし、低価格にして普及拡大が図れる構造物の免震ゴム支承装置の提供。
【解決手段】構造物の免震ゴム支承装置1は、上部構造物2と下部構造物3との間に設けられ、前記下部構造物3と前記上部構造物2とを相対的に鉛直面内及び水平面内で変位可能に支承する。複数の補強板とゴム板が積層されて一体化され、一方の取付面に前記下部構造物3が取り付けられる積層ゴム体20と、所定の減衰性能を有し、前記積層ゴム体の他方の取付面に一方の取付面が連結されるとともに他方の取付面に前記上部構造物2が取り付けられる免震積層ゴム体10,110と、前記下部構造物3に固定された前記積層ゴム体20の外周部の少なくとも一部を拘束可能に設けられ、前記積層ゴム体20が水平方向に変位するのを拘束している拘束体32とからなる。
【選択図】 図4
An object of the present invention is to provide a seismic isolation rubber bearing device for a structure that can reduce the vertical rigidity and prevent the horizontal displacement from becoming excessively large, and can be spread and expanded at low cost.
A seismic isolation rubber bearing device (1) for a structure is provided between an upper structure (2) and a lower structure (3), and the lower structure (3) and the upper structure (2) are relatively in a vertical plane. And it is supported so that it can be displaced in a horizontal plane. A laminated rubber body 20 in which a plurality of reinforcing plates and rubber plates are laminated and integrated, and the lower structure 3 is attached to one attachment surface, and the other attachment of the laminated rubber body has a predetermined damping performance One mounting surface is connected to the surface and the upper structure 2 is attached to the other mounting surface, and the outer periphery of the laminated rubber body 20 fixed to the lower structure 3 The restraint body 32 is provided so that at least a part of the portion can be restrained and restrains the laminated rubber body 20 from being displaced in the horizontal direction.
[Selection] Figure 4

Description

本考案は、橋梁等構造物、建築物を支承するための構造物の免震ゴム支承装置に関する。更に詳しくは、免震性能の向上を図るとともに低価格にして普及拡大に貢献することが可能な構造物の免震ゴム支承装置に関する。   The present invention relates to a seismic isolation rubber bearing device for structures for supporting structures such as bridges and buildings. More particularly, the present invention relates to a seismic isolation rubber bearing device for a structure capable of improving the seismic isolation performance and contributing to the spread of the product at a low price.

阪神・淡路大震災(兵庫県南部地震)では、いろいろな構造物、建築物が大きな被害を受けた。その建築物、構造物の一つに道路、鉄道等の橋梁があり、橋梁の被害は、橋桁を支承する支承部に集中的に生じていたことが知られている。被害を受けた支承部は、金属(鋼)製の支承装置が多く採用されていた。そのため、地震列島である日本列島に、今後も起こるであろう地震、大地震に備えた対策の一つとして、あまり被害を受けなかったゴム支承装置等を採用することが要望されている。   In the Great Hanshin-Awaji Earthquake (Hyogoken-Nanbu Earthquake), various structures and buildings were severely damaged. One of the buildings and structures includes bridges such as roads and railroads, and it is known that damage to the bridges was concentrated in the support section that supports the bridge girder. As the damaged bearing parts, many metal (steel) bearing devices were used. For this reason, it has been demanded that the Japanese archipelago, which is an earthquake archipelago, adopt a rubber bearing device that has not been damaged so much as one of the measures for earthquakes and major earthquakes that will occur in the future.

積層ゴムを用いたゴム支承装置は、薄い鋼板(補強板)とゴムとを交互に重ね合わせ積層したもの(補強板を内蔵した積層ゴム)で、大きな水平変位特性を有するとともに、地震時発生する大きな水平方向の相対変位をゴムの弾性によって吸収しようとするものである。本出願人も装置の鉛直剛性を低く維持することにより回転機能を妨げることがなく、水平方向の変位を一部拘束することで水平剛性を高めることにより構造物に悪影響を及ぼすことがない水平力分散支承装置を提案している(例えば、特許文献1参照)。   A rubber bearing device using laminated rubber is a laminate of thin steel plates (reinforcing plates) and rubber alternately laminated (laminated rubber with built-in reinforcing plates), and has a large horizontal displacement characteristic and is generated during an earthquake. It is intended to absorb large horizontal relative displacement by the elasticity of rubber. The applicant also maintains a low vertical rigidity of the device without disturbing the rotation function, and a horizontal force that does not adversely affect the structure by increasing the horizontal rigidity by partially restraining the displacement in the horizontal direction. A distributed bearing device has been proposed (see, for example, Patent Document 1).

また、ゴムとともに鉛プラグを用いたり、高減衰性ゴムを用いて、構造物、建築物の固有振動数の長周期化を図り、減衰係数を大きくすることによって作用地震力の低減を図り、地震波との共振を防いでゆっくり揺れるようにして荷重を少なくする免震ゴム支承装置と呼ばれているものも開発されている。その一例として、鉛プラグ入積層ゴムを採用した免震ゴム支承装置が知られている(例えば、特許文献2,3参照)。   Also, using lead plugs with rubber or using high damping rubber to increase the natural frequency of structures and buildings, and to increase the damping coefficient to reduce the acting seismic force. A so-called seismic isolation rubber bearing device has also been developed that reduces the load by preventing the resonance with the vibration. As an example, a seismic isolation rubber bearing device employing a lead plug-containing laminated rubber is known (see, for example, Patent Documents 2 and 3).

さらに、他の例として、ゴム自体に高い減衰性を持たせた免震ゴム支承装置も知られている(例えば、特許文献4参照)。また、免震ゴム支承構造体において、初期剛性の設定を容易にしたものも知られている(例えば、特許文献5参照)。
特開2004−011197号公報 特開平09−317822号公報 特開平10−238161号公報 特開2000−097270号公報 特開2003−106008号公報
Furthermore, as another example, a seismic isolation rubber bearing device in which rubber itself has a high damping property is also known (see, for example, Patent Document 4). In addition, a seismic isolation rubber bearing structure is also known in which initial rigidity is easily set (see, for example, Patent Document 5).
JP 2004-011197 A JP 09-317822 A Japanese Patent Laid-Open No. 10-238161 JP 2000-097270 A JP 2003-106008 A

しかしながら、従来の免震ゴム支承装置では、金属(鋼)製の支承装置に比べて支圧面積が大きく、桁の回転性能をゴムの鉛直方向のひずみ量で満足させることから、免震ゴムの厚さはある程度厚くせざるを得なかった。しかし、免震ゴムの厚みを厚くすると、水平方向の剛性も低くなってしまい、上部構造物の地震時における水平方向の変位(移動量)が過度に大きくなってしまうおそれがあった。すなわち、地震の激しい振動を抑えることはできるが、ゆっくり揺れるように移動する変位を抑えることができない。   However, conventional seismic isolation rubber bearing devices have a larger bearing area than metal (steel) bearing devices and satisfy the rotational performance of girders with the amount of strain in the vertical direction of the rubber. The thickness had to be increased to some extent. However, if the thickness of the seismic isolation rubber is increased, the horizontal rigidity is also lowered, and the horizontal displacement (movement amount) of the upper structure during an earthquake may be excessively increased. That is, it is possible to suppress severe vibrations of earthquakes, but it is not possible to suppress displacement that moves so as to shake slowly.

そのため、上部構造物が大きく移動することによって他の構造物と衝突して、上部構造物等に悪影響を及ぼしてしまうおそれがあるという問題点が生じていた。しかし、前述した特許文献1から5の技術はこのような問題点を解決するものでなかった。そこで、減衰性能が20%以上あるといわれている免震ゴムを採用した免震ゴム支承装置において、その免震ゴムの性能をフルに発揮させるため、鉛直方向剛性は従来通りのままで水平方向剛性の高い免震支承により変位が過度に大きくならないようにすることができる免震ゴム支承装置の開発が望まれていた。   For this reason, there has been a problem in that the upper structure may collide with other structures due to a large movement and adversely affect the upper structure or the like. However, the techniques of Patent Documents 1 to 5 described above do not solve such problems. Therefore, in the seismic isolation rubber bearing device adopting the seismic isolation rubber which is said to have a damping performance of 20% or more, the vertical rigidity remains the same as before in order to make full use of the performance of the seismic isolation rubber. There has been a demand for the development of a seismic isolation rubber bearing device that can prevent displacement from becoming excessively large due to a highly rigid seismic isolation bearing.

一方、免震ゴム支承装置は、まだまだ高価なものであり、全国津々浦々にある橋梁等である構造物、建築物の支承装置として採用するには費用負担が大きすぎ現状では採用することができない。そのため、免震ゴム支承装置を低価格にして普及拡大できるようにすることも熱望されている。   On the other hand, the seismic isolation rubber bearing device is still expensive, and the cost burden is too large to be used as a bearing device for structures and buildings such as bridges and the like in the country. Therefore, it is eagerly desired that the seismic isolation rubber bearing device can be expanded at a low price.

本考案は、上述したような技術背景、社会的背景に基づき、従来の問題点を解決するためになされたもので、次の目的を達成する。
本考案の目的は、免震ゴムの性能をフルに発揮させるため、鉛直方向剛性を低くするとともに水平方向の変位が過度に大きくならないようにすることができ、低価格にして普及拡大を図ることができる免震ゴム支承装置を提供することにある。
The present invention has been made to solve the conventional problems based on the technical background and social background as described above, and achieves the following object.
The purpose of the present invention is to reduce the vertical rigidity and prevent the horizontal displacement from becoming excessively large so that the seismic isolation rubber can perform at its full potential. The object is to provide a seismic isolation rubber bearing device.

本考案は、上述した目的を達成するために次の手段をとる。
本考案1の構造物の免震ゴム支承装置は、上部構造物と下部構造物との間に設けられ、前記下部構造物と前記上部構造物とを相対的に鉛直面内及び水平面内で変位可能に支承する免震ゴム支承装置であって、複数の補強板とゴム板が積層されて一体化され、一方の取付面に、前記下部構造物または前記上部構造物が取り付けられる積層ゴム体と、所定の減衰性能を有するように、複数の補強板を内蔵して積層され、前記積層ゴム体の他方の取付面に一方の取付面が連結されるとともに他方の取付面に前記上部構造物または前記下部構造物が取り付けられる免震積層ゴム体と、前記下部構造物または前記上記構造物に固定された前記積層ゴム体の外周部または内周部の少なくとも一部を拘束可能に、前記下部構造物または前記上部構造物に設けられ、前記積層ゴム体が水平方向に変位するのを拘束している拘束体とからなる。
The present invention takes the following means to achieve the above-described object.
The seismic isolation rubber bearing device of the structure of the present invention 1 is provided between an upper structure and a lower structure, and the lower structure and the upper structure are relatively displaced in a vertical plane and a horizontal plane. A seismic isolation rubber bearing device that supports the laminated rubber body in which a plurality of reinforcing plates and rubber plates are laminated and integrated, and the lower structure or the upper structure is attached to one mounting surface; A plurality of reinforcing plates are laminated so as to have a predetermined damping performance, and one attachment surface is connected to the other attachment surface of the laminated rubber body, and the upper structure or The seismic isolation laminated rubber body to which the lower structure is attached, and the lower structure capable of restraining at least part of the outer peripheral portion or inner peripheral portion of the lower rubber structure or the laminated rubber body fixed to the structure. Or on the superstructure Is, the laminated rubber body is formed of a restraining member which restrains from being moved in the horizontal direction.

本考案2の構造物の免震ゴム支承装置は、本考案1において、
前記免震積層ゴム体は、減衰特性の高い高減衰性ゴムを材料として製作されたものであることを特徴とする。
The seismic isolation rubber bearing device for the structure of the present invention 2 is the present invention 1,
The seismic isolation laminated rubber body is manufactured from a high damping rubber having a high damping characteristic.

本考案3の構造物の免震ゴム支承装置は、本考案1において、
前記免震積層ゴム体は、鉛プラグが埋め込まれ、積層ゴムと前記鉛プラグとの組み合わせによって免震性能を発揮するものであることを特徴とする。
The seismic isolation rubber bearing device of the structure of the present invention 3 is the present invention 1,
The seismic isolation laminated rubber body is characterized in that a lead plug is embedded and a seismic isolation performance is exhibited by a combination of the laminated rubber and the lead plug.

以上、説明したように、本考案の構造物の免震ゴム支承装置は、一般の積層ゴム体と免震積層ゴム体を組み合わせるとともに、積層ゴム体の外周部を拘束体で拘束する構造にしたことにより、鉛直方向の剛性を低くして回転機能を妨げることなく、水平方向の変位の一部を拘束して、免震性能を損なうことがなく構造物が過度に変位してしまうことを防止することができる。   As described above, the seismic isolation rubber bearing device of the structure of the present invention has a structure in which a general laminated rubber body and a seismic isolation laminated rubber body are combined and the outer peripheral portion of the laminated rubber body is restrained by a restraining body. This prevents the structure from being displaced excessively without impairing the seismic isolation performance by constraining a part of the horizontal displacement without lowering the rigidity in the vertical direction and hindering the rotation function. can do.

また、従来では、鉛直剛性を低くし、水平剛性を高くするために、形状を過度に大きくする必要があったが、本考案ではその必要がないため、経済的効果を大きくすることができる。このことにより、免震ゴム支承装置の採用が増えてくれば、量産効果によりさらに経済的効果が増大する。   Conventionally, in order to reduce the vertical rigidity and increase the horizontal rigidity, it has been necessary to make the shape excessively large. However, in the present invention, this is not necessary, so the economic effect can be increased. As a result, if the use of seismic isolation rubber bearing devices is increased, the economic effect is further increased by the mass production effect.

以下、本考案について、図面をもとに、その実施の形態を詳細に説明する。
図1は、本考案の構造物の免震ゴム支承装置の平面図、図2は、図1をA−A線で切断した断面図、図3は、図1をB−B線で切断した断面図、図4は、本考案の免震ゴム支承装置に地震力が作用して、免震ゴム支承装置が変形した状態を示す橋軸方向の断面図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a plan view of the seismic isolation rubber bearing device of the structure of the present invention, FIG. 2 is a cross-sectional view of FIG. 1 cut along the line AA, and FIG. 3 is a cross-sectional view of FIG. FIG. 4 is a sectional view in the direction of the bridge axis showing a state where the seismic force acts on the seismic isolation rubber bearing device of the present invention and the seismic isolation rubber bearing device is deformed.

この実施の形態に係る免震ゴム支承装置1は、複数層の補強板を内蔵する積層ゴム体20と、この積層ゴム体20の上部に設けられ、高減衰性ゴムからなる免震積層ゴム体10と、積層ゴム体20下面に固着される下沓31と、免震積層ゴム体10の上面に固着される上沓30とを備え、下部構造物である橋台3と上部構造物である橋桁2の間に設置されるものである。図3,図4は、構造物を橋梁(上部構造物を鋼製の橋桁、下部構造物をコンクリート製の橋台)とした場合、橋軸方向(橋桁の長手方向)に切断した断面図である。なお、この実施の形態の説明は、上部構造物を鋼製の橋桁に、下部構造物をコンクリート製の橋台にして説明を行うが、上部構造物、下部構造物が橋桁、橋台に限定されないことはいうまでもない。   The seismic isolation rubber bearing device 1 according to this embodiment includes a laminated rubber body 20 containing a plurality of layers of reinforcing plates, and a seismic isolation laminated rubber body that is provided on the laminated rubber body 20 and is made of high damping rubber. 10, a lower rod 31 fixed to the lower surface of the laminated rubber body 20, and an upper rod 30 fixed to the upper surface of the seismic isolation laminated rubber body 10, the abutment 3 as a lower structure and the bridge girder as an upper structure Between the two. 3 and 4 are cross-sectional views cut in the bridge axis direction (longitudinal direction of the bridge girder) when the structure is a bridge (the upper structure is a steel bridge girder and the lower structure is a concrete abutment). . In this embodiment, the upper structure is a steel bridge girder and the lower structure is a concrete abutment. However, the upper structure and the lower structure are not limited to the bridge girder and the abutment. Needless to say.

免震積層ゴム体10は、矩形の高減衰性ゴム板と矩形の補強板とが複数層に亘って交互に積層されて一体に加硫成型された第1積層ゴム11である。第1積層ゴム11はゴム自体に高い減衰性能を有する高減衰性ゴムを材料にして製作されたものであることが好適である。すなわち、第1積層ゴム11には、例えば、天然ゴム、イソプレンゴム等のジエン系ゴム、エチレンプロピレンゴム、ブチルゴム等から選択される1種以上のゴムに、カーボンブラック、シリカ、樹脂等の配合剤、また一般的にゴム工業で使用される加硫剤、老化防止剤等より構成される高減衰性ゴムと呼ばれている材料を使用することが好適である。   The seismic isolation laminated rubber body 10 is a first laminated rubber 11 in which rectangular high-damping rubber plates and rectangular reinforcing plates are alternately laminated over a plurality of layers and integrally vulcanized. The first laminated rubber 11 is preferably made of a high-damping rubber having a high damping performance as a material. That is, the first laminated rubber 11 includes, for example, one or more kinds of rubber selected from diene rubbers such as natural rubber and isoprene rubber, ethylene propylene rubber, butyl rubber and the like, and a compounding agent such as carbon black, silica, and resin. In addition, it is preferable to use a material called a high-attenuating rubber composed of a vulcanizing agent, an anti-aging agent and the like generally used in the rubber industry.

また、補強板の材質は、例えば鋼が好適である。この補強板には、第1薄鋼板13、第1取付板14及び第1厚鋼板15が含まれる。ここで高減衰性ゴム板の厚さは例えば25mm程度であり、第1薄鋼板13の厚さは例えば3.2mm程度であり、第1取付鋼板14、第1厚鋼板15の厚さは例えば20〜40mm程度である。この第1積層ゴム11は、上側から順に第1厚鋼板15、高減衰性ゴム板、第1薄鋼板13、高減衰性ゴム板、第1薄鋼板13、高減衰性ゴム板、・・高減衰性ゴム板、第1取付鋼板14が積層されて一体加硫成型されたものである。
免震積層ゴム体10の第1積層ゴム11は、高減衰性ゴムが水平方向には柔らかいため、地震の激しい振動をやわらげ、橋桁2の揺れを長周期化するとともに、地震がおさまったあと、高減衰性ゴムの持っている復元力で、橋桁2を元の位置に戻す作用をする。
The material of the reinforcing plate is preferably steel, for example. The reinforcing plate includes a first thin steel plate 13, a first mounting plate 14, and a first thick steel plate 15. Here, the thickness of the high damping rubber plate is, for example, about 25 mm, the thickness of the first thin steel plate 13 is, for example, about 3.2 mm, and the thicknesses of the first mounting steel plate 14 and the first thick steel plate 15 are, for example, It is about 20-40 mm. The first laminated rubber 11 includes a first thick steel plate 15, a high damping rubber plate, a first thin steel plate 13, a high damping rubber plate, a first thin steel plate 13, a high damping rubber plate in order from the top. A damping rubber plate and a first mounting steel plate 14 are laminated and integrally vulcanized.
The first laminated rubber 11 of the seismic isolation laminated rubber body 10 is a highly damped rubber that is soft in the horizontal direction, so that the severe vibration of the earthquake is moderated, the vibration of the bridge girder 2 is lengthened, and after the earthquake has stopped, The restoring force of the high-damping rubber acts to return the bridge girder 2 to its original position.

積層ゴム体20は、矩形のゴム板と矩形の補強板が複数層に亘って交互に積層されて一体加硫成型された第2積層ゴム21で構成されるものである。ここでゴム板の材質は、例えばゴム弾性体であり、補強板の材質は、例えば鋼である。この補強板には、第2薄鋼板23、第2取付鋼板24及び第2厚鋼板25が含まれる。ここでゴム板の厚さは例えば25mm程度であり、第2薄鋼板23の厚さは例えば3.2mm程度であり、第2取付鋼板24、第2厚鋼板25の厚さは例えば20〜40mm程度である。この積層ゴム体20は、上側から順に第2取付鋼板24、ゴム板、第2薄鋼板23、ゴム板、第2薄鋼板23、ゴム板、・・ゴム板、第2厚鋼板25が積層されて一体加硫成型されたものである。   The laminated rubber body 20 is composed of a second laminated rubber 21 in which rectangular rubber plates and rectangular reinforcing plates are alternately laminated over a plurality of layers and integrally vulcanized. Here, the material of the rubber plate is, for example, a rubber elastic body, and the material of the reinforcing plate is, for example, steel. The reinforcing plate includes a second thin steel plate 23, a second mounting steel plate 24, and a second thick steel plate 25. Here, the thickness of the rubber plate is, for example, about 25 mm, the thickness of the second thin steel plate 23 is, for example, about 3.2 mm, and the thickness of the second mounting steel plate 24 and the second thick steel plate 25 is, for example, 20-40 mm. Degree. In this laminated rubber body 20, a second mounting steel plate 24, a rubber plate, a second thin steel plate 23, a rubber plate, a second thin steel plate 23, a rubber plate, a rubber plate, and a second thick steel plate 25 are laminated in order from the top. Are integrally vulcanized and molded.

なお、積層ゴム体20は、第2薄鋼板を内蔵したものであるほうが圧縮変形量が少なくて好ましいが、第2薄鋼板を内蔵しない第2取付鋼板、第2厚鋼板が設けられただけのものであってもよい。この免震積層ゴム体10の第1厚鋼板15が、適宜の数の取付ボルト30aにより上沓30に固着されている。また、積層ゴム体20の第2厚鋼板25が、適宜の数の取付ボルト31aにより下沓31に固着されている。さらに、免震積層ゴム体10の第1取付鋼板14と、積層ゴム体20の第2取付鋼板24とが、適宜の数(例えば、この実施の形態では12個)のボルト16、ナット17等で一体に固着されている。免震積層ゴム体10と積層ゴム体20とが一体化されて、免震ゴム支承装置1が構成されている。   The laminated rubber body 20 preferably includes the second thin steel plate because the amount of compressive deformation is small, but the second mounting steel plate and the second thick steel plate not including the second thin steel plate are provided. It may be a thing. The first thick steel plate 15 of the seismic isolation laminated rubber body 10 is fixed to the upper collar 30 with an appropriate number of mounting bolts 30a. Further, the second thick steel plate 25 of the laminated rubber body 20 is fixed to the lower collar 31 with an appropriate number of mounting bolts 31a. Further, the first mounting steel plate 14 of the seismic isolation laminated rubber body 10 and the second mounting steel plate 24 of the laminated rubber body 20 include an appropriate number (for example, 12 in this embodiment) of bolts 16, nuts 17 and the like. It is fixed integrally with. The seismic isolation laminated rubber body 10 and the laminated rubber body 20 are integrated to constitute the seismic isolation rubber bearing device 1.

そして、適宜の数のアンカーボルト3aにより橋台3に下沓31が固着され、橋桁2に適宜の数の締結ボルト2aにより締結されたソールプレート2bにせん断キー2cを介して上沓30が接続されて、免震ゴム支承装置1が橋梁に設置される。なお、免震積層ゴム体10と積層ゴム体20とは、接着、溶接等で固着されているものであってもよく、免震積層ゴム体10と積層ゴム体20とがはじめから一体に製作されたものであってもよい。   Then, the lower rod 31 is fixed to the abutment 3 by an appropriate number of anchor bolts 3a, and the upper rod 30 is connected to the sole plate 2b fastened to the bridge girder 2 by an appropriate number of fastening bolts 2a via a shear key 2c. Thus, the seismic isolation rubber bearing device 1 is installed on the bridge. The seismic isolation laminated rubber body 10 and the laminated rubber body 20 may be bonded by welding, welding or the like, and the seismic isolation laminated rubber body 10 and the laminated rubber body 20 are integrally manufactured from the beginning. It may be what was done.

この実施の形態では、第1取付鋼板14または第2取付鋼板24に対向する位置まで、下沓31からストッパブロック(拘束体)32を突設して(立ち上げて)積層ゴム体20の水平方向の変位を拘束している点に特徴があり、ここでは橋軸方向の下沓31の前後にストッパブロック32、32を設けている。ストッパブロック32、32は、第1取付鋼板14、第2取付鋼板24に形成された係合凹部14a、24aに挿入可能に設けられている。すなわち、積層ゴム体20は、ストッパブロック32、32によって、水平面内の橋軸方向及び橋軸と直交する方向の移動すなわち変位することが拘束されている。   In this embodiment, a stopper block (restraint body) 32 protrudes (starts up) from the lower collar 31 to a position facing the first mounting steel sheet 14 or the second mounting steel sheet 24, and the laminated rubber body 20 is horizontal. This is characterized in that the displacement in the direction is constrained. Here, stopper blocks 32 and 32 are provided before and after the lower rod 31 in the bridge axis direction. The stopper blocks 32 and 32 are provided so that they can be inserted into engaging recesses 14 a and 24 a formed in the first mounting steel plate 14 and the second mounting steel plate 24. That is, the laminated rubber body 20 is restrained by the stopper blocks 32 and 32 from moving or displacing in the direction of the bridge axis in the horizontal plane and the direction perpendicular to the bridge axis.

なお、取付鋼板に係合孔を形成し、この係合孔にストッパブロックの端部が挿入され、積層ゴム体の水平方向の範囲を拘束するものであってもよい。すなわち取付鋼板とストッパブロックとの係合部位は、積層ゴム体の取付鋼板とストッパブロックとが係合し、積層ゴム体の水平方向の変位を拘束できるものであればどのような形状のものであってもよい。さらに、構造物は橋梁で、上部構造物が橋桁の場合、橋軸方向のみ積層ゴム体の変位を拘束したものであってもよい。   Note that an engagement hole may be formed in the mounting steel plate, and an end portion of the stopper block may be inserted into the engagement hole to constrain the horizontal range of the laminated rubber body. In other words, the engagement portion between the mounting steel plate and the stopper block is of any shape as long as the mounting steel plate of the laminated rubber body and the stopper block can be engaged to restrain the horizontal displacement of the laminated rubber body. There may be. Furthermore, when the structure is a bridge and the upper structure is a bridge girder, the displacement of the laminated rubber body may be restricted only in the bridge axis direction.

図4は、免震ゴム支承装置1に地震力が作用して、免震ゴム支承装置1が変形した状態を示す橋軸方向の断面図である。この免震ゴム支承装置1によれば、鉛直方向については、積層ゴム体20の厚みと免震積層ゴム体10の厚みの両方が加算された全厚みが有効厚みとして作用するので、鉛直方向の剛性は低く維持される。一方、水平方向については、第1取付鋼板14または第2取付鋼板24がストッパブロック32、32に当接することにより、積層ゴム体20が水平方向に変位することが拘束され、免震積層ゴム体10のみが水平方向に変位することになる(図4参照)。すなわち、免震ゴム支承装置1の水平剛性を高め、地震により、橋桁2が揺れるように移動した場合でも、過度に水平方向に変位することを防止できる。   FIG. 4 is a cross-sectional view in the direction of the bridge axis showing a state in which seismic force acts on the seismic isolation rubber bearing device 1 and the seismic isolation rubber bearing device 1 is deformed. According to the seismic isolation rubber bearing device 1, in the vertical direction, the total thickness obtained by adding both the thickness of the laminated rubber body 20 and the thickness of the seismic isolation laminated rubber body 10 acts as an effective thickness. The rigidity is kept low. On the other hand, in the horizontal direction, the first mounting steel plate 14 or the second mounting steel plate 24 abuts against the stopper blocks 32 and 32, so that the laminated rubber body 20 is restrained from being displaced in the horizontal direction. Only 10 is displaced in the horizontal direction (see FIG. 4). That is, the horizontal rigidity of the seismic isolation rubber bearing device 1 can be increased, and even when the bridge girder 2 moves so as to shake due to an earthquake, it can be prevented from being excessively displaced in the horizontal direction.

すなわち、免震積層ゴム体10は、橋桁2等の固有振動数の長周期化を図り、減衰係数を大きくすることによって、地震発生時に作用する地震力の低減を図り、地震波との共振を防いでゆっくり揺れるようにする。しかも、免震ゴム支承装置1は、鉛直剛性を低くしたにもかかわらず、橋桁2がゆっくり揺れるように移動しても、水平方向に大きく変位するのを防止し、所定の範囲内となるように規制している。言い換えると、免震ゴム支承装置1は、一般の積層ゴム体20と免震積層ゴム体10を組み合わせるとともに、積層ゴム体20の外周部をストッパブロック32で拘束する構造にしたことにより、鉛直方向の剛性を低くして回転機能を妨げることなく、水平方向の変位を一部拘束して、免震性能を損なうことがなく橋桁2(上部構造物)が過度に揺れ、他の構造物に衝突するような変位をしてしまうことを防止している。   That is, the seismic isolation laminated rubber body 10 increases the natural frequency of the bridge girder 2 and the like, and increases the damping coefficient, thereby reducing the seismic force that acts when an earthquake occurs and preventing resonance with seismic waves. To slowly shake. Moreover, the seismic isolation rubber bearing device 1 prevents the horizontal displacement of the bridge girder 2 from being greatly displaced even if the bridge girder 2 is moved so as to swing slowly in spite of the reduced vertical rigidity so that it is within a predetermined range. Is regulated. In other words, the seismic isolation rubber support device 1 combines the general laminated rubber body 20 and the seismic isolation laminated rubber body 10, and has a structure in which the outer peripheral portion of the laminated rubber body 20 is restrained by the stopper block 32. The horizontal girder 2 (upper structure) shakes excessively and collides with other structures without impairing the seismic isolation performance without restricting the horizontal displacement without impairing the rotation function by lowering the rigidity of the bridge. To prevent such displacement.

〔他の実施の形態〕
図5,6に基づいて本考案の他の実施の形態の説明を行う。
図5は、本考案の他の実施の形態を示す免震ゴム支承装置1Aの断面図であり、図3に相当する図、図6は、他の実施の形態の免震ゴム支承装置1Aに地震力が作用して、免震ゴム支承装置1Aが変形した状態を示す橋軸方向の断面図で、図4に相当する図である。
前述した実施の形態では、免震積層ゴム体10を、ゴム自体に高い減衰性能を有する高減衰性ゴムを用いたものとして説明を行っているが、この他の実施の形態の免震積層ゴム体110は鉛プラグ12を積層ゴムに埋め込んだものである。なお、この他の実施の形態の説明では、前述した実施の形態と同一の部位には同一の符号を付与し、詳細な説明は省略している。
[Other Embodiments]
Another embodiment of the present invention will be described with reference to FIGS.
FIG. 5 is a cross-sectional view of a seismic isolation rubber bearing device 1A showing another embodiment of the present invention. FIG. 5 is a view corresponding to FIG. 3, and FIG. 6 shows a seismic isolation rubber bearing device 1A according to another embodiment. FIG. 5 is a cross-sectional view in the direction of the bridge axis showing a state in which seismic force acts and the seismic isolation rubber bearing device 1A is deformed, corresponding to FIG.
In the embodiment described above, the seismic isolation laminated rubber body 10 is described as using a high damping rubber having a high damping performance for the rubber itself. However, the seismic isolation laminated rubber of other embodiments is described. The body 110 has a lead plug 12 embedded in a laminated rubber. In the description of the other embodiments, the same reference numerals are given to the same portions as those of the above-described embodiments, and detailed description thereof is omitted.

この他の実施の形態に係る免震ゴム支承装置1Aは、複数層の補強板を内蔵する積層ゴム体20と、この積層ゴム体20の上部に設けられ、鉛プラグ12を積層ゴムに埋め込んだ免震積層ゴム体110と、積層ゴム体20下面に固着される下沓31と、免震積層ゴム体110の上面に固着される上沓30とを備え、下部構造物である橋台3と上部構造物である橋桁2の間に設置されるものである。   A seismic isolation rubber bearing device 1A according to another embodiment is provided with a laminated rubber body 20 containing a plurality of layers of reinforcing plates and an upper portion of the laminated rubber body 20, and a lead plug 12 is embedded in the laminated rubber. A seismic isolation laminated rubber body 110, a lower rod 31 fixed to the lower surface of the laminated rubber body 20, and an upper rod 30 fixed to the upper surface of the seismic isolation laminated rubber body 110, and the abutment 3 that is a lower structure and the upper portion It is installed between the bridge girder 2 which is a structure.

免震積層ゴム体110は、第1積層ゴム111に複数(例えば、4個)の鉛プラグ12を所定の位置に埋め込んだものである。なお、鉛プラグは積層ゴムに一つ埋め込まれたものであってもよい。免震積層ゴム体110は、矩形のゴム板と矩形の補強板とが複数層に亘って交互に積層されて一体に加硫成型された第1積層ゴム111である。ここでゴム板の材質は、例えばゴム弾性体であり、補強板の材質は、例えば鋼である。この補強板には、第1薄鋼板13、第1取付鋼板14及び第2厚鋼板15が含まれる。ここでゴム板の厚さは例えば25mm程度であり、第1薄鋼板13の厚さは例えば3.2mm程度であり、第1取付鋼板14、第1厚鋼板15の厚さは例えば20〜40mm程度である。この第1積層ゴム111は、上側から順に第1厚鋼板15、ゴム板、第1薄鋼板13、ゴム板、第1薄鋼板13、ゴム板、・・ゴム板、第1取付鋼板14が積層されて一体加硫成型されたものである。   The seismic isolation laminated rubber body 110 is obtained by embedding a plurality of (for example, four) lead plugs 12 in a predetermined position in the first laminated rubber 111. One lead plug may be embedded in laminated rubber. The seismic isolation laminated rubber body 110 is a first laminated rubber 111 in which rectangular rubber plates and rectangular reinforcing plates are alternately laminated over a plurality of layers and integrally vulcanized. Here, the material of the rubber plate is, for example, a rubber elastic body, and the material of the reinforcing plate is, for example, steel. The reinforcing plate includes a first thin steel plate 13, a first mounting steel plate 14, and a second thick steel plate 15. Here, the thickness of the rubber plate is, for example, about 25 mm, the thickness of the first thin steel plate 13 is, for example, about 3.2 mm, and the thickness of the first mounting steel plate 14 and the first thick steel plate 15 is, for example, 20-40 mm. Degree. The first laminated rubber 111 includes a first thick steel plate 15, a rubber plate, a first thin steel plate 13, a rubber plate, a first thin steel plate 13, a rubber plate, a rubber plate, and a first mounting steel plate 14 in order from the top. And is integrally vulcanized and molded.

鉛プラグ12は、主としてダンパーとしての機能を果たし、せん断方向の振動エネルギを吸収して振動を抑制する作用をする。言い換えると、鉛プラグ12は、第1積層ゴム111の変形に伴って、塑性変形を起こし、地震エネルギーを吸収するとともに、振動をすみやかに減衰させ、地震による変形量を小さく抑える作用をする。すなわち、免震積層ゴム体110は、積層ゴムの作用と鉛プラグ12の作用が協調して働き、地震が発生したときにすみやかに免震性能を発揮する(図6参照)。   The lead plug 12 mainly functions as a damper and acts to suppress vibration by absorbing vibration energy in the shear direction. In other words, the lead plug 12 causes plastic deformation in accordance with the deformation of the first laminated rubber 111, absorbs the seismic energy, and quickly attenuates the vibration, thereby suppressing the deformation amount due to the earthquake. That is, the seismic isolation laminated rubber body 110 works in a coordinated manner with the action of the laminated rubber and the action of the lead plug 12, and immediately exhibits seismic isolation performance when an earthquake occurs (see FIG. 6).

免震ゴム支承装置1Aでも、一般の積層ゴム体20と免震積層ゴム体110を組み合わせるとともに、積層ゴム体20の外周部をストッパブロック32で拘束する構造にしたことにより、鉛直方向の剛性を低くして回転機能を妨げることなく、水平方向の変位を一部拘束して、免震性能を損なうことがなく橋桁2(上部構造物)が過度に揺れ、他の構造物に衝突するような変位をしてしまうことを防止している。   Even in the seismic isolation rubber bearing device 1A, the general laminated rubber body 20 and the seismic isolation laminated rubber body 110 are combined, and the outer peripheral portion of the laminated rubber body 20 is constrained by the stopper block 32, so that the rigidity in the vertical direction is increased. Without lowering the rotation function, the horizontal displacement is partly constrained, and the bridge girder 2 (superstructure) will shake excessively and collide with other structures without impairing the seismic isolation performance. This prevents the displacement.

以上、本考案の実施の形態について説明したが、本考案は、この実施の形態に限定されることはない。本考案の目的、趣旨を逸脱しない範囲内で変更が可能であるであることはいうまでもない。
例えば、免震ゴム支承装置の免震積層ゴム体10,110を上側に、積層ゴム体20を下側に組み合わせたものとしたが、これに限定されることはない。すなわち、免震積層ゴム体10,110を下側に、積層ゴム体20を上側に組み合わせ、積層ゴム体20側の第2厚鋼板を橋桁(上部構造物)2に、免震積層ゴム体10,110側の第1厚鋼板を橋台(下部構造物)3に固定した構成のものであってもよい。その場合には、上沓30側にストッパブロック(拘束体)を設けておけばよい。
The embodiment of the present invention has been described above, but the present invention is not limited to this embodiment. It goes without saying that changes can be made without departing from the purpose and spirit of the present invention.
For example, although the seismic isolation laminated rubber bodies 10 and 110 of the seismic isolation rubber bearing device are combined on the upper side and the laminated rubber body 20 on the lower side, the present invention is not limited to this. That is, the seismic isolation laminated rubber bodies 10 and 110 are combined on the lower side, the laminated rubber body 20 is combined on the upper side, the second thick steel plate on the laminated rubber body 20 side is connected to the bridge girder (upper structure) 2, and the seismic isolation laminated rubber body 10 is combined. , 110 side first thick steel plate may be fixed to the abutment (lower structure) 3. In that case, a stopper block (restraint body) may be provided on the upper collar 30 side.

さらに、積層ゴム体の外周部を拘束する拘束体で説明を行ったが、積層ゴム体の内周部を拘束するものであってもよい。例えば、積層ゴム体に矩形状の内部孔を形成するとともに、下沓(または上沓)から内部孔に対応する矩形状のストッパブロック(拘束体)を突設し、内部孔にストッパブロックを嵌入したような構成のものであってもよい。   Furthermore, although the description has been given of the restraining body that restrains the outer peripheral portion of the laminated rubber body, the inner peripheral portion of the laminated rubber body may be restrained. For example, a rectangular internal hole is formed in the laminated rubber body, a rectangular stopper block (restraint) corresponding to the internal hole is projected from the lower collar (or upper collar), and the stopper block is inserted into the inner hole. It may be configured as described above.

図1は、本考案の免震ゴム支承装置の平面図である。FIG. 1 is a plan view of the seismic isolation rubber bearing device of the present invention. 図2は、図1をA−A線で切断した断面図である。FIG. 2 is a cross-sectional view taken along line AA in FIG. 図3は、図1をB−B線で切断した断面図である。3 is a cross-sectional view of FIG. 1 taken along line BB. 図4は、地震力の作用により免震ゴム支承装置が変形した状態を示す橋軸方向の断面図である。FIG. 4 is a cross-sectional view in the direction of the bridge axis showing a state where the seismic isolation rubber bearing device is deformed by the action of seismic force. 図5は、本考案の他の実施の形態の免震ゴム支承装置の断面図であり、図3に相当する図である。FIG. 5 is a cross-sectional view of a seismic isolation rubber bearing device according to another embodiment of the present invention, and corresponds to FIG. 図6は、地震力の作用により他の実施の形態の免震ゴム支承装置が変形した状態を示す橋軸方向の断面図である。FIG. 6 is a cross-sectional view in the direction of the bridge axis showing a state in which the seismic isolation rubber bearing device of another embodiment is deformed by the action of seismic force.

符号の説明Explanation of symbols

1,1A…免震ゴム支承装置
2…橋桁(上部構造物)
3…橋台(下部構造物)
3a…アンカーボルト
10,110…免震積層ゴム体
11,111…第1積層ゴム
12…鉛プラグ
13…第1薄鋼板
14…第1取付鋼板
15…第1厚鋼板
20…積層ゴム体
21…第2積層ゴム
23…第2薄鋼板
24…第2取付鋼板
25…第2厚鋼板
30…上沓
31…下沓
32…拘束体(ストッパブロック)
1,1A ... Seismic isolation rubber bearing device 2 ... Bridge girder (superstructure)
3 ... Abutment (under structure)
3a ... anchor bolts 10, 110 ... seismic isolation laminated rubber bodies 11, 111 ... first laminated rubber 12 ... lead plug 13 ... first thin steel plate 14 ... first mounting steel plate 15 ... first thick steel plate 20 ... laminated rubber body 21 ... 2nd laminated rubber 23 ... 2nd thin steel plate 24 ... 2nd attachment steel plate 25 ... 2nd thick steel plate 30 ... Upper collar 31 ... Lower collar 32 ... Restraint body (stopper block)

Claims (3)

上部構造物(2)と下部構造物(3)との間に設けられ、前記下部構造物(3)と前記上部構造物(2)とを相対的に鉛直面内及び水平面内で変位可能に支承する免震ゴム支承装置(1,1A)であって、
複数の補強板とゴム板が積層されて一体化され、一方の取付面に、前記下部構造物(3)または前記上部構造物(2)が取り付けられる積層ゴム体(20)と、
所定の減衰性能を有するように、複数の補強板を内蔵して積層され、前記積層ゴム体の他方の取付面に一方の取付面が連結されるとともに他方の取付面に前記上部構造物(2)または前記下部構造物(3)が取り付けられる免震積層ゴム体(10,110)と、
前記下部構造物(3)または前記上記構造物(2)に固定された前記積層ゴム体(20)の外周部または内周部の少なくとも一部を拘束可能に、前記下部構造物(3)または前記上部構造物(2)に設けられ、前記積層ゴム体(20)が水平方向に変位するのを拘束している拘束体(32)と
からなる構造物の免震ゴム支承装置。
Provided between the upper structure (2) and the lower structure (3), the lower structure (3) and the upper structure (2) can be relatively displaced in a vertical plane and a horizontal plane. A seismic isolation rubber bearing device (1, 1A)
A laminated rubber body (20) in which a plurality of reinforcing plates and rubber plates are laminated and integrated, and the lower structure (3) or the upper structure (2) is attached to one attachment surface;
A plurality of reinforcing plates are built in and laminated so as to have a predetermined damping performance, one attachment surface is connected to the other attachment surface of the laminated rubber body, and the upper structure (2 ) Or the base-isolated laminated rubber body (10, 110) to which the lower structure (3) is attached,
The lower structure (3) or the lower structure (3) or the laminated structure (2) fixed to the lower structure (3) or the laminated rubber body (20), the lower structure (3) or A seismic isolation rubber bearing device for a structure comprising: a restraining body (32) provided on the upper structure (2) and restraining the horizontal displacement of the laminated rubber body (20).
請求項1に記載された構造物の免震ゴム支承装置であって、
前記免震積層ゴム体(10)は、減衰特性の高い高減衰性ゴムを材料として製作されたものである
ことを特徴とする構造物の免震ゴム支承装置。
A seismic isolation rubber bearing device for a structure according to claim 1,
The seismic isolation laminated rubber body (10) is manufactured from a high damping rubber having a high damping characteristic as a material.
請求項1に記載された構造物の免震ゴム支承装置であって、
前記免震積層ゴム体(110)は、鉛プラグ(12)が埋め込まれ、積層ゴムと前記鉛プラグとの組み合わせによって免震性能を発揮するものである
ことを特徴とする構造物の免震ゴム支承装置。
A seismic isolation rubber bearing device for a structure according to claim 1,
The seismic isolation rubber body (110) is embedded in a lead plug (12) and exhibits seismic isolation performance by a combination of the laminated rubber and the lead plug. Bearing device.
JP2006000705U 2006-02-06 2006-02-06 Seismic isolation rubber bearing device for structures Expired - Lifetime JP3121118U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006000705U JP3121118U (en) 2006-02-06 2006-02-06 Seismic isolation rubber bearing device for structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006000705U JP3121118U (en) 2006-02-06 2006-02-06 Seismic isolation rubber bearing device for structures

Publications (1)

Publication Number Publication Date
JP3121118U true JP3121118U (en) 2006-04-27

Family

ID=43471245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006000705U Expired - Lifetime JP3121118U (en) 2006-02-06 2006-02-06 Seismic isolation rubber bearing device for structures

Country Status (1)

Country Link
JP (1) JP3121118U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6212228B1 (en) * 2017-02-14 2017-10-11 株式会社ビービーエム Structural support device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6212228B1 (en) * 2017-02-14 2017-10-11 株式会社ビービーエム Structural support device
JP2018131757A (en) * 2017-02-14 2018-08-23 株式会社ビービーエム Bearing device for structure

Similar Documents

Publication Publication Date Title
Yuan et al. Seismic performance of cable-sliding friction bearing system for isolated bridges
US6354047B1 (en) Columnar structure with earthquake resistance imparted thereto and method of reinforcing the earthquake resistance of a columnar structure
KR102135337B1 (en) The hysteretic damper for seismic retrofit
JP4192225B2 (en) Shear panel type vibration control stopper
JPH08334113A (en) Anchor bolt and installation structure adopting the same
JP3121118U (en) Seismic isolation rubber bearing device for structures
JP7102249B2 (en) Multi-sided slide bearing device for structures
US5161338A (en) Laminated rubber support assembly
JP3124502B2 (en) Structure of leaded rubber bearing
JP6055231B2 (en) Bridges and bridge dampers
JP2009228851A (en) Lamination layer rubber for seismic isolation
JP7455682B2 (en) Buffer structure and buffer material
JP4858848B2 (en) Interdigit connection device
KR101409400B1 (en) Laminated rubber bearing having hat-shaped steel damper
JP4581832B2 (en) Composite viscoelastic damper
JP6509017B2 (en) Seismic isolation structure and seismic isolation repair method for existing buildings
JP2001106455A (en) Elevator guide rail supporting device
JP2012047035A (en) Vertical buffer anchor pin
JP7266468B2 (en) Seismic isolation structure
JP5698920B2 (en) Bearing structure
JP2008156925A (en) Buffering unit and impact receiving structure
JP2005076303A (en) Elastic joint device
JP7182443B2 (en) Buffers, seismically isolated buildings and buildings
KR100987811B1 (en) Hybrid rubber bearing using lead and tin
KR200360336Y1 (en) Bearing for high damping elastomers

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100405

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110405

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110405

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130405

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140405

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term